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Abstract. In this paper, we use the concept of φ-order to investigate under suitable conditions the
growth and the oscillation of solutions of higher order linear differential equations with meromorphic
coefficients on the complex plane. Many existing results due to Li–Cao, Hu–Zheng, Kara–Belaïdi will
be revisited and extended for the lower φ-order and the φ-convergence exponent.
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რეზიუმე. ნაშრომში კომპლექსურ სიბრტყეზე მერომორფულ კოეფიციენტებიანი მაღალი რიგის
წრფივი დიფერენციალური განტოლებების ამონახსნების ზრდადობის და რხევის გამოსაკვლევად
გამოყენებულია φ-რიგის კონცეფცია. Li–Cao, Hu–Zheng, Kara–Belaïdi-ს მიერ მიღებული მრავა-
ლი შედეგი გადაიხედა და გაფართოვდა უფრო დაბალი φ-რიგისთვის და φ-კრებადობის
ექსპონენტისთვის.
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1 Introduction
Throughout this paper, the reader is assumed to be familiar with the fundamental notions and stan-
dard notations of Nevanlinna value distribution theory of meromorphic functions such as M(r, f),
T (r, f), m(r, f), N(r, f), δ(a, f) (see [11, 19, 25]). In addition, the term “meromorphic function” will
mean “meromorphic function in the whole complex plane C”. For all r ∈ R, we define exp1 r :=
exp r = er and expp+1 r := exp(expp r), p ∈ N = {1, 2, . . . }. Inductively, for all r ∈ (0,+∞) suffi-
ciently large, we define log1 r := log r and logp+1 r := log(logp r), p ∈ N. By convention, we denote
exp0 r := r = log0 r, exp−1 r := log1 r and log−1 r := exp1 r. We define the linear measure of a set
E ⊂ (0,+∞) by m(E) =

∫
E

dt and the logarithmic measure of a set F ⊂ (1,+∞) by lm(F ) =
∫
F

dt
t .

Definition 1.1 ([20,21]). Let p ≥ q ≥ 1 be integers. The [p, q]-order of a transcendental meromorphic
function f is defined by

ρ[p,q](f) := lim sup
r→+∞

logp T (r, f)
logq r

.

If f is a transcendental entire function, then

ρ[p,q](f) := lim sup
r→+∞

logp+1 M(r, f)

logq r
.

ρ[p,1](f) is called the iterated p-order and simply denoted by ρp(f). Moreover, ρ[1,1](f) = ρ1(f)
coincides with the usual order ρ(f) [11, 19,25].

Historically, Juneja–Kapoor–Bajpai [15] introduced the concepts of [p, q]-order to study some prop-
erties of entire functions. In [21], Liu-Tu-Shi made a minor modification on the original definition
of [p, q]-order to investigate the growth of entire solutions of higher order complex linear differential
equations of the form

f (k) +Ak−1(z)f
(k−1) + · · ·+A0(z)f = 0, (1.1)

f (k) +Ak−1(z)f
(k−1) + · · ·+A0(z)f = F (z), (1.2)

where k ≥ 2 and the coefficients A0, . . . , Ak−1, F ̸≡ 0 are entire functions of [p, q]-order. The case
when the coefficients of equations (1.1) and (1.2) are meromorphic of [p, q]-order have been discussed
by Li-Cao [20], Hu–Zheng [13], Belaïdi [4] and many other authors. We also mention that Belaïdi [3]
and Hu–Zheng [14] investigated the growth of solutions of equation (1.1) with analytic coefficients of
[p, q]-order and lower [p, q]-order in the unit disc D = {z ∈ C : |z| < 1} and obtained similar results to
those in the complex plane. However, the iterated p-order and the [p, q]-order do not cover an arbitrary
growth as it is shown in [9, Example 1.4]. A general scale which does not have this disadvantage is
called the φ-order (see [24]), and it is adopted recently by Chyzhykov–Semochko [9], Semochko [22],
Belaïdi [5, 6], Kara–Belaïdi [17] in order to study the fast growing of solutions of equations (1.1) and
(1.2) in the complex plane and in the unit disc which extend some previous results that considered
the iterated p-order [2, 7, 12,18].

Definition 1.2 ([9]). Let φ be an increasing unbounded function on [1,+∞). The φ-orders of a
meromorphic function f are defined by

ρ0φ(f) := lim sup
r→+∞

φ(eT (r,f))

log r , ρ1φ(f) := lim sup
r→+∞

φ(T (r, f))

log r .

If f is an entire function, then the φ-orders are defined by

ρ̃ 0
φ(f) := lim sup

r→+∞

φ(M(r, f))

log r , ρ̃ 1
φ(f) := lim sup

r→+∞

φ(logM(r, f))

log r .

We denote by Φ the class of positive unbounded increasing functions on [1,+∞) such that φ(et)
grows slowly, i.e.,

∀ c > 0 : lim
t→+∞

φ(ect)

φ(et)
= 1.
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Example. Let f be a meromorphic function. It is clear that φ(r) = logp r (p ≥ 2) belongs to the
class Φ and φ(r) = log r ̸∈ Φ. For φ(r) = logp r (p ∈ N), we have

ρ1φ(f) = ρ1logp
(f) = ρp(f).

In particular, ρ0log2
(f) = ρ1(f) = ρ(f) is the usual order of f and ρ1log2

(f) = ρ2(f) is the hyper-order
of f .

Proposition 1.1 ([9]). If φ ∈ Φ, then

∀m > 0, ∀ k ≥ 0 :
φ−1(logxm)

xk
→ +∞, x → +∞, (1.3)

∀ δ > 0 :
logφ−1((1 + δ)x)

logφ−1(x)
→ +∞, x → +∞, (1.4)

∀ c > 0 : φ(c x) ≤ φ(xc) ≤ (1 + o(1))φ(x), x → +∞. (1.5)

Proposition 1.2 ([9]). Let φ ∈ Φ and f be an entire function. Then for j = 0, 1, we have

ρjφ(f) = ρ̃ j
φ(f).

