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Abstract. The two-dimensional nonlinear system

/

u' = a(t)v]Ysgnv, v = —b(t)|u|*sgnu (1.1)

is considered under the assumptions that a > 0, a,b € C[tg,0), a(t) > 0, a(t) Z 0 (t > o). It
is shown that, under certain conditions on a(t) and b(t), if system (1.1) is nonoscillatory, then the
integral averages with the weight a(t) of the functions |c(t)| and |c(¢)|®+1)/ tend to 0 as t — oc.
Here,

0= ( [atras) " [ forar)as, e

Using this result, we can establish many kinds of Hartman—Wintner type oscillation criteria for (1.1).
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c(t):TlLIrolo(/Ta(s) ds> /a(s)</sb(r) dr> ds, t > to.
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1 Introduction

In this paper, we consider the two-dimensional nonlinear system of ordinary differential equations

{u/’ = a(t)|v]'/*sgnw, (1)
v =

—b(t)[ulsgn u,
where « is a positive constant, a(t) and b(t) are real-valued continuous functions on [tg, 00) and
a(t) >0 for t>tg, and a(t) Z0 on [tg,00) for any td > t.

By a solution (u(t),v(t)) of system (1.1) on an interval I C [tg,00) we mean that u(t) and v(t) are
continuously differentiable on I and satisfy (1.1) at every point ¢ € I.

It is known (Mirzov [10, Lemma 2.1]) that all local solutions of (1.1) can be continued to ¢ and oo,
and so all solutions of (1.1) exist on the entire interval [tg, c0). Following the paper by Dosoudilov4,
Lomtatidze and Sremr [3], we say that a solution (u(t),v(t)) of system (1.1) is nontrivial if u(t) # 0
on any neighborhood of infinity, and that a nontrivial solution (u(t),v(t)) of (1.1) is oscillatory if u(t)
has a sequence of zeros tending to infinity, and nonoscillatory otherwise. It is worth noting that, for
any nontrivial solution (u(t),v(t)) of (1.1), the sequence of zeros of u(t) cannot have a finite cluster
point (see Naito [13]). If (u(t),v(¢)) is a solution of (1.1), then so is (—u(t), —v(t)). Therefore, without
loss of generality, we can assume that a nonoscillatory solution (u(t),v(t)) of (1.1) satisfies u(t) > 0
for all large t.

It is also known (Mirzov [10, Theorem 1.1]) that an analogue of Sturm’s separation theorem holds
for system (1.1). In particular, if system (1.1) has an oscillatory [resp. nonoscillatory] solution, then
any other nontrivial solution is also oscillatory [resp. nonoscillatory]. System (1.1) is said to be
oscillatory [resp. nonoscillatory] if all its nontrivial solutions are oscillatory [resp. nonoscillatory].

For the case where a(t) > 0 for t > t¢, the first component u(t) of a solution (u(t),v(t)) of (1.1)
satisfies the scalar differential equation

(a(t)=u'|“sgn ') + b(t)|ul*sgnu = 0.
Putting p(t) = a(t)~® and ¢(t) = b(t), we write the above equation in the form
(p(t) |/ |*sgn ') + q(t)u|*sgnu = 0, (1.2)

where p(t) and ¢(t) are continuous functions on [tg,00) and p(t) > 0 for ¢ > to. If u(t) is a solution
of (1.2) and if ¢ is a constant, then cu(t) is also a solution of (1.2). Equation (1.2) is referred as
“half-linear” equation. If & = 1, then (1.2) becomes the linear equation

(p(t)u") + q(t)u = 0. (1.3)

In the last three decades, many results have been obtained in the theory of oscillatory and asymptotic
behavior of solutions of the half-linear equation (1.2). It is known that basic results for the linear
equation (1.3) can be generalized to the half-linear equation (1.2). The important works for (1.2) are
summarized in the book by Dosly and Rehak [2]. For the recent results to the half-linear equation
(1.2) see, for example, [4,6,7,14,16,17]. For the results to the nonlinear system (1.1) (including the
linear system) see, for example, [3,5,8-11,13,15].

