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Abstract. The two-dimensional nonlinear system

u′ = a(t)|v|1/αsgn v, v′ = −b(t)|u|αsgnu (1.1)

is considered under the assumptions that α > 0, a, b ∈ C[t0,∞), a(t) ≥ 0, a(t) ̸≡ 0 (t ≥ t0). It
is shown that, under certain conditions on a(t) and b(t), if system (1.1) is nonoscillatory, then the
integral averages with the weight a(t) of the functions |c(t)| and |c(t)|(α+1)/α tend to 0 as t → ∞.
Here,

c(t) = lim
τ→∞

( τ∫
t

a(s) ds

)−1
τ∫

t

a(s)

( s∫
t

b(r) dr

)
ds, t ≥ t0.

Using this result, we can establish many kinds of Hartman–Wintner type oscillation criteria for (1.1).
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რეზიუმე. ორგანზომილებიანი არაწრფივი

u′ = a(t)|v|1/αsgn v, v′ = −b(t)|u|αsgnu (1.1)

სისტემა განხილულია იმ დაშვებით, რომ α > 0, a, b ∈ C[t0,∞), a(t) ≥ 0, a(t) ̸≡ 0 (t ≥
t0). ნაჩვენებია, რომ თუ a(t) და b(t)-ზე დადებულ გარკვეულ პირობებში სისტება (1.1)
არაოსცილაციურია, მაშინ |c(t)| and |c(t)|(α+1)/α ფუნქციების ინტეგრალური საშუალოები a(t)
წონით მიისწრაფიან 0-სკენ, როცა t → ∞. აქ

c(t) = lim
τ→∞

( τ∫
t

a(s) ds

)−1
τ∫

t

a(s)

( s∫
t

b(r) dr

)
ds, t ≥ t0.

ამ შედეგის გამოყენებით შესაძლებელია (1.1) სისტემისთვის დავადგინოთ მრავალნაირი ჰარტ-
მან-ვინტნერის ტიპის რხევის კრიტერიუმი.
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1 Introduction
In this paper, we consider the two-dimensional nonlinear system of ordinary differential equations{

u′ = a(t)|v|1/αsgn v,

v′ = −b(t)|u|αsgnu,
(1.1)

where α is a positive constant, a(t) and b(t) are real-valued continuous functions on [t0,∞) and

a(t) ≥ 0 for t ≥ t0, and a(t) ̸≡ 0 on [t+0 ,∞) for any t+0 ≥ t0.

By a solution (u(t), v(t)) of system (1.1) on an interval I ⊆ [t0,∞) we mean that u(t) and v(t) are
continuously differentiable on I and satisfy (1.1) at every point t ∈ I.

It is known (Mirzov [10, Lemma 2.1]) that all local solutions of (1.1) can be continued to t0 and ∞,
and so all solutions of (1.1) exist on the entire interval [t0,∞). Following the paper by Dosoudilová,
Lomtatidze and Šremr [3], we say that a solution (u(t), v(t)) of system (1.1) is nontrivial if u(t) ̸≡ 0
on any neighborhood of infinity, and that a nontrivial solution (u(t), v(t)) of (1.1) is oscillatory if u(t)
has a sequence of zeros tending to infinity, and nonoscillatory otherwise. It is worth noting that, for
any nontrivial solution (u(t), v(t)) of (1.1), the sequence of zeros of u(t) cannot have a finite cluster
point (see Naito [13]). If (u(t), v(t)) is a solution of (1.1), then so is (−u(t),−v(t)). Therefore, without
loss of generality, we can assume that a nonoscillatory solution (u(t), v(t)) of (1.1) satisfies u(t) > 0
for all large t.

It is also known (Mirzov [10, Theorem 1.1]) that an analogue of Sturm’s separation theorem holds
for system (1.1). In particular, if system (1.1) has an oscillatory [resp. nonoscillatory] solution, then
any other nontrivial solution is also oscillatory [resp. nonoscillatory]. System (1.1) is said to be
oscillatory [resp. nonoscillatory] if all its nontrivial solutions are oscillatory [resp. nonoscillatory].