Definition 1.3 ( [6]). Let φ be an increasing unbounded function on [1,+∞). The φ-types of a
meromorphic function f with 0 < ρjφ(f) < +∞ (j = 0, 1) are defined by

τ0φ(f) := lim sup
r→+∞

exp{φ(eT (r,f))}
rρ

0
φ(f)

, τ1φ(f) := lim sup
r→+∞

exp{φ(T (r, f))}
rρ

1
φ(f)

.

If f is an entire function with 0 < ρ̃ j
φ(f) < +∞ (j = 0, 1), then the φ-types are defined by

τ̃ 0
φ(f) := lim sup

r→+∞

exp{φ(M(r, f))}
rρ̃

0
φ(f)

, τ̃ 1
φ(f) := lim sup

r→+∞

exp{φ(logM(r, f))}
rρ̃

1
φ(f)

.

Definition 1.4 ([17]). Let φ be an increasing unbounded function on [1,+∞). The φ-convergence
exponents of the sequence of zeros of a meromorphic function f are defined by

λ0
φ(f) := lim sup

r→+∞

φ(eN(r, 1f ))

log r , λ1
φ(f) := lim sup

r→+∞

φ(N(r, 1
f ))

log r .

Similarly, the notations λ 0
φ(f) and λ 1

φ(f) can be used to denote the φ-convergence exponents of the
sequence of distinct zeros of f

λ 0
φ(f) := lim sup

r→+∞

φ(eN(r, 1f ))

log r , λ 1
φ(f) := lim sup

r→+∞

φ(N(r, 1
f ))

log r .

Now, we can introduce by analogous manner the following quantities.

Definition 1.5 ([5, 6]). Let φ be an increasing unbounded function on [1,+∞). The lower φ-orders
of a meromorphic function f are defined by

µ0
φ(f) := lim inf

r→+∞

φ(eT (r,f))

log r , µ1
φ(f) := lim inf

r→+∞

φ(T (r, f))

log r .

If f is an entire function, then the lower φ-orders are defined by

µ̃ 0
φ(f) := lim inf

r→+∞

φ(M(r, f))

log r , µ̃ 1
φ(f) := lim inf

r→+∞

φ(logM(r, f))

log r .

Proposition 1.3 ([5]). Let φ ∈ Φ and f be an entire function. Then for j = 0, 1, we have

µj
φ(f) = µ̃ j

φ(f).
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Definition 1.6 ([6, 17]). Let φ be an increasing unbounded function on [1,+∞). The lower φ-types
of a meromorphic function f with 0 < µj

φ(f) < +∞ (j = 0, 1) are defined by

τ 0
φ(f) = lim inf

r→+∞

exp{φ(eT (r,f))}
rµ

0
φ(f)

, τ 1
φ(f) = lim inf

r→+∞

exp{φ(T (r, f))}
rµ

1
φ(f)

.

If f is an entire function with 0 < µ̃ j
φ(f) < +∞ (j = 0, 1), then the lower φ-types are defined by

τ̃ 0
φ(f) = lim inf

r→+∞

exp{φ(M(r, f))}
rµ̃

0
φ(f)

, τ̃ 1
φ(f) = lim inf

r→+∞

exp{φ(logM(r, f))}
rµ̃

1
φ(f)

.

Definition 1.7. Let φ be an increasing unbounded function on [1,+∞). We define the lower φ-
convergence exponents of the sequence of zeros of a meromorphic function f by

λ 0
φ(f) = lim inf

r→+∞

φ(eN(r, 1f ))

log r , λ 1
φ(f) = lim inf

r→+∞

φ(N(r, 1
f ))

log r .

Similarly, the notations λ 0
φ(f) and λ 1

φ(f) can be used to denote the φ-convergence exponents of the
sequence of distinct zeros of f :

λ 0
φ(f) = lim inf

r→+∞

φ(eN(r, 1f ))

log r , λ 1
φ(f) = lim inf

r→+∞

φ(N(r, 1
f ))

log r .

2 Main results
Before we state our main results, it is essential to recall some existing results. The first work that
considered the concept of φ-order to study the growth of entire solutions of equation (1.1) was made
by Chyzhykov–Semochko in [9]. They gave the precise estimate of ρ̃ 1

φ(f) when A0 dominates the
growth of the other coefficients.
Theorem 2.1 ([9]). Let φ ∈ Φ and A0, A1, . . . , Ak−1 be entire functions such that

max
{
ρ̃ 0
φ(Aj) : j = 1, . . . , k − 1

}
< ρ̃ 0

φ(A0) < +∞.

Then every solution f ̸≡ 0 of (1.1) satisfies ρ̃ 1
φ(f) = ρ̃ 0

φ(A0).
After that, the second author [5, 6] extended Theorem 2.1 by considering the lower φ-order and

the lower φ-type. He also obtained similar results when there is more than one dominant coefficient
in equation (1.1).
Theorem 2.2 ([6]). Let φ ∈ Φ and A0, A1, . . . , Ak−1 be entire functions. Assume that

max
{
ρ̃ 0
φ(Aj) : j = 1, . . . , k − 1

}
≤ µ̃ 0

φ(A0) ≤ ρ̃ 0
φ(A0) < +∞ (µ̃ 0

φ(A0) > 0),

max
{
τ̃ 0

φ(Aj) : ρ̃ 0
φ(Aj) = µ̃ 0

φ(A0)
}
< τ̃ 0

φ(A0) = τ 0 (0 < τ 0 < +∞).

Then every solution f ̸≡ 0 of (1.1) satisfies

µ̃ 1
φ(f) = µ̃ 0

φ(A0) ≤ ρ̃ 1
φ(f) = ρ̃ 0

φ(A0).