For the scalar equation (1.2), it is usual to distinguish the cases

/p(s)fl/o‘ ds = 0o and /p(s)fl/a ds < oo.
to to

For system (1.1), these correspond to the cases

o

/a(s) ds = 0o and /a(s) ds < o0,
to

to
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respectively. In the present paper, we focus our attention to the former case
oo
/a(s) ds = 0. (1.4)
to

An analogue of the Hartman—Wintner oscillation theorem for the linear equation (1.3) remains
valid for the half-linear system (1.1). In fact, we have the following result.

Theorem 1.1 (Mirzov [11, Theorem 12.3]). Consider the half-linear system (1.1) under condition

(1.4). 1f t t s
Jim ( / als) ds>_1 / a(s)( / b(r) dr) ds = oo

oo < 12133)210(/@(5) ds) l/ta(s)</sb(r) dr) ds

<timsan ( [atrar)” fa( [ 1) an

then system (1.1) is oscillatory.

An extension of Theorem 1.1 has been given by Dosoudilovd, Lomtatidze and Sremr [3]. The
special case A = 0 and v = 0 of Corollary 2.5 in [3] becomes Theorem 1.1.
In the present paper, a result similar to Theorem 1.1 will be proved. Then the condition

imenn ( fatr2) " [ ([atrar) b1 > oo orsome a0

0 to
plays an important part.

Theorem 1.2. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). If

lim sup < /t a(s) ds>_1 j als) / b(r) dr

to to

ds = o0 (1.6)

or

ngigf< /t a(s) ds>_1 j als) ds

to to

/Sb(r) dr
< H?iilip (/ta(s) ds>_1/ta(3) /Sb(r) dr

0 to to

ds < o0, (1.7)

then system (1.1) is oscillatory.
Further, we will prove the following theorem.

Theorem 1.3. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). If

lim sup ( ] a(s) ds>_1 j als) / b(r) dr

0 to

(at1)/c
ds = (1.8)
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or
¢ -1 ¢ ° (a41)/a
hgninf(/a(s) ds) /a(s) /b(r) dr ds
— 00
to to to
t -1t s (a+1)/a
< limsup (/a(s) ds) /a(s) /b(r) dr ds < o0, (1.9)
t—o00 ; ; i
0 0

then system (1.1) is oscillatory.

For the case a = 1, a(t) = 1 and b(t) = ¢(t), Theorem 1.3 reduces to the recent result in [12,
Corollaries 1.2 and 1.3 (the linear case)]. Note that in the paper [12] nonlinear scalar equations of the
form

" +qt)f(x)=0, t>to (zf(x)>0 and f'(z) >0 for x #0)

are discussed.

Theorems 1.2 and 1.3 are actually derived from more general results for (1.1). The general results
are stated and proved in Section 2. In the last part of Section 2, we give a few examples illustrating
our results. In the final Section 3, further results for (1.1) are stated and proved. The results in
Section 3 are slightly restrictive in the sense that, for example, Theorem 3.2 requires the condition
0<a<l

2 General results

Suppose now that system (1.1) has a nonoscillatory solution (u(t),v(t)) such that u(t) > 0 for t > T
(> tg). Define the function w(t) by

w(t) = uv((tt)L L t> T (2.1)

Since a(t) is nonnegative, it is clear that w(t) satisfies either

oo

/a(s)|w(s)|(a+1)/a ds = 0o (2.2)
T

or o
/a(s)|w(s)\(°‘+l)/°‘ ds < 0. (2.3)
T

The results of this paper are based on the following theorem, in which it is shown that if (1.1) is
nonoscillatory, then we must have either

i fatora) ™ [ ( fatrar) sran= o oy wma
i ([fatorar)” ot fotryar) o st s i 25)

Theorem 2.1. Consider the half-linear system (1.1) under condition (1.4). Suppose that system (1.1)
has a nonoscillatory solution (u(t),v(t)) such that u(t) >0 fort > T (> tg). Define w(t) by (2.1).

