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LIMIT CYCLES FOR PIECEWISE DIFFERENTIAL SYSTEMS
FORMED BY AN ARBITRARY LINEAR SYSTEM AND
A CUBIC ISOCHRONOUS CENTER



Abstract. In this paper, we study the existence and the maximum number of crossing limit cycles that
can exhibit of some class of planar piecewise differential systems formed by two regions and separated
by a straight line x = 0, where in the left region we define an arbitrary linear differential system and
in the right region we define a cubic polynomial differential system with a homogeneous nonlinearity
and an isochronous center at the origin. More precisely, we show that these systems may have at most
zero or one or two explicit algebraic or non-algebraic limit cycles depending on the type of their linear
differential system, i.e., if those systems have foci, center, saddle, node with different eigenvalues,
non-diagonalizable node with equal eigenvalues or linear system without equilibrium points.

2020 Mathematics Subject Classification. 34A30, 34C05, 34C25, 34C07, 37G15.

Key words and phrases. Discontinuous piecewise differential systems, first integral, Poincaré map,
crossing limit cycles.

რეზიუმე. ნაშრომში შესწავლილია გადამკვეთი ზღვრული ციკლების არსებობა და მაქსიმალური
რაოდენობა, რომელიც შეიძლება ჰქონდეს ორი არით შექმნილ და x = 0 წრფით განცალკევებულ
ბრტყელ ნაჭრობრივად დიფერენცირებად სისტემათა გარკვეულ კლასს, სადაც მარცხენა არეში
განსაზღვრულია ნებისმიერი წრფივი დიფერენციალური სისტემა, ხოლო მარჯვენაში - კუბური
პოლინომიალური დიფერენციალური სისტემა ერთგვაროვანი არაწრფივობით და იზოქრონული
ცენტრით ნულში. უფრო ზუსტად, ნაჩვენებია, რომ ამ სისტემებს შეიძლება ჰქონდეთ მაქსიმუმ
ნული ან ერთი ან ორი ცხადი ალგებრული ან არაალგებრული ზღვრული ციკლი იმისდა
მიხედვით, თუ როგორია წრფივი დიფერენციალური სისტემის ტიპი, ე.ი. აქვს თუ არა ამ
სისტემებს ფოკუსი, ცენტრი, უნაგირი, კვანძი განსხვავებული საკუთარი მნიშვნელობებით,
არადიაგონალიზებადი კვანძი ტოლი საკუთარი მნიშვნელობებით, ან წრფივი სისტემა წონასწო-
რობის წერტილების გარეშე.



Limit Cycles for Piecewise Differential Systems 19

1 Introduction and statement of the main result
The problem of the existence and the number of isolated periodic orbits, the so-called limit cycles, is
one of the most challenging problems in the qualitative theory of planar ordinary differential equations.
The search for a maximum number of limit cycles that polynomial differential systems of a given degree
may have is a part of the 16th Hilbert’s Problem (see [14]). This problem remains unsolved if n ≥ 2.
In the last few years, there has been an increasing interest in the study of the problem of bounding
a number of limit cycles for planar piecewise differential systems (see [5, 7–9, 11, 15, 17, 23]). This
interest has been mainly motivated by their wider range of applications in various fields of science
(e.g., engineering, biology, control theory, design of electric circuits, mechanical systems, economics
science, medicine, chemistry, physics, etc.).

There are many papers studying planar piecewise linear differential systems with two zones (see,
e.g., [1–3, 18, 20, 21] and the references therein). For the discontinuous planar nonlinear differential
systems there are several papers studying the number of limit cycles (see [5,8,15–17] and the references
therein). Note that for the piecewise cubic polynomial differential system, there are two recent papers
[12,13] obtaining at least 18 and 24 small limit cycles, respectively.

Another interesting and natural problem is to express analytically the limit cycles. Nevertheless,
in most of these papers explicit limit cycles do not appear. The present paper is a contribution in that
direction, motivated by the recent publication of some research papers exhibiting planar polynomial
systems with algebraic or non-algebraic limit cycles given analytically (see, e.g., [1, 3, 4, 19]).

The goal of this paper is to provide the exact maximum number of limit cycles of planar discontin-
uous piecewise differential systems separated by a straight line x = 0 and formed by an arbitrary linear
differential system and cubic systems with homogeneous nonlinearity with an isochronous center at
the origin.