Very recently, the authors in [17] investigated the growth of solutions of equations (1.1) and
(1.2) when the coefficients are meromorphic with φ-order which improve and generalise under some
conditions on the poles of coefficients some results in [5, 6, 9, 13,17].
Theorem 2.3 ([17]). Let φ ∈ Φ and A0, A1, . . . , Ak−1 be meromorphic functions such that

λ0
φ

( 1

A0

)
< ρ0φ(A0),

max
{
ρ0φ(Aj) : j = 1, . . . , k − 1

}
≤ ρ0φ(A0) < +∞,

max
{
τ0φ(Aj) : ρ0φ(Aj) = ρ0φ(A0) > 0, j = 1, . . . , k − 1

}
< τ0φ(A0) = τ0 (0 < τ0 < +∞).

Then any non-zero meromorphic solution f whose poles are of uniformly bounded multiplicities of
(1.1) satisfies ρ1φ(f) = ρ0φ(A0).
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Thus, the following questions may arise:

Question 1. How about the growth of solutions of equation (1.1) with meromorphic coefficients of
lower φ-order?

Question 2. Which conditions can be added to extend Theorem 2.2 from entire coefficients to mero-
morphic coefficients?

Question 3. Can we replace the dominant coefficient A0 by an arbitrary coefficient As (s ∈
{0, 1, . . . , k − 1})?

In this paper, we are going to give answers to the above questions. We also obtain the results for
the φ-convergence exponent and the lower φ-convergence exponent.

Theorem 2.4. Let φ ∈ Φ and A0, A1, . . . , Ak−1 be meromorphic functions satisfying

λ0
φ

( 1

A0

)
< µ0

φ(A0) = µ0,

max
{
ρ0φ(Aj) : j = 1, . . . , k − 1

}
≤ µ0

φ(A0) ≤ ρ0φ(A0) < +∞,

max
{
τ0φ(Aj) : ρ0φ(Aj) = µ0

φ(A0), j = 1, . . . , k − 1
}
< τ 0

φ(A0) = τ 0 (0 < τ 0 < +∞).

Then for any non-zero meromorphic solution f of (1.1) satisfying N(r,f)

N(r,f)
< φ−1(α log r) such that

0 < α ≤ µ0, we have

λ 1
φ(f − g) = µ1

φ(f) = µ0
φ(A0) ≤ ρ0φ(A0) = ρ1φ(f) = λ 1

φ(f − g),

where g ̸≡ 0 is a meromorphic function satisfying ρ1φ(g) < µ0
φ(A0).

Remark 2.1. Theorem 2.4 is an improvement and an extension of Theorem 2.2 from entire solution
to meromorphic solution. Furthermore, by setting φ(r) = logp+1 r (p ≥ 1) in Theorem 2.4, we obtain
Theorem 3 of Hu–Zheng [13] in the case where p > q = 1.

Theorem 2.5. Let φ ∈ Φ and A0, A1, . . . , Ak−1 be meromorphic functions satisfying

λ0
φ

( 1

A0

)
< µ0

φ(A0) = µ0, lim sup
r→+∞

k−1∑
j=1

m(r,Aj)

m(r,A0)
< 1

and
max

{
ρ0φ(Aj) : j = 1, . . . , k − 1

}
≤ µ0

φ(A0) ≤ ρ0φ(A0) < +∞.

Then for any non-zero meromorphic solution f of (1.1) satisfying N(r,f)

N(r,f)
< φ−1(α log r) such that

0 < α ≤ µ0, we have

λ 1
φ(f − g) = µ1

φ(f) = µ0
φ(A0) ≤ ρ0φ(A0) = ρ1φ(f) = λ 1

φ(f − g),

where g ̸≡ 0 is a meromorphic function satisfying ρ1φ(g) < µ0
φ(A0).

Remark 2.2. Theorem 2.5 is an improvement and an extension of Theorem 1.13 of Belaïdi [5]
from entire solution to meromorphic solution. Furthermore, by setting φ(r) = logp+1 r (p ≥ 1) in
Theorem 2.5, we obtain Theorem 4 of Hu–Zheng [13] in the case where p > q = 1.

Theorem 2.6. Let φ ∈ Φ and A0, A1, . . . , Ak−1 be meromorphic functions. Assume there exists one
coefficient As(z) (0 ≤ s ≤ k − 1) satisfying λ0

φ(
1
As

) < µ0
φ(As) and

max
{
ρ0φ(Aj) : j ̸= s

}
≤ µ0

φ(As) ≤ ρ0φ(As) < +∞,

max
{
τ0φ(Aj) : ρ0φ(Aj) = µ0

φ(As), j ̸= s
}
< τ 0

φ(As) = τ s(0 < τ s < +∞).

Then for any transcendental meromorphic solution f of (1.1) satisfying N(r,f)

N(r,f)
< φ−1(α log r) such

that 0 < α ≤ µ0
φ(As), we have µ1

φ(f) ≤ µ0
φ(As) ≤ µ0

φ(f) and ρ1φ(f) ≤ ρ0φ(As) ≤ ρ0φ(f). Moreover,
every non-transcendental meromorphic solution f of (1.1) is a polynomial of degree deg(f) ≤ s− 1.
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Remark 2.3. Putting φ(r) = logp+1 r (p ≥ 1) in Theorem 2.6, we obtain Theorem 5 of Hu–Zheng [13]
in the case where p > q = 1.

Remark 2.4. The condition λ0
φ(

1
A0

) < µ0
φ(A0) in the above theorems can be replaced by

N(r,A0) = o(m(r,A0)) as r → +∞

or
δ(∞, A0) := lim inf

r→+∞

m(r,A0)

T (r,A0)
> 0.

3 Preliminary lemmas
Lemma 3.1 ([8]). Let f be a meromorphic solution of equation (1.1). Suppose that not all coefficients

Aj are constants. Given a real number γ > 1 and denoting T (r) =
k−1∑
j=0

T (r,Aj), the inequalities

logm(r, f) < T (r)
{
(log r) logT (r)

}γ if s = 0,

logm(r, f) < r2s+γ−1T (r)
{

logT (r)
}γ if s > 0

take place outside of an exceptional set Es with
∫
Es

ts−1 dt < +∞.

