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LOCATION OF THE LIMIT CYCLE FOR A CLASS OF LIÉNARD SYSTEMS
BY MEANS OF DULAC–CHERKAS FUNCTIONS



Abstract. Dulac–Cherkas functions can be used to estimate the number of limit cycles and to
approximate their location. We consider a class of Liénard systems containing the van der Pol system
as a special case and present two approaches to construct Dulac–Cherkas functions. By means of two
Dulac–Cherkas functions, we improve the Poincaré–Bendixson annulus for the van der Pol system
which has been derived in our previous paper [4].
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რეზიუმე. დულაკ-ჩერკასის ფუნქციები შესაძლებელია გამოყენებულ იქნას ზღვრული ციკლების
რაოდენობის შესაფასებლად და მათი მიახლოებითი მდებარეობის დასადგენად. ჩვენ განვიხი-
ლავთ ლენარდის სისტემების კლასს, რომელიც, როგორც განსაკუთრებულ შემთხვევას, შეიცავს
ვან დერ პოლის სისტემას, და წარმოვადგენთ ორ მიდგომას დულაკ-ჩერკასის ფუნქციების
ასაგებად. დულაკ-ჩერკასის ორი ფუნქციის საშუალებით ჩვენ ვაუმჯობესებთ პუანკარე-
ბენდიქსონის რგოლს ვან დერ პოლის სისტემისთვის, რომელიც მიღებული იყო ჩვენს წინა
ნაშრომში [4].



Location of the Limit Cycle for a Class of Liénard Systems by Means of Dulac–Cherkas Functions 17

1 Introduction
Limit cycles as special limit sets play a fundamental role in the description of the global phase portrait
of planar autonomous systems, as well as in modelling self-sustained oscillations in different fields
of natural sciences. Their existence can be established by means of the bifurcation theory or the
construction of a Poincaré–Bendixson annulus. The inner and the outer boundaries of a Poincaré–
Bendixson annulus consist of simple closed curves in the phase plane with the property that if any
trajectory of the considered planar system meets this boundary, it will enter the annulus either for
increasing or decreasing time. They represent generalized curves without contact in the sense of
A. A. Andronov et al. (see [1]). The crucial problem how to construct such curves depends essentially
on the system under consideration and requires, in general, sophisticated geometric constructions.
The goal of this paper is to describe a general method to construct generalized curves without contact
by means of Dulac–Cherkas functions. This class of functions has been introduced by L. Cherkas in
his seminal paper [2].

The structure of our paper is as follows. In Section 2, we introduce the class of Dulac–Cherkas
functions and describe their fundamental properties. In Section 3, we construct Dulac–Cherkas func-
tions for a class of Liénard systems and use these functions to derive conditions such that this class of
autonomous systems has at most one limit cycle. In Section 4, we apply these results to the van der
Pol system. By means of two different Dulac–Cherkas functions, we construct two generalized closed
simple curves without contact as inner boundaries for a Poincaré–Bendixson annulus of the van der
Pol system. Both boundaries can be used to construct an improved inner boundary. In Section 5, we
use a Dulac–Cherkas function to improve an outer boundary for a Poincaré–Bendixson annulus of the
van der Pol system, which has been derived in our paper [4] without a Dulac–Cherkas function. In
this way we obtain a new global algebraic Poincaré–Bendixson annulus for the van der Pol system.

2 Dulac–Cherkas functions
We consider planar autonomous systems

dx

dt
= P (x, y, λ),

dy

dt
= Q(x, y, λ) (2.1)

depending on a real parameter λ under the assumption

(A) P,Q ∈ C 1 0
(x,y) λ(G × Λ,R),

where G is an open region of the phase plane, Λ is some open interval. We denote by X the vector
field defined by (2.1). First, we recall the definition of a Dulac function.

Definition 2.1. Suppose the assumption (A) to be valid. A function B belonging to the class
C 1 0

(x,y) λ(G × Λ,R) is called a Dulac function of system (2.1) in G for λ ∈ Λ if the expression

div(BX) ≡ ∂(BP )

∂x
+

∂(BQ)

∂y
≡ (gradB,X) +B divX

does not change sign in G and vanishes only on a set Nλ ⊂ G of measure zero for λ ∈ Λ.