(I) If (2.2) is satisfied, then (2.4) holds.
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(IT) If (2.3) is satisfied, then (2.5) holds.
Proof. Tt is easy to see that w(t) satisfies the generalized Riccati differential equation

w'(t) = —b(t) — aa(t)|w(t)| T/, ¢ >T. (2.6)

(I) Assume that (2.4) does not hold. This implies (1.5). Then, by Lemma 4.1 (the case m = 1,
£ =1 and A = 0) in the paper by Dosoudilova et al. [3], we see that (2.3) holds, that is, (2.2) does
not hold. This proves (I).

(IT) Suppose that (2.3) is satisfied. Integrating (2.6) from T to t, we have

t

w(t) = w(T) — /b(s) ds — a/a(s)|w(s)|(a+1)/a ds, t>T,

T

a(s)w(s)ds = w(T) i a(s)ds
/ /
T/a(s)(:/b(r) dr> ds — 04:[/a(s)(ip/a(r)|w(r)|(a+1)/°‘ dr) ds, t>T. (2.7)

By Holder’s inequality, we have

t t

1/(a+1) a/(at+l)
/a(s)|w(s)|d8 < (/a(s ) </a |(a+1)/ ds) , t>T.
T T

T

It follows from (1.4) that

¢
/a(s) ds > 0 for all large t.
T

Hence, using (2.3), we get

(/ta(s) dS) /a( Yw(s)|ds < </ta )‘a/ a+1)(7a s+ ds)a/(aﬂ)

for all large ¢. Therefore, condition (1.4) implies

tliglc (/a(s) ds>_1/ta(s)|w(s)|ds =0, (2.8)
T T
t ot
tlg(r)lo <T/a(s) ds) 7/a(s)w(s) ds = 0.

Then, by (2.7), we easily find that

iy [fatorae) [ oo [ 010 st s e 29)
T T T

and, as a consequence,
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and
t _1 t s 00
0=w(T)— tlim (/a(s) ds) /a(s)(/b(r) dr) ds — a/a(s)|w(s)|(a+1)/a ds. (2.10)
(o)
T T T T
It is obvious that (2.9) implies (2.5). The proof of Theorem 2.1 is complete. O

For the case where (2.5) holds, we can define the function ¢(t) by

-1 7

o(t) :TILH;O(/TCL(S) ds) /a(s)(/sb(r) dr) ds, t> to. (2.11)

By (1.4), the function ¢(t) can be written in the form

0= i ( [atas) " [t fora)as o210

to t

For the case where
t

tlim b(s)ds = /b(s) ds exists and is finite,
— 00
to to

the function ¢(t) is given by

oo

c(t) = /b(s) ds, t>tp.

t

Theorem 2.2. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). Suppose that
system (1.1) has a nonoscillatory solution (u(t),v(t)) such that u(t) > 0 fort > T (> to). Define
the function w(t) by (2.1). Then (2.3) and (2.5) hold, and the function c(t) can be defined by (2.11).
Moreover, w(t) satisfies the generalized Riccati integral equation

w(t) = c(t) + a/a(s)\w(s)\wﬂ)m ds, t>T. (2.12)

t

Proof. Since (1.5) is assumed, (2.4) does not hold. Therefore, from (I) of Theorem 2.1, it is seen that
(2.2) is not satisfied. Hence we have (2.3). Then, by (II) of Theorem 2.1, we obtain (2.5), and, as
mentioned above, the function ¢(¢) can be defined by (2.11).

Since we have (2.3), the proof of (II) of Theorem 2.1 leads to equality (2.10). This implies

oo

w(T) = o(T) + a / a(s)|w(s)|@+D/e g,
T

Note that T is a number such that u(t) > 0 for ¢ > T
Now, let 77 be an arbitrary number satisfying 77 > T. It is trivial that w(¢) > 0 for ¢ > T3.

