Memoirs on Differential Equations and Mathematical Physics Volume 89, 2023, 39-59

Teona Bibilashvili, Sergo Kharibegashvili

DARBOUX TYPE PROBLEM FOR A CLASS
OF FOURTH-ORDER NONLINEAR HYPERBOLIC EQUATIONS

Abstract. Darboux type problem for a class of fourth-order nonlinear hyperbolic equations is considered. The theorems on existence, uniqueness and nonexistence of solutions of this problem are proved.

2020 Mathematics Subject Classification. 35G30.

Key words and phrases. Nonlinear fourth-order hyperbolic equations, Darboux type problem, existence, uniqueness and nonexistence of solutions.

1 Statement of the problem

On the plane of variables x and t, we consider the fourth-order hyperbolic equation of the following form:

$$
\begin{equation*}
\square^{2} u+f(\square u)+g(u)=F(x, t), \tag{1.1}
\end{equation*}
$$

where $\square:=\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}} ; f, g$ and F are given functions, while u is an unknown function.
Denote by $D_{T}: 0<x<t, t<T$, an angular domain bounded by a characteristic segment $\gamma_{1, T}: x=t, 0 \leq t \leq T$, and by time and spatial orientation segments $\gamma_{2, T}: x=0,0 \leq t \leq T$, and $\gamma_{3, T}: t=T, 0 \leq x \leq T$, respectively; for $T=\infty$, we have $D_{\infty}: t>|x|, x>0$, and

$$
\gamma_{1, \infty}: \quad x=t, \quad 0 \leq t<\infty ; \quad \gamma_{2, T}: \quad x=0, \quad 0 \leq t<\infty .
$$

For equation (1.1) in the domain D_{T}, consider the following boundary value problem: find in D_{T} a solution $u=u(x, t)$ to equation (1.1) which on the parts $\gamma_{1, T}$ and $\gamma_{2, T}$ of the boundary satisfies the following conditions:

$$
\begin{gather*}
\left.u\right|_{\gamma_{1, T}}=u(t, t)=\mu_{1}(t),\left.\quad \frac{\partial u}{\partial \nu}\right|_{\gamma_{1, T}}=\frac{\partial u}{\partial \nu}(t, t)=\mu_{2}(t), \quad 0 \leq t \leq T \tag{1.2}\\
\left.u\right|_{\gamma_{2, T}}=u(0, t)=\mu_{3}(t),\left.\quad \frac{\partial^{2} u}{\partial x^{2}}\right|_{\gamma_{2, T}}=\frac{\partial^{2} u}{\partial x^{2}}(0, t)=\mu_{4}(t), \quad 0 \leq t \leq T \tag{1.3}
\end{gather*}
$$

where $\mu_{i}, i=1, \ldots, 4$, are the given scalar functions and the functions μ_{1} and μ_{2} at a common point $O=O(0,0)$ of the curves $\gamma_{1, T}$ and $\gamma_{2, T}$ satisfy the condition of agreement $\mu_{1}(0)=\mu_{3}(0), \nu=\left(\nu_{x}, \nu_{t}\right)$ is a unit vector of outer normal to the boundary ∂D_{T}.

It is noteworthy that the Darboux problems for the second order hyperbolic equation

$$
\square u+f(x, t, u)=F(x, t)
$$

in angular domain D_{T} with the Dirichlet or Neumann boundary conditions on the boundary segments $\gamma_{1, T}$ and $\gamma_{2, T}$ were studied by many authors [1-14, 16-22, 26-29, 31, 32, 34]. Some boundary value problems for equation (1.1) in spatial multidimensional case when $\square:=\frac{\partial^{2}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}, n>1, f=0$, were studied in [15, 23-25].

Remark 1.1. Let $f, g \in C(R), F \in C\left(\bar{D}_{T}\right)$. If u, where $u, \square u \in C^{2} \bar{D}_{T}$, represents a classical solution to problem (1.1)-(1.3), then introducing a function $v=\square u$ this problem can be reduced to the following boundary value problem with respect to unknown functions u and v :

$$
\begin{gather*}
L_{1}(u, v):=\square u-v=0, \quad(x, t) \in D_{T}, \tag{1.4}\\
L_{2}(u, v):=\square v+f(v)+g(u)=F(x, t), \quad(x, t) \in D_{T}, \tag{1.5}\\
\left.u\right|_{\gamma_{1, T}}=u(t, t)=\mu_{1}(t),\left.\quad u\right|_{\gamma_{2, T}}=u(0, t)=\mu_{3}(t), \quad 0 \leq t \leq T \tag{1.6}\\
\left.v\right|_{\gamma_{1, T}}=v(t, t)=-\sqrt{2} \mu_{2}^{\prime}(t),\left.\quad v\right|_{\gamma_{2, T}}=v(0, t)=\mu_{3}^{\prime \prime}(t)-\mu_{4}(t), \quad 0 \leq t \leq T \tag{1.7}
\end{gather*}
$$

Here, in receiving the first equality of (1.7), we took into account that

$$
\frac{d}{d t} w(t, t)=\left.\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial x}\right) w\right|_{t=x},\left.\quad \frac{\partial}{\partial \nu}\right|_{\gamma_{1, T}}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial t}\right)
$$

therefore,

$$
\left.v\right|_{\gamma_{1, T}}=\left.\square u\right|_{\gamma_{1, T}}=\left.\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-\frac{\partial}{\partial x}\right) u\right|_{\gamma_{1, T}}=-\left.\sqrt{2}\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial x}\right) \frac{\partial u}{\partial \nu}\right|_{\gamma_{1, T}}=-\sqrt{2} \mu_{2}^{\prime}(t)
$$

while in receiving the second equality of (1.7), we took into account (1.2), (1.3), and

$$
v=\square u=\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}},
$$

therefore,

$$
\left.v\right|_{\gamma_{2, T}}=v(0, t)=\frac{\partial^{2} u}{\partial t^{2}}(0, t)-\frac{\partial^{2} u}{\partial x^{2}}(0, t)=\mu_{3}^{\prime \prime}(t)-\mu_{4}(t) .
$$

Vice versa, if $u, v \in C^{2}\left(\bar{D}_{T}\right)$ represents a classical solution to problem (1.4)-(1.7), where $\mu_{1}, \mu_{4} \in$ $C^{2}([0, T]), \mu_{2} \in C^{3}([0, T]), \mu_{3} \in C^{4}([0, T])$, then the function u will be a classical solution to problem (1.1)-(1.3).

Definition 1.1. Let $f, g \in C(R), F \in C\left(\bar{D}_{T}\right)$ and, for simplicity, $\mu_{i}=0, i=1, \ldots, 4$. The system of functions u and v is called a generalized solution of problem (1.4)-(1.7) of the class C if $u, v \in C\left(\bar{D}_{T}\right)$ and there exist the sequences

$$
\begin{equation*}
u_{n}, v_{n} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}\right):=\left\{w \in C^{2}\left(\bar{D}_{T}\right):\left.\quad w\right|_{\gamma_{i, T}}=0, \quad i=1,2\right\} \tag{1.8}
\end{equation*}
$$

such that

$$
\begin{gather*}
\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{C\left(\bar{D}_{T}\right)}=0, \quad \lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|_{C\left(\bar{D}_{T}\right)}=0, \tag{1.9}\\
\lim _{n \rightarrow \infty}\left\|L_{1}\left(u_{n}, v_{n}\right)\right\|_{C\left(\bar{D}_{T}\right)}=0, \quad \lim _{n \rightarrow \infty}\left\|L_{2}\left(u_{n}, v_{n}\right)-F\right\|_{C\left(\bar{D}_{T}\right)}=0 . \tag{1.10}
\end{gather*}
$$

Remark 1.2. It is clear that the classical solution $u, v \in C^{2}\left(\bar{D}_{T}\right)$ of problem (1.4)-(1.7) represents a generalized solution of class C of this problem.

2 A priori estimate of a solution of the problem (1.4)-(1.7)

Lemma 2.1. Let $f, g \in C(R), F \in C\left(\bar{D}_{T}\right), \mu_{i}=0, i=1, \ldots, 4$. Then for any solution u, v of problem (1.4)-(1.7) of class C the following inequality is valid:

$$
\begin{equation*}
|u(x, t)| \leq t e^{t}\|v\|_{L_{2}\left(D_{t}\right)}, \quad(x, t) \in D_{T} \tag{2.1}
\end{equation*}
$$

Proof. Let u, v be the generalized solution of class C of problem (1.4)-(1.7), then there exist the sequences u_{n}, v_{n} which satisfy conditions (1.8)-(1.10).

Consider a function $u_{n} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}\right)$ as a classical solution to the following boundary value problem:

$$
\begin{gather*}
L_{1}\left(u_{n}, v_{n}\right):=\square u_{n}-v_{n}=G_{n}(x, t), \quad(x, t) \in D_{T}, \tag{2.2}\\
\left.u_{n}\right|_{\gamma_{1, T}}=u_{n}(t, t)=0,\left.\quad u_{n}\right|_{\gamma_{2, T}}=u_{n}(0, t)=0, \quad 0 \leq t \leq T \tag{2.3}
\end{gather*}
$$

where the function

$$
\begin{equation*}
G_{n}:=L_{1}\left(u_{n}, v_{n}\right) \tag{2.4}
\end{equation*}
$$

due to (1.10) satisfies the condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|G_{n}\right\|_{C\left(\bar{D}_{T}\right)}=0 \tag{2.5}
\end{equation*}
$$

Multiplying both sides of equation (2.2) by the function $\frac{\partial u_{n}}{\partial t}$ and integrating over the domain $D_{\tau}:=\left\{(x, t) \in D_{T}: t<\tau\right\}$, where $0<\tau \leq T$, we get

$$
\begin{equation*}
\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t-\int_{D_{\tau}} \frac{\partial^{2} u_{n}}{\partial x^{2}} \frac{\partial u_{n}}{\partial t} d x d t-\int_{D_{\tau}} v_{n} \frac{\partial u_{n}}{\partial t} d x d t=\int_{D_{\tau}} G_{n} \frac{\partial u_{n}}{\partial t} d x d t \tag{2.6}
\end{equation*}
$$

Using integration by parts and the Green formula, we obtain

$$
\begin{align*}
\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t & =\frac{1}{2} \int_{\partial D_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} \nu_{t} d s \tag{2.7}\\
-\int_{D_{\tau}} \frac{\partial^{2} u_{n}}{\partial x^{2}} \cdot \frac{\partial u_{n}}{\partial t} d x d t & =-\int_{\partial D_{\tau}} \frac{\partial u_{n}}{\partial x} \cdot \frac{\partial u_{n}}{\partial t} \nu_{x} d s+\int_{D_{\tau}} \frac{\partial u_{n}}{\partial x} \cdot \frac{\partial^{2} u_{n}}{\partial t \partial x} d x d t \\
& =-\int_{\partial D_{\tau}} \frac{\partial u_{n}}{\partial x} \cdot \frac{\partial u_{n}}{\partial t} \nu_{x} d s+\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{n}}{\partial x}\right)^{2} d x d t \\
& =-\int_{\partial D_{\tau}} \frac{\partial u_{n}}{\partial x} \cdot \frac{\partial u_{n}}{\partial t} \nu_{x} d s+\frac{1}{2} \int_{\partial D_{\tau}}\left(\frac{\partial u_{n}}{\partial x}\right)^{2} \nu_{t} d s \tag{2.8}
\end{align*}
$$

where $\nu=\left(\nu_{x}, \nu_{t}\right)$ is a unit vector of the outer normal to the boundary ∂D_{τ}.
Taking into account that $\partial D_{\tau}=\gamma_{1, \tau} \cup \gamma_{2, \tau} \cup \omega_{\tau}$, where $\gamma_{i, \tau}=\gamma_{i, T} \cap\{t \leq \tau\}, i=1,2$, and $\omega_{\tau}=\partial D_{\tau} \cap\{t=\tau\}=\{t=\tau, 0 \leq x \leq \tau\}$, we have

$$
\begin{gather*}
\left.\left(\nu_{x}, \nu_{t}\right)\right|_{\gamma_{1, T}}=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right) \tag{2.9}\\
\left.\left(\nu_{x}, \nu_{t}\right)\right|_{\gamma_{2, T}}=(-1,0), \quad\left(\nu_{x}, \nu_{t}\right)_{\left.\right|_{\omega_{\tau}}}=(0,1) \tag{2.10}\\
\left.\left(\nu_{x}^{2}-\nu_{t}^{2}\right)\right|_{\gamma_{1, T}}=0 \tag{2.11}
\end{gather*}
$$