Lemma 3.2 ( [1, 10]). Let g : (0,+∞) → R and h : (0,+∞) → R be monotone non-decreasing
functions. If

(i) g(r) ≤ h(r) outside of an exceptional set E1 ⊂ (0,+∞) of finite linear measure

or

(ii) g(r) ≤ h(r) for all r ̸∈ E2 ∪ [0, 1], where E2 ⊂ (1,+∞) is a set of finite logarithmic measure,
then for any α > 1, there exists r0 = r0(α) > 0 such that g(r) ≤ h(αr) for all r > r0.

Lemma 3.3 ([11,25]). Let f be a non-constant meromorphic function and k ∈ N. Then for sufficiently
large r, we have

m
(
r,
f (k)

f

)
= O(log r + logT (r, f))

possibly outside of an exceptional set E3 ⊂ (0,+∞) of finite linear measure. Moreover, if f is of finite
order (i.e. ρ(f) < +∞), then

m
(
r,
f (k)

f

)
= O(log r), r → +∞.

Lemma 3.4 ([9, 16]). Let φ ∈ Φ and f1, f2 be two meromorphic functions. Then for j = 0, 1, we
have

ρjφ(f1 + f2) ≤ max
{
ρjφ(f1), ρ

j
φ(f2)

}
,

ρjφ(f1f2) ≤ max
{
ρjφ(f1), ρ

j
φ(f2)

}
.

Moreover, if ρjφ(f1) < ρjφ(f2), then ρjφ(f1 + f2) = ρjφ(f1f2) = ρjφ(f2).

Lemma 3.5. Let φ ∈ Φ and f1, f2 be two meromorphic functions. Then for j = 0, 1, we have

µj
φ(f1 + f2) ≤ max

{
ρjφ(f1), µ

j
φ(f2)

}
,

µj
φ(f1 f2) ≤ max

{
ρjφ(f1), µ

j
φ(f2)

}
.

Moreover, if ρjφ(f1) < µj
φ(f2), then µj

φ(f1 + f2) = µj
φ(f1f2) = µj

φ(f2).
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Proof. We prove the lemma only for j = 0, the proof for j = 1 is similar. Without loss of generality,
we assume that ρ0φ(f1) < +∞ and µ0

φ(f2) < +∞. From the definition of the lower φ−order, there
exists a sequence rn → +∞ (n → +∞) such that

lim
n→+∞

φ(eT (rn,f2))

log rn
= µ0

φ(f2).

Then for any given ε > 0, there exists a positive integer N1 such that

T (rn, f2) ≤ log
(
φ−1

{
(µ0

φ(f2) + ε) log rn
})

holds for n > N1. From the definition of the φ−order, for any given ε > 0, there exists a positive
number R such that

T (r, f1) ≤ log
(
φ−1

{
(ρ0φ(f1) + ε) log r

})
holds for r ≥ R. Since rn → +∞ (n → +∞), there exists a positive integer N2 such that rn > R, and
thus

T (rn, f1) ≤ log
(
φ−1

{
(ρ0φ(f1) + ε) log rn

})
holds for n > N2. Note that

T (r, f1 + f2) ≤ T (r, f1) + T (r, f2) + log 2

and
T (r, f1f2) ≤ T (r, f1) + T (r, f2).

Then for any given ε > 0, for n > max{N1, N2} we have

T (rn, f1 + f2) ≤ T (rn, f1) + T (rn, f2) + log 2

≤ log
(
φ−1

{
(ρ0φ(f1) + ε) log rn

})
+ log

(
φ−1

{
(µ0

φ(f2) + ε) log rn
})

+ log 2

≤ 2 log
(
φ−1

{(
max

{
ρ0φ(f1), µ

0
φ(f2)

}
+ ε

)
log rn

})
+ log 2 (3.1)

and

T (rn, f1f2) ≤ T (rn, f1) + T (rn, f2) ≤ 2 log
(
φ−1{(max{ρ0φ(f1), µ0

φ(f2)}+ ε) log rn}
)
. (3.2)

Since ε > 0 is arbitrary, from (3.1) and (3.2) we easily obtain

µ0
φ(f1 + f2) ≤ max

{
ρ0φ(f1), µ

0
φ(f2)

}
(3.3)

and
µ0
φ(f1f2) ≤ max

{
ρ0φ(f1), µ

0
φ(f2)

}
. (3.4)

Suppose now that µ0
φ(f2) > ρ0φ(f1). Considering that

T (r, f2) = T (r, f1 + f2 − f1) ≤ T (r, f1 + f2) + T (r, f1) + log 2 (3.5)

and
T (r, f2) = T

(
r,
f1f2
f1

)
≤ T (r, f1f2) + T

(
r,

1

f1

)
= T (r, f1f2) + T (r, f1) +O(1), (3.6)

by (3.5), (3.6) and the same method as above, we obtain

µ0
φ(f2) ≤ max

{
µ0
φ(f1 + f2), ρ

0
φ(f1)

}
= µ0

φ(f1 + f2), (3.7)
µ0
φ(f2) ≤ max

{
µ0
φ(f1f2), ρ

0
φ(f1)

}
= µ0

φ(f1f2). (3.8)

By using (3.3) and (3.7), we obtain µ0
φ(f1+f2) = µ0

φ(f2), and by (3.4) and (3.8), we obtain µ0
φ(f1f2) =

µ0
φ(f2).
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Lemma 3.6 ([9, 16]). Let f be a meromorphic function and φ ∈ Φ. Then for j = 0, 1, we have

ρjφ(f
′) = ρjφ(f).

Lemma 3.7. Let φ ∈ Φ and f be a meromorphic function with 0 < ρ0φ(f) < +∞. Then there exists
a set E4 ⊂ (1,+∞) of infinite logarithmic measure such that

τ0φ(f) = lim
r→+∞
r∈E4

exp{φ(eT (r,f))}
rρ

0
φ(f)

.

Therefore, for any given ε > 0 and sufficiently large r ∈ E4, we have

T (r, f) > logφ−1
(

log
[
(τ0φ(f)− ε)rρ

0
φ(f)

])
.