The class of Dulac functions has been generalized by L. A. Cherkas in 1997 (see [2]). The corre-
sponding generalized Dulac function, which is called Dulac–Cherkas function nowerdays, is defined as
follows.

Definition 2.2. Suppose the assumption (A) holds. A function Ψ ∈ C1 0
(x,y) λ(G × Λ,R) is called a

Dulac–Cherkas function of system (2.1) in G for λ ∈ Λ if there exists a real number κ ̸= 0 such that
the function Φ satisfies

Φ := (gradΨ, X) + κΨ divX > 0 (< 0) in G for λ ∈ Λ. (2.2)
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Remark 2.1. Condition (2.2) can be relaxed by assuming that Φ may vanish in G on a set Nλ of
measure zero, and that no simple closed curve of this set is a limit cycle.

Remark 2.2. In case κ = 1, Ψ is a Dulac function.

From relation (2.2) it immediately follows

Proposition 2.1. If Ψ(x, y, λ) is a Dulac–Cherkas function, then so is cΨ(x, y, λ), where c is any
real number different from zero.

Proposition 2.2. The sign of the function Φ on the curve Ψ = 0 does not necessarily imply in which
direction a trajectory of system (2.1) crosses the curve Ψ = 0 for increasing t.

Proof. From (2.2) we get Φ|Ψ=0 = (gradΨ, X)|Ψ=0. If Ψ is a Dulac–Cherkas function, then by
Proposition 2.1 so is −Ψ. Since

(grad(−Ψ), X) = (gradΨ,−X)

holds, the claim is proved.

In the sequel, we introduce the subset Wλ of G defined by

Wλ :=
{
(x, y) ∈ G : Ψ(x, y, λ) = 0

}
.

From Definition 2.2 we immediately get

Lemma 2.1. Suppose the assumption (A) to be valid. Let Ψ be a Dulac–Cherkas function of system
(2.1) in G for λ ∈ Λ. Then any curve Kλ of Wλ having only a finite number of points, where
(gradΨ, X) vanishes, is a generalized curve without contact for system (2.1). Especially, if Kλ is a
generalized simple closed curve without contact, it can be used as a boundary for a Poincaré–Bendixson
annulus.

The following theorem is a special case of a more general result established in [3].

Theorem 2.1. Suppose the assumption (A) holds. Let G be a simply connected region, let Ψ be a
Dulac–Cherkas function of (2.1) in G for λ ∈ Λ such that Wλ contains exactly one simple closed curve
Oλ in G. Then in the case κ < 0 system (2.1) has for λ ∈ Λ at most one limit cycle in G, and if it
exists, it surrounds Wλ and is hyperbolic.

This theorem implies

Corollary. Under the assumptions of Theorem 2.1, the simple closed curve Oλ can be used as an
interior boundary for a Poincaré–Bendixson annulus of system (2.1), provided it is a generalized simple
closed curve without contact.

3 On the construction of Dulac–Cherkas functions
The key point in the construction of a Dulac–Cherkas function consists in finding a function Φ(x, y, λ)
defined in (2.2) which is definite in some region of the phase plane for λ belonging to some interval.
One possibility to simplify this problem is to look for a procedure such that Φ depends finally on only
one phase variable. In what follows, we demonstrate this approach for a class of Liénard systems.

We consider the system
dx

dt
= −y,

dy

dt
= h0(x) + h1(x)y

(3.1)

corresponding to the Liénard equation

d2x

dt2
− h1(x)

dx

dt
+ h0(x) = 0
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and seek a Dulac–Cherkas function for system (3.1) in the form

Ψ(x, y) := Ψ0(x) + Ψ1(x)y +Ψ2(x)y
2,

where we assume
Ψ2(x) ̸= 0 for all x. (3.2)

For the corresponding function Φ, from (2.2) we obtain

Φ(x, y) = Ψ1(x)h0(x) + κh1(x)Ψ0(x) +
(
−Ψ′

0(x) + 2Ψ2(x)h0(x) + Ψ1(x)h1(x)(1 + κ)
)
y

+
(
Ψ2(x)h1(x)(2 + κ)−Ψ′

1(x)
)
y2 −Ψ′

2(x)y
3. (3.3)

In order to get Φ as a function depending only on x, we equal the coefficients before y, y2 and y3

to zero which yields the relations

Ψ′
2 = 0,

Ψ′
1 = (κ+ 2)h1(x)Ψ2,

Ψ′
0 = (κ+ 1)h1(x)Ψ1 + 2h0(x)Ψ2,

(3.4)

representing a system of linear differential equations to determine Ψ0,Ψ1 and Ψ2. For what follows,
we assume

(H) The functions h0, h1 : R → R are continuous, h0 is not identically zero.

