
Memoirs on Differential Equations and Mathematical Physics
Volume 89, 2023, 39–59

Teona Bibilashvili, Sergo Kharibegashvili

DARBOUX TYPE PROBLEM FOR A CLASS
OF FOURTH-ORDER NONLINEAR HYPERBOLIC EQUATIONS



Abstract. Darboux type problem for a class of fourth-order nonlinear hyperbolic equations is con-
sidered. The theorems on existence, uniqueness and nonexistence of solutions of this problem are
proved.
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1 Statement of the problem
On the plane of variables x and t, we consider the fourth-order hyperbolic equation of the following
form:

□2 u+ f(□u) + g(u) = F (x, t), (1.1)

where □ := ∂2

∂t2 − ∂2

∂x2 ; f , g and F are given functions, while u is an unknown function.
Denote by DT : 0 < x < t, t < T , an angular domain bounded by a characteristic segment

γ
1,T

: x = t, 0 ≤ t ≤ T , and by time and spatial orientation segments γ
2,T

: x = 0, 0 ≤ t ≤ T , and
γ

3,T
: t = T, 0 ≤ x ≤ T , respectively; for T = ∞, we have D∞ : t > |x|, x > 0, and

γ
1,∞ : x = t, 0 ≤ t <∞; γ

2,T
: x = 0, 0 ≤ t <∞.

For equation (1.1) in the domain DT , consider the following boundary value problem: find in DT

a solution u = u(x, t) to equation (1.1) which on the parts γ
1,T

and γ
2,T

of the boundary satisfies the
following conditions:

u
∣∣
γ
1,T

= u(t, t) = µ1(t),
∂u

∂ν

∣∣∣∣
γ
1,T

=
∂u

∂ν
(t, t) = µ2(t), 0 ≤ t ≤ T, (1.2)

u
∣∣
γ
2,T

= u(0, t) = µ3(t),
∂2u

∂x2

∣∣∣∣
γ
2,T

=
∂2u

∂x2
(0, t) = µ4(t), 0 ≤ t ≤ T, (1.3)

where µi, i = 1, . . . , 4, are the given scalar functions and the functions µ1 and µ2 at a common point
O = O(0, 0) of the curves γ

1,T
and γ

2,T
satisfy the condition of agreement µ1(0) = µ3(0), ν = (νx, νt)

is a unit vector of outer normal to the boundary ∂DT .
It is noteworthy that the Darboux problems for the second order hyperbolic equation

□u+ f(x, t, u) = F (x, t)

in angular domain DT with the Dirichlet or Neumann boundary conditions on the boundary segments
γ

1,T
and γ

2,T
were studied by many authors [1–14, 16–22, 26–29, 31, 32, 34]. Some boundary value

problems for equation (1.1) in spatial multidimensional case when □ := ∂2

∂t2 −
n∑
i=1

∂2

∂x2
i

, n > 1, f = 0,

were studied in [15,23–25].

Remark 1.1. Let f, g ∈ C(R), F ∈ C(DT ). If u, where u,□u ∈ C2DT , represents a classical
solution to problem (1.1)–(1.3), then introducing a function v = □u this problem can be reduced to
the following boundary value problem with respect to unknown functions u and v:

L1(u, v) := □u− v = 0, (x, t) ∈ DT , (1.4)
L2(u, v) := □ v + f(v) + g(u) = F (x, t), (x, t) ∈ DT , (1.5)

u
∣∣
γ
1,T

= u(t, t) = µ1(t), u
∣∣
γ
2,T

= u(0, t) = µ3(t), 0 ≤ t ≤ T, (1.6)

v
∣∣
γ
1,T

= v(t, t) = −
√
2µ′

2(t), v
∣∣
γ
2,T

= v(0, t) = µ′′
3(t)− µ4(t), 0 ≤ t ≤ T. (1.7)

Here, in receiving the first equality of (1.7), we took into account that

d

dt
w(t, t) =

( ∂
∂t

+
∂

∂x

)
w
∣∣
t=x

,
∂

∂ν

∣∣∣∣
γ
1,T

=
1√
2

( ∂

∂x
− ∂

∂t

)
,

therefore,

v
∣∣
γ
1,T

= □u
∣∣
γ
1,T

=
( ∂
∂t

+
∂

∂x

)( ∂
∂t

− ∂

∂x

)
u
∣∣
γ
1,T

= −
√
2
( ∂
∂t

+
∂

∂x

) ∂u
∂ν

∣∣∣∣
γ
1,T

= −
√
2µ′

2(t),



42 Teona Bibilashvili, Sergo Kharibegashvili

while in receiving the second equality of (1.7), we took into account (1.2), (1.3), and

v = □u =
∂2u

∂t2
− ∂2u

∂x2
,

therefore,

v
∣∣
γ
2,T

= v(0, t) =
∂2u

∂t2
(0, t)− ∂2u

∂x2
(0, t) = µ′′

3(t)− µ4(t).

Vice versa, if u, v ∈ C2(DT ) represents a classical solution to problem (1.4)–(1.7), where µ1, µ4 ∈
C2([0, T ]), µ2 ∈ C3([0, T ]), µ3 ∈ C4([0, T ]), then the function u will be a classical solution to problem
(1.1)–(1.3).

Definition 1.1. Let f, g ∈ C(R), F ∈ C(DT ) and, for simplicity, µi = 0, i = 1, . . . , 4. The system of
functions u and v is called a generalized solution of problem (1.4)–(1.7) of the class C if u, v ∈ C(DT )
and there exist the sequences

un, vn ∈
◦
C2(DT ) :=

{
w∈ C2(DT ): w

∣∣
γ
i,T

= 0, i = 1, 2
}

(1.8)

such that

lim
n→∞

∥un − u∥C(DT ) = 0, lim
n→∞

∥vn − v∥C(DT ) = 0, (1.9)

lim
n→∞

∥L1(un, vn)∥C(DT ) = 0, lim
n→∞

∥L2(un, vn)− F∥C(DT ) = 0. (1.10)

Remark 1.2. It is clear that the classical solution u, v ∈ C2(DT ) of problem (1.4)–(1.7) represents a
generalized solution of class C of this problem.

2 A priori estimate of a solution of the problem (1.4)–(1.7)
Lemma 2.1. Let f, g ∈ C(R), F ∈ C(DT ), µi = 0, i = 1, . . . , 4. Then for any solution u, v of
problem (1.4)–(1.7) of class C the following inequality is valid:

|u(x, t)| ≤ tet∥v∥L2(Dt)
, (x, t) ∈ DT . (2.1)

Proof. Let u, v be the generalized solution of class C of problem (1.4)–(1.7), then there exist the
sequences un, vn which satisfy conditions (1.8)–(1.10).