Proof. The definition of τ0φ(f) implies that there exists a sequence {rn, n ≥ 1} tending to +∞ satisfying
(1 + 1

n )rn < rn+1 and

τ0φ(f) = lim
rn→+∞

exp{φ(eT (rn,f))}

r
ρ0
φ(f)

n

.

Then for any given ε > 0, there exists an integer number n1 such that for all n ≥ n1 and r ∈
[rn, (1 +

1
n )rn], we have

exp{φ(eT (rn,f))}

r
ρ0
φ(f)

n

( 1

1 + 1
n

)ρ0
φ(f)

≤ exp{φ(eT (r,f))}
rρ

0
φ(f)

.

Set

E4 =

+∞⋃
n=n1

[
rn,

(
1 +

1

n

)
rn

]
.

By the fact that ( 1

1 + 1
n

)ρ0
φ(f)

→ 1 as n → +∞,

we get

lim
r→+∞
r∈E4

exp{φ(eT (r,f))}
rρ

0
φ(f)

≥ lim
rn→+∞

exp{φ(eT (rn,f))}

r
ρ0
φ(f)

n

= τ0φ(f)

and the logarithmic measure of E4 satisfies

lm(E4) =

∫
E4

dr

r
=

+∞∑
n=n1

(1+ 1
n )rn∫

rn

dt

t
=

+∞∑
n=n1

log
(
1 +

1

n

)
= +∞.

It is obvious that

lim
r→+∞
r∈E4

exp{φ(eT (r,f))}
rρ

0
φ(f)

≤ lim sup
r→+∞

exp{φ(eT (r,f))}
rρ

0
φ(f)

= τ0φ(f).

Therefore,

τ0φ(f) = lim
r→+∞
r∈E4

exp{φ(eT (r,f))}
rρ

0
φ(f)

and for any given ε > 0 and sufficiently large r ∈ E4, we have

T (r, f) > logφ−1
(

log
[
(τ0φ(f)− ε)rρ

0
φ(f)

])
.
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Using analogous arguments as in [5, Lemma 2.4, p. 31] and the above proof, we can easily obtain
the following lemma.

Lemma 3.8. Let φ ∈ Φ and f be a meromorphic function with µ0
φ(f) < +∞. Then there exists a set

E5 ⊂ (1,+∞) of infinite logarithmic measure such that

µ0
φ(f) = lim

r→+∞
r∈E5

φ(eT (r,f))

log r .

Therefore, for any given ε > 0 and sufficiently large r ∈ E5, we have

T (r, f) < logφ−1
(
(µ0

φ(f) + ε) log r
)
.

Lemma 3.9 ([17]). Let φ ∈ Φ and let A0, A1, . . . , Ak−1, F ̸≡ 0 be meromorphic functions. If f is a
meromorphic solution of equation (1.2) such that

max
{
ρ1φ(F ), ρ1φ(Aj) : j = 0, 1, . . . , k − 1

}
< ρ1φ(f) < +∞,

then we have λ 1
φ(f) = λ1

φ(f) = ρ1φ(f).

Lemma 3.10. Let φ ∈ Φ and let A0, A1, . . . , Ak−1, F ̸≡ 0 be meromorphic functions. If f is a
meromorphic solution of equation (1.2) such that

max
{
ρ1φ(F ), ρ1φ(Aj) : j = 0, 1, . . . , k − 1

}
< µ1

φ(f),

then we have λ 1
φ(f) = λ 1

φ(f) = µ1
φ(f).

Proof. Equation (1.2) can be written as

1

f
=

1

F

(f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A1

f ′

f
+A0

)
. (3.9)

If f has a zero at z0 of order l > k and if the coefficients A0, . . . , Ak−1 are all analytic at z0, then F
should have a zero at z0 of order at least l − k. Hence

N
(
r,

1

f

)
≤ kN

(
r,

1

f

)
+N

(
r,

1

F

)
+

k−1∑
j=0

N(r,Aj). (3.10)

By Lemma 3.3 and (3.9), we find that

m
(
r,

1

f

)
≤ m

(
r,

1

F

)
+

k−1∑
j=0

m(r,Aj) +O
(

log r + logT (r, f)
)

(3.11)

holds for all |z| = r ̸∈ E3, where E3 is a set of finite linear measure. It follows from (3.10) and (3.11)
that

T (r, f) = T
(
r,

1

f

)
+O(1) = m

(
r,

1

f

)
+N

(
r,

1

f

)
+O(1)

≤ kN
(
r,

1

f

)
+ T (r, F ) +

k−1∑
j=0

T (r,Aj) +O
(

log r + logT (r, f)
)
. (3.12)

We denote ρ = max{ρ1φ(F ), ρ1φ(Aj) : j = 0, 1, . . . , k − 1} < µ1
φ(f) = µ. Then for any given ε

(0 < 2ε < µ− ρ) and sufficiently large r, we get

T (r, f) ≥ φ−1((µ− ε) log r). (3.13)
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We have

max
j=0,1,...,k−1

{
T (r, F ), T (r,Aj)

}
≤ φ−1((ρ+ ε) log r), (3.14)

O
(

log r + logT (r, f)
)
= o(T (r, f)). (3.15)

Since ε satisfies 0 < 2ε < µ− ρ, by (3.13), (3.14) and Proposition 1.1, we obtain

max
j=0,1,...,k−1

{T (r, F )

T (r, f)
,
T (r,Aj)

T (r, f)

}
≤ exp{logφ−1(((ρ+ ε)) log r)}

exp{logφ−1((µ− ε) log r)} = exp
{

logφ−1((ρ+ ε) log r)− logφ−1((µ− ε) log r)
}

= exp
{(

1− logφ−1((µ− ε) log r)
logφ−1((ρ+ ε) log r)

)
logφ−1((ρ+ ε) log r)

}
→ 0 as r → +∞. (3.16)

Then, by substituting (3.15) and (3.16) into (3.12), it follows that

(1− o(1))T (r, f) ≤ kN
(
r,

1

f

)
, r ̸∈ E3, r → +∞.