For the case where a(t) > 0 for t ≥ t0, the first component u(t) of a solution (u(t), v(t)) of (1.1)
satisfies the scalar differential equation(

a(t)−α|u′|αsgnu′)′ + b(t)|u|αsgnu = 0.

Putting p(t) = a(t)−α and q(t) = b(t), we write the above equation in the form(
p(t)|u′|αsgnu′)′ + q(t)|u|αsgnu = 0, (1.2)

where p(t) and q(t) are continuous functions on [t0,∞) and p(t) > 0 for t ≥ t0. If u(t) is a solution
of (1.2) and if c is a constant, then cu(t) is also a solution of (1.2). Equation (1.2) is referred as
“half-linear” equation. If α = 1, then (1.2) becomes the linear equation

(p(t)u′)′ + q(t)u = 0. (1.3)

In the last three decades, many results have been obtained in the theory of oscillatory and asymptotic
behavior of solutions of the half-linear equation (1.2). It is known that basic results for the linear
equation (1.3) can be generalized to the half-linear equation (1.2). The important works for (1.2) are
summarized in the book by Došlý and Řehák [2]. For the recent results to the half-linear equation
(1.2) see, for example, [4, 6, 7, 14, 16, 17]. For the results to the nonlinear system (1.1) (including the
linear system) see, for example, [3, 5, 8–11,13,15].

For the scalar equation (1.2), it is usual to distinguish the cases
∞∫

t0

p(s)−1/α ds = ∞ and
∞∫

t0

p(s)−1/α ds < ∞.

For system (1.1), these correspond to the cases
∞∫

t0

a(s) ds = ∞ and
∞∫

t0

a(s) ds < ∞,
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respectively. In the present paper, we focus our attention to the former case
∞∫

t0

a(s) ds = ∞. (1.4)

An analogue of the Hartman–Wintner oscillation theorem for the linear equation (1.3) remains
valid for the half-linear system (1.1). In fact, we have the following result.

Theorem 1.1 (Mirzov [11, Theorem 12.3]). Consider the half-linear system (1.1) under condition
(1.4). If

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)
ds = ∞

or

−∞ < lim inf
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)
ds

< lim sup
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)
ds,

then system (1.1) is oscillatory.

An extension of Theorem 1.1 has been given by Dosoudilová, Lomtatidze and Šremr [3]. The
special case λ = 0 and ν = 0 of Corollary 2.5 in [3] becomes Theorem 1.1.

In the present paper, a result similar to Theorem 1.1 will be proved. Then the condition

lim sup
t→∞

( t∫
t0

a(s) ds

)−κ
t∫

t0

( t∫
s

a(r) dr

)κ

b(s) ds > −∞ for some κ > α (1.5)

plays an important part.

Theorem 1.2. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). If

lim sup
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

∣∣∣∣
s∫

t0

b(r) dr

∣∣∣∣ ds = ∞ (1.6)

or

lim inf
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

∣∣∣∣
s∫

t0

b(r) dr

∣∣∣∣ ds
< lim sup

t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

∣∣∣∣
s∫

t0

b(r) dr

∣∣∣∣ ds < ∞, (1.7)

then system (1.1) is oscillatory.

Further, we will prove the following theorem.

Theorem 1.3. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). If

lim sup
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

∣∣∣∣
s∫

t0

b(r) dr

∣∣∣∣(α+1)/α

ds = ∞ (1.8)
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or

lim inf
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

∣∣∣∣
s∫

t0

b(r) dr

∣∣∣∣(α+1)/α

ds

< lim sup
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

∣∣∣∣
s∫

t0

b(r) dr

∣∣∣∣(α+1)/α

ds < ∞, (1.9)

then system (1.1) is oscillatory.

For the case α = 1, a(t) = 1 and b(t) = q(t), Theorem 1.3 reduces to the recent result in [12,
Corollaries 1.2 and 1.3 (the linear case)]. Note that in the paper [12] nonlinear scalar equations of the
form

x′′ + q(t)f(x) = 0, t ≥ t0
(
xf(x) > 0 and f ′(x) > 0 for x ̸= 0

)
are discussed.