Consider a function un ∈
◦
C2(DT ) as a classical solution to the following boundary value problem:

L1(un, vn) := □un − vn = Gn(x, t), (x, t) ∈ DT , (2.2)
un

∣∣
γ
1,T

= un(t, t) = 0, un
∣∣
γ
2,T

= un(0, t) = 0, 0 ≤ t ≤ T, (2.3)

where the function
Gn := L1(un, vn) (2.4)

due to (1.10) satisfies the condition

lim
n→∞

∥Gn∥C(DT ) = 0. (2.5)

Multiplying both sides of equation (2.2) by the function ∂un

∂t and integrating over the domain
Dτ := {(x, t) ∈ DT : t < τ}, where 0 < τ ≤ T , we get

1

2

∫
Dτ

∂

∂t

(∂un
∂t

)2

dx dt−
∫
Dτ

∂2un
∂x2

∂un
∂t

dx dt−
∫
Dτ

vn
∂un
∂t

dx dt =

∫
Dτ

Gn
∂un
∂t

dx dt. (2.6)
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Using integration by parts and the Green formula, we obtain

1

2

∫
Dτ

∂

∂t

(∂un
∂t

)2

dx dt =
1

2

∫
∂Dτ

(∂un
∂t

)2

νt ds, (2.7)

−
∫
Dτ

∂2un
∂x2

· ∂un
∂t

dx dt = −
∫
∂Dτ

∂un
∂x

· ∂un
∂t

νx ds+

∫
Dτ

∂un
∂x

· ∂
2un
∂t∂x

dx dt

= −
∫
∂Dτ

∂un
∂x

· ∂un
∂t

νx ds+
1

2

∫
Dτ

∂

∂t

(∂un
∂x

)2

dx dt

= −
∫
∂Dτ

∂un
∂x

· ∂un
∂t

νx ds+
1

2

∫
∂Dτ

(∂un
∂x

)2

νt ds, (2.8)

where ν = (νx, νt) is a unit vector of the outer normal to the boundary ∂Dτ .
Taking into account that ∂Dτ = γ

1,τ
∪ γ

2,τ
∪ ωτ , where γ

i,τ
= γ

i,T
∩ {t ≤ τ}, i = 1, 2, and

ωτ = ∂Dτ ∩ {t = τ} = {t = τ, 0 ≤ x ≤ τ}, we have

(νx, νt)
∣∣
γ
1,T

=
( 1√

2
,− 1√

2

)
, (2.9)

(νx, νt)
∣∣
γ
2,T

= (−1, 0), (νx, νt)¦ωτ
= (0, 1), (2.10)

(νx
2 − νt

2)
∣∣
γ
1,T

= 0. (2.11)

Taking into account (2.9)–(2.11), since un|γ
2,T

= 0 (see (2.3)) and, therefore, ∂un

∂t |γ2,T = 0, from
(2.7) and (2.8) we get

1

2

∫
Dτ

∂

∂t

(∂un
∂t

)2

dx dt =
1

2

∫
∂Dτ

(∂un
∂t

)2

νt ds

=
1

2

∫
ωτ

(∂un
∂t

)2

ds+
1

2

∫
γ1,τ

(∂un
∂t

)2

νt ds+
1

2

∫
γ2,τ

(∂un
∂t

)2

νt ds

=
1

2

∫
ωτ

(∂un
∂t

)2

dx+
1

2

∫
γ
1,τ

(∂un
∂t

)2

νt ds, (2.12)

−
∫
Dτ

∂2un
∂x2

· ∂un
∂t

dx dt = −
∫
∂Dτ

∂un
∂x

· ∂un
∂t

νx ds+
1

2

∫
∂Dτ

(∂un
∂x

)2

νt ds

= −
∫
ωτ

∂un
∂x

· ∂un
∂t

νx ds−
∫
γ
1,τ

∂un
∂x

· ∂un
∂t

νx ds−
∫
γ
2,τ

∂un
∂x

· ∂un
∂t

νx ds

+
1

2

∫
ωτ

(∂un
∂x

)2

νt ds+
1

2

∫
γ1,τ

(∂un
∂x

)2

νt ds+
1

2

∫
γ2,τ

(∂un
∂x

)2

νt ds

= 0−
∫
γ
1,τ

∂un
∂x

· ∂un
∂t

νx ds− 0 +
1

2

∫
ωτ

(∂un
∂x

)2

· 1 dx

+
1

2

∫
γ1,τ

(∂un
∂x

)2

νt ds+ 0

=
1

2

∫
ωτ

(∂un
∂x

)2

dx+
1

2

∫
γ
1,τ

(∂un
∂x

)2

νt ds−
∫
γ
1,τ

∂un
∂x

· ∂un
∂t

νx ds. (2.13)
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From (2.12) and (2.13), in view of (2.11), we have

1

2

∫
Dτ

∂

∂t

(∂un
∂t

)2

dx dt−
∫
Dτ

∂2un
∂x2

· ∂un
∂t

dx dt

=
1

2

∫
ωτ

[(∂un
∂x

)2

+
(∂un
∂t

)2]
dx+

∫
γ
1,τ

1

2νt

[(∂un
∂x

νt −
∂un
∂t

νx

)2

+
(∂un
∂t

)2

(ν2t − ν2x)

]
ds

=
1

2

∫
ωτ

[(∂un
∂x

)2

+
(∂un
∂t

)2]
dx+

∫
γ1,τ

1

2νt

(∂un
∂x

νt −
∂un
∂t

νx

)2

ds. (2.14)

Taking into account that (vt
∂
∂x − vx

∂
∂t ) represents the derivative in a tangent direction, i.e., an

inner differential on the curve γ
1,T

, due to the equality un¦γ1,T = 0, we have

∂un
∂x

νt −
∂un
∂t

νx = 0,

and from (2.14) we obtain
1

2

∫
Dτ

∂

∂t

(∂un
∂t

)2

dx dt−
∫
Dτ

∂2un
∂x2

· ∂un
∂t

dx dt =
1

2

∫
ωτ

[(∂un
∂x

)2

+
(∂un
∂t

)2]
dx. (2.15)

From (2.6) and (2.15) it follows that∫
ωτ

[(∂un
∂x

)2

+
(∂un
∂t

)2]
dx = 2

∫
Dτ

vn
∂un
∂t

dx dt+ 2

∫
Dτ

Gn
∂un
∂t

dx dt. (2.16)

Using a simple inequality 2ab ≤ a2 + b2, from (2.16) we obtain∫
ωτ

[(∂un
∂x

)2

+
(∂un
∂t

)2]
dx ≤

∫
Dτ

[
v2n +

(∂un
∂t

)2]
dx dt+

∫
Dτ

[
G2
n +

(∂un
∂t

)2]
dx dt

= 2

∫
Dτ

(∂un
∂t

)2

dx dt+

∫
Dτ

[
v2n +G2

n

]
dx dt. (2.17)

If we introduce the notation

w(τ) =

∫
ωτ

[(∂un
∂x

)2

+
(∂un
∂t

)2]
dx

and take into account that ∫
Dτ

[(∂un
∂x

)2

+
(∂un
∂t

)2]
dx dt =

τ∫
0

w(σ) dσ,

then from (2.17) we have

w(τ) ≤ 2

∫
Dτ

(∂un
∂t

)2

dx dt+

∫
Dτ

[
v2n +G2

n

]
dx dt

≤ 2

∫
Dτ

[(∂un
∂x

)2

+
(∂un
∂t

)2]
dx dt+

∫
Dτ

[
v2n +G2

n

]
dx dt

= 2

τ∫
0

w(σ) dσ +

∫
Dτ

v2n dx dt+

∫
Dτ

G2
n dx dt

= 2

τ∫
0

w(σ) dσ + ∥vn∥2L2(Dτ )
+ ∥Gn∥2L2(Dτ )