Taking into account (2.9)-(2.11), since $\left.u_{n}\right|_{\gamma_{2, T}}=0$ (see (2.3)) and, therefore, $\left.\frac{\partial u_{n}}{\partial t}\right|_{\gamma_{2, T}}=0$, from (2.7) and (2.8) we get

$$
\begin{align*}
\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t= & \frac{1}{2} \int_{\partial D_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} \nu_{t} d s \\
= & \frac{1}{2} \int_{\omega_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d s+\frac{1}{2} \int_{\gamma_{1, \tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} \nu_{t} d s+\frac{1}{2} \int_{\gamma_{2, \tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} \nu_{t} d s \\
= & \frac{1}{2} \int_{\omega_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x+\frac{1}{2} \int_{\gamma_{1, \tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} \nu_{t} d s, \tag{2.12}\\
-\int_{D_{\tau}} \frac{\partial^{2} u_{n}}{\partial x^{2}} \cdot \frac{\partial u_{n}}{\partial t} d x d t= & -\int_{\partial D_{\tau}} \frac{\partial u_{n}}{\partial x} \cdot \frac{\partial u_{n}}{\partial t} \nu_{x} d s+\frac{1}{2} \int_{\partial D_{\tau}}\left(\frac{\partial u_{n}}{\partial x}\right)^{2} \nu_{t} d s \\
= & -\int_{\omega_{\tau}} \frac{\partial u_{n}}{\partial x} \cdot \frac{\partial u_{n}}{\partial t} \nu_{x} d s-\int_{\gamma_{1, \tau}} \frac{\partial u_{n}}{\partial x} \cdot \frac{\partial u_{n}}{\partial t} \nu_{x} d s-\int \frac{1}{\gamma_{2, \tau}} \frac{\partial u_{n}}{\partial x} \cdot \frac{\partial u_{n}}{\partial t} \nu_{x} d s \\
& +\frac{\partial u_{n}}{2} \int_{\omega_{\tau}}^{2}\left(\frac{\partial u_{n}}{\partial x}\right)^{2} \nu_{t} d s+\frac{1}{2} \nu_{\gamma_{1, \tau}} d s+\frac{\partial u_{n}}{2} \int_{\gamma_{2, \tau}}^{2} \nu_{\nu_{t}} d s \\
= & 0-\int_{\gamma_{1, \tau}} \frac{\partial u_{n}}{\partial x} \cdot \frac{\partial u_{n}}{\partial t} \nu_{x} d s-0+\frac{1}{2} \int_{\omega_{\tau}}\left(\frac{\partial u_{n}}{\partial x}\right)^{2} \cdot 1 d x \\
& +\frac{1}{2} \int_{\gamma_{1, \tau}}\left(\frac{\partial u_{n}}{\partial x}\right)^{2} \nu_{t} d s+0 \\
= & \frac{1}{2} \int_{\omega_{\tau}}^{\left(\frac{\partial u_{n}}{\partial x}\right)^{2} d x+\frac{1}{2} \int_{\gamma_{1, \tau}}\left(\frac{\partial u_{n}}{\partial x}\right)^{2} \nu_{t} d s-\int_{\gamma_{1, \tau}}^{\partial x} \frac{\partial u_{n}}{\partial x} \cdot \frac{\partial u_{n}}{\partial t} \nu_{x} d s .} \tag{2.13}
\end{align*}
$$

From (2.12) and (2.13), in view of (2.11), we have

$$
\begin{align*}
& \frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t-\int_{D_{\tau}} \frac{\partial^{2} u_{n}}{\partial x^{2}} \cdot \frac{\partial u_{n}}{\partial t} d x d t \\
& =\frac{1}{2} \int_{\omega_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\right] d x+\int_{\gamma_{1, \tau}} \frac{1}{2 \nu_{t}}\left[\left(\frac{\partial u_{n}}{\partial x} \nu_{t}-\frac{\partial u_{n}}{\partial t} \nu_{x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\left(\nu_{t}^{2}-\nu_{x}^{2}\right)\right] d s \\
& \tag{2.14}\\
& \quad=\frac{1}{2} \int_{\omega_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\right] d x+\int_{\gamma_{1, \tau}} \frac{1}{2 \nu_{t}}\left(\frac{\partial u_{n}}{\partial x} \nu_{t}-\frac{\partial u_{n}}{\partial t} \nu_{x}\right)^{2} d s
\end{align*}
$$

Taking into account that $\left(v_{t} \frac{\partial}{\partial x}-v_{x} \frac{\partial}{\partial t}\right)$ represents the derivative in a tangent direction, i.e., an inner differential on the curve $\gamma_{1, T}$, due to the equality $u_{\left.n\right|_{\gamma_{1}, T}}=0$, we have

$$
\frac{\partial u_{n}}{\partial x} \nu_{t}-\frac{\partial u_{n}}{\partial t} \nu_{x}=0
$$

and from (2.14) we obtain

$$
\begin{equation*}
\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t-\int_{D_{\tau}} \frac{\partial^{2} u_{n}}{\partial x^{2}} \cdot \frac{\partial u_{n}}{\partial t} d x d t=\frac{1}{2} \int_{\omega_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\right] d x \tag{2.15}
\end{equation*}
$$

From (2.6) and (2.15) it follows that

$$
\begin{equation*}
\int_{\omega_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\right] d x=2 \int_{D_{\tau}} v_{n} \frac{\partial u_{n}}{\partial t} d x d t+2 \int_{D_{\tau}} G_{n} \frac{\partial u_{n}}{\partial t} d x d t \tag{2.16}
\end{equation*}
$$

Using a simple inequality $2 a b \leq a^{2}+b^{2}$, from (2.16) we obtain

$$
\begin{align*}
\int_{\omega_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\right] d x & \leq \int_{D_{\tau}}\left[v_{n}^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\right] d x d t+\int_{D_{\tau}}\left[G_{n}^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\right] d x d t \\
& =2 \int_{D_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}}\left[v_{n}^{2}+G_{n}^{2}\right] d x d t \tag{2.17}
\end{align*}
$$

If we introduce the notation

$$
w(\tau)=\int_{\omega_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\right] d x
$$

and take into account that

$$
\int_{D_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\right] d x d t=\int_{0}^{\tau} w(\sigma) d \sigma
$$

then from (2.17) we have

$$
\begin{align*}
w(\tau) & \leq 2 \int_{D_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}}\left[v_{n}^{2}+G_{n}^{2}\right] d x d t \\
& \leq 2 \int_{D_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\right] d x d t+\int_{D_{\tau}}\left[v_{n}^{2}+G_{n}^{2}\right] d x d t \\
& =2 \int_{0}^{\tau} w(\sigma) d \sigma+\int_{D_{\tau}} v_{n}^{2} d x d t+\int_{D_{\tau}} G_{n}^{2} d x d t \\
& =2 \int_{0}^{\tau} w(\sigma) d \sigma+\left\|v_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}+\left\|G_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}, \quad 0<\tau \leq T \tag{2.18}
\end{align*}
$$

According to the Gronwall lemma, from (2.18) we obtain

$$
\begin{equation*}
w(\tau) \leq\left(\left\|v_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}+\left\|G_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}\right) e^{2 \tau}, \quad 0<\tau \leq T \tag{2.19}
\end{equation*}
$$

Since $u_{n}(0, t)=0,0 \leq t \leq T$, we have

$$
u_{n}(x, t)=\int_{0}^{x} \frac{\partial u_{n}}{\partial x}(\xi, t) d \xi, \quad(x, t) \in D_{T}
$$

whence due to the Cauchy inequality, we have

$$
\begin{align*}
u_{n}^{2}(x, t) \leq & \int_{0}^{x} 1^{2} d \xi \int_{0}^{t}\left(\frac{\partial u_{n}}{\partial x}\right)^{2}(\xi, t) d \xi \leq x \int_{0}^{t}\left(\frac{\partial u_{n}}{\partial x}\right)^{2}(\xi, t) d \xi \\
& \leq t \int_{0}^{t}\left(\frac{\partial u_{n}}{\partial x}\right)^{2}(\xi, t) d \xi \leq t \int_{0}^{t}\left[\left(\frac{\partial u_{n}}{\partial x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\right](\xi, t) d \xi=t w(t), \quad(x, t) \in D_{T} \tag{2.20}
\end{align*}
$$

Here, we take into account that if $(x, t) \in D_{T}$, then $x<t$.
From (2.19) and (2.20) follows

$$
\begin{align*}
&\left|u_{n}(x, t)\right| \leq t^{\frac{1}{2}} w^{\frac{1}{2}}(t) \leq t^{\frac{1}{2}}\left(\left\|v_{n}\right\|_{L_{2}\left(D_{t}\right)}^{2}+\left\|G_{n}\right\|_{L_{2}\left(D_{t}\right)}^{2}\right)^{\frac{1}{2}} e^{t} \\
& \leq t^{\frac{1}{2}}\left(\left\|v_{n}\right\|_{L_{2}\left(D_{t}\right)}+\left\|G_{n}\right\|_{L_{2}\left(D_{t}\right)}\right) e^{t}, \quad(x, t) \in D_{T} \tag{2.21}
\end{align*}
$$

If we pass to the limit in inequality (2.21) as $n \rightarrow \infty$, then in view of (1.9), (1.10) and (2.2), we obtain

$$
|u(x, t)| \leq t^{\frac{1}{2}} e^{t}\|v\|_{L_{2}\left(D_{t}\right)}, \quad(x, t) \in D_{T}
$$

Consider the conditions imposed on the functions f and g :

$$
\begin{gather*}
\int_{0}^{s} f(\tau) d \tau \geq-M_{1}-M_{2} s^{2} \forall s \in R, \quad M_{i}=\text { const } \geq 0, \quad i=1,2 \tag{2.22}\\
|g(s)| \leq N_{1}+N_{2}|s| \forall s \in R, \quad N_{i}=\text { const } \geq 0, \quad i=1,2 \tag{2.23}
\end{gather*}
$$

Lemma 2.2. Let $f, g \in C(R), F \in C(\bar{D}), \mu_{i}=0, i=1, \ldots, 4$, and the functions f and g satisfy conditions (2.22) and (2.23). Then for any generalized solution u, v of problem (1.4)-(1.7) of class C, the following a priori estimates are valid:

$$
\begin{align*}
& |u(x, t)| \leq C_{1}\|F\|_{L_{2}\left(D_{t}\right)}+C_{2}, \quad(x, t) \in D_{T} \tag{2.24}\\
& |v(x, t)| \leq C_{3}\|F\|_{L_{2}\left(D_{t}\right)}+C_{4}, \quad(x, t) \in D_{T} \tag{2.25}
\end{align*}
$$

where the values $C_{i}=C_{i}(t) \geq 0, i=1, \ldots, 4$, do not depend on the functions u, v and F.
Proof. Let u, v be a generalized solution of problem (1.4)-(1.7) of class C, then there exist the sequences u_{n}, v_{n} which satisfy conditions (1.8)-(1.10).