Under the condition that relations (3.4) are satisfied, the function Φ defined in (3.3) reads as

Φ(x, y) = Ψ1(x)h0(x) + κh1(x)Ψ0(x). (3.5)

In order to guarantee Φ to be a definite function of x, we have freedom in choosing κ and the
constants ci appearing in the process of integrating system (3.4), we can additionally impose the
conditions on h0 and h1.

Our first approach to solve system (3.4) consists in choosing κ = −2. In what follows, we suppose

(B1) The function h1 has the form

h1(x) = a

x∫
h0(s) ds+ b, (3.6)

where a ̸= 0.

Then the following assertion is valid.

Theorem 3.1. Under the assumptions (H) and (B1), the function

Ψ(x, y) = h1(x) +
a

2
y2

is a Dulac–Cherkas function for system (3.1) in R2.

Proof. From (3.4) and under condition (3.2) we obtain

Ψ2(x) ≡ c2 ̸= 0, Ψ1(x) ≡ c1.

Setting c1 = 0, by (3.4) we have

Ψ1(x) ≡ 0, Ψ2(x) ≡ c2, Ψ0(x) = 2c2

x∫
h0(s) ds+ c0, (3.7)

and from (3.5) we get

Φ(x, y) = −2h1(x)

(
2c2

x∫
h0(s) ds+ c0

)
. (3.8)
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Using (3.6), from (3.8) we obtain

Φ(x, y) =

(
− 2a

x∫
h0(s) ds− 2b

)(
2c2

x∫
h0(s) ds+ c0

)
.

Setting 2c2 = a and c0 = b, we have

Φ(x, y) = −2(h1(x))
2 ≤ 0,

that is, Φ is a definite function in R2. Additionally, by (3.7) there holds

Ψ0(x) = a

x∫
h0(s) ds+ b = h1(x), Ψ1(x) ≡ 0, Ψ2(x) =

a

2
.

Thus the assertion of Theorem 3.1 is valid.

For what follows, we assume

(B2) The set
W :=

{
(x, y) ∈ R2 : Ψ(x, y) = 0

}
=

{
(x, y) ∈ R2 : h1(x) +

a

2
y2 = 0

}
contains exactly one simply closed curve O.

Then, according to Theorem 2.1, the following theorem holds.

Theorem 3.2. Under the assumptions (H), (B1) and (B2), system (3.1) has at most one limit cycle
Γ in R2. If Γ exists, it surrounds O and is hyperbolic. The closed curve O can be used as an inner
boundary for a Poincaré–Bendixson annulus of system (3.1).

Our second approach to solve system (3.4) consists in choosing κ = −1. From (3.4) we obtain

Ψ2(x) ≡ c2 ̸= 0, Ψ1(x) = c2

x∫
h1(s) ds+ c1, Ψ0(x) = 2c2

x∫
h0(s) ds+ c0.

Setting c1 = 0, we get

Φ(x, y) = c2h0(x)

x∫
h1(s) ds− h1(x)

(
2c2

x∫
h0(s) ds+ c0

)
. (3.9)

Further, we suppose

(B3) There are real numbers c2 = c∗2 ̸= 0 and c0 = c∗0 such that the expression

c∗2h0(x)

x∫
h1(s) ds− h1(x)

(
2c∗2

x∫
h0(s) ds+ c∗0

)
is definite on R.

This assumption implies that the function Φ in (3.9) is definite on R and the following theorem holds.

Theorem 3.3. Under the assumptions (H) and (B3), the function

Ψ(x, y) = 2c∗2

x∫
h0(s) ds+ c∗0 + c∗2

x∫
h1(s) ds y + c∗2y

2

is a Dulac–Cherkas function for system (3.1) in R2.