Theorems 1.2 and 1.3 are actually derived from more general results for (1.1). The general results
are stated and proved in Section 2. In the last part of Section 2, we give a few examples illustrating
our results. In the final Section 3, further results for (1.1) are stated and proved. The results in
Section 3 are slightly restrictive in the sense that, for example, Theorem 3.2 requires the condition
0 < α ≤ 1.

2 General results
Suppose now that system (1.1) has a nonoscillatory solution (u(t), v(t)) such that u(t) > 0 for t ≥ T
(≥ t0). Define the function w(t) by

w(t) =
v(t)

u(t)α
, t ≥ T. (2.1)

Since a(t) is nonnegative, it is clear that w(t) satisfies either
∞∫
T

a(s)|w(s)|(α+1)/α ds = ∞ (2.2)

or
∞∫
T

a(s)|w(s)|(α+1)/α ds < ∞. (2.3)

The results of this paper are based on the following theorem, in which it is shown that if (1.1) is
nonoscillatory, then we must have either

lim
t→∞

( t∫
t0

a(s) ds

)−κ
t∫

t0

( t∫
s

a(r) dr

)κ

b(s) ds = −∞ for any κ > α (2.4)

or

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)
ds exists and is finite. (2.5)

Theorem 2.1. Consider the half-linear system (1.1) under condition (1.4). Suppose that system (1.1)
has a nonoscillatory solution (u(t), v(t)) such that u(t) > 0 for t ≥ T (≥ t0). Define w(t) by (2.1).

(I) If (2.2) is satisfied, then (2.4) holds.
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(II) If (2.3) is satisfied, then (2.5) holds.

Proof. It is easy to see that w(t) satisfies the generalized Riccati differential equation

w′(t) = −b(t)− αa(t)|w(t)|(α+1)/α, t ≥ T. (2.6)

(I) Assume that (2.4) does not hold. This implies (1.5). Then, by Lemma 4.1 (the case m = 1,
β = 1 and λ = 0) in the paper by Dosoudilová et al. [3], we see that (2.3) holds, that is, (2.2) does
not hold. This proves (I).

(II) Suppose that (2.3) is satisfied. Integrating (2.6) from T to t, we have

w(t) = w(T )−
t∫

T

b(s) ds− α

t∫
T

a(s)|w(s)|(α+1)/α ds, t ≥ T,

and so

t∫
T

a(s)w(s) ds = w(T )

t∫
T

a(s) ds

−
t∫

T

a(s)

( s∫
T

b(r) dr

)
ds− α

t∫
T

a(s)

( s∫
T

a(r)|w(r)|(α+1)/α dr

)
ds, t ≥ T. (2.7)

By Hölder’s inequality, we have

t∫
T

a(s)|w(s)| ds ≤
( t∫

T

a(s) ds

)1/(α+1)( t∫
T

a(s)|w(s)|(α+1)/α ds

)α/(α+1)

, t ≥ T.

It follows from (1.4) that
t∫

T

a(s) ds > 0 for all large t.

Hence, using (2.3), we get

( t∫
T

a(s) ds

)−1
t∫

T

a(s)|w(s)| ds ≤
( t∫

T

a(s) ds

)−α/(α+1)( ∞∫
T

a(s)|w(s)|(α+1)/α ds

)α/(α+1)

for all large t. Therefore, condition (1.4) implies

lim
t→∞

( t∫
T

a(s) ds

)−1
t∫

T

a(s)|w(s)| ds = 0, (2.8)

and, as a consequence,

lim
t→∞

( t∫
T

a(s) ds

)−1
t∫

T

a(s)w(s) ds = 0.

Then, by (2.7), we easily find that

lim
t→∞

( t∫
T

a(s) ds

)−1
t∫

T

a(s)

( s∫
T

b(r) dr

)
ds exists and is finite (2.9)
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and

0 = w(T )− lim
t→∞

( t∫
T

a(s) ds

)−1
t∫

T

a(s)

( s∫
T

b(r) dr

)
ds− α

∞∫
T

a(s)|w(s)|(α+1)/α ds. (2.10)

It is obvious that (2.9) implies (2.5). The proof of Theorem 2.1 is complete.