Consider the function $v_{n} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}\right)$ as a classical solution of the following boundary value problem:

$$
\begin{gather*}
L_{2}\left(u_{n}, v_{n}\right):=\square v_{n}+f\left(v_{n}\right)+g\left(u_{n}\right)=Q_{n}(x, t), \quad(x, t) \in D_{T}, \tag{2.26}\\
\left.v_{n}\right|_{\gamma_{1, T}}=v_{n}(t, t)=0,\left.\quad v_{n}\right|_{\gamma_{2, T}}=v_{n}(0, t)=0, \quad 0 \leq t \leq T \tag{2.27}
\end{gather*}
$$

where the function

$$
\begin{equation*}
Q_{n}:=L_{2}\left(u_{n}, v_{n}\right) \tag{2.28}
\end{equation*}
$$

due to (1.10) satisfies the condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|Q_{n}-F\right\|_{C\left(\bar{D}_{T}\right)}=0 \tag{2.29}
\end{equation*}
$$

Multiplying both sides of equation (2.26) by the function $\frac{\partial v_{n}}{\partial t}$ and integrating over the domain $D_{\tau}:=\left\{(x, t) \in D_{T}: t<\tau\right\}$, where $0<\tau \leq T$, we obtain

$$
\begin{align*}
& \frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial v_{n}}{\partial t}\right)^{2} d x d t-\int_{D_{\tau}} \frac{\partial^{2} v_{n}}{\partial x^{2}} \cdot \frac{\partial v_{n}}{\partial t} d x d t \\
&+\int_{D_{\tau}} f\left(v_{n}\right) \frac{\partial v_{n}}{\partial t} d x d t+\int_{D_{\tau}} g\left(u_{n}\right) \frac{\partial v_{n}}{\partial t} d x d t=\int_{D_{\tau}} Q_{n} \frac{\partial v_{n}}{\partial t} d x d t \tag{2.30}
\end{align*}
$$

Analogously as we obtained (2.16) from (2.6) when proving Lemma 2.1, from (2.30) we have the following equality:

$$
\begin{align*}
\int_{\omega_{\tau}}\left[\left(\frac{\partial v_{n}}{\partial x}\right)^{2}\right. & \left.+\left(\frac{\partial v_{n}}{\partial t}\right)^{2}\right] d x \\
& =-2 \int_{D_{\tau}} f\left(v_{n}\right) \frac{\partial v_{n}}{\partial t} d x d t-2 \int_{D_{\tau}} g\left(u_{n}\right) \frac{\partial v_{n}}{\partial t} d x d t+2 \int_{D_{\tau}} Q_{n} \frac{\partial v_{n}}{\partial t} d x d t . \tag{2.31}
\end{align*}
$$

Using the notation

$$
\begin{equation*}
I(s)=\int_{0}^{s} f(\tau) d \tau \tag{2.32}
\end{equation*}
$$

we have

$$
\frac{\partial I\left(v_{n}\right)}{\partial t}=f\left(v_{n}\right) \frac{\partial v_{n}}{\partial t}
$$

Taking into account that $I(0)=0,\left.v_{n}\right|_{\gamma_{i, T}}=0, i=1,2$, and, therefore $I\left(v_{n}\right)_{\left.\right|_{i, T}}=0, i=1,2$, due to (2.10) and the Green formula, we obtain

$$
\begin{align*}
-2 \int_{D_{\tau}} f\left(v_{n}\right) \frac{\partial v_{n}}{\partial t} & d x d t=-2 \int_{D_{\tau}} \frac{\partial I\left(v_{n}\right)}{\partial t} d x d t=-2 \int_{\partial D_{\tau}} I\left(v_{n}\right) \nu_{t} d s \\
& =-2 \int_{\omega_{\tau}} I\left(v_{n}\right) \cdot 1 d s-2 \int_{\gamma_{1, \tau}} I\left(v_{n}\right) \nu_{t} d s-2 \int_{\gamma_{2, \tau}} I\left(v_{n}\right) \nu_{t} d s=-2 \int_{\omega_{\tau}} I\left(v_{n}\right) d x \tag{2.33}
\end{align*}
$$

In view of (2.22), from (2.32) and (2.33) we get

$$
\begin{equation*}
-2 \int_{D_{\tau}} f\left(v_{n}\right) \frac{\partial v_{n}}{\partial t} d x d t \leq 2 \int_{\omega_{\tau}}\left(M_{1}+M_{2} v_{n}^{2}\right) d x \leq 2 M_{1} \tau+2 M_{2} \int_{\omega_{\tau}} v_{n}^{2} d x \tag{2.34}
\end{equation*}
$$

According to condition (2.23), we have

$$
\begin{align*}
-2 \int_{D_{\tau}} g\left(u_{n}\right) \frac{\partial v_{n}}{\partial t} d x d t & \leq \int_{D_{\tau}}\left(g^{2}\left(u_{n}\right)+\left(\frac{\partial v_{n}}{\partial t}\right)^{2}\right) d x d t \\
& \leq \int_{D_{\tau}}\left(N_{1}+N_{2}\left|u_{n}\right|\right)^{2} d x d t+\int_{D_{\tau}}\left(\frac{\partial v_{n}}{\partial t}\right)^{2} d x d t \\
& \leq \int_{D_{\tau}}\left(2 N_{1}^{2}+2 N_{2}^{2} u_{n}^{2}\right) d x d t+\int_{D_{\tau}}\left(\frac{\partial v_{n}}{\partial t}\right)^{2} d x d t \\
& =\tau^{2} N_{1}^{2}+2 N_{2}^{2} \int_{D_{\tau}} u_{n}^{2}(x, t) d x d t+\int_{D_{\tau}}\left(\frac{\partial v_{n}}{\partial t}\right)^{2} d x d t \tag{2.35}
\end{align*}
$$

where we use the simple inequalities $2 a b \leq a^{2}+b^{2},(a+b)^{2} \leq 2 a^{2}+2 b^{2}$ and the equality

$$
\int_{D_{\tau}} 1 \cdot d x d \tau=\frac{1}{2} \tau^{2}
$$

For $(x, t) \in D_{\tau}$, from (2.21) we have

$$
\begin{aligned}
u_{n}^{2}(x, t) \leq t\left(\left\|v_{n}\right\|_{L_{2}\left(D_{\tau}\right)}\right. & \left.+\left\|G_{n}\right\|_{L_{2}\left(D_{\tau}\right)}\right)^{2} e^{2 t} \\
& \leq 2 t e^{2 t}\left(\left\|v_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}+\left\|G_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}\right) \leq 2 \tau e^{2 \tau}\left(\left\|v_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}+\left\|G_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}\right)
\end{aligned}
$$

whence we obtain

$$
\begin{align*}
& \int_{D_{\tau}} u_{n}^{2}(x, t) d x d t \leq 2 \tau e^{2 \tau}\left(\left\|v_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}+\left\|G_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}\right) \int_{D_{\tau}} 1 \cdot d x d \tau \\
&=\tau^{3} e^{2 \tau}\left\|v_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}+\tau^{3} e^{2 \tau}\left\|G_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}=\tau^{3} e^{2 \tau} \int_{D_{\tau}} v_{n}^{2} d x d t+\tau^{3} e^{2 \tau}\left\|G_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2} . \tag{2.36}
\end{align*}
$$

Due to (2.34), (2.35) and (2.36), from (2.31) we obtain

$$
\left.\begin{array}{rl}
\int_{\omega_{\tau}}\left[\left(\frac{\partial v_{n}}{\partial x}\right)^{2}+\right. & \left.\left(\frac{\partial v_{n}}{\partial t}\right)^{2}\right] d x \\
\leq & 2 M_{1} \tau
\end{array}+2 M_{2} \int_{\omega_{\tau}} v_{n}^{2} d x+\tau^{2} N_{1}^{2}+2 N_{2}^{2}\left[\tau^{3} e^{2 \tau} \int_{D_{\tau}} v_{n}^{2} d x d t+\tau^{3} e^{2 \tau}\left\|G_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}\right]\right)
$$

If we take into account conditions (2.27) and use the Newton-Leibniz formula, we get

$$
v_{n}(x, \tau)=v_{n}(x, x)+\int_{x}^{\tau} \frac{\partial v_{n}}{\partial t}(x, t) d t=\int_{x}^{\tau} \frac{\partial v_{n}}{\partial t}(x, t) d t, \quad(x, \tau) \in D_{T}
$$

and, therefore, using Cauchy's inequality, we get

$$
\begin{align*}
v_{n}^{2}(x, \tau) & \leq\left[\int_{x}^{\tau} 1 \cdot\left|\frac{\partial v_{n}}{\partial t}(x, t)\right| d t\right]^{2} \leq \int_{x}^{\tau} 1^{2} d t \cdot \int_{x}^{\tau}\left(\frac{\partial v_{n}}{\partial t}(x, t)\right)^{2} d t \\
& =(\tau-x) \int_{x}^{\tau}\left(\frac{\partial v_{n}}{\partial t}(x, t)\right)^{2} d t \leq T \int_{x}^{\tau}\left(\frac{\partial v_{n}}{\partial t}(x, t)\right)^{2} d t \tag{2.38}
\end{align*}
$$

Integrating equality (2.38), we obtain

$$
\begin{equation*}
\int_{\omega_{\tau}} v_{n}^{2} d x=\int_{0}^{\tau} v_{n}^{2}(x, \tau) d x \leq T \int_{0}^{\tau}\left[\int_{x}^{\tau}\left(\frac{\partial v_{n}}{\partial t}(x, t)\right)^{2} d t\right] d x=T \int_{D_{\tau}}\left(\frac{\partial v_{n}}{\partial t}\right)^{2} d x d t \tag{2.39}
\end{equation*}
$$

If we add inequalities (2.37) and (2.39), we get

$$
\begin{align*}
& \int_{\omega_{\tau}}\left[v_{n}^{2}+\left(\frac{\partial v_{n}}{\partial x}\right)^{2}+\left(\frac{\partial v_{n}}{\partial t}\right)^{2}\right] d x \\
& \leq\left(2 M_{2}+2 N_{2}^{2} \tau^{3} e^{2 \tau}+T+3\right) \int_{D_{\tau}}\left[v_{n}^{2}+\left(\frac{\partial v_{n}}{\partial x}\right)^{2}+\left(\frac{\partial v_{n}}{\partial t}\right)^{2}\right] d x d t \\
& \tag{2.40}\\
& +2 M_{1} \tau+\tau^{2} N_{1}^{2}+2 N_{2}^{2} \tau^{3} e^{2 \tau}\left\|G_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}+\left\|Q_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}
\end{align*}
$$