If we additionally assume
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(B4) The set

W :=

{
(x, y) ∈ R2 : 2c∗2

x∫
h0(s) ds+ c∗0 + c∗2

x∫
h1(s) ds y + c∗2y

2 = 0

}
contains exactly one simply closed curve O,

then, according to Theorem 2.1, the following theorem holds.

Theorem 3.4. Under the assumptions (H), (B3) and (B4), system (3.1) has at most one limit cycle
Γ in R2. If Γ exists, it surrounds O and is hyperbolic. The closed curve O can be used as an inner
boundary for a Poincaré–Bendixson annulus of system (3.1).

In the next section, we apply the results obtained in this section to a qualitative study of the
van der Pol equation. Especially, we derive an improved Poincaré–Bendixson annulus to include the
unique limit cycle for all parameter values.

4 Dulac–Cherkas functions and the qualitative study
of the van der Pol system

We consider the differential equation

d2x

dt2
+ µ(x2 − 1)

dx

dt
+ x = 0 (4.1)

depending on the real parameter µ. This equation was introduced by the Dutch engineer and physicist
Balthasar van der Pol [6] in 1926 to describe self-oscillations in a triod circuit. The parameter µ
characterizes the damping force of the oscillations. If we replace t by −t and µ by −µ, then equation
(4.1) remains invariant. Thus, to study the phase portrait of equation (4.1), we can restrict ourselves
to the case µ ≥ 0. We note that (4.1) can be rewritten as the Liénard system

dx

dt
= −y,

dy

dt
= x− µ(x2 − 1)y.

(4.2)

It is well-known (see, e.g., [5]) that the van der Pol equation (4.1) has for µ > 0 a unique limit cycle
Γµ which is orbitally stable and hyperbolic. For µ = 0, the phase portrait of system (4.2) consists of
a continuum of concentric circles centered at the origin. When the parameter µ passes zero, the limit
cycle Γµ bifurcates from the circle of radius two. For small µ, the periodic solutions p(t, µ) describing
the limit cycle Γµ behaves like the solution of the harmonic oscillator. For very large values of the
parameter µ, the nature of oscillations is characterized by intermittent jumps that occur every time
when the system becomes unstable, and the period of these oscillations is determined by the duration
of the capacitive discharge, which is called as the relaxation time. It means that for large µ, the
solution p(t, µ) represents a relaxation oscillation.

In what follows, we show that the theorems proved in Section 3 can be applied to system (4.2).
For this purpose, we use the notation

h0(x) ≡ x, h1(x) ≡ −µ(x2 − 1) (4.3)

due to comparing systems (3.1) and (4.2). From (4.3) we find that the hypothesis (H) is valid and
(B1) is fulfilled with a = −2µ and b = µ.

Applying Theorem 3.1 and Proposition 2.1, we get the following result.

Theorem 4.1. The function Ψ1(x, y, µ) := x2 + y2 − 1 for µ > 0 is a Dulac–Cherkas function for the
van der Pol system (4.2).

Remark 4.1. The Dulac–Cherkas function Ψ1(x, y, µ) has been derived originally by L. Cherkas
in [2].
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We note that the set Wµ := {(x, y) ∈ R2 : Ψ1(x, y, µ) = 0} consists for any µ > 0 of the unit
circle E , and that a trajectory of system (4.2), starting in the set bounded by the unit circle, will
leave the unit circle for increasing t. Thus the unit circle can be used as an interior boundary of a
Poincaré–Bendixson annulus and, by Theorem 3.2, we have

Theorem 4.2. System (4.2) has at most one limit cycle Γµ in R2. If Γµ exists, it surrounds the unit
circle, is hyperbolic and asymptotically orbitally stable.

The Dulac–Cherkas function Ψ1 does not depend on the parameter µ. For a better approximation
of the limit cycle Γµ, we need a Dulac–Cherkas function depending on µ. To reach this goal, we have
to use Theorem 3.3. This requires that the supposition (B3) is fulfilled. Using (4.3) we have

Φ(x, y, µ) ≡ c2h0(x)

x∫
h1(s) ds− h1(x)

(
2c2

x∫
h0(s) ds+ c0

)
≡ µ

(2
3
c2x

4 + c0x
2 − c0

)
.