For the case where (2.5) holds, we can define the function c(t) by

c(t) = lim
τ→∞

( τ∫
t

a(s) ds

)−1
τ∫

t

a(s)

( s∫
t

b(r) dr

)
ds, t ≥ t0. (2.11)

By (1.4), the function c(t) can be written in the form

c(t) = lim
τ→∞

( τ∫
t0

a(s) ds

)−1
τ∫

t

a(s)

( s∫
t

b(r) dr

)
ds, t ≥ t0.

For the case where

lim
t→∞

t∫
t0

b(s) ds =

∞∫
t0

b(s) ds exists and is finite,

the function c(t) is given by

c(t) =

∞∫
t

b(s) ds, t ≥ t0.

Theorem 2.2. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). Suppose that
system (1.1) has a nonoscillatory solution (u(t), v(t)) such that u(t) > 0 for t ≥ T (≥ t0). Define
the function w(t) by (2.1). Then (2.3) and (2.5) hold, and the function c(t) can be defined by (2.11).
Moreover, w(t) satisfies the generalized Riccati integral equation

w(t) = c(t) + α

∞∫
t

a(s)|w(s)|(α+1)/α ds, t ≥ T. (2.12)

Proof. Since (1.5) is assumed, (2.4) does not hold. Therefore, from (I) of Theorem 2.1, it is seen that
(2.2) is not satisfied. Hence we have (2.3). Then, by (II) of Theorem 2.1, we obtain (2.5), and, as
mentioned above, the function c(t) can be defined by (2.11).

Since we have (2.3), the proof of (II) of Theorem 2.1 leads to equality (2.10). This implies

w(T ) = c(T ) + α

∞∫
T

a(s)|w(s)|(α+1)/α ds.

Note that T is a number such that u(t) > 0 for t ≥ T .
Now, let T1 be an arbitrary number satisfying T1 ≥ T . It is trivial that u(t) > 0 for t ≥ T1.

Therefore, we have

w(T1) = c(T1) + α

∞∫
T1

a(s)|w(s)|(α+1)/α ds.

Since T1 (≥ T ) is arbitrary, this implies (2.12). The proof of Theorem 2.2 is complete.
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As shown in Theorem 2.2, if system (1.1) with (1.4) and (1.5) is nonoscillatory, then (2.5) holds
and the function c(t) can be defined by (2.11). The next theorem says furthermore that this c(t) must
satisfy

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)|c(s)| ds = 0 (2.13)

and

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)|c(s)|(α+1)/α ds = 0. (2.14)

Theorem 2.3. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). If (1.1) is
nonoscillatory, then (2.13) and (2.14) hold. Here, c(t) is given by (2.11).

Proof. Suppose that (1.1) is nonoscillatory. Let (u(t), v(t)) be a nonoscillatory solution of (1.1) and
suppose that u(t) > 0 for t ≥ T (≥ t0), and define w(t) by (2.1). By Theorem 2.2, we have (2.3), (2.5)
and (2.12). Therefore,

|c(t)| ≤ |w(t)|+ α

∞∫
t

a(s)|w(s)|(α+1)/α ds, t ≥ T, (2.15)

and hence

( t∫
T

a(s) ds

)−1
t∫

T

a(s)|c(s)| ds

≤
( t∫

T

a(s) ds

)−1
t∫

T

a(s)|w(s)| ds+ α

( t∫
T

a(s) ds

)−1
t∫

T

a(s)

( ∞∫
s

a(r)|w(r)|(α+1)/α dr

)
ds

for all large t. As in the proof of (II) of Theorem 2.1, we get (2.8). This implies that the first term of
the right-hand side of the above inequality tends to 0 as t → ∞. By (1.4) and (2.3), it is clear that
the second term of the right-hand side of the above inequality also tends to 0 as t → ∞. Hence we
have (2.13).

To prove (2.14), we apply the general inequality

(µ+ ν)λ ≤ 2λ(µλ + νλ), µ ≥ 0, ν ≥ 0, λ > 0, (2.16)

to the case

µ = |w(t)|, ν = α

∞∫
t

a(s)|w(s)|(α+1)/α ds and λ =
α+ 1

α
.