Using the notation

$$
\begin{equation*}
w_{1}(\tau)=\int_{\omega_{\tau}}\left[v_{n}^{2}+\left(\frac{\partial v_{n}}{\partial x}\right)^{2}+\left(\frac{\partial v_{n}}{\partial t}\right)^{2}\right] d x \tag{2.41}
\end{equation*}
$$

and taking into account

$$
\int_{D_{\tau}}\left[v_{n}^{2}+\left(\frac{\partial v_{n}}{\partial x}\right)^{2}+\left(\frac{\partial v_{n}}{\partial t}\right)^{2}\right] d x=\int_{0}^{\tau} w(\sigma) d \sigma
$$

from (2.40) we obtain

$$
\begin{equation*}
w_{1}(\tau) \leq M_{3} \int_{0}^{\tau} w(\sigma) d \sigma+\widetilde{M}_{4}, \quad 0<\tau \leq T \tag{2.42}
\end{equation*}
$$

where

$$
\begin{align*}
& M_{3}=2 M_{2}+2 N_{2}^{2} T^{3} e^{2 T}+T+3 \tag{2.43}\\
& \widetilde{M}_{4}=2 M_{1} \tau+\tau^{2} N_{1}^{2}+2 N_{2}^{2} \tau^{3} e^{2 \tau}\left\|G_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}+\left\|Q_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}
\end{align*}
$$

According to the Gronwall lemma, from (2.42) we obtain

$$
\begin{equation*}
w_{1}(\tau) \leq \widetilde{M}_{4} e^{M_{3} \tau}, \quad 0<\tau \leq T \tag{2.44}
\end{equation*}
$$

Analogously to how inequality (2.20) was obtained, from (2.41) and (2.44) we get

$$
\begin{equation*}
\left|v_{n}(x, t)\right| \leq t^{\frac{1}{2}} w_{1}^{\frac{1}{2}}(t) \leq \widetilde{M}_{4}^{\frac{1}{2}} t^{\frac{1}{2}} e^{\frac{1}{2} M_{3} t}, \quad(x, t) \in D_{T} \tag{2.45}
\end{equation*}
$$

where $\tau=t$ in \widetilde{M}_{4}.
If we pass to the limit in (2.45) as $n \rightarrow \infty$, due to the limit equalities (1.9), (2.5) and (2.29), we obtain

$$
\begin{equation*}
|v(x, t)| \leq M_{4}^{\frac{1}{2}} t^{\frac{1}{2}} e^{\frac{1}{2} M_{3} t}, \quad(x, t) \in D_{T} \tag{2.46}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{4}=2 M_{1} t+t^{2} N_{1}^{2}+\|F\|_{L_{2}\left(D_{t}\right)}^{2} \tag{2.47}
\end{equation*}
$$

From (2.1) and (2.46) it follows that

$$
\begin{align*}
|u(x, t)| \leq t e^{t}\|v\|_{L_{2}\left(D_{t}\right)} & =t e^{t}\left(\int_{D_{t}} v^{2} d x d t\right)^{\frac{1}{2}} \\
& \leq t e^{t}\left(\int_{D_{t}} M_{4} T e^{M_{3} T} d x d t\right)^{\frac{1}{2}}=t e^{t}\left(M_{4} T e^{M_{3} T} \int_{D_{t}} 1 d x d t\right)^{\frac{1}{2}} \\
& =t e^{t}\left(M_{4} T e^{M_{3} T} \frac{1}{2} t^{2}\right)^{\frac{1}{2}}=\frac{1}{\sqrt{2}} t^{2} T^{\frac{1}{2}} M_{4}^{\frac{1}{2}} e^{t+\frac{1}{2} M_{3} T}, \quad(x, t) \in D_{T} \tag{2.48}
\end{align*}
$$

According to the simple inequality

$$
\left(\sum_{i=1}^{m} a_{i}^{2}\right)^{\frac{1}{2}} \leq \sum_{i=1}^{m}\left|a_{i}\right|
$$

from (2.47) we have

$$
\begin{equation*}
M_{4}^{\frac{1}{2}} \leq\left(2 M_{1} t\right)^{\frac{1}{2}}+t N_{1}+\|F\|_{L_{2}\left(D_{t}\right)} \tag{2.49}
\end{equation*}
$$

and (2.46), (2.48) can be rewritten as follows:

$$
\begin{aligned}
& |u(x, t)| \leq C_{1}\|F\|_{L_{2}\left(D_{t}\right)}+C_{2}, \quad(x, t) \in D_{T}, \\
& |v(x, t)| \leq C_{3}\|F\|_{L_{2}\left(D_{t}\right)}+C_{4}, \quad(x, t) \in D_{T},
\end{aligned}
$$

where

$$
\begin{gather*}
C_{1}=\frac{1}{\sqrt{2}} t^{2} T^{\frac{1}{2}} e^{t+\frac{1}{2} M_{3} T}, \quad C_{2}=\left[\left(2 M_{1} t\right)^{\frac{1}{2}}+t N_{1}\right] \frac{1}{\sqrt{2}} t^{2} T^{\frac{1}{2}} e^{t+\frac{1}{2} M_{3} T}, \tag{2.50}\\
C_{3}=t^{\frac{1}{2}} e^{\frac{1}{2} M_{3} t}, \quad C_{4}=\left[\left(2 M_{1} t\right)^{\frac{1}{2}}+t N_{1}\right] t^{\frac{1}{2}} e^{\frac{1}{2} M_{3} t} \tag{2.51}
\end{gather*}
$$

This proves Lemma 2.2, where the constants $C_{i}, i=1, \ldots, 4$, from (2.24) and (2.25) are given by formulas (2.50) and (2.51).

3 The uniqueness of a solution of the problem (1.4)-(1.7)

Definition 3.1. We say that the functions f and g satisfy the Lipchitz local condition if $\forall r=$ const >0,

$$
\begin{equation*}
\left|f\left(s_{2}\right)-f\left(s_{1}\right)\right| \leq \Lambda_{1}(r)\left|s_{2}-s_{1}\right| \forall s_{1}, s_{2} \in R: \quad\left|s_{i}\right| \leq r, \quad i=1,2 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|g\left(s_{2}\right)-g\left(s_{1}\right)\right| \leq \Lambda_{2}(r)\left|s_{2}-s_{1}\right| \forall s_{1}, s_{2} \in R: \quad\left|s_{i}\right| \leq r, \quad i=1,2 \tag{3.2}
\end{equation*}
$$

where $\Lambda_{i}=\Lambda_{i}(r)=$ const $\geq 0, i=1,2$.
It is obvious that if f (resp. g) $\in C^{1}(R)$, then condition (3.1) (resp. (3.2)) is valid, where due to the Lagrange theorem $\Lambda_{1}(r)=\max _{|s| \leq r}\left|f^{\prime}(s)\right|\left(\right.$ resp. $\left.\Lambda_{2}(r)=\max _{|s| \leq r}\left|g^{\prime}(s)\right|\right)$.

Theorem 3.1. Let $f, g \in C(R), F \in C\left(\bar{D}_{T}\right)$ and $\mu_{i}=0, i=1, \ldots, 4$. If the functions f and g satisfy the Lipschitz local conditions (3.1) and (3.2), then problem (1.4)-(1.7) cannot have more than one generalized solution of class C.

Proof. Let problem (1.4)-(1.7) have two generalized solutions u_{1}, v_{1} and u_{2}, v_{2} of class C, i.e., due to the definition, there exist the sequences $u_{1 n}, v_{1 n}$ and $u_{2 n}, v_{2 n}$ which belong to the class $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}\right)$ defined in (1.8) and satisfy the following limit equalities:

$$
\begin{gather*}
\lim _{n \rightarrow \infty}\left\|u_{i n}-u_{i}\right\|_{C\left(\bar{D}_{T}\right)}=0, \quad \lim _{n \rightarrow \infty}\left\|v_{i n}-v_{i}\right\|_{C\left(\bar{D}_{T}\right)}=0, \quad i=1,2 \tag{3.3}\\
\lim _{n \rightarrow \infty}\left\|L_{1}\left(u_{i n}, v_{i n}\right)\right\|_{C\left(\bar{D}_{T}\right)}=0, \quad \lim _{n \rightarrow \infty}\left\|L_{2}\left(u_{i n}, v_{i n}\right)-F\right\|_{C\left(\bar{D}_{T}\right)}=0, \quad i=1,2 . \tag{3.4}
\end{gather*}
$$

Introducing the notation

$$
\begin{equation*}
\varphi_{n}=u_{2 n}-u_{1 n}, \quad \psi_{n}=v_{2 n}-v_{1 n} \tag{3.5}
\end{equation*}
$$

and taking into account the definition of operators L_{1} and L_{2} from (1.4) and (1.5), we have

$$
\begin{gather*}
\square \varphi_{n}=\psi_{n}+A_{n}(x, t), \quad(x, t) \in D_{T}, \tag{3.6}\\
\left.\varphi_{n}\right|_{\gamma_{1, T}}=\varphi_{n}(t, t)=0,\left.\quad \varphi_{n}\right|_{\gamma_{2, T}}=\varphi_{n}(0, t)=0, \quad 0 \leq t \leq T, \\
\square \psi_{n}=-\left(f\left(v_{2 n}\right)-f\left(v_{1 n}\right)\right)-\left(g\left(v_{2 n}\right)-g\left(v_{1 n}\right)\right)+B_{n}(x, t), \quad(x, t) \in D_{T}, \tag{3.7}\\
\left.\psi_{n}\right|_{\gamma_{1, T}}=\psi_{n}(t, t)=0,\left.\quad \psi_{n}\right|_{\gamma_{2, T}}=\psi_{n}(0, t)=0, \quad 0 \leq t \leq T,
\end{gather*}
$$

where the sequences

$$
\begin{aligned}
& A_{n}:=L_{1}\left(u_{2 n}, v_{2 n}\right)-L_{1}\left(u_{1 n}, v_{1 n}\right) \\
& B_{n}:=L_{2}\left(u_{2 n}, v_{2 n}\right)-L_{2}\left(u_{1 n}, v_{1 n}\right)
\end{aligned}
$$

according to the limit equalities (3.4), satisfy the conditions

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A_{n}\right\|_{C\left(\bar{D}_{T}\right)}=0, \quad \lim _{n \rightarrow \infty}\left\|B_{n}\right\|_{C\left(\bar{D}_{T}\right)}=0 \tag{3.8}
\end{equation*}
$$

Multiplying both sides of equation (3.6) by the function $\frac{\partial \varphi_{n}}{\partial t}$, integrating over the domain $D_{\tau}:=$ $\left\{(x, t) \in D_{T}: t<\tau\right\}$, where $0<\tau \leq T$, and repeating those reasonings which were used for obtaining (2.16) from (2.6), we get

$$
\begin{equation*}
\int_{\omega_{\tau}}\left[\left(\frac{\partial \varphi_{n}}{\partial x}\right)^{2}+\left(\frac{\partial \varphi_{n}}{\partial t}\right)^{2}\right] d x=2 \int_{D_{\tau}} \psi_{n} \frac{\partial \varphi_{n}}{\partial t} d x d t+2 \int_{D_{\tau}} A_{n} \frac{\partial \varphi_{n}}{\partial t} d x d t \tag{3.9}
\end{equation*}
$$

