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Abstract. In this paper, we investigate the growth of solutions of certain class of linear fractional
differential equations with entire coefficients by using the Caputo fractional derivative operator. Under
some conditions, we prove that every non-trivial solution is of infinite order.
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1 Introduction
The order of growth of an entire function f(z) is defined by

σ(f) = lim sup
r→+∞

log+ m(r, f)

log r ,

where

m(r, f) =
1

2π

2π∫
0

ln+ |f(reiφ)| dφ;

and we have
σ(f) = lim sup

r→+∞

log+ log+ M(r, f)

log r ,

where M(r, f) = max{|f(z)| : |z| = r} (for more details, see [9, 12, 20]). Also, the order of an entire

function given by f(z) =
+∞∑
n=0

anz
n is equal to (see [2])

σ(f) = lim sup
n→+∞

n logn
− log |an|

.

Fractional order differential equations have become a very important tool for modeling phenom-
ena in many diverse fields of science and engineering which traditional differential modeling cannot
accomplish (see, e.g., Kilbas et al. [11]). Three kinds of fractional derivatives are often used, the
Grünwald Letnikov derivative, the Riemann Liouville derivative and the Caputo derivative. There
are many discussions for properties of these derivatives (see [13, 14]). All these studies are limited in
real line. In this paper, we use the Caputo derivative which is defined as follows.

Definition ([11,14,15]). Suppose that α > 0, r ≥ 0. The fractional operator

Dαf(r) =


1

Γ(n− α)

r∫
0

f (n)(t)

(r − t)α+1−n
dt, n− 1 < α < n,

dn

drn
f(r), α = n ∈ N \ {0},

is called the Caputo derivative. It is clear that f should be n times continuously differentiable.

Consider the function f(z) =
+∞∑
j=0

ajz
j , where z = reiθ. By using the properties of the Caputo

operator derivative, for n− 1 < α < n, we have

Dαf(reiθ) =

+∞∑
j=n

Γ(j + 1)

Γ(j − α+ 1)
ajr

j−αejiθ, (1.1)

rαDαf(reiθ) =

+∞∑
j=n

Γ(j + 1)

Γ(j − α+ 1)
ajz

j .

For α = n ∈ N \ {0},
Dnf(z) =

dn

drn
f(reiθ) ̸= dn

dzn
f(z),

while
rn

zn
Dnf(z) =

dn

dzn
f(z).

Proposition. The two functions f(z) =
+∞∑
j=0

ajz
j and rαDαf(z) have the same radius of convergence.

Consequently, if f(z) is an entire function, then rαDαf(z) is equally an entire function.
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Proof. To prove that the two power series

f(z) =

+∞∑
j=0

ajz
j , rαDαf(z) =

+∞∑
j=n

Γ(j + 1)

Γ(j − α+ 1)
ajz

j

have the same radius of convergence, we have just to show that

lim
j→+∞

Γ(j + 1)

Γ(j − α+ 1)

Γ(j − α+ 2)

Γ(j + 2)
= 1.

In the study of the growth of solutions of the classical linear differential equation

f (n) +An−1(z)f
(n−1) + · · ·+A1(z)f

′ +A0(z)f = 0, (1.2)

where the coefficients are entire functions, many authors are interested in the following question: what
conditions on the coefficients will guarantee that every solution f(z) ̸≡ 0 of (1.2) has infinite order?
In the literature, there are many papers concerning this question (see, e.g., [1, 4, 6, 7, 16]). The main
tool used is this investigation is the logarithmic derivative estimates (see [5]). Unfortunately, up to
now, there is no similar estimates given in [5] for the fractional derivatives except the Wiman–Valiron
theorem in the fractional calculus that is valid only on a neighborhood of the points z, where the
function reaches its maximum (see [3]). Despite this obstruction, we will investigate the growth of
solutions of certain class of linear fractional differential equations by using the Caputo fractional
derivative operator as the following.

Theorem 1.1. Let A0(z), A1(z), . . . , An−1(z) be entire functions and ρ > 0, δ > 0 be constants such
that max{σ(Aj) : j = 1, . . . , n − 1} < ρ and A0(0) = 0; let 0 < q1 < q2 < · · · < qn. Suppose that for
any θ ∈ [0, 2π),

|A0(re
iθ)| ≥ exp{δrρ} (1.3)

as r → +∞. Then every solution f(z) ̸≡ 0 of the linear fractional differential equation

rqn

z[qn]
Dqnf(z) +An−1(z)

rqn−1

z[qn−1]
Dqn−1f(z) + · · ·+A1(z)

rq1

z[q1]
Dq1f(z) + zA0(z)f(z) = 0 (1.4)

is an entire function of infinite order and, further, if σ(A0) < ∞, then σ2(f) ≤ σ(A0).