More precisely, we consider planar discontinuous piecewise differential systems with two linearity
regions separated by a straight line Σ = {(x, y) ∈ R2 : x = 0}. We assume that the two linearity
regions in the phase plane are the left and right half-planes

ΣL =
{
(x, y) ∈ R2 : x < 0

}
, ΣR =

{
(x, y) ∈ R2 : x > 0

}
,

formed by an arbitrary linear differential system and by cubic systems with homogeneous nonlinearity
with an isochronous center at the origin. We can write such systems as

ẋ=−y + a30x
3 + a21x

2y+a12xy
2 + a03y

3, ẏ=x+ b30x
3 + b21x

2y + b12xy
2 + b03y

3 in ΣR,

ẋ = αx+ βy + γ, ẏ = ηx+ δy + ξ in ΣL,
(1.1)

where α, β, γ, η, δ, ξ and aij , bij for i, j ∈ {0, 1, 2, 3}, i+ j = 3 are the real constants.
A center of a planar polynomial differential system is called an isochronous center if there exists

a neighborhood such that all periodic orbits in this neighborhood have the same period. Due to
Theorem 11.1 of [6], a cubic polynomial differential system with homogeneous nonlinearity and with
an isochronous center at the origin has one of the following forms:

(S1) :

{
ẋ = −y − 3xy2 + x3,

ẏ = x+ 3x2y − y3.

(S2) :

{
ẋ = −y + x2y,

ẏ = x+ 3xy2.

(S3) :

{
ẋ = −y(1 + 3x2),

ẏ = x(1 + 2x2 − 9y2).

(S4) :

{
ẋ = −y(1− 3x2),

ẏ = x(1− 2x2 + 9y2).

It is known that system (S1) has the first integral

H1(x, y) =
(x2 + y2)2

1 + 4xy
. (1.2)
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The period annulus of this system is given by {(x, y) ∈ R2 : H1(x, y) = h1, h1 ∈ (0,+∞)}.
System (S2) has the first integral

H2(x, y) =
x2 + y2

1 + x2
. (1.3)

The period annulus of this system is given by {(x, y) ∈ R2 : H2(x, y) = h2, h2 ∈ (0,+∞)}.
System (S3) has the first integral

H3(x, y) =
(x+ 2x3)2 + y2

(1 + 3x2)3
. (1.4)

The period annulus of this system is given by {(x, y) ∈ R2 : H3(x, y) = h3, h3 ∈ (0, 4
27 )}.

System (S4) has the first integral

H4(x, y) =
(x− 2x3)2 + y2

(1− 3x2)3
. (1.5)

The period annulus of this system is given by {(x, y) ∈ R2 : H4(x, y) = h4, h4 ∈ (0,+∞)}.
The linear differential system that we consider in the second half-plane ΣL is either a focus (we

include in this class the centers), or a saddle, or a node with different eigenvalues, or a node with equal
eigenvalues whose linear part does not diagonalize, or linear without equilibrium points. Note that if
piecewise differential systems with two pieces separated by a straight line has a star node (node with
equal eigenvalues whose linear part diagonalize), this prevents the existence of periodic orbits.

Consider the piecewise differential systems (1.1). In order to state precisely our results, we in-
troduce first some notations and definitions. In accordance with Filippov [10], we distinguish the
following open regions in the discontinuity set Σ.

1. Crossing region:
Σc =

{
(0, y) ∈ Σ : (a03y

3 − y)(βy + γ) > 0
}
. (1.6)

2. Sliding region:
Σs =

{
(0, y) ∈ Σ : (a03y

3 − y)(βy + γ) ≤ 0
}
. (1.7)

As usual, isolated periodic orbits are called limit cycles. There are two types of limit cycles “crossing
and sliding ones” in the planar discontinuous piecewise differential systems. The first type of the limit
cycles contains some arc of discontinuity lines that separate the different differential systems (for more
details see [22]), and the second type contains only isolated points of the lines of discontinuity. But
we shall work only with crossing limit cycles. An equilibrium point is called a real (resp. virtual)
singular point of the right system of (1.1) if this point locates in the region ΣR (resp. ΣL). A similar
definition can be done for the left system of (1.1).

The main result of this paper is the following

Theorem 1.1. The following statements hold for the discontinuous piecewise differential systems (1.1)

(1) if (1.1) is of the type linear focus and cubic isochronous center at the origin, then the piecewise
differential systems (1.1) have at most two crossing limit cycles. Moreover, these limit cycles if
there exists are non-algebraic and there are systems of this type with one or two limit cycles.

(2) if (1.1) is of the type linear center and cubic isochronous center at the origin, then the piecewise
differential systems (1.1) have no crossing limit cycles.