Similarly, as (2.16) was obtained, from (2.36) and (3.9) we get

$$
\begin{equation*}
\int_{D_{\tau}} \varphi_{n}^{2}(x, t) d x d t \leq \tau^{3} e^{2 \tau} \int_{D_{\tau}} \psi_{n}^{2} d x d t+\tau^{3} e^{2 \tau}\left\|A_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2} \tag{3.10}
\end{equation*}
$$

Multiplying both sides of (3.7) by the function $\frac{\partial \psi_{n}}{\partial t}$ and integrating over the domain D_{τ} by analogy to the equality (2.31), we have

$$
\begin{align*}
\int_{\omega_{\tau}}\left[\left(\frac{\partial \psi_{n}}{\partial x}\right)^{2}+\left(\frac{\partial \psi_{n}}{\partial t}\right)^{2}\right] d x=-2 \int_{D_{\tau}} & \left(f\left(v_{2 n}\right)-f\left(v_{1 n}\right)\right) \frac{\partial \psi_{n}}{\partial t} d x d t \\
& -2 \int_{D_{\tau}}\left(g\left(v_{2 n}\right)-g\left(v_{1 n}\right)\right) \frac{\partial \psi_{n}}{\partial t} d x d t+2 \int_{D_{\tau}} B_{n} \frac{\partial \psi_{n}}{\partial t} d x d t \tag{3.11}
\end{align*}
$$

Due to the limit equalities (3.3), since the sequences $\left\{u_{i n}\right\}$ and $\left\{v_{i n}\right\}$ converge in the space $C\left(\bar{D}_{T}\right)$, they are bounded in this space. Therefore, there exists $r>0$ such that

$$
\begin{equation*}
\left\|u_{i n}\right\|_{C\left(\bar{D}_{T}\right)} \leq r, \quad\left\|v_{i n}\right\|_{C\left(\bar{D}_{T}\right)} \leq r \quad \forall n \in N, \quad i=1,2 . \tag{3.12}
\end{equation*}
$$

In view of (3.1), (3.5) and (3.12), we have

$$
\begin{align*}
\mid-2 \int_{D_{\tau}}\left(f\left(v_{2 n}\right)-f\left(v_{1 n}\right)\right) & \left.\frac{\partial \psi_{n}}{\partial t} d x d t\left|\leq 2 \int_{D_{\tau}} \Lambda_{1}(r)\right| v_{2 n}-v_{1 n}| | \frac{\partial \psi_{n}}{\partial t} \right\rvert\, d x d t \\
& =\Lambda_{1}(r) \int_{D_{\tau}} 2 \psi_{n}\left|\frac{\partial \psi_{n}}{\partial t}\right| d x d t \leq \Lambda_{1} \int_{D_{\tau}} \psi_{n}^{2} d x d t+\Lambda_{1} \int_{D_{\tau}}\left|\frac{\partial \psi_{n}}{\partial t}\right|^{2} d x d t \tag{3.13}
\end{align*}
$$

Analogously, from (3.2), (3.5) and (3.12) we obtain

$$
\begin{equation*}
\left|-2 \int_{D_{\tau}}\left(g\left(v_{2 n}\right)-g\left(v_{1 n}\right)\right) \frac{\partial \psi_{n}}{\partial t} d x d t\right| \leq \Lambda_{2} \int_{D_{\tau}} \varphi_{n}^{2} d x d t+\Lambda_{2} \int_{D_{\tau}}\left|\frac{\partial \psi_{n}}{\partial t}\right|^{2} d x d t \tag{3.14}
\end{equation*}
$$

From (3.11), (3.13) and (3.14) we have

$$
\begin{aligned}
\int_{\omega_{\tau}} & {\left[\left(\frac{\partial \psi_{n}}{\partial x}\right)^{2}+\left(\frac{\partial \psi_{n}}{\partial t}\right)^{2}\right] d x \leq \Lambda_{1} \int_{D_{\tau}} \psi_{n}^{2} d x d t+\Lambda_{1} \int_{D_{\tau}}\left|\frac{\partial \psi_{n}}{\partial t}\right|^{2} d x d t } \\
& +\Lambda_{2} \int_{D_{\tau}} \varphi_{n}^{2} d x d t+\Lambda_{2} \int_{D_{\tau}}\left|\frac{\partial \psi_{n}}{\partial t}\right|^{2} d x d t+\int_{D_{\tau}} B_{n}^{2} d x d t+\int_{D_{\tau}}\left|\frac{\partial \psi_{n}}{\partial t}\right|^{2} d x d t \\
& =\Lambda_{1} \int_{D_{\tau}} \psi_{n}^{2} d x d t+\Lambda_{2} \int_{D_{\tau}} \varphi_{n}^{2} d x d t+\left(\Lambda_{1}+\Lambda_{2}+1\right) \int_{D_{\tau}}\left|\frac{\partial \psi_{n}}{\partial t}\right|^{2} d x d t+\int_{D_{\tau}} B_{n}^{2} d x d t, \quad 0<\tau \leq T,
\end{aligned}
$$

whence due to (3.10),

$$
\begin{gather*}
\int_{\omega_{\tau}}\left[\left(\frac{\partial \psi_{n}}{\partial x}\right)^{2}+\left(\frac{\partial \psi_{n}}{\partial t}\right)^{2}\right] d x \leq \Lambda_{1} \int_{D_{\tau}} \psi_{n}^{2} d x d t+\Lambda_{2} \tau^{3} e^{2 \tau} \int_{D_{\tau}} \psi_{n}^{2} d x d t+\Lambda_{2} \tau^{3} e^{2 \tau}\left\|A_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2} \\
+\left(\Lambda_{1}+\Lambda_{2}+1\right) \int_{D_{\tau}}\left|\frac{\partial \psi_{n}}{\partial t}\right|^{2} d x d t+\int_{D_{\tau}} B_{n}^{2} d x d t \leq\left(\Lambda_{1}+\Lambda_{2} T^{3} e^{2 T}\right) \int_{D_{\tau}} \psi_{n}^{2} d x d t \\
+\left(\Lambda_{1}+\Lambda_{2}+1\right) \int_{D_{\tau}}\left|\frac{\partial \psi_{n}}{\partial t}\right|^{2} d x d t+\Lambda_{2} T^{3} e^{2 T}\left\|A_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}+\left\|B_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2} \tag{3.15}
\end{gather*}
$$

Note that inequality (2.39) is valid if instead of v_{n} we take the function ψ_{n}, i.e.,

$$
\begin{equation*}
\int_{\omega_{\tau}} \psi_{n}^{2} d x \leq T \int_{D_{\tau}}\left(\frac{\partial \psi_{n}}{\partial t}\right)^{2} d x d t \tag{3.16}
\end{equation*}
$$

Summing up inequalities (3.15) and (3.16), we obtain

$$
\begin{align*}
& \int_{\omega_{\tau}}\left[\psi_{n}^{2}+\left(\frac{\partial \psi_{n}}{\partial x}\right)^{2}+\left(\frac{\partial \psi_{n}}{\partial t}\right)^{2}\right] d x \leq\left(\Lambda_{1}+\Lambda_{2} T^{3} e^{2 T}\right) T \int_{D_{\tau}}\left(\frac{\partial \psi_{n}}{\partial t}\right)^{2} d x d t \\
& \quad+\left(\Lambda_{1}+\Lambda_{2}+1\right) \int_{D_{\tau}}\left|\frac{\partial \psi_{n}}{\partial t}\right|^{2} d x d t+\Lambda_{2} T^{3} e^{2 T}\left\|A_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}+\left\|B_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2} \\
& \leq\left(\Lambda_{1} T+\Lambda_{2} T^{4} e^{2 T}+\Lambda_{1}+\Lambda_{2}+1\right) \int_{D_{\tau}}\left|\frac{\partial \psi_{n}}{\partial t}\right|^{2} d x d t \\
& \\
& \quad+\Lambda_{2} T^{3} e^{2 T}\left\|A_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}+\left\|B_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2} \\
& \leq\left(\Lambda_{1} T+\Lambda_{2} T^{4} e^{2 T}+\Lambda_{1}+\Lambda_{2}+1\right) \int_{D_{\tau}}\left[\psi_{n}^{2}+\left(\frac{\partial \psi_{n}}{\partial x}\right)^{2}+\left(\frac{\partial \psi_{n}}{\partial t}\right)^{2}\right] d x d t \\
& \quad+\Lambda_{2} T^{3} e^{2 T}\left\|A_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}+\left\|B_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2} \tag{3.17}\\
& \leq
\end{align*}
$$

where

$$
\begin{equation*}
K_{1}=\left(\Lambda_{1} T+\Lambda_{2} T^{4} e^{2 T}+\Lambda_{1}+\Lambda_{2}+1\right), \quad K_{2 n}=\Lambda_{2} T^{3} e^{2 T}\left\|A_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}+\left\|B_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2} \tag{3.18}
\end{equation*}
$$

Introducing the notation

$$
\begin{equation*}
w_{3}(\tau):=\int_{\omega_{\tau}}\left[\psi_{n}^{2}+\left(\frac{\partial \psi_{n}}{\partial x}\right)^{2}+\left(\frac{\partial \psi_{n}}{\partial t}\right)^{2}\right] d x \tag{3.19}
\end{equation*}
$$

and taking into account the equality

$$
\int_{D_{\tau}}\left[\psi_{n}^{2}+\left(\frac{\partial \psi_{n}}{\partial x}\right)^{2}+\left(\frac{\partial \psi_{n}}{\partial t}\right)^{2}\right] d x d t=\int_{0}^{\tau} w_{3}(\sigma) d \sigma
$$

from (3.17) we obtain

$$
\begin{equation*}
w_{3}(\sigma) \leq K_{1} \int_{0}^{\tau} w_{3}(\sigma) d \sigma+K_{2 n}, \quad 0<\tau \leq T \tag{3.20}
\end{equation*}
$$

and due to the Gronwall lemma, from (3.20) it follows that

$$
w_{3}(\tau) \leq K_{2 n} e^{K_{1} \tau}, \quad 0<\tau \leq T
$$

According to the limit equality (3.8), we have

$$
\lim _{n \rightarrow \infty}\left\|A_{n}\right\|_{L_{2}\left(D_{T}\right)}=0, \quad \lim _{n \rightarrow \infty}\left\|B_{n}\right\|_{L_{2}\left(D_{T}\right)}=0
$$

Therefore, in view of (3.18), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} K_{2 n}=0 \tag{3.21}
\end{equation*}
$$

Analogously to (2.20), for the function ψ_{n}, the inequality

$$
\psi_{n}^{2}(x, t) \leq t \int_{0}^{t}\left[\left(\frac{\partial \psi_{n}}{\partial x}\right)^{2}+\left(\frac{\partial \psi_{n}}{\partial t}\right)^{2}\right](\xi, t) d \xi
$$

is valid and, therefore, (3.19) implies

$$
\begin{equation*}
\psi_{n}^{2}(x, t) \leq t \int_{0}^{t}\left[\psi_{n}^{2}+\left(\frac{\partial \psi_{n}}{\partial x}\right)^{2}+\left(\frac{\partial \psi_{n}}{\partial t}\right)^{2}\right](\xi, t) d \xi=t w_{3}(t) \leq t K_{2 n} e^{K_{1} t}, \quad(x, t) \in D_{T} \tag{3.22}
\end{equation*}
$$