Corollary. Let P1(z), . . . , Pn−1(z) be polynomials and 0 < q1 < q2 < · · · < qn. Then every solution
f(z) ̸≡ 0 of the linear fractional differential equation

rqn

z[qn]
Dqnf(z) + Pn−1(z)

rqn−1

z[qn−1]
Dqn−1f(z) + · · ·+ P1(z)

rq1

z[q1]
Dq1f(z) + (sin z + sinh z)f(z) = 0

is an entire function of infinite order with σ2(f) ≤ 1.

Theorem 1.2. Let A1(z), B(z), A0(z) ̸≡ 0, be entire functions and let ρ > 0, δ > 0, 0 < α < 1
be constants such that max{σ(A0), σ(B)} < ρ. Suppose that there exists a set E ⊂ [0, 2π) of linear
measure zero such that for any θ ∈ [0, 2π) \ E,

|A1(re
iθ)| ≥ exp{δrρ} (1.5)

as r → +∞. Then every solution f(z) ̸≡ 0 of the differential equation

e−2iθD2f(z) +A1(z)e
−iθD1f(z) +B(z)rαDαf(z) +A0(z)f(z) = 0 (1.6)

is an entire function of infinite order and, further, if σ(A1) < ∞ then σ2(f) ≤ σ(A1).

Example. By Theorem 1.2, every solution f(z) ̸≡ 0 of the differential equation

e−2iθD2f(z) + sin(z2)e−iθD1f(z) + ezrαDαf(z) + zf(z) = 0

is an entire function of infinite order with σ2(f) ≤ 2.
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Theorem 1.3. Let A1(z), B(z), A0(z) ̸≡ 0, F (z) be entire functions and let ρ > 0, δ > 0, 0 < α < 1
be constants such that max{σ(A0), σ(B), σ(F )} < ρ. Suppose that there exists a set E ⊂ [0, 2π) of
linear measure zero such that for any θ ∈ [0, 2π) \ E,

|A1(re
iθ)| ≥ exp{δrρ} (1.7)

as r → +∞. Then every solution f(z) ̸≡ 0 of the differential equation

e−2iθD2f(z) +A1(z)e
−iθD1f(z) +B(z)

rα

z[α]
Dαf(z) +A0(z)f(z) = F (z) (1.8)

is an entire function of infinite order.

2 Preliminary lemmas
To prove these results we need the following lemmas.

Lemma 2.1. Let f be a non-constant entire function and suppose that |D1f(z)| is unbounded on some
ray arg z = θ ∈ [0, 2π) \ E, where E is of linear measure zero. Then there exists an infinite sequence
of points rm (m ≥ 1), rm → +∞, such that |D1f(rmeiθ)| → +∞ and∣∣∣Dαf(rmeiθ)

D1f(rmeiθ)

∣∣∣ ≤ r1−α
m

Γ(2− α)
, 0 < α < 1, (2.1)∣∣∣ f(rmeiθ)

D1f(rmeiθ)

∣∣∣ ≤ rm + o(1) (2.2)

as m → +∞.

Proof. By definition, we have

Dαf(reiθ) =
1

Γ(1− α)

r∫
0

D1f(teiθ)

(r − t)α
dt. (2.3)

Since |D1(rmeiθ)| is unbounded, we can construct a sequence rm (m ≥ 1), rm → +∞, such that
|D1(rmeiθ)| → +∞ and |D1(rmeiθ)| = max{|D1(teiθ)| : t ∈ [0, rm]}. By (2.3), we have

|Dαf(rmeiθ)| ≤ 1

Γ(1− α)

rm∫
0

|D1f(teiθ)|
(rm − t)α

dt;

and then

|Dαf(rmeiθ)| ≤ |D1f(rmeiθ)|
Γ(1− α)

rm∫
0

1

(rm − t)α
dt,

so, we obtain ∣∣∣Dαf(rmeiθ)

D1f(rmeiθ)

∣∣∣ ≤ r1−α
m

Γ(2− α)
.