Then it follows from (2.15) that

|c(t)|(α+1)/α ≤ 2(α+1)/α|w(t)|(α+1)/α + (2α)(α+1)/α

( ∞∫
t

a(s)|w(s)|(α+1)/α ds

)(α+1)/α

for t ≥ T . Hence

( t∫
T

a(s) ds

)−1
t∫

T

a(s)|c(s)|(α+1)/α ds

≤ 2(α+1)/α

( t∫
T

a(s) ds

)−1
t∫

T

a(s)|w(s)|(α+1)/α ds
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+ (2α)(α+1)/α

( t∫
T

a(s) ds

)−1
t∫

T

a(s)

( ∞∫
s

a(r)|w(r)|(α+1)/α dr

)(α+1)/α

ds

for all large t. By (1.4) and (2.3), we easily find that the right-hand side of the above inequality tends
to 0 as t → ∞. This yields (2.14). The proof of Theorem 2.3 is complete.

It is worth noting that condition (1.5) is satisfied provided

lim inf
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)
ds > −∞. (2.17)

In fact, if (2.17) holds, then

lim inf
t→∞

( t∫
t0

a(s) ds

)−κ
t∫

t0

( t∫
s

a(r) dr

)κ

b(s) ds > −∞ for all κ = 1, 2, 3, . . . . (2.18)

It is clear that (2.18) implies (1.5). In what follows, we show that (2.17) implies (2.18). If (2.17) is
satisfied, then there are constants L1 > 0 and M1 > 0 such that

t∫
t0

( t∫
s

a(r) dr

)
b(s) ds =

t∫
t0

a(s)

( s∫
t0

b(r) dr

)
ds ≥ −L1 −M1

t∫
t0

a(s) ds, t ≥ t0.

Multiplying the above inequality by a(t) and integrating from t0 to t, we see that there are constants
L2 > 0 and M2 > 0 such that

t∫
t0

( t∫
s

a(r) dr

)2

b(s) ds ≥ −L2 −M2

( t∫
t0

a(s) ds

)2

, t ≥ t0.

Repeating this procedure, we deduce that there are constants Lκ > 0 and Mκ > 0 such that

t∫
t0

( t∫
s

a(r) dr

)κ

b(s) ds ≥ −Lκ −Mκ

( t∫
t0

a(s) ds

)κ

, t ≥ t0, κ = 1, 2, 3, . . . .

This gives (2.18).
Condition (2.5) clearly implies (2.17) and, as mentioned above, (2.17) implies (1.5). Therefore,

the following corollary is derived from Theorem 2.3.

Corollary 2.1. Consider the half-linear system (1.1) under conditions (1.4) and (2.5). If (1.1) is
nonoscillatory, then (2.13) and (2.14) hold. Here, c(t) is given by (2.11).

Lemma 2.1. Suppose that (1.4) and (2.5) hold. Then the function c(t) defined by (2.11) satisfies

c(t) = c(t0)−
t∫

t0

b(s) ds, t ≥ t0, (2.19)

and

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)c(s) ds = 0. (2.20)



90 Manabu Naito

Proof. Let t0 ≤ t < τ , and suppose that τ is sufficiently large. We have

( τ∫
t

a(s) ds

)−1
τ∫

t

a(s)

( s∫
t

b(r) dr

)
ds

=

( τ∫
t0

a(s) ds

)( τ∫
t

a(s) ds

)−1( τ∫
t0

a(s) ds

)−1
τ∫

t0

a(s)

( s∫
t0

b(r) dr

)
ds

−
( τ∫

t

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)
ds−

t∫
t0

b(s) ds.

In the above equality, fix t (≥ t0) and let τ → ∞. Then, by (1.4), (2.5) and (2.11), we obtain (2.19).
Equality (2.20) is clear from the equalities (2.11) and (2.19).

Equality (2.19) implies that c(t) is continuously differentiable on [t0,∞) and c′(t) = −b(t) for
t ≥ t0.