Passing to the limit in inequality (3.22) as $n \rightarrow \infty$, and taking into account the limit equalities (3.3), (3.5) and (3.21), we have

$$
\begin{equation*}
\left|\left(v_{2}-v_{1}\right)(x, t)\right|^{2}=\lim _{n \rightarrow \infty}\left|\left(v_{2 n}-v_{1 n}\right)(x, t)\right|^{2}=\lim _{n \rightarrow \infty} \psi_{n}^{2}(x, t) \leq t e^{K_{1} t} \lim _{n \rightarrow \infty} K_{2 n}=0 \tag{3.23}
\end{equation*}
$$

whence we get $v_{2}(x, t)=v_{1}(x, t),(x, t) \in D_{T}$.
From (3.5), (3.8), (3.10) and (3.23), we obtain

$$
\begin{aligned}
& \int_{D_{T}}\left(u_{2}-u_{1}\right)^{2} d x d t=\lim _{n \rightarrow \infty} \int_{D_{T}}\left(u_{2 n}-u_{1 n}\right)^{2} d x d t=\lim _{n \rightarrow \infty} \int_{D_{T}} \varphi_{n}^{2} d x d t \\
& \leq T^{3} e^{2 T} \lim _{n \rightarrow \infty} \int_{D_{T}} \psi_{n}^{2} d x d t+T^{3} e^{2 T} \lim _{n \rightarrow \infty}\left\|A_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2} \leq T^{3} e^{2 T} \lim _{n \rightarrow \infty} \int_{D_{T}} T K_{2 n} e^{K_{1} T} d x d t \\
& \quad=T^{4} e^{2 T} e^{K_{1} T} \int_{D_{T}} 1 d x d t \lim _{n \rightarrow \infty} K_{n}=T^{4} e^{2 T} e^{K_{1} T} \cdot \frac{1}{2} T^{2} \lim _{n \rightarrow \infty} K_{2 n}=0
\end{aligned}
$$

whence we conclude that $u_{2}=u_{1}$ in the domain D_{T}. The theorem is proved.

4 Equivalent reduction of problem (1.4)-(1.7) to a system of Volterra type integral equations

Let us now consider the equivalent reduction of problem (1.4)-(1.7) to a system of Volterra type integral equations in the class of continuous functions $C\left(\bar{D}_{T}\right)$.

Let the functions u and v represent a generalized solution of the class C to problem (1.4)-(1.7), i.e., there exist the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ satisfying conditions (1.8), (1.9) and (1.10). As it has been shown, the function u_{n} is a classical solution of problem $(2.2),(2.3)$, where the function G_{n} is given by formula (2.4), and it satisfies the limit equality (2.5). Analogously, the function v_{n} is a classical solution of problem (2.26), (2.27), where the function Q_{n} is given by formula (2.28), and it satisfies the limit equality (2.29).

Let $P=P(x, t)$ be any point of D_{T}. Denote by $\Omega_{x, t}$ the characteristic rectangle $P P_{1} P_{2} P_{3}$ with vertices P_{1} and P_{2}, P_{3} laying on the curves $\gamma_{2, T}$ and $\gamma_{1, T}$, respectively, i.e.,

$$
P_{1}:=P_{1}(0, t-x), \quad P_{2}:=P_{2}\left(\frac{t-x}{2}, \frac{t-x}{2}\right), \quad P_{3}:=P_{3}\left(\frac{t+x}{2}, \frac{t+x}{2}\right) .
$$

Integrating equation (2.2) over the rectangle $\Omega_{x, t}$, conducting integration by parts and taking into account homogeneous boundary conditions (2.3), we obtain [15]

$$
\begin{equation*}
u_{n}(x, t)-\frac{1}{2} \int_{\Omega_{x, t}} v_{n}\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime}=\frac{1}{2} \int_{\Omega_{x, t}} G_{n}\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime}, \quad(x, t) \in D_{T} \tag{4.1}
\end{equation*}
$$

By analogous reasoning with respect to problem (2.26), (2.27), we have

$$
\begin{equation*}
v_{n}(x, t)+\frac{1}{2} \int_{\Omega_{x, t}}\left[f\left(v_{n}\right)+g\left(u_{n}\right)\right]\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime}=\frac{1}{2} \int_{\Omega_{x, t}} Q_{n}\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime}, \quad(x, t) \in D_{T} \tag{4.2}
\end{equation*}
$$

Passing to the limit in equalities (4.1) and (4.2) as $n \rightarrow \infty$ and due to the limit equalities (1.9), (1.10) and (2.5), (2.29) with respect to the functions u and v, we obtain the following Volterra type system of nonlinear integral equations in the class of continuous functions $C\left(\bar{D}_{T}\right)$:

$$
\begin{gather*}
u(x, t)-\frac{1}{2} \int_{\Omega_{x, t}} v\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime}=0, \quad(x, t) \in D_{T} \tag{4.3}\\
v(x, t)+\frac{1}{2} \int_{\Omega_{x, t}}[f(v)+g(u)]\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime}=\frac{1}{2} \int_{x, t} F\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime}, \quad(x, t) \in D_{T} . \tag{4.4}
\end{gather*}
$$

Remark 4.1. When $f, g \in C^{1}(R), F \in C^{1}\left(\bar{D}_{T}\right)$, the reverse proposition is valid: if the functions u and v represent a solution of the class $C\left(\bar{D}_{T}\right)$ to system (4.3), (4.4), then these functions represent a generalized solution of class C to problem (1.4)-(1.7) [1,16].

Let us introduce the notation $U:=(u, v)$ and rewrite the system of integral equations (4.3), (4.4) in a vectorial form

$$
\begin{equation*}
U(x, t)+(K U)(x, t)=\Phi(x, t), \quad(x, t) \in D_{T} \tag{4.5}
\end{equation*}
$$

where

$$
\begin{align*}
K=\left(K_{1}, K_{2}\right) ; \quad & \left(K_{1} U\right)(x, t)=-\left(K_{0} v\right)(x, t), \\
\left(K_{2} U\right)(x, t) & =\left(K_{0}(f(v)+g(u))\right)(x, t), \tag{4.6}\\
\left(K_{0} w\right)(x, t) & =\frac{1}{2} \int_{x, t} w\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime} \tag{4.7}\\
\Phi(x, t) & =\left(0,\left(K_{0} F\right)(x, t)\right) . \tag{4.8}
\end{align*}
$$

5 The smoothness of a solution of problem (1.4)-(1.7). Global solvability of problem (1.4)-(1.7) in the class of continuous functions. The existence of a global solution in the domain D_{∞}

Remark 5.1. As is known, the operator K_{0} defined by formula (4.7) satisfies the following conditions of smoothness: if $w \in C^{k}\left(\bar{D}_{T}\right)$, then $K_{0} w \in C^{k+1}\left(\bar{D}_{T}\right), k=0,1, \ldots$ Therefore, when $f, g \in C^{1}(R)$, $F \in C^{1}\left(\bar{D}_{T}\right)$, the continuous solution $U=(u, v)$ of system (4.5) satisfies the following conditions of smoothness: $u, v \in C^{2}\left(\bar{D}_{T}\right)$ and represents a classical solution of problem (1.4)-(1.7).

Remark 5.2. As is known, the space $C^{1}\left(\bar{D}_{T}\right)$ is compactly embedded into the space $C\left(\bar{D}_{T}\right)$. Therefore, if we take into account Remark 5.1 and consider K as an operator acting from the space $C\left(\bar{D}_{T}\right)$ to the space $C\left(\bar{D}_{T}\right)$, then due to formula (4.5), we find that the operator

$$
K: C\left(\bar{D}_{T}\right) \rightarrow C\left(\bar{D}_{T}\right)
$$

is continuous and compact. Therefore, the operator $L: C\left(\bar{D}_{T}\right) \rightarrow C\left(\bar{D}_{T}\right)$ acting by the rule

$$
\begin{equation*}
(L U)(x, t)=-(K U)(x, t)+\Phi(x, t), \quad(x, t) \in \bar{D}_{T} \tag{5.1}
\end{equation*}
$$

will also be continuous and compact, and equation (4.5) in the space $C\left(\bar{D}_{T}\right)$ can be rewritten as follows:

$$
\begin{equation*}
U=L U \tag{5.2}
\end{equation*}
$$

Remark 5.3. It follows from the above reasoning that if $f, g \in C^{1}(R), F \in C^{1}\left(\bar{D}_{T}\right)$, then $U:=$ $(u, v) \in C\left(\bar{D}_{T}\right)$ is a generalized solution of class C to problem (1.4)-(1.7) if and only if U is a solution of problem (5.2) of class $C\left(\bar{D}_{T}\right)$. Hence it follows from Lemma 2.2 that when conditions (2.22), (2.23) are fulfilled, the solution of equation (5.2) of class $C\left(\bar{D}_{T}\right)$ satisfies a priori estimates (2.24) and (2.25). From equation (5.2) and the structure of constants $C_{i}, i=1, \ldots, 4$, and from a priori estimates (2.24) and (2.25), it follows that the solution of the equation $U=\tau L U$ of class $C\left(\bar{D}_{T}\right)$, where the parameter $\tau \in[0,1]$, satisfies the same a priori estimates (2.24) and (2.25), where the constants $C_{i}, i=1, \ldots, 4$, in view of $(2.22),(2.23),(2.43),(2.50)$ and (2.51), do not depend on the function F and the parameter τ. Therefore, since the operator $L: C\left(\bar{D}_{T}\right) \rightarrow C\left(\bar{D}_{T}\right)$ from equation (5.2) is continuous and compact, according to the Leray-Schauder theorem [33], equation (5.2) has at least one solution in the space $C\left(\bar{D}_{T}\right)$ which, as it was noted above, is also a generalized solution of problem (1.4)-(1.7) of class C.

Thus, according to Theorem 3.1 and Remark 5.1, the following statement is valid.
Theorem 5.1. Let $f, g \in C^{1}(R), F \in C^{1}\left(\bar{D}_{T}\right), \mu_{i}=0, i=1, \ldots, 4$, and the functions f and g satisfy conditions (2.22) and (2.23). Then problem (1.4)-(1.7) has a unique generalized solution of the class C which is also a classical solution of the same problem in the domain D_{T}.

From Theorems 3.1 and 5.1 follows
Theorem 5.2. Let $f, g \in C^{1}(R), F \in C^{1}\left(\bar{D}_{\infty}\right), \mu_{i}=0, i=1, \ldots, 4$, and the functions f and g satisfy conditions (2.22) and (2.23), then problem (1.4)-(1.7) for $T=\infty$ has a unique global classical solution in the domain D_{∞}.

Proof. From Theorem 5.1, it follows that there exists a unique classical solution u_{k}, v_{k} of problem (1.4)-(1.7) in the domain D_{T}, where $T=k \in N$. Since $\left.u_{k+1}\right|_{D_{k}}$ is also a classical solution of problem (1.4)-(1.7) in the domain D_{k}, because of the uniqueness of the solution, we have $\left.u_{k+1}\right|_{D_{k}}=u_{k}$, $\left.v_{k+1}\right|_{D_{k}}=v_{k}$. Therefore, the functions u and v constructed by the rule $u(x, t)=u_{k}(x, t), v(x, t)=$ $v_{k}(x, t)$, when $k=[t]+1$, where $[t]$ is an entire part of number t and $(x, t) \in D_{\infty}$, represent a unique global solution of problem (1.4)-(1.7) in the domain D_{∞}. The theorem is proved.