On the other hand, we have

f(reiθ) = f(0) + eiθ
r∫

0

D1f(teiθ) dt,

and then
|f(rmeiθ)| ≤ |f(0)|+ |D1f(rmeiθ)|rm,

which implies ∣∣∣ f(rmeiθ)

D1f(rmeiθ)

∣∣∣ ≤ o(1) + rm, m → +∞.
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Lemma 2.2. Let f(z) be an entire function and suppose that

G(reiθ) :=
log+ |D1f(reiθ)|

rρ

is unbounded on some ray arg z = θ ∈ [0, 2π), where α > 0 and ρ > 0. Then there exists an infinite
sequence of points rm (m≥1), rm→+∞, such that G(rmeiθ)→+∞ and inequalities (2.1), (2.2) hold.
Proof. If G(reiθ) is unbounded on some ray arg z = θ ∈ [0, 2π), then we can immediately see that
|D1f(reiθ)| is unbounded on the ray arg z = θ. So, by Lemma 2.1, (2.1), (2.2) hold.

By [5] and by taking into account that e−niθDnf(z) = dn

dzn f(z), we obtain the following
Lemma 2.3. Let f be a non-constant entire function of finite order σ(f) = σ < ∞; let ε > 0 be a
given constant. Then the following two statements hold.

(i) There exists a set F ⊂ (1,+∞) of a finite logarithmic measure such that for all r ∈ (1,+∞) \F
and for integers k, j (0 ≤ k ≤ j), we have∣∣∣Djf(z)

Dkf(z)

∣∣∣ ≤ r(j−k)(σ−1+ε). (2.4)

(ii) There exists a set E ⊂ [0, 2π) of a linear measure zero such that for all θ ∈ [0, 2π)\E, there exists
a constant r0 = r0(θ) > 0 such that for all z satisfying arg(z) ∈ [0, 2π) \ E and r = |z| ≥ r0,
inequality (2.4) holds.

Lemma 2.4 ([3]). Let f(z) be an entire function, γ > 0, 0 < δ < 1
4 and z be such that |z| = r

and |f(z)| > M(r, f)ν(r)−
1
4+δ holds, where ν(r) is the central index of f . Then there exists a set

E ⊂ (0,+∞) of finite logarithmic measure, that is,
∫
E

dt
t < +∞ such that

rγDγf(z)

f(z)
= (ν(r))γ(1 + o(1))

holds for r → +∞ and r ̸∈ E.
Remark. We signal here that the fractional derivative used in the proof of Lemma 2.4 is the Riemann-

Liouville operator and for an entire function f(z) =
+∞∑
j=0

ajz
j , we have

Dα
RLf(z) =

+∞∑
j=0

Γ(j + 1)

Γ(j − α+ 1)
ajr

j−αejiθ. (2.5)

By (1.1) and (2.5), we immediately conclude that the proof of Lemma 2.1 is valid also for the Caputo
fractional derivative operator.
Lemma 2.5 ([12]). Let f(z) be an entire function of finite order σ(f) < +∞. Then

lim sup
r→+∞

log+ ν(r)

log r = σ(f),

lim sup
r→+∞

log+ log+ ν(r)

log r = σ2(f),

where ν(r) is the central index of f .
Lemma 2.6. Let A0(z), A1(z), . . . , An−1(z) be entire functions such that max

{
σ(Aj) : j = 0, 1, . . . , n−

1
}
= ρ < +∞; let 0 < q1 < q2 < · · · < qn. Then every solution f(z) ̸≡ 0 of the linear fractional

differential equation
rqn

z[qn]
Dqnf(z) +An−1(z)

rqn−1

z[qn−1]
Dqn−1f(z) + · · ·+A1(z)

rq1

z[q1]
Dq1f(z) + zA0(z)f(z) = 0 (2.6)

is an entire function satisfying σ2(f) ≤ ρ.
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Proof. By definition and the assumption that max{σ(Aj) : j = 0, 1, . . . , n − 1} = ρ, for any given
ε > 0, there exists r0 > 0 such that for all r ≥ r0, we have

|Aj(z)| ≤ exp{rρ+ε}, j = 0, 1, . . . , n− 1. (2.7)

From (2.6), we can write∣∣∣rqnDqnf(z)

f(z)

∣∣∣ ≤ |An−1(z)|r[qn]−[qn−1]
∣∣∣rqn−1Dqn−1f(z)

f(z)

∣∣∣+ · · ·

+ |A1(z)|r[qn]−[q1]
∣∣∣rq1Dq1f(z)

f(z)

∣∣∣+ r1+[qn]|A0(z)|. (2.8)

By Lemma 2.4, (2.7) and (2.8), we obtain

(ν(r))qn(1 + o(1)) ≤ cr[qn]−[qn−1](ν(r))qn−1 exp{rρ+ε},

where c > 0 is some constant; and then

(ν(r))qn−qn−1(1 + o(1)) ≤ cr[qn]−[qn−1] exp{rρ+ε}.