Theorem 2.4. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). If system (1.1)
is nonoscillatory, then c(t) can be defined by (2.11) and

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

∣∣∣∣
s∫

t0

b(r) dr

∣∣∣∣ ds = |c(t0)| (2.21)

and

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

∣∣∣∣
s∫

t0

b(r) dr

∣∣∣∣(α+1)/α

ds = |c(t0)|(α+1)/α. (2.22)

Proof. Suppose that (1.1) is nonoscillatory. Then condition (2.5) is satisfied, and c(t) can be defined
by (2.11) (see Theorem 2.2). By Lemma 2.1, we have (2.19). It is seen that for all large t,

∣∣∣∣(
t∫

t0

a(s) ds

)−1
t∫

t0

a(s)

∣∣∣∣
s∫

t0

b(r) dr

∣∣∣∣ ds− |c(t0)|
∣∣∣∣

=

( t∫
t0

a(s) ds

)−1∣∣∣∣
t∫

t0

a(s)|c(t0)− c(s)| ds−
t∫

t0

a(s)|c(t0)| ds
∣∣∣∣

≤
( t∫

t0

a(s) ds

)−1
t∫

t0

a(s)
∣∣ |c(t0)− c(s)| − |c(t0)|

∣∣ ds ≤ ( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)|c(s)| ds.

By Theorem 2.3, we have (2.13). Therefore, we obtain (2.21).
Similarly, we see that for all large t,

∣∣∣∣(
t∫

t0

a(s) ds

)−1
t∫

t0

a(s)

∣∣∣∣
s∫

t0

b(r) dr

∣∣∣∣(α+1)/α

ds− |c(t0)|(α+1)/α

∣∣∣∣
≤

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)
∣∣∣ |c(t0)− c(s)|(α+1)/α − |c(t0)|(α+1)/α

∣∣∣ ds.
By the mean value theorem, there is θ ∈ (0, 1) such that

|µ1|β − |µ2|β = β(µ1 − µ2)
(
µ1 − θ(µ1 − µ2)

)(β−1)∗ for µ1, µ2 ∈ R, β > 1,
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where the asterisk notation ξγ∗ = |ξ|γsgn ξ (ξ ∈ R, γ > 0) is used. Applying the above equality to
the case µ1 = c(t0) − c(s), µ2 = c(t0) and β = (α + 1)/α and making use of (2.16) with µ = |c(t0)|,
ν = 2|c(s)| and λ = 1/α, we have∣∣∣ |c(t0)− c(s)|(α+1)/α − |c(t0)|(α+1)/α

∣∣∣
≤ α+ 1

α
|c(s)|

{
|c(t0)− c(s)|+ |c(s)|

}1/α ≤ α+ 1

α
|c(s)|

{
|c(t0)|+ 2|c(s)|

}1/α

≤ α+ 1

α
|c(s)|

{
21/α|c(t0)|1/α + 22/α|c(s)|1/α

}
= k1|c(s)|+ k2|c(s)|(α+1)/α,

where
k1 =

α+ 1

α
21/α|c(t0)|1/α and k2 =

α+ 1

α
22/α.

Thus we are led to

∣∣∣∣(
t∫

t0

a(s) ds

)−1
t∫

t0

a(s)

∣∣∣∣
s∫

t0

b(r) dr

∣∣∣∣(α+1)/α

ds− |c(t0)|(α+1)/α

∣∣∣∣
≤ k1

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)|c(s)| ds+ k2

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)|c(s)|(α+1)/α ds

for all large t. By Theorem 2.3, we have (2.13) and (2.14). Therefore, we obtain (2.22). The proof of
Theorem 2.4 is complete.

It is obvious that if condition (1.6) or condition (1.7) is satisfied, then (2.21) does not hold.
Therefore, Theorem 1.2 is directly derived from Theorem 2.4. Theorem 1.3 is also derived from
Theorem 2.4.

Example 2.1. Consider system (1.1) for the case

a(t) = 1 and b(t) = sin t for t ≥ t0. (2.23)

In this case, we have

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)
ds = lim

t→∞

1

t− t0

t∫
t0

( s∫
t0

sin r dr

)
ds = cos t0,

and so, (2.5) holds and the function c(t) defined by (2.11) is equal to cos t. Then it is easy to see that

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)|c(s)| ds = lim
t→∞

1

t− t0

t∫
t0

| cos s| ds = 2

π
̸= 0.

Since (2.13) does not hold, we conclude by Corollary 2.1 that (1.1) with (2.23) is oscillatory.