, 0 < τ ≤ T. (2.18)
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According to the Gronwall lemma, from (2.18) we obtain

w(τ) ≤
(
∥vn∥2L2(Dτ )

+ ∥Gn∥2L2(Dτ )

)
e2τ , 0 < τ ≤ T. (2.19)

Since un(0, t) = 0, 0 ≤ t ≤ T , we have

un(x, t) =

x∫
0

∂un
∂x

(ξ, t) dξ, (x, t) ∈ DT ,

whence due to the Cauchy inequality, we have

u2n(x, t) ≤
x∫

0

12 dξ

t∫
0

(∂un
∂x

)2

(ξ, t) dξ ≤ x

t∫
0

(∂un
∂x

)2

(ξ, t) dξ

≤ t

t∫
0

(∂un
∂x

)2

(ξ, t) dξ ≤ t

t∫
0

[(∂un
∂x

)2

+
(∂un
∂t

)2]
(ξ, t) dξ = tw(t), (x, t) ∈ DT . (2.20)

Here, we take into account that if (x, t) ∈ DT , then x < t.
From (2.19) and (2.20) follows

|un(x, t)| ≤ t
1
2w

1
2 (t) ≤ t

1
2

(
∥vn∥2L2(Dt)

+ ∥Gn∥2L2(Dt)

) 1
2

et

≤ t
1
2

(
∥vn∥L2(Dt)

+ ∥Gn∥L2(Dt)

)
et, (x, t) ∈ DT . (2.21)

If we pass to the limit in inequality (2.21) as n → ∞, then in view of (1.9), (1.10) and (2.2), we
obtain

|u(x, t)| ≤ t
1
2 et∥v∥L2(Dt)

, (x, t) ∈ DT .

Consider the conditions imposed on the functions f and g:
s∫

0

f(τ) dτ ≥ −M1 −M2s
2 ∀ s ∈ R, Mi = const ≥ 0, i = 1, 2, (2.22)

|g(s)| ≤ N1 +N2|s| ∀ s ∈ R, Ni = const ≥ 0, i = 1, 2. (2.23)

Lemma 2.2. Let f, g ∈ C(R), F ∈ C(D), µi = 0, i = 1, . . . , 4, and the functions f and g satisfy
conditions (2.22) and (2.23). Then for any generalized solution u, v of problem (1.4)–(1.7) of class
C, the following a priori estimates are valid:

|u(x, t)| ≤ C1∥F∥L2(Dt)
+ C2, (x, t)∈ DT , (2.24)

|v(x, t)| ≤ C3∥F∥L2(Dt)
+ C4, (x, t)∈ DT , (2.25)

where the values Ci = Ci(t) ≥ 0, i = 1, . . . , 4, do not depend on the functions u, v and F .

Proof. Let u, v be a generalized solution of problem (1.4)–(1.7) of class C, then there exist the
sequences un, vn which satisfy conditions (1.8)–(1.10).

Consider the function vn ∈
◦
C2(DT ) as a classical solution of the following boundary value problem:

L2(un, vn) := □ vn + f(vn) + g(un) = Qn(x, t), (x, t) ∈ DT , (2.26)
vn

∣∣
γ
1,T

= vn(t, t) = 0, vn
∣∣
γ
2,T

= vn(0, t) = 0, 0 ≤ t ≤ T, (2.27)

where the function
Qn := L2(un, vn) (2.28)
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due to (1.10) satisfies the condition

lim
n→∞

∥Qn − F∥C(DT ) = 0. (2.29)

Multiplying both sides of equation (2.26) by the function ∂vn
∂t and integrating over the domain

Dτ := {(x, t) ∈ DT : t < τ}, where 0 < τ ≤ T , we obtain

1

2

∫
Dτ

∂

∂t

(∂vn
∂t

)2

dx dt−
∫
Dτ

∂2vn
∂x2

· ∂vn
∂t

dx dt

+

∫
Dτ

f(vn)
∂vn
∂t

dx dt+

∫
Dτ

g(un)
∂vn
∂t

dx dt =

∫
Dτ

Qn
∂vn
∂t

dx dt. (2.30)

Analogously as we obtained (2.16) from (2.6) when proving Lemma 2.1, from (2.30) we have the
following equality:∫

ωτ

[(∂vn
∂x

)2

+
(∂vn
∂t

)2]
dx

= −2

∫
Dτ

f(vn)
∂vn
∂t

dx dt− 2

∫
Dτ

g(un)
∂vn
∂t

dx dt+ 2

∫
Dτ

Qn
∂vn
∂t

dx dt. (2.31)

Using the notation

I(s) =

s∫
0

f(τ) dτ, (2.32)

we have
∂I(vn)

∂t
= f(vn)

∂vn
∂t

.

Taking into account that I(0) = 0, vn¦γ
i,T

= 0, i = 1, 2, and, therefore I(vn)¦γ
i,T

= 0, i = 1, 2, due to
(2.10) and the Green formula, we obtain

− 2

∫
Dτ

f(vn)
∂vn
∂t

dx dt = −2

∫
Dτ

∂I(vn)

∂t
dx dt = −2

∫
∂Dτ

I(vn)νt ds

= −2

∫
ωτ

I(vn) · 1 ds− 2

∫
γ
1,τ

I(vn)νt ds− 2

∫
γ
2,τ

I(vn)νt ds = −2

∫
ωτ

I(vn) dx. (2.33)

In view of (2.22), from (2.32) and (2.33) we get

−2

∫
Dτ

f(vn)
∂vn
∂t

dx dt ≤ 2

∫
ωτ

(M1 +M2v
2
n) dx ≤ 2M1τ + 2M2

∫
ωτ

v2n dx. (2.34)

According to condition (2.23), we have

−2

∫
Dτ

g(un)
∂vn
∂t

dx dt ≤
∫
Dτ

(
g2(un) +

(∂vn
∂t

)2)
dx dt

≤
∫
Dτ

(
N1 +N2|un|

)2
dx dt+

∫
Dτ

(∂vn
∂t

)2

dx dt

≤
∫
Dτ

(2N2
1 + 2N2

2u
2
n) dx dt+

∫
Dτ

(∂vn
∂t

)2

dx dt

= τ2N2
1 + 2N2

2

∫
Dτ

u2n(x, t) dx dt+

∫
Dτ

(∂vn
∂t

)2

dx dt, (2.35)
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where we use the simple inequalities 2ab ≤ a2 + b2, (a+ b)
2 ≤ 2a2 + 2b2 and the equality∫

Dτ

1· dx dτ =
1

2
τ2.