Therefore, we have
(o]

w(Ty) = ¢(T1) + a / a(s)|w(s)|(@FTV/ @ gs,

T

Since Ty (> T) is arbitrary, this implies (2.12). The proof of Theorem 2.2 is complete. O
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As shown in Theorem 2.2, if system (1.1) with (1.4) and (1.5) is nonoscillatory, then (2.5) holds
and the function ¢(t) can be defined by (2.11). The next theorem says furthermore that this ¢(¢) must

satisfy ) .
Jim (/a(s) ds) _l/a(s)|c(s)|ds=O (2.13)
and
Jim < / a(s) ds) - / a(s)|e(s)| @/ ds = 0. (2.14)

Theorem 2.3. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). If (1.1) s
nonoscillatory, then (2.13) and (2.14) hold. Here, c(t) is given by (2.11).

Proof. Suppose that (1.1) is nonoscillatory. Let (u(t),v(t)) be a nonoscillatory solution of (1.1) and
suppose that u(t) > 0 for t > T (> tp), and define w(t) by (2.1). By Theorem 2.2, we have (2.3), (2.5)
and (2.12). Therefore,

o

le(®)] < |w(®)] + O‘/@(S)\U}(S)l(““)/“ ds, t>T, (2.15)

t

and hence

ta(s) ds - ta(s)|c(s)|ds
(fuoe) |
t 1t t gt o
< (T/a(s) ds) T/a(s)|w(s)ds+a(T/a(s) ds) T/a(s)(!a(r)|w(r)|( +1)/ dr) ds

for all large ¢t. As in the proof of (II) of Theorem 2.1, we get (2.8). This implies that the first term of
the right-hand side of the above inequality tends to 0 as ¢ — co. By (1.4) and (2.3), it is clear that
the second term of the right-hand side of the above inequality also tends to 0 as ¢ — co. Hence we
have (2.13).

To prove (2.14), we apply the general inequality

(w+v)r <22 +vY), p>0 v>0 A>0, (2.16)
to the case -
1
p=lu®], v=a [ (s ds and A=

t
Then it follows from (2.15) that

o0

(a+1)/c
|c<t)|(a+1)/0t < 2(a+1)/04|w(t)‘(a+1)/04 + <2a)(a+1)/a</a(8)|w(8)|(a+1)/a ds>

t

for t > T. Hence

( T/ als)ds) [ als)ils) 0

T
t

< 2<a+l>/a( / a(s) d) [ a0 as
T

T
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+ (2) @t/ ( j a(s) ds) - /ta(s) ( /ooa(r)w(r)|(a+1)/a dr> e ds
T T s

for all large ¢. By (1.4) and (2.3), we easily find that the right-hand side of the above inequality tends
to 0 as t — oo. This yields (2.14). The proof of Theorem 2.3 is complete. O

It is worth noting that condition (1.5) is satisfied provided

it ([aran)” fata( foiryar) s o 27

to to to

In fact, if (2.17) holds, then

¢ Lt .
litrginf (/a(s) ds) / (/a(r) dr) b(s)ds > —oco forall K=1,2,3,.... (2.18)
t s

0 0

It is clear that (2.18) implies (1.5). In what follows, we show that (2.17) implies (2.18). If (2.17) is
satisfied, then there are constants L; > 0 and M; > 0 such that

/t</ta('r) dr)b(s)ds ja(s)(/sb(r) dr) ds > —Ly Ml/ta(s) ds, 1>t

0 s 0 0 to

Multiplying the above inequality by a(t) and integrating from ¢y to ¢, we see that there are constants
Lo > 0 and M5 > 0 such that

2

j(/ta(r) dr)2b(s) ds 2 =L, —Mz(/a(s)ds> Lt >t

0 s 0

Repeating this procedure, we deduce that there are constants L, > 0 and M, > 0 such that

/(/ta(r)dryb(s)dsz_LK—MH(/ta(S)ds)H, t>t0, K=1,2,3,....

to s to

This gives (2.18).
Condition (2.5) clearly implies (2.17) and, as mentioned above, (2.17) implies (1.5). Therefore,
the following corollary is derived from Theorem 2.3.