By Lemma 3.2, the monotonicity of φ and (1.5), we get µ1
φ(f) ≤ λ 1

φ(f). Since µ1
φ(f) ≥ λ 1

φ(f) ≥
λ 1

φ(f), we deduce that λ 1
φ(f) = λ 1

φ(f) = µ1
φ(f).

Lemma 3.11. Let φ ∈ Φ and let A0, . . . , Ak−1 be meromorphic functions such that

max{ρ0φ(Aj) : j ̸= s} ≤ µ0
φ(As) < +∞.

If f ̸≡ 0 is a solution of (1.1) satisfying N(r,f)

N(r,f)
< φ−1(α log r), where 0 < α ≤ µ0

φ(As), then we have
µ1
φ(f) ≤ µ0

φ(As).
Proof. From equation (1.1), we see that the poles of f can only occur at the poles of the coefficients
A0, A1, . . . , Ak−1. Since N(r,f)

N(r,f)
< φ−1(α log r) (α ≤ µ0

φ(As)), we get

N(r, f) ≤ φ−1(α log r)N(r, f) ≤ φ−1(α log r)
k−1∑
j=0

N(r,Aj) ≤ φ−1(α log r)
k−1∑
j=0

T (r,Aj),

and therefore

T (r, f) ≤ m(r, f) + φ−1(α log r)
k−1∑
j=0

T (r,Aj). (3.17)

Since max{ρ0φ(Aj) : j ̸= s} ≤ µ0
φ(As) < +∞, for any given ε > 0 and sufficiently large r, we have

T (r,Aj) ≤ logφ−1((µ0
φ(As) + ε) log r), j ̸= s. (3.18)

By applying Lemma 3.8 to the coefficient As and for the above ε, we have

T (r,As) < logφ−1
(
(µ0

φ(As) + ε) log r
)
, r ∈ E5, r → +∞, (3.19)

where E5 is a set of infinite logarithmic measure. By Lemma 3.1, (3.18) and (3.19), there exists a set
E0 of finite logarithmic measure such that for sufficiently large r ∈ E5 \ E0, we have

m(r, f) ≤ exp
{( k−1∑

j=0

T (r,Aj)
)(

log r log
( k−1∑

j=0

T (r,Aj)
))γ

}
≤ φ−1

(
(µ0

φ(As) + 2ε) log r
)
. (3.20)

It follows from (3.17)–(3.20) that

T (r, f) ≤ φ−1
(
(µ0

φ(As) + 2ε) log r
)
+ kφ−1(α log r) logφ−1

(
(µ0

φ(As) + ε) log r
)

≤ φ−1
(
(µ0

φ(As) + 3ε) log r
)
, r ∈ E5 \ E0, r → +∞.

Thus, by Lemma 3.2, arbitrariness of ε > 0 and the monotonicity of φ, we obtain µ1
φ(f) ≤ µ0

φ(As).
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Lemma 3.12. Let φ ∈ Φ and A0, A1, . . . , Ak−1 be meromorphic functions satisfying

λ0
φ

( 1

A0

)
< µ0

φ(A0) = µ0,

max
{
ρ0φ(Aj) : j = 1, . . . , k − 1

}
≤ µ0

φ(A0) < +∞,

max
{
τ0φ(Aj) : ρ0φ(Aj) = µ0

φ(A0), j = 1, . . . , k − 1
}
< τ 0

φ(A0) = τ 0 (0 < τ 0 < +∞).

Then, for any non-zero meromorphic solution f of (1.1) we have µ1
φ(f) ≥ µ0

φ(A0).

Proof. Assume that f is a non-zero meromorphic solution of equation (1.1). By (1.1), we have

−A0 =
f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A1

f ′

f
.

Then, by Lemma 3.3, we find that

m(r,A0) ≤
k−1∑
j=1

m(r,Aj) +

k∑
j=1

m
(
r,
f (j)

f

)
+O(1) ≤

k−1∑
j=1

m(r,Aj) +O(log r + logT (r, f)) (3.21)

holds possibly outside of an exceptional set E3 ⊂ (0,+∞) of finite linear measure. Since λ0
φ(

1
A0

) <

µ0
φ(A0), we get

N(r,A0) = o(T (r,A0)), r → +∞. (3.22)
Since T (r,A0) = m(r,A0) +N(r,A0), then by (3.21) and (3.22), we obtain

(1− o(1))T (r,A0) ≤
k−1∑
j=1

m(r,Aj) +O(log r + logT (r, f)), r ̸∈ E3, r → +∞. (3.23)

Set
a = max

{
ρ0φ(Aj) : ρ0φ(Aj) < µ0

φ(A0) = µ0, j = 1, . . . , k − 1
}
.

If ρ0φ(Aj) < µ0
φ(A0) = µ0, then for any given ε (0 < 2ε < µ0 − a) and sufficiently large r, we have

m(r,Aj) ≤ T (r,Aj) ≤ logφ−1(log ra+ε) < logφ−1(log rµ0−ε), j ̸= 0. (3.24)

Set
τ = max

{
τ0φ(Aj) : ρ0φ(Aj) = µ0

φ(A0) = µ0, j = 1, . . . , k − 1
}
.

Then τ < τ 0 = τ 0
φ(A0). If ρ0φ(Aj) = µ0

φ(A0) = µ0, τ0φ(Aj) ≤ τ < τ 0, then for any given ε
(0 < 2ε < τ 0 − τ) and sufficiently large r, we have

m(r,Aj) ≤ T (r,Aj) ≤ logφ−1
(

log
[
(τ + ε)rµ0

])
, j ̸= 0. (3.25)

The definition of the lower φ-type τ 0
φ(A0) = τ 0 implies that for any given ε > 0 and sufficiently large

r, we have
T (r,A0) > logφ−1

(
log

[
(τ 0 − ε)rµ0

])
. (3.26)

Substituting (3.24)–(3.26) into (3.23), for any given ε (0 < 2ε < min{µ0 − a; τ 0 − τ}) we obtain

(1− o(1)) logφ−1
(

log
[
(τ 0 − ε)rµ0

])
≤ O(log r + logT (r, f)), r ̸∈ E3, r → +∞. (3.27)

From Lemma 3.2, (3.27), the monotonicity of φ−1 and (1.5), we deduce that µ0 = µ0
φ(A0) ≤ µ1

φ(f).