For (x, t)∈ Dτ , from (2.21) we have

u2n(x, t) ≤ t
(
∥vn∥L2(Dτ )

+ ∥Gn∥L2(Dτ )

)2

e2t

≤ 2te2t
(
∥vn∥2L2(Dτ )

+ ∥Gn∥2L2(Dτ )

)
≤ 2τe2τ

(
∥vn∥2L2(Dτ )

+ ∥Gn∥2L2(Dτ )

)
,

whence we obtain∫
Dτ

u2n(x, t) dx dt ≤ 2τe2τ
(
∥vn∥2L2(Dτ )

+ ∥Gn∥2L2(Dτ )

) ∫
Dτ

1· dx dτ

= τ3e2τ∥vn∥2L2(Dτ )
+ τ3e2τ∥Gn∥2L2(Dτ )

= τ3e2τ
∫
Dτ

v2n dx dt+ τ3e2τ∥Gn∥2L2(Dτ )
. (2.36)

Due to (2.34), (2.35) and (2.36), from (2.31) we obtain∫
ωτ

[(∂vn
∂x

)2

+
(∂vn
∂t

)2]
dx

≤ 2M1τ + 2M2

∫
ωτ

v2n dx+ τ2N2
1 + 2N2

2

[
τ3e2τ

∫
Dτ

v2n dx dt+ τ3e2τ∥Gn∥2L2(Dτ )

]

+

∫
Dτ

(∂vn
∂t

)2

dx dt+

∫
Dτ

(∂vn
∂t

)2

dx dt+

∫
Dτ

Q2
n

∂vn
∂t

dx dt

≤ (2M2 + 2N2
2 τ

3e2τ + 2)

∫
Dτ

[
v2n +

(∂vn
∂x

)2

+
(∂vn
∂t

)2]
dx dt

+ 2M1τ + τ2N2
1 + 2N2

2 τ
3e2τ∥Gn∥2L2(Dτ )

+

∫
Dτ

Q2
n dx dt. (2.37)

If we take into account conditions (2.27) and use the Newton–Leibniz formula, we get

vn(x, τ) = vn(x, x) +

τ∫
x

∂vn
∂t

(x, t) dt =

τ∫
x

∂vn
∂t

(x, t) dt, (x, τ)∈ DT ,

and, therefore, using Cauchy’s inequality, we get

v2n(x, τ) ≤
[ τ∫
x

1 ·
∣∣∣∂vn
∂t

(x, t)
∣∣∣ dt]2 ≤

τ∫
x

12 dt ·
τ∫
x

(∂vn
∂t

(x, t)
)2

dt

= (τ − x)

τ∫
x

(∂vn
∂t

(x, t)
)2

dt ≤ T

τ∫
x

(∂vn
∂t

(x, t)
)2

dt. (2.38)

Integrating equality (2.38), we obtain∫
ωτ

v2n dx =

τ∫
0

v2n(x, τ) dx ≤ T

τ∫
0

[ τ∫
x

(∂vn
∂t

(x, t)
)2

dt

]
dx = T

∫
Dτ

(∂vn
∂t

)2

dx dt. (2.39)
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If we add inequalities (2.37) and (2.39), we get∫
ωτ

[
v2n +

(∂vn
∂x

)2

+
(∂vn
∂t

)2]
dx

≤ (2M2 + 2N2
2 τ

3e2τ + T + 3)

∫
Dτ

[
v2n +

(∂vn
∂x

)2

+
(∂vn
∂t

)2]
dx dt

+ 2M1τ + τ2N2
1 + 2N2

2 τ
3e2τ∥Gn∥2L2(Dτ )

+ ∥Qn∥2L2(Dτ )
. (2.40)

Using the notation
w1(τ) =

∫
ωτ

[
v2n +

(∂vn
∂x

)2

+
(∂vn
∂t

)2]
dx (2.41)

and taking into account

∫
Dτ

[
v2n +

(∂vn
∂x

)2

+
(∂vn
∂t

)2]
dx =

τ∫
0

w(σ) dσ,

from (2.40) we obtain

w1(τ) ≤M3

τ∫
0

w(σ) dσ + M̃4, 0 < τ ≤ T, (2.42)

where

M3 = 2M2 + 2N2
2T

3e2T + T + 3, (2.43)
M̃4 = 2M1τ + τ2N2

1 + 2N2
2 τ

3e2τ∥Gn∥2L2(Dτ )
+ ∥Qn∥2L2(Dτ )

.

According to the Gronwall lemma, from (2.42) we obtain

w1(τ) ≤ M̃4e
M3τ , 0 < τ ≤ T. (2.44)

Analogously to how inequality (2.20) was obtained, from (2.41) and (2.44) we get

|vn(x, t)| ≤ t
1
2w

1
2
1 (t) ≤ M̃

1
2
4 t

1
2 e

1
2 M3t, (x, t) ∈ DT , (2.45)

where τ = t in M̃4.
If we pass to the limit in (2.45) as n → ∞, due to the limit equalities (1.9), (2.5) and (2.29), we

obtain
|v(x, t)| ≤M

1
2
4 t

1
2 e

1
2M3t, (x, t) ∈ DT , (2.46)

where
M4 = 2M1t+ t2N2

1 + ∥F∥2L2(Dt)
. (2.47)

From (2.1) and (2.46) it follows that

|u(x, t)| ≤ tet∥v∥L2(Dt)
= tet

(∫
Dt

v2 dx dt

) 1
2

≤ tet
(∫
Dt

M4Te
M3T dx dt

) 1
2

= tet
(
M4Te

M3T

∫
Dt

1 dx dt

) 1
2

= tet
(
M4Te

M3T
1

2
t2
) 1

2

=
1√
2
t2T

1
2M

1
2
4 e

t+ 1
2 M3T , (x, t)∈ DT . (2.48)
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According to the simple inequality ( m∑
i=1

a2i

) 1
2 ≤

m∑
i=1

|ai|,

from (2.47) we have
M

1
2
4 ≤ (2M1t)

1
2 + tN1 + ∥F∥L2(Dt)

(2.49)

and (2.46), (2.48) can be rewritten as follows:

|u(x, t)| ≤ C1∥F∥L2(Dt)
+ C2, (x, t)∈ DT ,

|v(x, t)| ≤ C3∥F∥L2(Dt)
+ C4, (x, t) ∈ DT ,

where

C1 =
1√
2
t2T

1
2 et+

1
2 M3T , C2 =

[
(2M1t)

1
2 + tN1

] 1√
2
t2T

1
2 et+

1
2 M3T , (2.50)

C3 = t
1
2 e

1
2 M3t, C4 =

[
(2M1t)

1
2 + tN1

]
t
1
2 e

1
2 M3t. (2.51)

This proves Lemma 2.2, where the constants Ci, i = 1, . . . , 4, from (2.24) and (2.25) are given by
formulas (2.50) and (2.51).

3 The uniqueness of a solution of the problem (1.4)–(1.7)
Definition 3.1. We say that the functions f and g satisfy the Lipchitz local condition if ∀ r=const> 0,

|f(s2)− f(s1)| ≤ Λ1(r)|s2 − s1| ∀ s1, s2 ∈ R : |si| ≤ r, i = 1, 2, (3.1)

and
|g(s2)− g(s1)| ≤ Λ2(r)|s2 − s1| ∀ s1, s2 ∈ R : |si| ≤ r, i = 1, 2, (3.2)

where Λi = Λi(r) = const ≥ 0, i = 1, 2.

It is obvious that if f (resp. g) ∈ C1(R), then condition (3.1) (resp. (3.2)) is valid, where due to
the Lagrange theorem Λ1(r) = max

|s|≤r
|f ′(s)| (resp. Λ2(r) = max

|s|≤r
|g′(s)|).