Corollary 2.1. Consider the half-linear system (1.1) under conditions (1.4) and (2.5). If (1.1) is
nonoscillatory, then (2.13) and (2.14) hold. Here, c(t) is given by (2.11).

Lemma 2.1. Suppose that (1.4) and (2.5) hold. Then the function c(t) defined by (2.11) satisfies

t

o(t) = elty) — / b(s)ds, ¢ > o, (2.19)

and

Tim ( j als) ds>_1 /t als)e(s) ds = 0. (2.20)
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Proof. Let tg <t < 7, and suppose that 7 is sufficiently large. We have

([atwras) " [ frrrar) as
~(Jotwa)( fawas) ( fawas) " [ frrar)a

0 to to to

- < / a(s) ds>_1 a(s)< / b(r) dr) ds — j b(s) ds.

to tO
In the above equality, fix ¢t (> to) and let 7 — co. Then, by (1.4), (2.5) and (2.11), we obtain (2.19).

-
O\
-~

Equality (2.20) is clear from the equalities (2.11) and (2.19). O
Equality (2.19) implies that ¢(t) is continuously differentiable on [tg,00) and ¢/(t) = —b(t) for
t>to.

Theorem 2.4. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). If system (1.1)
is nonoscillatory, then c(t) can be defined by (2.11) and

m(jere) o

S

/b(r) dr|ds = |c(to)| (2.21)
to to to
and
t -1 ¢ y (a+1)/a
tli)m (/a(s) ds) /a(s) /b(r) dr ds = |e(to)| @D/, (2.22)
to to to

Proof. Suppose that (1.1) is nonoscillatory. Then condition (2.5) is satisfied, and ¢(¢) can be defined
by (2.11) (see Theorem 2.2). By Lemma 2.1, we have (2.19). It is seen that for all large ¢,

‘(/ta(s) ds>_1/ta(s) /Sb(r) dr ‘
- ( / a(s) ds)l / a(s)le(to) — c(s)|ds - / a(s)|e(to) | ds

0 to to
t

<( / als)ds) [ a(o) letto) - (o) - et s = ( / a(s) d) / a(o)le(s)| ds.

to to to to

By Theorem 2.3, we have (2.13). Therefore, we obtain (2.21).
Similarly, we see that for all large ¢,

'( /t a(s) ds>1 j als) / b(r) dr

0 0 0

ds — |e(to)

-1

(a+1)/a
ds — |c(to)| @D/

t

< (/ta(S) dS) _1/a(5)) Je(to) = e(s)| @D/ —Je(to)[*TH/ ds.

to to
By the mean value theorem, there is 6 € (0, 1) such that

(8

—1)*
el = |p2l® = B(u1 — p2) (p1 — 0(p1 — p2)) " for pi,pm €R, B> 1,
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where the asterisk notation £7* = |€|7sgn& (£ € R, v > 0) is used. Applying the above equality to
the case p1 = c(to) — (), pa = ¢(tp) and 8 = (a + 1)/ and making use of (2.16) with u = |e(to)],
v =2|c(s)| and A = 1/, we have

Je(to) = c(s)] @D/ — Je(to) [T

< 2L o) lelto) — e(s)] + e(s)

«
a+1 (0% «@ (0% « (0% (0%
< S fels)] {22 lelto)| M7 + 222 e(s)| Y} = hule(s)| + kale(s) [T/,

177 < L@l (et + 2ies))}

where

a+1

by = 2L ol ooy Vo and gy = SE L 9270
(6 6]

Thus we are led to

'( /t a(s) ds>1 /t als) / b(r) dr

ds — |e(to)| @D/«
0 0 0

< k1< /t a(s) ds) j a(s)|c(s)|d8+k2( j als) ds) /t a(s)|e(s)| @D/ ds

0 0 0 0

(a+1)/a

—1 -1

for all large t. By Theorem 2.3, we have (2.13) and (2.14). Therefore, we obtain (2.22). The proof of
Theorem 2.4 is complete. O

It is obvious that if condition (1.6) or condition (1.7) is satisfied, then (2.21) does not hold.
Therefore, Theorem 1.2 is directly derived from Theorem 2.4. Theorem 1.3 is also derived from
Theorem 2.4.