Example 2.2. Consider system (1.1) for the case

a(t) = 1 and b(t) =
d

dt

(√
t+ 1 sin t

)
for t ≥ t0 = 0. (2.24)

First, observe that

t∫
t0

a(s)

( s∫
t0

b(r) dr

)
ds =

t∫
0

√
s+ 1 sin s ds = 1−

√
t+ 1 cos t+ 1

2

t∫
0

cos s√
s+ 1

ds = O
(√

t
)
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as t → ∞, and so,

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)
ds = 0. (2.25)

Therefore, (2.17) is satisfied, and hence, as mentioned above, (1.5) is satisfied. Moreover, (1.6) is also
satisfied. Indeed, if t = (5/6)π + iπ (i = 1, 2, 3, . . . ), then

t∫
t0

a(s)

∣∣∣∣
s∫

t0

b(r) dr

∣∣∣∣ ds =
t∫

0

∣∣∣√s+ 1 sin s
∣∣∣ ds = (5/6)π+iπ∫

0

∣∣∣√s+ 1 sin s
∣∣∣ ds

≥
i∑

j=0

(5/6)π+jπ∫
(1/6)π+jπ

∣∣∣√s+ 1 sin s
∣∣∣ ds ≥ 1

2

i∑
j=0

(5/6)π+jπ∫
(1/6)π+jπ

√
s+ 1 ds ≥ π

3

i∑
j=1

√
1

6
π + jπ + 1

≥ π

3

i∫
0

√
1

6
π + sπ + 1 ds =

π

3

2

3π

[(1
6
π + iπ + 1

)3/2

−
(1
6
π + 1

)3/2
]
.

Then it is easily seen that (1.6) is satisfied. Consequently, by Theorem 1.2, system (1.1) with (2.24)
is oscillatory.

Example 2.3. Consider system (1.1) for the case

α = 3; a(t) =
1

t+ 1
and b(t) =

d

dt

(
(t+ 1) sin3 t

)
for t ≥ t0 = 0. (2.26)

Then
t∫

t0

a(s)

( s∫
t0

b(r) dr

)
ds =

t∫
0

sin3 s ds =
2

3
+

1

12
cos 3t− 3

4
cos t,

and so, the same equality as (2.25) holds. Therefore, (2.17) is satisfied and hence, as mentioned above,
(1.5) is satisfied. Moreover, we get

t∫
t0

a(s)

∣∣∣∣
s∫

t0

b(r) dr

∣∣∣∣(α+1)/α

ds =

t∫
0

1

s+ 1

∣∣(s+ 1) sin3 s
∣∣4/3 ds

=

t∫
0

(s+ 1)1/3 sin4 s ds ≥
t∫

0

sin4 s ds =
1

32
sin 4t− 1

4
sin 2t+

3

8
t,

which gives (1.8). Consequently, by Theorem 1.3, system (1.1) with (2.26) is oscillatory.

3 Further results
Theorem 3.1. Consider the half-linear system (1.1) under condition (1.4). Suppose that

t∫
t0

b(s) ds is bounded on [t0,∞). (3.1)

If system (1.1) is nonoscillatory, then c(t) can be defined by (2.11) and for any integer n = 1, 2, 3, . . . ,

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)n

ds = c(t0)
n. (3.2)
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Proof. Suppose that (1.1) is nonoscillatory. Condition (3.1) implies (2.17) and hence (1.5) is satisfied.
The claim that c(t) can be defined by (2.11) follows from Theorem 2.2. The proof of (3.2) is done by
induction. From (2.19) and (3.1) it is clear that c(t) is bounded on [t0,∞). By Theorem 2.3, we have
(2.13). Therefore,

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)c(s)n ds = 0 (3.3)

for all n = 1, 2, 3, . . . .
For the case n = 1, assertion (3.2) is true. In fact, (3.2) with n = 1 is nothing but (2.11) with

t = t0. Let k = 1, 2, 3, . . . be an arbitrary integer and suppose that (3.2) is true for n = 1, 2, . . . , k.
We will show that (3.2) is true for n = k + 1. By (2.19), we can calculate as follows:

t∫
t0

a(s)c(s)k+1 ds =

t∫
t0

a(s)

(
c(t0)−

s∫
t0

b(r) dr

)k+1

ds

=

k+1∑
i=0

(−1)i
(
k + 1

i

)
c(t0)

k+1−i

t∫
t0

a(s)

( s∫
t0

b(r) dr

)i

ds

=

k∑
i=0

(−1)i
(
k + 1

i

)
c(t0)

k+1−i

t∫
t0

a(s)

( s∫
t0

b(r) dr

)i

ds+ (−1)k+1

t∫
t0

a(s)

( s∫
t0

b(r) dr

)k+1

ds.