If we assume
c2 > 0, c0 < 0, 8c2 ≥ −3c0,

then we have
Φ(x, y, µ) ≥ 0 for µ > 0. (4.4)

From Theorem 3.3 and Proposition 2.1, for 8c2 = −3c0, we obtain

Theorem 4.3. The polynomial

Ψ2(x, y, µ) := x2 + y2 − 8

3
+ µ

(
x− x3

3

)
y

is a Dulac–Cherkas function for system (4.2) in R2 for µ > 0.

Now, we study the set

Wµ :=
{
(x, y) ∈ R2 : x2 + y2 − 8

3
+ µ

(
x− x3

3

)
y = 0

}
. (4.5)

For µ = 0, the set Wµ consists of the circle x2 + y2 = 8/3. Further, we note that the intersection of
the set Wµ with the straight lines x = ±

√
3 is empty. Thus the set Wµ consists of three curves which

are symmetric to the origin and separated by the straight lines x = ±
√
3. The curve surrounding the

origin is a simply closed curve Oµ located in the region bounded by the straight lines x = ±
√
3 and

tending to the circle x2 + y2 = 8/3 as µ tends to zero. The other two curves K1
µ and K3

µ look like
hyperbolas located in the first and the third quadrants (see Fig. 1).

Thus we have

Lemma 4.1. The set Wµ consists of a simple closed curve Oµ surrounding the origin and of two
unbounded curves K1

µ and K3
µ located in the first and third quadrants, respectively. All curves are

symmetric with respect to the origin.

If we denote by Iµ the finite region bounded by the closed curve Oµ, then it is easy to verify that
a trajectory of system (4.2) starting in Iµ will leave this region for increasing t. Using this fact and
Lemma 4.1, from Theorem 3.4 we obtain

Theorem 4.4. The van der Pol system (4.2) has at most one limit cycle Γµ in R2. If Γµ exists, it
surrounds Oµ and is orbitally stable. The closed curve Oµ can be used as an interior boundary of a
Poincaré–Bendixson annulus.

In what follows, we compare the closed curve Oµ with the unit circle E as interior boundaries of a
Poincaré–Bendixson annulus for the van der Pol system (4.2). It is obvious that for sufficiently small
µ the closed curve Oµ surrounds the unit circle E and is a better interior boundary of a Poincaré–
Bendixson annulus for system (4.2) than the unit circle E . The problem of intersection of the closed
curves E and Oµ is equivalent to the existence of roots of the equation f(y) = 5/µ in (0, 1), where
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μ
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μ
3

ℛμ
1

ℛμ
3

ℐμ

μ
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-5

0

5

Figure 1: Location of the curves K1
µ, K3

µ, Oµ for µ = 1

f is defined by f(y) :=
√
1− y2y(2 + y2). Since the function f takes its maximum in (0, 1) at

ym =

√
−1+

√
33

8 , we get that the closed curves E and Oµ intersect for µ > 5/f(ym) =: µ1 ≈ 3.925.
Thus, for 0 < µ < µ1, the closed curve Oµ is a better interior boundary of a Poincaré–Bendixson
annulus than the unit circle E . For µ > µ1, the curve Oµ intersects the unit circle E at four point
denoted by S1

µ, S
2
µ, S

3
µ, S

4
µ (see Fig. 2(a)). Thus the arcs of the unit circle E bounded by the points

S1
µ, S

2
µ and S3

µ, S
4
µ represent the curves without contact with respect to system (4.2) and can be used

to improve the closed curve Oµ as an interior boundary for system (4.2). The improved interior
boundary O∗

µ is represented in Fig. 2(b) together with the limit cycle Γµ.

μ

μ

ℰ

ℰ
Sμ
1

Sμ
2
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3
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4
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-2

0

2

4

6

(a) Intersection of the unit circle E (solid curve)
and the closed curve Oµ (dashed curve) for µ = 8

Γμ

μ
*

-3 -2 -1 0 1 2 3

-10

-5

0

5

10

(b) Improved interior boundary O∗
µ (dashed

curve) together with the limit cycle Γµ (solid
curve) for µ = 8

Figure 2

Thus we can conclude that the use of different Dulac–Cherkas functions helps to improve the
interior boundary of a Poincaré–Bendixson annulus for the van der Pol system (4.2).