From (2.7) and by Lemma 2.5, we obtain σ2(f) ≤ ρ.

Lemma 2.7 ([18]). Let f be an entire function of finite order σ(f). Suppose that there exists a set
E ⊂ [0, 2π) of a linear measure zero such that

log+ |f(reiθ)| ≤ Mrρ

for any θ ∈ [0, 2π) \ E, where M is a positive constant depending on θ, while ρ is a positive constant
independent of θ. Then σ(f) ≤ ρ.
Lemma 2.8 ([8]). Let A0(z) ̸≡ 0, A1(z), . . . , An−1(z) be entire functions such that A0(0) = 0; let
0 < q1 < q2 < · · · < qn be real constants. Then all solutions of (1.4) are entire functions.

3 Proof of theorems
Proof of Theorem 1.1. First, by Lemma 2.8, all solutions of (1.4) are entire functions. If we suppose
that f(z) ̸≡ 0 is a solution of (1.4) with σ(f) < ρ, then by the assumptions of Theorem 1.1 and by
taking into account that σ(rqiDqif) = σ(f) < ρ, we can immediately see that the term zA0(z)f(z)
is the only dominant term in (1.4) which leads to a contradiction. So, σ(f) ≥ ρ. Now, suppose that
σ(f) = σ < ∞. By Lemma 2.5, for any given ε > 0, there exists r0 > 0 such that for all r ≥ r0, we
have ν(r) ≤ rσ+ε; and by Lemma 2.4, for r ̸∈ E and arg z = θ0, we have∣∣∣rγDγf(z)

f(z)

∣∣∣ ≤ rγ(σ+ε). (3.1)

Set max{σ(Aj) : j = 1, . . . , n− 1} = ρ1. For any given ϵ such that 0 < ε < ρ− ρ1, we have

|Aj(z)| ≤ exp{rρ1+ε}, j = 1, . . . , n− 1. (3.2)

From (1.4), we have

|A0(z)| ≤ rqn−[qn]−1
∣∣∣Dqnf(z)

f(z)

∣∣∣
+ |An−1(z)|rqn−1−[qn−1]−1

∣∣∣Dqn−1f(z)

f(z)

∣∣∣+ · · ·+ |A1(z)|rq1−[q1]−1
∣∣∣Dq1f(z)

f(z)

∣∣∣. (3.3)

Combining (3.1), (3.2)), (1.3) with (3.3), we obtain

exp{δrρ} ≤ rγ(σ+ε) exp{rρ1+ε}. (3.4)

Since ε < ρ − ρ1, (3.4) leads to a contradiction as r → +∞. So, σ(f) = +∞. Now, if σ(A0) < ∞,
then by the assumptions, we have max{σ(Aj) : j = 1, . . . , n− 1} = σ(A0) and by Lemma 2.6, we get
σ2(f) ≤ σ(A0).
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Proof of Theorem 1.2. By the same method of proof of Lemma 2.8, we can prove that all solutions of
(1.6) are entire functions. If we suppose that f(z) ̸≡ 0 is a solution of (1.6) with σ(f) = σ < ρ, then
by the assumptions, we can immediately see that the term A1(z)e

−iθD1(z) is the only dominant term
in (1.6) which leads to a contradiction. So, σ(f) ≥ ρ. Now, we suppose that σ(f) < ∞. From (1.6),
we can write

|A1(z)| ≤
∣∣∣D2f(z)

D1f(z)

∣∣∣+ |B(z)|
∣∣∣rαDαf(z)

D1f(z)

∣∣∣+ |A0(z)|
∣∣∣ f(z)

D1f(z)

∣∣∣. (3.5)

Set max{σ(A0), σ(B)} = ρ1. For any given ϵ (0 < ε < ρ− ρ1), we have

max
{
|A0(z)|, |B(z)

∣∣} ≤ exp{rρ1+ε}. (3.6)

By Lemma 2.3, there exists a set E ⊂ [0, 2π) of a linear measure zero such that for all θ ∈ [0, 2π) \E,
there exists a constant r0 = r0(θ) > 0 such that for all z satisfying arg(z) ∈ [0, 2π)\E and r = |z| ≥ r0,
we have ∣∣∣D2f(z)

D1f(z)

∣∣∣ ≤ rσ−1+ε. (3.7)

We will prove that |D1f(z)| is bounded in [0, 2π) \ E; toward this end, we suppose to the contrary
that D1f(z) is unbounded on some ray arg z = θ ∈ [0, 2π) \E. Then there exists an infinite sequence
of points rm (m ≥ 1), rm → +∞, such that |D1f(rmeiθ)| → +∞ and∣∣∣Dαf(rmeiθ)