Definition 5.1. Let $f, g \in C(R), F \in C\left(\bar{D}_{\infty}\right), \mu_{i}=0, i=1, \ldots, 4$. Problem (1.4)-(1.7) is called globally solvable in the class C if for any positive T, this problem has at least one generalized solution of class C in the domain D_{T} in the sense of Definition 1.1.

Remark 5.4. It is obvious that if problem (1.4)-(1.7) is not globally solvable in the class C in the sense of Definition 3.1, then it does not have a global classical solution in the domain D_{∞}. Besides, if the conditions of Theorem 5.2 are fulfilled, then problem (1.4)-(1.7) has a global classical solution in the domain D_{∞} and, therefore, it is also globally solvable in the class C.

6 Nonexistence of solutions of problem (1.4)-(1.7)

Below, we show that if conditions (2.22) and (2.23) are violated, then problem (1.4)-(1.7) may not be globally solvable in the sense of Definition 3.1.

Theorem 6.1. Let $f=0, g \in C^{1}(R), F_{0} \in C^{1}\left(\bar{D}_{T}\right),\left.F_{0}\right|_{D_{T}}>0$ and $F=\lambda F_{0}, \lambda=$ const $>0, \mu_{i}=0$, $i=1, \ldots, 4$. Then if $g(u) \leq-|u|^{\alpha}, \alpha=$ const >1, there exists a number $\lambda_{0}=\lambda_{0}\left(F_{0}, \alpha\right)>0$ such that for $\lambda>\lambda_{0}$, problem (1.4)-(1.7) does not have a generalized solution of class C in the domain D_{T}.

Proof. Let u, v represent a generalized solution of problem (1.4)-(1.7) of class C. Since $f=0$, $g \in C^{1}(R)$ and $F \in C^{1}\left(\bar{D}_{T}\right)$, according to Remarks 4.1 and 5.1 , this solution will be a classical solution of problem (1.4)-(1.7). Therefore, the function u satisfies equation (1.1) in the domain D_{T}, i.e.,

$$
\begin{equation*}
\square^{2} u+g(u)=F(x, t), \quad(x, t) \in D_{T}, \tag{6.1}
\end{equation*}
$$

and $g(u), \square^{2} u \in C\left(\bar{D}_{T}\right)$.
Let us consider a test function

$$
\varphi \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right):=\left\{\psi \in C^{4}\left(\bar{D}_{T}\right):\left.\psi\right|_{D_{T}} \geq 0,\left.\quad \psi\right|_{\partial D_{T}}=\left.\frac{\partial^{i} \psi}{\partial \nu^{i}}\right|_{\partial D_{T}}=0, \quad i=1,2,3\right\}
$$

where $\nu=\left(\nu_{x}, \nu_{t}\right)$ is a unit vector of the outer norm to the boundary ∂D_{T}. Let us multiply by it both sides of equation (6.1) and integrate over the domain D_{T}. By integration by parts and taking into account that $\left.\psi\right|_{\partial D_{T}}=\left.\frac{\partial^{i} \psi}{\partial \nu^{i}}\right|_{\partial D_{T}}=0, i=1,2,3$, we obtain

$$
\begin{equation*}
\int_{D_{T}} u \square^{2} \varphi d x d t=-\int_{D_{T}} g(u) \varphi d x d t+\lambda \int_{D_{T}} F_{0} \varphi d x d t \forall \varphi \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right) \tag{6.2}
\end{equation*}
$$

According to the conditions $g(u) \leq-|u|^{\alpha}$ and $\varphi \geq 0$, from (6.2) it follows

$$
\begin{equation*}
\int_{D_{T}}|u|^{\alpha} \varphi d x d t \leq \int_{D_{T}} u \square^{2} \varphi d x d t-\lambda \int_{D_{T}} F_{0} \varphi d x d t \forall \varphi \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right) \tag{6.3}
\end{equation*}
$$

Below, we use the method of test functions [30]. Consider the test function $\varphi \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right)$ such that $\left.\varphi\right|_{D_{T}}>0$. If in the Young inequality with parameter $\varepsilon>0$

$$
a b \leq \frac{\varepsilon}{\alpha} a^{\alpha}+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} b^{\alpha^{\prime}}, \quad a, b \geq 0, \quad \alpha^{\prime}=\frac{\alpha}{\alpha-1}
$$

we take $a=|u| \varphi^{\frac{1}{\alpha}}$ and $b=\frac{\left|\square^{2} \varphi\right|}{\varphi^{\frac{1}{\alpha}}}$, then due to $\frac{\alpha^{\prime}}{\alpha}=\alpha-1$, we obtain

$$
\left|u \square^{2} \varphi\right|=|u| \varphi^{\frac{1}{\alpha}} \frac{\left|\square^{2} \varphi\right|}{\varphi^{\frac{1}{\alpha}}} \leq \frac{\varepsilon}{\alpha}|u|^{\alpha} \varphi+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} .
$$

From (6.3) and (6.3), we have

$$
\left(1-\frac{\varepsilon}{\alpha}\right) \int_{D_{T}}|u|^{\alpha} \varphi d x d t \leq \frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\lambda \int_{D_{T}} F_{0} \varphi d x d t
$$

whence for $\varepsilon<\alpha$, we obtain

$$
\begin{equation*}
\int_{D_{T}}|u|^{\alpha} \varphi d x d t \leq \frac{1}{(\alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\frac{\alpha \lambda}{\alpha-\varepsilon} \int_{D_{T}} F_{0} \varphi d x d t . \tag{6.4}
\end{equation*}
$$

In view of the equalities $\alpha^{\prime}=\frac{\alpha}{\alpha-1}, \alpha=\frac{\alpha^{\prime}}{\alpha^{\prime}-1}$ and

$$
\min _{0<\varepsilon<\alpha} \frac{\alpha}{(\alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}}=1
$$

which is reached for $\varepsilon=1$, from (6.4) we have

$$
\begin{equation*}
\int_{D_{T}}|u|^{\alpha} \varphi d x d t \leq \int_{D_{T}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\alpha^{\prime} \lambda \int_{D_{T}} F_{0} \varphi d x d t \tag{6.5}
\end{equation*}
$$

It is easy to show the existence of a function φ for which

$$
\begin{equation*}
\varphi \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right),\left.\quad \varphi\right|_{D_{T}}>0, \quad \kappa_{0}=\int_{D_{T}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t<+\infty \tag{6.6}
\end{equation*}
$$

Indeed, the function built by the formula

$$
\varphi(x, t)=[x(t-x)(T-t)]^{m}
$$

for a sufficiently large natural m satisfies conditions (6.6).
Since according to the condition $F_{0} \in C\left(\bar{D}_{T}\right),\left.F_{0}\right|_{D_{T}}>0$ and $\left.\varphi\right|_{D_{T}}>0$, we have

$$
\begin{equation*}
0<\kappa_{1}=\int_{D_{T}} F_{0} \varphi d x d t<+\infty \tag{6.7}
\end{equation*}
$$

Denote by $\chi(\lambda)$ the right-hand side of inequality (6.5) which is linear with respect to the parameter λ. Then from (6.5), (6.6) and (6.7), we have

$$
\begin{equation*}
\chi \lambda)<0, \text { when } \lambda>\mu_{0} \text { and } \chi(\lambda)>0, \text { when } \lambda<\mu_{0} \tag{6.8}
\end{equation*}
$$

where

$$
\chi(\lambda)=\kappa_{0}-\alpha^{\prime} \lambda \kappa_{1}, \quad \lambda_{0}=\frac{\kappa_{0}}{\alpha^{\prime} \kappa_{1}}
$$

According to (6.8), when $\lambda>\lambda_{0}$, the left-hand side of (6.5) is negative, while the right-hand side is non-negative. This contradiction proves the theorem.

Note that when $g(u) \leq-|u|^{\alpha}, \alpha=$ const >1, condition (2.23) is violated.

7 Local solvability of problem (1.4)-(1.7) in the class of continuous functions

Definition 7.1. Let $f, g \in C(R), F \in C\left(\bar{D}_{\infty}\right), \mu_{i}=0, i=1, \ldots, 4$. Problem (1.4)-(1.7) is called locally solvable in the class C if there exists a positive constant $T_{0}=T_{0}(F)$ such that problem (1.4)-(1.7) has at least one generalized solution of class C in the domain D_{T}, when $T \leq T_{0}$.

Theorem 7.1. Let $f, g \in C^{1}(R), \mu_{i}=0, i=1, \ldots, 4$. Then for any function $F \in C^{1}\left(\bar{D}_{\infty}\right)$, problem (1.4)-(1.7) is locally solvable in the class C. Moreover, there exists a positive constant $T_{0}=T_{0}(F)$ such that problem (1.4)-(1.7) has a unique generalized solution of class C in the domain D_{T}, when $T \leq T_{0}$, which represents a classical solution of this problem.

Remark 7.1. In case the conditions of Theorem 6.1 are fulfilled, problem (1.4)-(1.7) for any function $F \in C^{1}\left(\bar{D}_{\infty}\right)$ may not be globally solvable. Indeed, if $F_{0} \in C^{1}\left(\bar{D}_{\infty}\right),\left.F_{0}\right|_{D_{\infty}}>0$, and for a fixed positive T we take $F=\lambda F_{0}$, then this problem does not have a generalized solution of class C in the domain D_{T}, when $\lambda>\lambda_{0}$.

Proof of Theorem 7.1. According to Remark $5.3 U=(u, v) \in C\left(\bar{D}_{T}\right)$ represents a generalized solution of problem (1.4)-(1.7) of class C if and only if U is a solution of equation (5.2) from the space $C\left(\bar{D}_{T}\right)$.

Let us fix the positive constants T_{1} and r. Below, we suppose that $|U|=|(u, v)|=|u|+\lceil v\rceil$, $\|U\|_{C\left(\bar{D}_{T}\right)}=\|(u, v)\|_{C\left(\bar{D}_{T}\right)}=\|u\|_{C\left(\bar{D}_{T}\right)}+\|v\|_{C\left(\bar{D}_{T}\right)}$, and denote by $B_{r}(0)$ a ball of radius r in the space \bar{D}_{T} of continuous vector functions $U=(u, v)$ with a center in the null element $(0,0)$, i.e.,

$$
B_{r}(0):=\left\{U=(u, v) \in C\left(\bar{D}_{T}\right):\|(u, v)\|_{C\left(\bar{D}_{T}\right)} \leq r\right\}
$$