Example 2.1. Consider system (1.1) for the case
a(t) =1 and b(t) =sint for ¢ > to. (2.23)
In this case, we have

t 1 t s t s
. g 1 . _
tlgglo </a(s) ds> /a(s)(/b(r) dr) ds _tlggot—to / </smrdr) ds = costy,
i i ¢ to i

0 0 0 0 0

and so, (2.5) holds and the function ¢(t) defined by (2.11) is equal to cost. Then it is easy to see that

¢ ot t
. . 1 2
tlggo (/a(s) ds) /a(s)|c(s)|ds = tlggo P— /|coss| ds = = # 0.
to

to tO
Since (2.13) does not hold, we conclude by Corollary 2.1 that (1.1) with (2.23) is oscillatory.
Example 2.2. Consider system (1.1) for the case

a(t) =1 and b(t) = 4

= (VE+Tsint) for t>to=0. (2.24)

First, observe that

t t
1
/ (/b dr) ds-/\/s—i-lblnst—l— t—l—lcost—i—i/ coss (\/E)
to 0

]
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as t — oo, and so,

i ([atwras)” [ato( forrar)an-o 235

0 to

Therefore, (2.17) is satisfied, and hence, as mentioned above, (1.5) is satisfied. Moreover, (1.6) is also
satisfied. Indeed, if t = (5/6)7 +im (i =1,2,3,...), then

t ¢ t (5/6)m+im
/a(s) /b(r)dr ds:/’\/erilsins ds = / ‘MSins ds
to to 0 0
. (/6)mtin . (5/B)mtin .
ZZ / ‘MSins’dszéz \/S‘Fi].dSZgZH%TF*Fj’/T*F].
=0 (1/6)mti =01 /6)m+jm =t

T / /1 T 2 1 3/2 1 3/2
> — — = — - 1 _(Z .
_3/ 67r+s7r+1ds 3 3. [(67r+m+1) (67r+1) }

0

Then it is easily seen that (1.6) is satisfied. Consequently, by Theorem 1.2, system (1.1) with (2.24)
is oscillatory.

Example 2.3. Consider system (1.1) for the case

d :
a=3; a(t>:t+1 and b(t)za((t—i—l)sm%) for t >tg=0. (2.26)
Then
t s t
/() /b()d d—/‘in3d—2+i s3t—§ 5t
a(s rjdr)ds= [ sin’sds =g+ 5 co 7 cost,
to to 0

and so, the same equality as (2.25) holds. Therefore, (2.17) is satisfied and hence, as mentioned above,
(1.5) is satisfied. Moreover, we get

/ta(s) /sb(r) dr

to to

t

(a+1)/a
1
ds:/7|(s+1)sin35|4/3ds
s+ 1

0
t t
= [(s+1)Y3sin*sds > sin4sds:isin4t—}sin2t+§t
- 32 4 8"
0 0
which gives (1.8). Consequently, by Theorem 1.3, system (1.1) with (2.26) is oscillatory.

3 Further results

Theorem 3.1. Consider the half-linear system (1.1) under condition (1.4). Suppose that

¢
/b(s) ds s bounded on [tg,00). (3.1)

to

If system (1.1) is nonoscillatory, then c(t) can be defined by (2.11) and for any integer n =1,2,3,...,

i ([atwrar)” fato [aorar) as = ctor 02)

0 to
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Proof. Suppose that (1.1) is nonoscillatory. Condition (3.1) implies (2.17) and hence (1.5) is satisfied.
The claim that ¢(t) can be defined by (2.11) follows from Theorem 2.2. The proof of (3.2) is done by
induction. From (2.19) and (3.1) it is clear that ¢(t) is bounded on [tg, c0). By Theorem 2.3, we have

(2.13). Therefore, t t
tl_l)r(r}o (/a(s) ds)l/a(s)c(s)" ds =0 (3.3)

to to
foralln=1,2,3,....