Theorem 3.1. Let f, g ∈ C(R), F ∈ C(DT ) and µi = 0, i = 1, . . . , 4. If the functions f and g satisfy
the Lipschitz local conditions (3.1) and (3.2), then problem (1.4)–(1.7) cannot have more than one
generalized solution of class C.

Proof. Let problem (1.4)–(1.7) have two generalized solutions u1, v1 and u2, v2 of class C, i.e., due
to the definition, there exist the sequences u1n, v1n and u2n, v2n which belong to the class

◦
C2(DT )

defined in (1.8) and satisfy the following limit equalities:

lim
n→∞

∥uin − ui∥C(DT ) = 0, lim
n→∞

∥vin − vi∥C(DT ) = 0, i = 1, 2, (3.3)

lim
n→∞

∥L1(uin, vin)∥C(DT ) = 0, lim
n→∞

∥L2(uin, vin)− F∥C(DT ) = 0, i = 1, 2. (3.4)

Introducing the notation
φn = u2n − u1n, ψn = v2n − v1n, (3.5)

and taking into account the definition of operators L1 and L2 from (1.4) and (1.5), we have

□φn = ψn +An(x, t), (x, t) ∈ DT , (3.6)
φn

∣∣
γ
1,T

= φn(t, t) = 0, φn
∣∣
γ
2,T

= φn(0, t) = 0, 0 ≤ t ≤ T,

□ψn = −(f(v2n)− f(v1n))− (g(v2n)− g(v1n)) +Bn(x, t), (x, t) ∈ DT , (3.7)
ψn

∣∣
γ
1,T

= ψn(t, t) = 0, ψn
∣∣
γ
2,T

= ψn(0, t) = 0, 0 ≤ t ≤ T,



50 Teona Bibilashvili, Sergo Kharibegashvili

where the sequences

An := L1(u2n, v2n)− L1(u1n, v1n),

Bn := L2(u2n, v2n)− L2(u1n, v1n),

according to the limit equalities (3.4), satisfy the conditions

lim
n→∞

∥An∥C(DT ) = 0, lim
n→∞

∥Bn∥C(DT ) = 0. (3.8)

Multiplying both sides of equation (3.6) by the function ∂φn

∂t , integrating over the domain Dτ :=
{(x, t)∈ DT : t < τ}, where 0 < τ ≤ T , and repeating those reasonings which were used for obtaining
(2.16) from (2.6), we get∫

ωτ

[(∂φn
∂x

)2

+
(∂φn
∂t

)2]
dx = 2

∫
Dτ

ψn
∂φn
∂t

dx dt+ 2

∫
Dτ

An
∂φn
∂t

dx dt. (3.9)

Similarly, as (2.16) was obtained, from (2.36) and (3.9) we get∫
Dτ

φ2
n(x, t) dx dt ≤ τ3e2τ

∫
Dτ

ψ2
n dx dt+ τ3e2τ∥An∥2L2(DT ). (3.10)

Multiplying both sides of (3.7) by the function ∂ψn

∂t and integrating over the domain Dτ by analogy
to the equality (2.31), we have∫
ωτ

[(∂ψn
∂x

)2

+
(∂ψn
∂t

)2]
dx = −2

∫
Dτ

(f(v2n)− f(v1n))
∂ψn
∂t

dx dt

− 2

∫
Dτ

(g(v2n)− g(v1n))
∂ψn
∂t

dx dt+ 2

∫
Dτ

Bn
∂ψn
∂t

dx dt. (3.11)

Due to the limit equalities (3.3), since the sequences {uin} and {vin} converge in the space C(DT ),
they are bounded in this space. Therefore, there exists r > 0 such that

∥uin∥C(DT ) ≤ r, ∥vin∥C(DT ) ≤ r ∀n ∈ N, i = 1, 2. (3.12)

In view of (3.1), (3.5) and (3.12), we have∣∣∣∣− 2

∫
Dτ

(f(v2n)− f(v1n))
∂ψn
∂t

dx dt

∣∣∣∣ ≤ 2

∫
Dτ

Λ1(r)|v2n − v1n|
∣∣∣∂ψn
∂t

∣∣∣ dx dt
= Λ1(r)

∫
Dτ

2ψn

∣∣∣∂ψn
∂t

∣∣∣ dx dt ≤ Λ1

∫
Dτ

ψ2
n dx dt+ Λ1

∫
Dτ

∣∣∣∂ψn
∂t

∣∣∣2 dx dt. (3.13)

Analogously, from (3.2), (3.5) and (3.12) we obtain∣∣∣∣− 2

∫
Dτ

(g(v2n)− g(v1n))
∂ψn
∂t

dx dt

∣∣∣∣ ≤ Λ2

∫
Dτ

φ2
n dx dt+ Λ2

∫
Dτ

∣∣∣∂ψn
∂t

∣∣∣2 dx dt. (3.14)

From (3.11), (3.13) and (3.14) we have∫
ωτ

[(∂ψn
∂x

)2

+
(∂ψn
∂t

)2]
dx ≤ Λ1

∫
Dτ

ψ2
n dx dt+ Λ1

∫
Dτ

∣∣∣∂ψn
∂t

∣∣∣2 dx dt
+ Λ2

∫
Dτ

φ2
n dx dt+ Λ2

∫
Dτ

∣∣∣∂ψn
∂t

∣∣∣2 dx dt+ ∫
Dτ

B2
n dx dt+

∫
Dτ

∣∣∣∂ψn
∂t

∣∣∣2 dx dt
= Λ1

∫
Dτ

ψ2
n dx dt+ Λ2

∫
Dτ

φ2
n dx dt+ (Λ1 + Λ2 + 1)

∫
Dτ

∣∣∣∂ψn
∂t

∣∣∣2 dx dt+ ∫
Dτ

B2
n dx dt, 0 < τ ≤ T,
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whence due to (3.10),∫
ωτ

[(∂ψn
∂x

)2

+
(∂ψn
∂t

)2]
dx ≤ Λ1

∫
Dτ

ψ2
n dx dt+ Λ2τ

3e2τ
∫
Dτ

ψ2
n dx dt+ Λ2τ

3e2τ∥An∥2L2(DT )

+ (Λ1 + Λ2 + 1)

∫
Dτ

∣∣∣∂ψn
∂t

∣∣∣2 dx dt+ ∫
Dτ

B2
n dx dt ≤ (Λ1 + Λ2T

3e2T )

∫
Dτ

ψ2
n dx dt

+ (Λ1 + Λ2 + 1)

∫
Dτ

∣∣∣∂ψn
∂t

∣∣∣2 dx dt+ Λ2T
3e2T ∥An∥2L2(DT ) + ∥Bn∥2L2(DT ). (3.15)

Note that inequality (2.39) is valid if instead of vn we take the function ψn, i.e.,∫
ωτ

ψ2
n dx ≤ T

∫
Dτ

(∂ψn
∂t

)2

dx dt. (3.16)

Summing up inequalities (3.15) and (3.16), we obtain∫
ωτ

[
ψ2
n +

(∂ψn
∂x

)2

+
(∂ψn
∂t

)2]
dx ≤ (Λ1 + Λ2T

3e2T )T

∫
Dτ

(∂ψn
∂t

)2

dx dt

+ (Λ1 + Λ2 + 1)