D1f(rmeiθ)

∣∣∣ ≤ r1−α
m

Γ(2− α)
, 0 < α < 1, (3.8)∣∣∣ f(rmeiθ)

D1f(rmeiθ)

∣∣∣ ≤ rm + o(1). (3.9)

Using (3.6)–(3.9) and (1.5) in (3.5), we get

exp{δrρm} ≤ crdm exp{rρ1+ε
m }, (3.10)

where c > 0, d > 0. Since ε < ρ − ρ1, (3.10) leads to a contradiction as m → +∞. So, |eiθD1f(z)|
is bounded in [0, 2π) \ E. By the Phragmen–Lindelöf theorem, eiθD1f(z) has to be constant in the
whole complex plane which implies that f(z) is a polynomial of degree one; but this is impossible. So,
σ(f) = +∞. Now, if σ(A1) < ∞, then by the assumptions, we have max{σ(A0), σ(A1), σ(B)} = σ(A1)
and by Lemma 2.6, we have σ2(f) ≤ σ(A1).

Proof of Theorem 1.3. As above, all solutions of (1.8) are entire functions. Suppose first that f(z) ̸≡ 0
is a solution of (1.8) with σ(f) = σ < ρ. From (1.8), we can write

A1(z)e
−iθD1(z) = F (z)− e−2iθD2f(z)−B(z)

rα

z[α]
Dαf(z)−A0(z)f, (3.11)

then by the assumptions, the left-hand side of (3.11) is of order greather than or equal to ρ, while
the right-hand side of (3.11) is of order, strictly smaller than ρ, which is a contradiction. So,
σ(f) ≥ ρ. Now, to prove that σ(f) = ∞, we suppose to the contrary that σ(f) = σ < ∞. Set
max{σ(A0), σ(B), σ(F )} = ρ1. For any given ε (0 < ε < ρ− ρ1), we have

max
{
|A0(z)|, |B(z)|, |F (z)|

}
≤ exp{rρ1+ε}. (3.12)

We will prove that log+ |D1f(reiθ)|
rρ1+ε is bounded in [0, 2π) \ E; to this end, we suppose to the contrary

that log+ |D1f(reiθ)|
rρ1+ε is unbounded on some ray arg z = θ ∈ [0, 2π) \ E. Then by Lemma 2.2, there

exists an infinite sequence of points rm (m ≥ 1), rm → +∞, such that

log+ |D1f(rmeiθ)|
rρ1+ε
m

→ +∞, (3.13)∣∣∣Dαf(rmeiθ)

D1f(rmeiθ)

∣∣∣ ≤ r1−α
m

Γ(2− α)
, (3.14)
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and ∣∣∣ f(rmeiθ)

D1f(rmeiθ)

∣∣∣ ≤ rm + o(1). (3.15)

From (3.13), for any sufficiently large number c > 1 and for m ≥ m0, we have

|D1f(rmeiθ)| ≥ exp{crρ1+ε
m }. (3.16)

From (3.12) and (3.16), we get∣∣∣ F (rmeiθ)

D1f(rmeiθ)

∣∣∣ ≤ exp
{
(1− c)rρ1+ε

m

}
→ 0, m → +∞. (3.17)

From (1.8), we can write

|A1(z)| ≤
∣∣∣D2f(z)

D1f(z)

∣∣∣+ |B(z)|
∣∣∣rαDαf(z)

D1f(z)

∣∣∣+ |A0(z)|
∣∣∣ f(z)

D1f(z)

∣∣∣+ ∣∣∣ F (z)

D1f(z)

∣∣∣. (3.18)

Substituting (3.7), (3.12), (3.14), (3.15), (3.17) and (1.7) into (3.18), we obtain

exp{δrρm} ≤ c′rd
′

m exp{rρ1+ε
m },

where c′ > 0, d′ > 0. Since ε < ρ− ρ1, (3.18) leads to a contradiction as m → +∞. So, log+ |D1f(reiθ)|
rρ1+ε

is bounded in [0, 2π) \ E; so |D1f(reiθ)| ≤ exp{Mrρ1+ε
m }, where M > 0 is a constant and by the

inequality

|f(reiθ)| ≤ |f(0)|+
r∫

0

|D1f(teiθ)| dt,

we get
|f(reiθ)| ≤ exp{rρ1+2ε};

and by Lemma 2.7, we get σ(f) ≤ ρ1 + 2ε for any ε > 0; so, σ(f) ≤ ρ1 which is a contradiction with
σ(f) ≥ ρ > ρ1. So, we conclude that σ(f) = +∞.
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