For the case n = 1, assertion (3.2) is true. In fact, (3.2) with n = 1 is nothing but (2.11) with
t =tg. Let k =1,2,3,... be an arbitrary integer and suppose that (3.2) is true for n = 1,2,... k.
We will show that (3.2) is true for n = k + 1. By (2.19), we can calculate as follows:

/ta(s)c(s)’€+1 ds = /ta(s) (c(to) — /Sb(r) dr) o ds

F o o)
=i ("7 ettt / olo) / b(r)dr)idw jirt / ) / r)kHdS.

Therefore, from equality (3.3) and the assumption of induction it follows that

ot ([atoras)” ato [orar) ™ = - 30 (F ) etrrar

0 0 0 =0
k41
(k+1 k+1
— t k+1 _1 I3 _ _1 k+1 — _1 k+1 t k‘—‘—l.
et {0 () o () = e
This shows that (3.2) is true for n = k + 1. The proof of Theorem 3.1 is complete. O

The following corollary is a consequence of Theorem 3.1.

Corollary 3.1. Consider the half-linear system (1.1) under conditions (1.4) and (3.1). Suppose that
for somen =1,2,3,...,

or

to to to

<tmomn ( [atrar)” fato( [ora) as <o

Then system (1.1) is oscillatory.

In Theorem 3.1, if (1.5) is satisfied and if n = 2 and 0 < « < 1, then condition (3.1) is unnecessary.
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Theorem 3.2. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). Let 0 < a < 1.
If system (1.1) is nonoscillatory, then ¢(t) is well-defined by (2.11) and

Jim (/ta(s) ds) - ja(s)(jb(r) dr>2ds = c(to)?. (3.4)

0 0 0

Proof. Suppose that (1.1) is nonoscillatory. Then, by Theorem 2.2, the function ¢(¢) can be defined
by (2.11). If 0 < a < 1, then Holder’s inequality gives

] a(selo) ds < / as) ds>(a+1)/(a“)( / o)) ds) g

to to to

for t > tg. If &« = 1, then (3.5) is clear. Therefore, in either case,

</a(8) ds)_l/t el = [(/ ) ds>_1/t e

0 0 0 to

for all large ¢. By Theorem 2.3, equality (2.14) holds. Therefore, we get

lim < j a(s) ds>_1 j a(s)e(s)? ds = 0. (3.6)

to tO

Using (2.19), we have

/ta(s)c(s)2 ds = /ta(s) (c(to) - /Sb(r) dr)2 ds

to to to
t t s s

= c(to)? / als) ds — 2¢(to) / a(s)( / b(r) dr> ds + j a(s)< / b(r) dr)zds

to to to to

for t > tg. Then, by (2.11) and (3.6), it is clear that

0 = c(to)? — 2c(to)c(to) + lim (/ta(s) ds)l/ta(s)(/sb(r) dr>2ds,

to to to
which yields (3.4). The proof of Theorem 3.2 is is complete. O
Corollary 3.2. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). Let0 < o < 1.
If
t _1 t s 2
lim sup (/a(s) ds) /a(s)(/b(r) dr) ds = 00 (3.7)
t—o0
to to to
or
t 1 t s 2
litminf</a(s) d5> /a(s)(/b(r) dr) ds
—00
to to to
t 1t s 2
< lim sup (/a(s) ds) /a(s)(/b(r) dr) ds < o0, (3.8)
t—o0 e b e

then system (1.1) is oscillatory.
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Note that, for the case a = 1, Corollary 3.2 coincides with Theorem 1.3.
In [1], Butler, Erbe and Mingarelli showed that, for the case « = 1, a(t) = 1 and b(t) = q(¢t),
namely, for the linear equation
2 +q(t)r =0, (3.9)

conditions (2.17) and (3.7) with a(t) = 1 and b(¢t) = ¢(t) are sufficient for the oscillation of (3.9).
They found the result in connection with the study of oscillation theory for the second order n x n
matrix linear differential systems.
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