When $U \in B_{r}(0)$, due to (4.6)-(5.1), if we take into consideration the structure of the operator L from equation (5.2), take $T \leq T_{1}$ and the point $(x, t) \in \bar{D}_{T}$, we get

$$
\begin{aligned}
&|(L U)(x, t)| \leq|(K U)(x, t)|+|\Phi(x, t)| \leq\left|\left(K_{1} U\right)(x, t)\right|+\left|\left(K_{2} U\right)(x, t)\right|+\left|\left(K_{0} F\right)(x, t)\right| \\
& \leq\left|\left(K_{0} v\right)(x, t)\right|+\left|\left(K_{0}(f(v)+g(u))\right)(x, t)\right|+\left|\left(K_{0} F\right)(x, t)\right| \\
& \leq \frac{1}{2}\|v\|_{C\left(\bar{D}_{t}\right)} \int_{\Omega_{x, t}} 1 d x d t+\frac{1}{2}\left(\max _{|s| \leq r}|f(s)|+\max _{|s| \leq r}|g(s)|\right) \int_{\Omega_{x, t}} 1 d x d t \\
& \quad+\frac{1}{2}\|F\|_{C\left(\bar{D}_{t}\right)} \int_{\Omega_{x, t}} 1 d x d t \\
& \leq \frac{1}{2}\left(\|v\|_{C\left(\bar{D}_{t}\right)}+\max _{|s| \leq r}|f(s)|+\max _{|s| \leq r}|g(s)|+\|F\|_{C\left(\bar{D}_{t}\right)}\right) \frac{1}{2} t^{2} \\
& \leq \frac{1}{4} T^{2}\left(\|v\|_{C\left(\bar{D}_{T_{1}}\right)}+\max _{|s| \leq r}|f(s)|+\max _{|s| \leq r}|g(s)|+\|F\|_{C\left(\bar{D}_{T_{1}}\right)}\right)
\end{aligned}
$$

whence we obtain

$$
\begin{align*}
\|L U\|_{C\left(\bar{D}_{T}\right)} & \leq \frac{1}{4} T^{2}\left(\|v\|_{C\left(\bar{D}_{T_{1}}\right)}+\max _{|s| \leq r}|f(s)|+\max _{|s| \leq r}|g(s)|+\|F\|_{C\left(\bar{D}_{T_{1}}\right)}\right) \\
& \leq \frac{1}{4} T^{2}\left(r+\|f\|_{C([-r, r])}+\|g\|_{C([-r, r])}+\|F\|_{C\left(\bar{D}_{T_{1}}\right)}\right) . \tag{7.1}
\end{align*}
$$

From (7.1) it follows that if we take T such that $T \leq T_{0}$, where

$$
T_{0}=\min \left(T_{1} \frac{4 r}{r+\|f\|_{C([-r, r])}+\|g\|_{C([-r, r])}+\|F\|_{C\left(\bar{D}_{T_{1}}\right)}}\right)^{\frac{1}{2}},
$$

then

$$
\begin{equation*}
\|L U\|_{C\left(\bar{D}_{T}\right)} \leq r, \text { when }\|U\|_{C\left(\bar{D}_{T}\right)} \leq r \tag{7.2}
\end{equation*}
$$

From (7.2) it follows that the operator $L: C\left(\bar{D}_{T}\right) \rightarrow C\left(\bar{D}_{T}\right)$ maps the ball $B_{r}(0)$ into itself and since by Remark 5.2 this operator is continuous and compact, according to Schauder's theorem, equation (5.2) has at least one solution U from the space $C\left(\bar{D}_{T}\right)$. Due to Remark 5.3 and Theorem 5.1, this solution is a unique classical solution of problem (1.4)-(1.7) in the domain. The theorem is completely proved.

Therefore, from the results obtained above it follows that if we do not require from the functions f and g the fulfillment of conditions (2.22) and (2.23) together with smoothness $f, g \in C^{1}(R)$, then according to Theorem 6.1, problem (1.4)-(1.6) may not be globally solvable and, moreover, it may not have a global solution in the domain D_{∞}. Nevertheless, in case of conditions (2.22), (2.23) violate, problem (1.4)-(1.7) is locally solvable for any function $F \in C^{1}\left(\bar{D}_{\infty}\right)$.

References

[1] G. K. Berikelashvili, O. M. Dzhokhadze, B. G. Midodashvili and S. S. Kharibegashvili, On the existence and nonexistence of global solutions of the first Darboux problem for nonlinear wave equations. (Russian) Differ. Uravn. 44 (2008), no. 3, 359-372; translation in Differ. Equ. 44 (2008), no. 3, 374-389.
[2] G. Berikelashvili, O. Jokhadze, S. Kharibegashvili and B. Midodashvili, Finite difference solution of a nonlinear Klein-Gordon equation with an external source. Math. Comp. 80 (2011), no. 274, 847-862.
[3] A. V. Bitsadze, Some Classes of Partial Differential Equations. (Russian) Nauka, Moscow, 1981.
[4] G. Darboux, Lȩ̧ons Sur la Théorie Générale des Surfaces, IV. Déformation Infiniment Petite et Représentation Sphérique. (French) Reprint of 1896 original (IV). Les Grands Classiques Gauthier-Villars. Cours de Géométrie de la Faculté des Sciences. Éditions Jacques Gabay, Sceaux, 1993.
[5] O. M. Dzhokhadze and S. S. Kharibegashvili, On the first Darboux problem for second-order nonlinear hyperbolic equations. (Russian) Mat. Zametki 84 (2008), no. 5, 693-712; translation in Math. Notes 84 (2008), no. 5-6, 646-663.
[6] B. Firmani, Sui casi singolari del problema di Goursat. (Italian) Rend. Mat. Appl., Ser. 2 VII (1982), 237-256.
[7] O. G. Goman, Gleichung einer reflektierten Welle. (Russian) Vestn. Mosk. Univ., Ser. I 23 (1968), no. 2, 84-87.
[8] É. Goursat, Cours d'analyse Mathématique, Tome I. Dérivées et Différentielles. Intégrales Définies. Développements en Séries. Applications Géométriques; Tome II. Théorie des Fonctions Analytiques. Équations Différentielles. Équations aux Dérivées Partielles du Premier Ordre; Tome III. Intégrales Infiniment Voisines. Équations aux Dérivées du Second Ordre. Équations Intégrales. Calcul des Variations. (French) Reprint of the 1924 fourth edition. Les Grands Classiques Gauthier-Villars. Éditions Jacques Gabay, Sceaux, 1992.
[9] O. Jokhadze, On existence and nonexistence of global solutions of Cauchy-Goursat problem for nonlinear wave equations. J. Math. Anal. Appl. 340 (2008), no. 2, 1033-1045.
[10] O. Jokhadze, Cauchy-Goursat problem for one-dimensional semilinear wave equations. Comm. Partial Differential Equations 34 (2009), no. 4-6, 367-382.
[11] O. Jokhadze and S. Kharibegashvili, On the Cauchy and Cauchy-Darboux problems for semilinear wave equations. Georgian Math. J. 22 (2015), no. 1, 81-104.
[12] O. Jokhadze and B. Midodashvili, The first Darboux problem for wave equations with a nonlinear positive source term. Nonlinear Anal. 69 (2008), no. 9, 3005-3015.
[13] S. S. Kharibegashvili, A boundary value problem for a second-order hyperbolic equation. (Russian) Dokl. Akad. Nauk SSSR 280 (1985), no. 6, 1313-1316.
[14] S. Kharibegashvili, Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems. Mem. Differential Equations Math. Phys. 4 (1995), 1-127.
[15] S. Kharibegashvili, On the solvability of the Cauchy characteristic problem for a nonlinear equation with iterated wave operator in the principal part. J. Math. Anal. Appl. 338 (2008), no. 1, 71-81.
[16] S. Kharibegashvili, Boundary value problems for some classes of nonlinear wave equations. Mem. Differential Equations Math. Phys. 46 (2009), 1-114.
[17] S. S. Kharibegashvili and O. M. Dzhokhadze, Second Darboux problem for the wave equation with a power-law nonlinearity. (Russian) Differ. Uravn. 49 (2013), no. 12, 1623--1640; translation in Differ. Equ. 49 (2013), no. 12, 1577-1595.
[18] S. S. Kharibegashvili and O. M. Dzhokhadze, The Cauchy-Darboux problem for a one-dimensional wave equation with power nonlinearity. (Russian) Sibirsk. Mat. Zh. 54 (2013), no. 6, 1407-1426; translation in Sib. Math. J. 54 (2013), no. 6, 1120-1136.
[19] S. S. Kharibegashvili and O. M. Jokhadze, The Cauchy-Goursat problem for wave equations with nonlinear dissipative term. (Russian) Mat. Zametki 94 (2013), no. 6, 889-907; translation in Math. Notes 94 (2013), no. 5-6, 913-929.
[20] S. S. Kharibegashvili and O. M. Jokhadze, On the solvability of a boundary value problem for nonlinear wave equations in angular domains. (Russian) Differ. Uravn. 52 (2016), no. 5, 665-686; translation in Differ. Equ. 52 (2016), no. 5, 644-666.
[21] S. Kharibegashvili and O. Jokhadze, The Cauchy-Darboux problem for wave equations with a nonlinear dissipative term. Mem. Differ. Equ. Math. Phys. 69 (2016), 53-75.
[22] S. Kharibegashvili and O. Jokhadze, The second Darboux problem for the wave equation with integral nonlinearity. Trans. A. Razmadze Math. Inst. 170 (2016), no. 3, 385-394.
[23] S. Kharibegashvili and B. Midodashvili, Solvability of characteristic boundary-value problems for nonlinear equations with iterated wave operator in the principal part. Electron. J. Differential Equations 2008, no. 72, 12 pp.
[24] S. Kharibegashvili and B. Midodashvili, On one boundary value problem for a nonlinear equation with the iterated wave operator in the principal part. Georgian Math. J. 15 (2008), no. 3, 541-554.
[25] S. Kharibegashvili and B. Midodashvili, On the existence, uniqueness and nonexistence of solutions to a boundary value problem for a quasilinear hyperbolic equation. (Russian) Ukraïn. Mat. Zh. 71 (2019), no. 8, 1123-1132; translation in Ukrainian Math. J. 71 (2020), no. 8, 1282-1293.
[26] Z. O. Mel'nik, Example of a nonclassical boundary value problem for the vibrating string equation. (Russian) Ukrain. Mat. Zh. 32 (1980), no. 5, 671-674.
[27] L. A. Mel'tser, On non-correct formulation of the Goursat problem. Mat. Sb 18(60) (1946), 59-104.
[28] V. P. Mihaîlov, The analytical solution of the Goursat problem for a system of differential equations. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 115 (1957), 450-453.
[29] V. P. Mihaǐlov, Non-analytical solutions of Goursat's problem for a system of differential equations in two independent variables. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 117 (1957), 759-762.
[30] É Mitidieri and S. I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. (Russian) Tr. Mat. Inst. Steklova 234 (2001), 1384; translation in Proc. Steklov Inst. Math. 2001, no. 3(234), 1-362
[31] S. Sobolev, Sur les solutions analytiques des systèmes d'équations aux dérivées partielles avec deux variables independantes. (Russian. French summary) Mat. Sbornik (Moskva) 38 (1931), no. 1-2, 107-147.
[32] A. N. Tikhonov and A. A. Samarskiǐ, The Equations of Mathematical Physics. (Russian) Sixth edition. Izdatel'stvo Moskovskogo Universiteta imeni M. V. Lomonosova, Moscow, 1999.
[33] V. A. Trenogin, Functional Analysis. (Russian) Second edition. "Nauka", Moscow, 1993.
[34] S. D. Troitskaya, On a boundary value problem for hyperbolic equations. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), no. 2, 193-224; translation in Izv. Math. 62 (1998), no. 2, 399-428.
(Received 14.09.2022; accepted 12.11.2022)

Authors' addresses:

Teona Bibilashvili

Georgian Technical University, 77 Kostava Str., Tbilisi 0160, Georgia.
E-mails: teonabibilashvili12@gmail.com

Sergo Kharibegashvili

1. Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, 2 Merab Aleksidze II Lane, Tbilisi 0193, Georgia.
2. Georgian Technical University, 77 Kostava Str., Tbilisi 0160, Georgia.

E-mails: kharibegashvili@yahoo.com