∫
Dτ

∣∣∣∂ψn
∂t

∣∣∣2 dx dt+ Λ2T
3e2T ∥An∥2L2(DT ) + ∥Bn∥2L2(DT )

≤ (Λ1T + Λ2T
4e2T + Λ1 + Λ2 + 1)

∫
Dτ

∣∣∣∂ψn
∂t

∣∣∣2 dx dt
+ Λ2T

3e2T ∥An∥2L2(DT ) + ∥Bn∥2L2(DT )

≤ (Λ1T + Λ2T
4e2T + Λ1 + Λ2 + 1)

∫
Dτ

[
ψ2
n +

(∂ψn
∂x

)2

+
(∂ψn
∂t

)2]
dx dt

+ Λ2T
3e2T ∥An∥2L2(DT ) + ∥Bn∥2L2(DT )

≤ K1

∫
Dτ

[
ψ2
n +

(∂ψn
∂x

)2

+
(∂ψn
∂t

)2]
dx dt+K2n, (3.17)

where

K1 = (Λ1T + Λ2T
4e2T + Λ1 + Λ2 + 1), K2n = Λ2T

3e2T ∥An∥2L2(DT ) + ∥Bn∥2L2(DT ). (3.18)

Introducing the notation
w3(τ) :=

∫
ωτ

[
ψ2
n +

(∂ψn
∂x

)2

+ (
∂ψn
∂t

)2]
dx (3.19)

and taking into account the equality∫
Dτ

[
ψ2
n +

(∂ψn
∂x

)2

+
(∂ψn
∂t

)2]
dx dt =

τ∫
0

w3(σ) dσ,

from (3.17) we obtain

w3(σ) ≤ K1

τ∫
0

w3(σ) dσ +K2n, 0 < τ ≤ T, (3.20)

and due to the Gronwall lemma, from (3.20) it follows that

w3(τ) ≤ K2ne
K1τ , 0 < τ ≤ T.
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According to the limit equality (3.8), we have

lim
n→∞

∥An∥L2(DT ) = 0, lim
n→∞

∥Bn∥L2(DT ) = 0

Therefore, in view of (3.18), we obtain
lim
n→∞

K2n = 0. (3.21)

Analogously to (2.20), for the function ψn, the inequality

ψ2
n(x, t) ≤ t

t∫
0

[(∂ψn
∂x

)2

+
(∂ψn
∂t

)2]
(ξ, t) dξ

is valid and, therefore, (3.19) implies

ψ2
n(x, t) ≤ t

t∫
0

[
ψ2
n +

(∂ψn
∂x

)2

+
(∂ψn
∂t

)2]
(ξ, t) dξ = tw3(t) ≤ tK2ne

K1t, (x, t) ∈ DT . (3.22)

Passing to the limit in inequality (3.22) as n → ∞, and taking into account the limit equalities
(3.3), (3.5) and (3.21), we have

|(v2 − v1)(x, t)|2 = lim
n→∞

∣∣(v2n − v1n)(x, t)
∣∣2 = lim

n→∞
ψ2
n(x, t) ≤ teK1t lim

n→∞
K2n = 0, (3.23)

whence we get v2(x, t) = v1(x, t), (x, t) ∈ DT .
From (3.5), (3.8), (3.10) and (3.23), we obtain∫

DT

(u2 − u1)
2 dx dt = lim

n→∞

∫
DT

(u2n − u1n)
2 dx dt = lim

n→∞

∫
DT

φ2
n dx dt

≤ T 3e2T lim
n→∞

∫
DT

ψ2
n dx dt+ T 3e2T lim

n→∞
∥An∥2L2(DT ) ≤ T 3e2T lim

n→∞

∫
DT

TK2ne
K1T dx dt

= T 4e2T eK1T

∫
DT

1 dx dt lim
n→∞

Kn = T 4e2T eK1T · 1
2
T 2 lim

n→∞
K2n = 0,

whence we conclude that u2 = u1 in the domain DT . The theorem is proved.

4 Equivalent reduction of problem (1.4)–(1.7) to a system
of Volterra type integral equations

Let us now consider the equivalent reduction of problem (1.4)–(1.7) to a system of Volterra type
integral equations in the class of continuous functions C(DT ).

Let the functions u and v represent a generalized solution of the class C to problem (1.4)–(1.7), i.e.,
there exist the sequences {un} and {vn} satisfying conditions (1.8), (1.9) and (1.10). As it has been
shown, the function un is a classical solution of problem (2.2), (2.3), where the function Gn is given
by formula (2.4), and it satisfies the limit equality (2.5). Analogously, the function vn is a classical
solution of problem (2.26), (2.27), where the function Qn is given by formula (2.28), and it satisfies
the limit equality (2.29).

Let P = P (x, t) be any point of DT . Denote by Ωx,t the characteristic rectangle PP1P2P3 with
vertices P1 and P2, P3 laying on the curves γ

2,T
and γ

1,T
, respectively, i.e.,

P1 := P1(0, t− x), P2 := P2

( t− x

2
,
t− x

2

)
, P3 := P3

( t+ x

2
,
t+ x

2

)
.
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Integrating equation (2.2) over the rectangle Ωx,t, conducting integration by parts and taking into
account homogeneous boundary conditions (2.3), we obtain [15]

un(x, t)−
1

2

∫
Ωx,t

vn(x
′, t′) dx′ dt′ =

1

2

∫
Ωx,t

Gn(x
′, t′) dx′ dt′, (x, t) ∈ DT . (4.1)

By analogous reasoning with respect to problem (2.26), (2.27), we have

vn(x, t) +
1

2

∫
Ωx,t

[
f(vn) + g(un)

]
(x′, t′) dx′ dt′ =

1

2

∫
Ωx,t

Qn(x
′, t′) dx′ dt′, (x, t) ∈ DT . (4.2)

Passing to the limit in equalities (4.1) and (4.2) as n → ∞ and due to the limit equalities (1.9),
(1.10) and (2.5), (2.29) with respect to the functions u and v, we obtain the following Volterra type
system of nonlinear integral equations in the class of continuous functions C(DT ) :

u(x, t)− 1

2

∫
Ωx,t

v(x′, t′) dx′ dt′ = 0, (x, t) ∈ DT , (4.3)

v(x, t) +
1

2

∫
Ωx,t

[
f(v) + g(u)

]
(x′, t′) dx′ dt′ =

1

2

∫
�x,t

F (x′, t′) dx′ dt′, (x, t) ∈ DT . (4.4)

Remark 4.1. When f, g ∈ C1(R), F ∈ C1(DT ), the reverse proposition is valid: if the functions u
and v represent a solution of the class C(DT ) to system (4.3), (4.4), then these functions represent a
generalized solution of class C to problem (1.4)–(1.7) [1, 16].