Lemma 3.13 ([17]). Let f be a meromorphic function. If ρ0φ(f) < +∞, then ρ1φ(f) = 0.

Lemma 3.14. Let f be a rational function, then ρ0φ(f) = 0.

Proof. Since f is a rational function, we have T (r, f) = O(log r). By Karamata’s theorem (see [23]),
it follows that φ(et) = to(1) as t → +∞. Hence

ρ0φ(f) := lim sup
r→+∞

φ(eT (r,f))

log r = lim sup
r→+∞

(O(log r))o(1)
log r = 0.
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4 Proofs of the main results
Proof of Theorem 2.4. First, we prove that ρ1φ(f) = ρ0φ(A0) and µ1

φ(f) = µ0
φ(A0). Since

max
{
ρ0φ(Aj) : j ̸= 0

}
≤ µ0

φ(A0) ≤ ρ0φ(A0) < +∞,

by Lemma 3.1 and (3.17), we have that

T (r, f) ≤ φ−1
(
(ρ0φ(A0) + 3ε) log r

)
(4.1)

holds for any given ε > 0 and r ̸∈ E0, r → +∞, where E0 is a set of finite logarithmic measure. From
Lemma 3.2, the monotonicity of φ and (4.1), we obtain that ρ1φ(f) ≤ ρ0φ(A0). Set

b = max
{
ρ0φ(Aj) : ρ0φ(Aj) < ρ0φ(A0) = ρ0, j = 1, . . . , k − 1

}
.

If ρ0φ(Aj) < µ0
φ(A0) ≤ ρ0φ(A0) = ρ0 or ρ0φ(Aj) ≤ µ0

φ(A0) < ρ0φ(A0) = ρ0, then for any given ε
(0 < 2ε < ρ0 − b) and sufficiently large r, we have

T (r,Aj) ≤ logφ−1(log rb+ε) < logφ−1(log rρ0−ε), j ̸= 0. (4.2)

Set
τ = max

{
τ0φ(Aj) : ρ0φ(Aj) = µ0

φ(A0) = µ0, j = 1, . . . , k − 1
}
.

Then τ < τ 0 = τ 0
φ(A0). If ρ0φ(Aj) = µ0

φ(A0) = ρ0φ(A0) = ρ0, τ < τ 0 ≤ τ0 = τ0φ(A0), then for any
given ε (0 < 2ε < τ0 − τ) and sufficiently large r, we have

T (r,Aj) ≤ logφ−1
(

log
[
(τ + ε)rρ0

])
, j ̸= 0. (4.3)

Applying Lemma 3.7 to the coefficient A0, we find that

T (r,A0) > logφ−1
(

log
[
(τ0 − ε)rρ0

])
(4.4)

holds for any given ε > 0 and r ∈ E4, r → +∞, where E4 is a set of infinite logarithmic measure.
Substituting (4.2)–(4.4) into (3.23), it follows for any given ε(0 < 2ε < min{ρ0−b; τ0−τ}), r ∈ E4\E3

(r → +∞) that
(1− o(1)) logφ−1

(
log

[
(τ0 − ε)rρ0

])
≤ O(log r + logT (r, f)), (4.5)

where E3 is a set of finite linear measure. By Lemma 3.2, the monotonicity of φ−1 and (1.5), from
(4.5) we obtain ρ0 = ρ0φ(A0) ≤ ρ1φ(f). Therefore, ρ1φ(f) = ρ0φ(A0). On the other hand, by Lemma
3.11 and Lemma 3.12, we deduce that µ1

φ(f) = µ0
φ(A0).

Secondly, we prove that λ 1
φ(f − g) = µ1

φ(f) and λ 1
φ(f − g) = ρ1φ(f). Let h = f − g. Since ρ1φ(g) <

µ0
φ(A0) = µ1

φ(f) ≤ ρ1φ(f), it follows from Lemma 3.4 and Lemma 3.5 that ρ1φ(h) = ρ1φ(f) = ρ0φ(A0)

and µ1
φ(h) = µ1

φ(f) = µ0
φ(A0). By substituting f = g + h, f ′ = g′ + h′, . . . , f (k) = g(k) + h(k) into

(1.1), we obtain

h(k) +Ak−1(z)h
(k−1) + · · ·+A0(z)h = −

(
g(k) +Ak−1(z)g

(k−1) + · · ·+A0(z)g
)
. (4.6)

If g(k) +Ak−1(z)g
(k−1) + · · ·+A0(z)g = G ≡ 0, then by Lemma 3.12, we have µ1

φ(g) ≥ µ0
φ(A0) which

contradicts the assumption ρ1φ(g) < µ0
φ(A0). Hence G ̸≡ 0. By Lemma 3.6 and Lemma 3.13, we get

ρ1φ(G) ≤ max
{
ρ1φ(g), ρ

1
φ(Aj) (j = 0, 1, . . . , k − 1)

}
= ρ1φ(g) < µ0

φ(A0) = µ1
φ(f) = µ1

φ(h) ≤ ρ1φ(h) = ρ1φ(f) = ρ0φ(A0).