If we denote by R1
µ (R3

µ) the region in the first (third) quadrant bounded by the curve K1
µ (K3

µ)
containing all points of the straight line y = x for a sufficiently large positive (negative) x (see Fig. 1),
then we get from (4.4) that a trajectory of system (4.2) starting in R1

µ (R3
µ) will leave this region for
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increasing t. Thus the curves K1
µ and K3

µ help to improve the location of a possible limit cycle Γµ of
the van der Pol system (4.2). As we already mentioned, for µ = 0 the phase portrait of system (4.2)
consists of a continuum of circles centered at the origin and the limit cycle Γµ bifurcates at µ = 0
from the circle with radius 2.

5 Explicit global algebraic Poincaré–Bendixson annulus
for the van der Pol system

In our paper [4], we presented a procedure to construct an outer boundary of a Poincaré–Bendixson
annulus Aµ for the van der Pol system (4.2) without using a Dulac–Cherkas function. Our result
reads as follows.

Theorem 5.1. The simple closed curve Bµ defined by

Bµ :=
{
(x, y) ∈ R2 : y2 + µyx(2− x2/3) + (1 + µ2)x2 − 7µ2

12
x4 +

µ2

18
x6 − 8− 3µ− 18µ2 = 0

}
(5.1)

is centrosymmetric and represents an outer boundary for a Poincaré–Bendixson annulus for the van
der Pol system (4.2).

If we denote by IBµ
the finite region bounded by Bµ, then it is easy to show that any trajectory

of system (4.2) meeting Bµ will enter IBµ
for increasing t. Using the inner boundary Õµ, we have the

following result.

Theorem 5.2. The simple closed curves Bµ and Õµ form a global algebraic Poincaré–Bendixson
annulus for the van der Pol system (4.2) containing for all µ > 0 the orbitally stable limit cycle Γµ.

P1

P2

P3

P4

μ
1

μ
3

ℬμ

ℬμ

-4 -2 0 2 4

-5

0

5

(a) Location of the curve Bµ (dashed curve) and
the curves K1

µ and K3
µ (dotted curves) for µ = 1

ℬμ

Γμ

-4 -2 0 2 4

-5

0

5

(b) Improved exterior boundary B∗
µ (dashed

curve) together with the limit cycle Γµ (solid
curve) for µ = 1

Figure 3

In what follows, we show that the outer boundary Bµ can be improved by the curves K1
µ and K3

µ

belonging to the zero-level set Wµ of the Dulac–Cherkas function Ψ2(x, y, µ). For this purpose, we
consider the mutual location of the simple closed curve Bµ and of the curves without contact K1

µ and
K3

µ. From (5.1) and (4.5), it follows that for a sufficiently small µ, the intersection of these curves is
empty. If µ increases, there is a unique value µ2, µ2 ≈ 0.6012 such that the curve K1

µ2
touches the

closed curve Bµ2 at exactly one point in the first quadrant and the curve K3
µ2

touches the closed curve
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Bµ2 at exactly one point in the third quadrant. For µ > µ2, the curve K1
µ intersects the closed curve

Bµ at exactly two points P1 and P2. The arc of the curve K1
µ between the points P1 and P2 can be

used to improve the closed curve Bµ as an outer boundary of a Poincaré–Bendixson annulus for the
van der Pol system (4.2). The corresponding result is valid for the curve K3

µ between the points P3

and P4 (see Fig. 3(a)). The improved outer closed curve is denoted by B∗
µ (see Fig. 3(b)).

Consequently, we have

Theorem 5.3. The closed curves B̃µ and Õµ form a global algebraic Poincaré–Bendixson annulus for
the van der Pol system (4.2) containing for all µ > 0 the orbitally stable limit cycle Γµ.

In this way, we have shown that the application of different Dulac–Cherkas functions can be used
to improve the inner boundary, as well as the outer boundary of a Poincaré–Bendixson annulus for
the van der Pol system (4.2). It is clear that this approach can also be used for the construction of
Poincaré–Bendixson annuli of other dynamical systems.
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