Let us introduce the notation U := (u, v) and rewrite the system of integral equations (4.3), (4.4)
in a vectorial form

U(x, t) + (KU)(x, t) = Φ(x, t), (x, t) ∈ DT , (4.5)

where

K = (K1,K2); (K1U)(x, t) = −(K0v)(x, t),

(K2U)(x, t) = (K0(f(v) + g(u)))(x, t), (4.6)

(K0w)(x, t) =
1

2

∫
�x,t

w(x′, t′) dx′ dt′, (4.7)

Φ(x, t) = (0, (K0F )(x, t)). (4.8)

5 The smoothness of a solution of problem (1.4)–(1.7).
Global solvability of problem (1.4)–(1.7) in the class
of continuous functions. The existence of a global
solution in the domain D∞

Remark 5.1. As is known, the operator K0 defined by formula (4.7) satisfies the following conditions
of smoothness: if w ∈ Ck(DT ), then K0w ∈ Ck+1(DT ), k = 0, 1, . . . . Therefore, when f, g ∈ C1(R),
F ∈ C1(DT ), the continuous solution U = (u, v) of system (4.5) satisfies the following conditions of
smoothness: u, v ∈ C2(DT ) and represents a classical solution of problem (1.4)–(1.7).

Remark 5.2. As is known, the space C1(DT ) is compactly embedded into the space C(DT ). There-
fore, if we take into account Remark 5.1 and consider K as an operator acting from the space C(DT )
to the space C(DT ), then due to formula (4.5), we find that the operator

K : C(DT ) → C(DT )
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is continuous and compact. Therefore, the operator L : C(DT ) → C(DT ) acting by the rule

(LU)(x, t) = −(KU)(x, t) + Φ(x, t), (x, t) ∈ DT , (5.1)

will also be continuous and compact, and equation (4.5) in the space C(DT ) can be rewritten as
follows:

U = LU. (5.2)

Remark 5.3. It follows from the above reasoning that if f, g ∈ C1(R), F ∈ C1(DT ), then U :=
(u, v) ∈ C(DT ) is a generalized solution of class C to problem (1.4)–(1.7) if and only if U is a solution
of problem (5.2) of class C(DT ). Hence it follows from Lemma 2.2 that when conditions (2.22), (2.23)
are fulfilled, the solution of equation (5.2) of class C(DT ) satisfies a priori estimates (2.24) and (2.25).
From equation (5.2) and the structure of constants Ci, i = 1, . . . , 4, and from a priori estimates (2.24)
and (2.25), it follows that the solution of the equation U = τLU of class C(DT ), where the parameter
τ ∈ [0, 1], satisfies the same a priori estimates (2.24) and (2.25), where the constants Ci, i = 1, . . . , 4,
in view of (2.22), (2.23), (2.43), (2.50) and (2.51), do not depend on the function F and the parameter
τ . Therefore, since the operator L : C(DT ) → C(DT ) from equation (5.2) is continuous and compact,
according to the Leray–Schauder theorem [33], equation (5.2) has at least one solution in the space
C(DT ) which, as it was noted above, is also a generalized solution of problem (1.4)–(1.7) of class C.

Thus, according to Theorem 3.1 and Remark 5.1, the following statement is valid.

Theorem 5.1. Let f, g ∈ C1(R), F ∈ C1(DT ), µi = 0, i = 1, . . . , 4, and the functions f and g satisfy
conditions (2.22) and (2.23). Then problem (1.4)–(1.7) has a unique generalized solution of the class
C which is also a classical solution of the same problem in the domain DT .

From Theorems 3.1 and 5.1 follows

Theorem 5.2. Let f, g ∈ C1(R), F ∈ C1(D∞), µi = 0, i = 1, . . . , 4, and the functions f and g
satisfy conditions (2.22) and (2.23), then problem (1.4)–(1.7) for T = ∞ has a unique global classical
solution in the domain D∞.

Proof. From Theorem 5.1, it follows that there exists a unique classical solution uk, vk of problem
(1.4)–(1.7) in the domain DT , where T = k ∈ N . Since uk+1|Dk

is also a classical solution of problem
(1.4)–(1.7) in the domain Dk, because of the uniqueness of the solution, we have uk+1|Dk

= uk,
vk+1|Dk

= vk. Therefore, the functions u and v constructed by the rule u(x, t) = uk(x, t), v(x, t) =
vk(x, t), when k = [t] + 1, where [t] is an entire part of number t and (x, t) ∈ D∞, represent a unique
global solution of problem (1.4)–(1.7) in the domain D∞. The theorem is proved.

Definition 5.1. Let f, g ∈ C(R), F ∈ C(D∞), µi = 0, i = 1, . . . , 4. Problem (1.4)–(1.7) is called
globally solvable in the class C if for any positive T , this problem has at least one generalized solution
of class C in the domain DT in the sense of Definition 1.1.

Remark 5.4. It is obvious that if problem (1.4)–(1.7) is not globally solvable in the class C in the
sense of Definition 3.1, then it does not have a global classical solution in the domain D∞. Besides,
if the conditions of Theorem 5.2 are fulfilled, then problem (1.4)–(1.7) has a global classical solution
in the domain D∞ and, therefore, it is also globally solvable in the class C.

6 Nonexistence of solutions of problem (1.4)–(1.7)
Below, we show that if conditions (2.22) and (2.23) are violated, then problem (1.4)–(1.7) may not be
globally solvable in the sense of Definition 3.1.

Theorem 6.1. Let f = 0, g ∈ C1(R), F0∈ C1(DT ), F0|DT
> 0 and F = λF0, λ = const > 0, µi = 0,

i = 1, . . . , 4. Then if g(u) ≤ −|u|α, α = const > 1, there exists a number λ0 = λ0(F0, α) > 0 such that
for λ > λ0, problem (1.4)–(1.7) does not have a generalized solution of class C in the domain DT .
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Proof. Let u, v represent a generalized solution of problem (1.4)–(1.7) of class C. Since f = 0,
g ∈ C1(R) and F ∈ C1(DT ), according to Remarks 4.1 and 5.1, this solution will be a classical
solution of problem (1.4)–(1.7). Therefore, the function u satisfies equation (1.1) in the domain DT ,
i.e.,

□2 u+ g(u) = F (x, t), (x, t) ∈ DT , (6.1)
and g(u),□2 u ∈ C(DT ).

Let us consider a test function

φ ∈
◦
C4(DT , ∂DT ) :=

{
ψ ∈ C4(DT ) : ψ

∣∣
DT

≥ 0, ψ
∣∣
∂DT

=
∂iψ

∂νi

∣∣∣∣
∂DT

= 0, i = 1, 2, 3

}
,

where ν = (νx, νt) is a unit vector of the outer norm to the boundary ∂DT . Let us multiply by it
both sides of equation (6.1) and integrate over the domain DT . By integration by parts and taking
into account that ψ|∂DT

= ∂iψ
∂νi |∂DT

= 0, i = 1, 2, 3, we obtain∫
DT

u□2 φ dx dt = −
∫
DT

g(u)φ dx dt+ λ

∫
DT

F0φ dx dt ∀φ ∈
◦
C4(DT , ∂DT ). (6.2)

According to the conditions g(u) ≤ −|u|α and φ ≥ 0, from (6.2) it follows∫
DT

|u|αφ dx dt ≤
∫
DT

u□2 φ dx dt− λ

∫
DT

F0φ dx dt ∀φ ∈
◦
C4(DT , ∂DT ). (6.3)

Below, we use the method of test functions [30]. Consider the test function φ ∈
◦
C4(DT , ∂DT )

such that φ|DT
> 0. If in the Young inequality with parameter ε > 0

ab ≤ ε

α
aα +

1

α′εα′−1
bα

′
, a, b ≥ 0, α′ =

α

α− 1
,

we take a = |u|φ 1
α and b = |□2 φ|

φ
1
α

, then due to α′

α = α− 1, we obtain

|u□2 φ| = |u|φ 1
α
|□2 φ|
φ

1
α

≤ ε

α
|u|αφ+

1

α′εα′−1

|□2 φ|α
′

φα′−1
.