Then it follows from Lemma 3.10, Lemma 3.9 and (4.6) that λ 1
φ(h) = λ1

φ(h) = ρ1φ(h) = ρ1φ(f) and
λ 1

φ(h) = λ 1
φ(h) = µ1

φ(h) = µ1
φ(f). Therefore, λ 1

φ(f − g) = µ1
φ(f) and λ 1

φ(f − g) = ρ1φ(f) which
completes the proof of Theorem 2.4.
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Proof of Theorem 2.5. Since

lim sup
r→+∞

k−1∑
j=1

m(r,Aj)

m(r,A0)
< 1,

there exists η (0 < η < 1) such that

k−1∑
j=1

m(r,Aj) ≤ ηm(r,A0), r → +∞. (4.7)

By (4.7) and (3.23), for r ̸∈ E3, r → +∞ we have

(1− o(1)− η)T (r,A0) ≤ O(log r + logT (r, f)), (4.8)

where E3 is a set of finite linear measure. By Lemma 3.2, (4.8), the monotonicity of φ and (1.5)
we obtain ρ1φ(f) ≥ ρ0φ(A0) and µ1

φ(f) ≥ µ0
φ(A0). From the first part of the proof of Theorem 2.4,

we have ρ1φ(f) ≤ ρ0φ(A0) and by applying Lemma 3.11, we have µ1
φ(f) ≤ µ0

φ(A0). Then we deduce
µ1
φ(f) = µ0

φ(A0) ≤ ρ1φ(f) = ρ0φ(A0). The second part of the proof of Theorem 2.4 completes the proof
of Theorem 2.5.

Proof of Theorem 2.6. First, we suppose that f is a rational function. If the function f is either
rational with a pole at z0 of multiplicity k ≥ 1 or polynomial of degree deg(f) ≥ s, then f (s)(z) ̸≡ 0. If

max
{
ρ0φ(Aj) : j ̸= s

}
< µ0

φ(As) = µs,

then by Lemma 3.5, Lemma 3.6, Lemma 3.14 and (1.1), we get

0 = µ0
φ(0) = µ0

φ(f
(k) +Ak−1(z)f

(k−1) + · · ·+A0(z)f) = µ0
φ(As) = µs > 0,

which is a contradiction. Set

c = max
{
ρ0φ(Aj) : ρ0φ(Aj) < µ0

φ(As) = µs, j ̸= s
}
.

If ρ0φ(Aj) < µ0
φ(As) = µs, then for any given ε(0 < 2ε < µs − c) and sufficiently large r, we have

m(r,Aj) ≤ T (r,Aj) ≤ logφ−1(log rc+ε), j ̸= s. (4.9)

Set τ = max{τ0φ(Aj) : ρ0φ(Aj) = µ0
φ(As), j ̸= s}. Then there exist two constants β1 and β2 such that

τ < β1 < β2 < τ s = τ 0
φ(As). If ρ0φ(Aj) = µ0

φ(As), τ0φ(Aj) ≤ τ < τ s, then for sufficiently large r, we
have

m(r,Aj) ≤ T (r,Aj) ≤ logφ−1
(

log
[
β1r

µs
])
, j ̸= s. (4.10)

Since λ0
φ(

1
As

) < µ0
φ(As), we have

N(r,As) = o(T (r,As)), r → +∞. (4.11)

By the definition of the lower φ-type τ 0
φ(As) = τ s, we have

T (r,As) > logφ−1
(

log
[
β2r

µs
])
, r → +∞. (4.12)

Equation (1.1) can be written as

−As =
f

f (s)

(f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+As+1

f (s+1)

f
+As−1

f (s−1)

f
+ · · ·+A0

)
. (4.13)

By Lemma 3.3 and (4.13), for sufficiently large r, we get

T (r,As) = N(r,As) +m(r,As) ≤ N(r,As) +
∑
j ̸=s

m(r,Aj) +O(log r). (4.14)
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Substituting (4.9)–(4.12) into (4.14) and using (1.3), we obtain

(1− o(1)) logφ−1
(

log[β2r
µs ]

)
≤ O

(
logφ−1

(
log

[
β1r

µs
]))

+O(log r) = O
(

logφ−1
(

log
[
β1r

µs
]))

, r → +∞.

By Lemma 3.2, the monotonicity of φ and (1.5), we obtain β2 ≤ β1 which is a contradiction. Hence
we deduce that f should be a polynomial of degree deg(f) ≤ s − 1 if f is a non-transcendental
meromorphic solution of (1.1).

Secondly, we suppose that f is a transcendental meromorphic solution of (1.1). From Lemma 3.3,
(4.13) and the fact that

m
(
r,

f

f (s)

)
≤ T (r, f) + T

(
r,

1

f (s)

)
= T (r, f) + T (r, f (s)) +O(1) = O(T (r, f)),

it follows that
T (r,As) ≤ N(r,As) +

∑
j ̸=s

m(r,Aj) +O(T (r, f)) (4.15)

holds for sufficiently large r, r ̸∈ E3, where E3 is a set of finite linear measure. By substituting
(4.9)–(4.12) into (4.15), we obtain

(1− o(1)) logφ−1
(

log(β2r
µs)

)
≤ O(T (r, f)), r ̸∈ E3, r → +∞. (4.16)

By Lemma 3.2, the monotonicity of φ, (1.5) and (4.16), we can deduce that µ0
φ(As) ≤ µ0

φ(f) and also,
by using the same arguments as in the proof of the first part of Theorem 2.4 and (4.15), we can obtain
ρ0φ(As) ≤ ρ0φ(f). Since max{ρ0φ(Aj) : j ̸= s} ≤ µ0

φ(As) ≤ ρ0φ(As) < +∞, by Lemma 3.1 and (3.17),
for any given ε > 0, we have

T (r, f) ≤ φ−1
(
(ρ0φ(As) + 3ε) log r

)
, r → +∞, r ̸∈ E0, (4.17)

where E0 is a set of finite logarithmic measure. From Lemma 3.2, the monotonicity of φ and (4.17),
we obtain that ρ1φ(f) ≤ ρ0φ(As). By Lemma 3.11, we have µ1

φ(f) ≤ µ0
φ(As). Therefore, ρ1φ(f) ≤

ρ0φ(As) ≤ ρ0φ(f) and µ1
φ(f) ≤ µ0

φ(As) ≤ µ0
φ(f) which completes the proof of Theorem 2.6.
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