Therefore, from equality (3.3) and the assumption of induction it follows that

(−1)k+1 lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)k+1

ds = −
k∑

i=0

(−1)i
(
k + 1

i

)
c(t0)

k+1−ic(t0)
i

= −c(t0)
k+1

{ k+1∑
i=0

(−1)i
(
k + 1

i

)
− (−1)k+1

(
k + 1

k + 1

)}
= (−1)k+1c(t0)

k+1.

This shows that (3.2) is true for n = k + 1. The proof of Theorem 3.1 is complete.

The following corollary is a consequence of Theorem 3.1.

Corollary 3.1. Consider the half-linear system (1.1) under conditions (1.4) and (3.1). Suppose that
for some n = 1, 2, 3, . . . ,

lim sup
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)n

ds = ∞

or

lim inf
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)n

ds

< lim sup
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)n

ds < ∞.

Then system (1.1) is oscillatory.

In Theorem 3.1, if (1.5) is satisfied and if n = 2 and 0 < α ≤ 1, then condition (3.1) is unnecessary.
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Theorem 3.2. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). Let 0 < α ≤ 1.
If system (1.1) is nonoscillatory, then c(t) is well-defined by (2.11) and

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)2

ds = c(t0)
2. (3.4)

Proof. Suppose that (1.1) is nonoscillatory. Then, by Theorem 2.2, the function c(t) can be defined
by (2.11). If 0 < α < 1, then Hölder’s inequality gives

t∫
t0

a(s)|c(s)|2 ds ≤
( t∫

t0

a(s) ds

)(−α+1)/(α+1)( t∫
t0

a(s)|c(s)|(α+1)/α ds

)2α/(α+1)

(3.5)

for t ≥ t0. If α = 1, then (3.5) is clear. Therefore, in either case,( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)c(s)2 ds ≤
[( t∫

t0

a(s) ds

)−1
t∫

t0

a(s)|c(s)|(α+1)/α ds

]2α/(α+1)

for all large t. By Theorem 2.3, equality (2.14) holds. Therefore, we get

lim
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)c(s)2 ds = 0. (3.6)

Using (2.19), we have
t∫

t0

a(s)c(s)2 ds =

t∫
t0

a(s)

(
c(t0)−

s∫
t0

b(r) dr

)2

ds

= c(t0)
2

t∫
t0

a(s) ds− 2c(t0)

t∫
t0

a(s)

( s∫
t0

b(r) dr

)
ds+

t∫
t0

a(s)

( s∫
t0

b(r) dr

)2

ds

for t ≥ t0. Then, by (2.11) and (3.6), it is clear that

0 = c(t0)
2 − 2c(t0)c(t0) + lim

t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)2

ds,

which yields (3.4). The proof of Theorem 3.2 is is complete.

Corollary 3.2. Consider the half-linear system (1.1) under conditions (1.4) and (1.5). Let 0 < α ≤ 1.
If

lim sup
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)2

ds = ∞ (3.7)

or

lim inf
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)2

ds

< lim sup
t→∞

( t∫
t0

a(s) ds

)−1
t∫

t0

a(s)

( s∫
t0

b(r) dr

)2

ds < ∞, (3.8)

then system (1.1) is oscillatory.
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Note that, for the case α = 1, Corollary 3.2 coincides with Theorem 1.3.
In [1], Butler, Erbe and Mingarelli showed that, for the case α = 1, a(t) = 1 and b(t) = q(t),

namely, for the linear equation
x′′ + q(t)x = 0, (3.9)

conditions (2.17) and (3.7) with a(t) = 1 and b(t) = q(t) are sufficient for the oscillation of (3.9).
They found the result in connection with the study of oscillation theory for the second order n × n
matrix linear differential systems.
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