From (6.3) and (6.3), we have

(
1− ε

α

) ∫
DT

|u|αφ dx dt ≤ 1

α′εα′−1

∫
DT

|□2 φ|α
′

φα′−1
dx dt− λ

∫
DT

F0φ dx dt,

whence for ε < α, we obtain∫
DT

|u|αφ dx dt ≤ 1

(α− ε)α′εα′−1

∫
DT

|□2 φ|α
′

φα′−1
dx dt− αλ

α− ε

∫
DT

F0φ dx dt. (6.4)

In view of the equalities α′ = α
α−1 , α = α′

α′−1 and

min
0<ε<α

α

(α− ε)α′εα′−1
= 1,

which is reached for ε = 1, from (6.4) we have∫
DT

|u|αφ dx dt ≤
∫
DT

|□2 φ|α
′

φα′−1
dx dt− α′λ

∫
DT

F0φ dx dt. (6.5)
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It is easy to show the existence of a function φ for which

φ ∈
◦
C4(DT , ∂DT ), φ|DT

> 0, κ0 =

∫
DT

|□2 φ|α
′

φα′−1
dx dt < +∞. (6.6)

Indeed, the function built by the formula

φ(x, t) = [x(t− x)(T − t)]
m

for a sufficiently large natural m satisfies conditions (6.6).
Since according to the condition F0 ∈ C(DT ), F0|DT

> 0 and φ|DT
> 0, we have

0 < κ1 =

∫
DT

F0φ dx dt < +∞. (6.7)

Denote by χ(λ) the right-hand side of inequality (6.5) which is linear with respect to the parame-
ter λ. Then from (6.5), (6.6) and (6.7), we have

χλ) < 0, when λ > µ0 and χ(λ) > 0, when λ < µ0, (6.8)

where
χ(λ) = κ0 − α′λκ1, λ0 =

κ0
α′κ1

.

According to (6.8), when λ > λ0, the left-hand side of (6.5) is negative, while the right-hand side
is non-negative. This contradiction proves the theorem.

Note that when g(u) ≤ −|u|α, α = const > 1, condition (2.23) is violated.

7 Local solvability of problem (1.4)–(1.7) in the class
of continuous functions

Definition 7.1. Let f, g ∈ C(R), F ∈ C(D∞), µi = 0, i = 1, . . . , 4. Problem (1.4)–(1.7) is called
locally solvable in the class C if there exists a positive constant T0 = T0(F ) such that problem
(1.4)–(1.7) has at least one generalized solution of class C in the domain DT , when T ≤ T 0.

Theorem 7.1. Let f, g ∈ C1(R), µi = 0, i = 1, . . . , 4. Then for any function F ∈ C1(D∞), problem
(1.4)–(1.7) is locally solvable in the class C. Moreover, there exists a positive constant T0 = T0(F )
such that problem (1.4)–(1.7) has a unique generalized solution of class C in the domain DT , when
T ≤ T0, which represents a classical solution of this problem.

Remark 7.1. In case the conditions of Theorem 6.1 are fulfilled, problem (1.4)–(1.7) for any function
F ∈ C1(D∞) may not be globally solvable. Indeed, if F0 ∈ C1(D∞), F0|D∞ > 0, and for a fixed
positive T we take F = λF0, then this problem does not have a generalized solution of class C in the
domain DT , when λ > λ0.

Proof of Theorem 7.1. According to Remark 5.3 U = (u, v) ∈ C(DT ) represents a generalized solution
of problem (1.4)–(1.7) of class C if and only if U is a solution of equation (5.2) from the space C(DT ).

Let us fix the positive constants T1 and r. Below, we suppose that |U | = |(u, v)| = |u| + ⌈v⌉,
∥U∥C(DT ) = ∥(u, v)∥C(DT ) = ∥u∥C(DT ) + ∥v∥C(DT ), and denote by Br(0) a ball of radius r in the
space DT of continuous vector functions U = (u, v) with a center in the null element (0, 0), i.e.,

Br(0) :=
{
U = (u, v) ∈ C(DT ) : ∥(u, v)∥C(DT ) ≤ r

}
.
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When U ∈ Br(0), due to (4.6)–(5.1), if we take into consideration the structure of the operator L
from equation (5.2), take T ≤ T1 and the point (x, t) ∈ DT , we get

|(LU)(x, t)| ≤ |(KU)(x, t)|+ |Φ(x, t)| ≤ |(K1U)(x, t)|+ |(K2U)(x, t)|+ |(K0F )(x, t)|
≤ |(K0v)(x, t)|+ |(K0(f(v) + g(u)))(x, t)|+ |(K0F )(x, t)|

≤ 1

2
∥v∥C(Dt)

∫
Ωx,t

1 dx dt+
1

2

(
max
|s|≤r

|f(s)|+ max
|s|≤r

|g(s)|
) ∫
Ωx,t

1 dx dt

+
1

2
∥F∥C(Dt)

∫
Ωx,t

1 dx dt

≤ 1

2

(
∥v∥C(Dt)

+ max
|s|≤r

|f(s)|+ max
|s|≤r

|g(s)|+ ∥F∥C(Dt)

) 1

2
t2

≤ 1

4
T 2

(
∥v∥C(DT1

) + max
|s|≤r

|f(s)|+ max
|s|≤r

|g(s)|+ ∥F∥C(DT1
)

)
,

whence we obtain

∥LU∥C(DT ) ≤
1

4
T 2

(
∥v∥C(DT1

) + max
|s|≤r

|f(s)|+ max
|s|≤r

|g(s)|+ ∥F∥C(DT1
)

)
≤ 1

4
T 2

(
r + ∥f∥C([−r,r]) + ∥g∥C([−r,r]) + ∥F∥C(DT1

)

)
. (7.1)

From (7.1) it follows that if we take T such that T ≤ T0, where

T0 = min
(
T1

4r

r + ∥f∥C([−r,r]) + ∥g∥C([−r,r]) + ∥F∥C(DT1
)

) 1
2

,

then
∥LU∥C(DT ) ≤ r, when ∥U∥C(DT ) ≤ r. (7.2)

From (7.2) it follows that the operator L : C(DT ) → C(DT ) maps the ball Br(0) into itself
and since by Remark 5.2 this operator is continuous and compact, according to Schauder’s theorem,
equation (5.2) has at least one solution U from the space C(DT ). Due to Remark 5.3 and Theorem 5.1,
this solution is a unique classical solution of problem (1.4)–(1.7) in the domain. The theorem is
completely proved.

Therefore, from the results obtained above it follows that if we do not require from the functions
f and g the fulfillment of conditions (2.22) and (2.23) together with smoothness f, g ∈ C1(R), then
according to Theorem 6.1, problem (1.4)–(1.6) may not be globally solvable and, moreover, it may not
have a global solution in the domain D∞. Nevertheless, in case of conditions (2.22), (2.23) violate,
problem (1.4)–(1.7) is locally solvable for any function F ∈ C1(D∞).
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