(3) if (1.1) is of the type linear saddle and cubic isochronous center at the origin, then the piecewise
differential systems (1.1) have at most one crossing limit cycle. Moreover, this limit cycle, if
exists, is algebraic and here are systems of this type with one limit cycle.

(4) if (1.1) is of the type linear node with different eigenvalues and cubic isochronous center at
the origin, then the piecewise differential systems (1.1) have at most one crossing limit cycle.
Moreover, this limit cycle, if exists, is algebraic and here are systems of this type with one limit
cycle.
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(5) if (1.1) is of the type non-diagonalizable linear node with equal eigenvalues and cubic isochronous
center at the origin, then the piecewise differential systems (1.1) have at most one crossing limit
cycle. Moreover, this limit cycle, if exists, is non-algebraic and there are systems of this type
with one limit cycle.

(6) if (1.1) of the type linear without equilibrium point and cubic isochronous center at the origin,
then the piecewise differential systems (1.1) have at most one crossing limit cycle. Moreover,
this limit cycle, if exists, is non-algebraic and there are systems of this type with one limit cycle.

Theorem 1.1 will be proved in Section 2.
In the next proposition, we show that there are discontinuous piecewise differential systems (1.1)

of the type linear real focus and cubic isochronous center at the origin, with two non-algebraic crossing
limit cycles.

Proposition 1.2. The discontinuous piecewise differential systems (1.1) formed by one of the four
cubic isochronous centers (S1), or (S2), or (S3), or (S4), and a family with one parameter of linear
differential system of the form

ẋ = −2

5
x+ βy − 1

8
, ẏ = − 1

50β
(52x+ 5) , (1.8)

with β ∈ (−∞,−0.563 86), have exactly two nested non-algebraic crossing limit cycles. Moreover,
these limit cycles are given by

Γ1 =
{
(x, y) ∈ ΣR : Hj(x, y) = hj

}
∪
{
(x, y) ∈ ΣL : Hf1(x, y) = 5.974 1× 10−2

}
,

Γ2 =
{
(x, y) ∈ ΣR : Hj(x, y) = h′

j

}
∪
{
(x, y) ∈ ΣL : Hf1(x, y) = 0.101 04

}
,

where j ∈ {1, 2, 3, 4},

h1 =
(0.139 44

β

)4

, h2 = h3 = h4 =
(0.139 44

β

)2

,

h′
1 =

(0.217 03
β

)4

, h′
2 = h′

3 = h′
4 =

(0.217 03
β

)2

and
Hf1(x, y) =

(26
25

x2 − 2

5
βxy +

61

260
x+ β2y2 − 11

52
βy +

17

832

)
e−

2
5 arctan 520x+50

104x−520βy+55 .

See Figure 1.

In the next proposition, we show that there are discontinuous piecewise differential systems (1.1)
of the type linear virtual focus and cubic isochronous center at the origin, with one non-algebraic
crossing limit cycle.

Proposition 1.3. The discontinuous piecewise differential systems (1.1) formed by one of the four
cubic isochronous centers (S1) or (S2) or (S3) or (S4) and a class with one parameter of linear
differential system of the form

ẋ = −x+ βy + 1, ẏ =
1

β
(3βy − 5x+ 5), (1.9)

with β ∈ (−∞,−5.466 4), have exactly one non-algebraic crossing limit cycle. Moreover, this limit
cycle is given by

Γ1 =
{
(x, y) ∈ ΣR : Hj(x, y) = hj

}
∪
{
(x, y) ∈ ΣL : Hf2(x, y) = 5.374 3× 10−2

}
,

where j ∈ {1, 2, 3, 4},
h1 =

(2.104 0
β

)4

, h2 = h3 = h4 =
(2.104 0

β

)2

and
Hf2(x, y) = (5x2 − 4βxy − 10x+ β2y2 + 4βy + 5)e−2 arctan x−1

βy−2x+2 .

See Figure 2.
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(a) Case when Sj = S1. (b) Case when Sj = S2.

(c) Case when Sj = S3. (d) Case when Sj = S4.

Figure 1: The two nested crossing limit cycles of systems (1.8) + (Sj) with β = −1.

(a) Case when Sj = S1. (b) Case when Sj = S2.

(c) Case when Sj = S3. (d) Case when Sj = S4.

Figure 2: The unique crossing limit cycle of systems (1.9) + (Sj) with β = −6.
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In the next proposition, we show that there are discontinuous piecewise differential systems (1.1)
of the type linear saddle and cubic isochronous center at the origin, with one algebraic crossing limit
cycle.

Proposition 1.4. The discontinuous piecewise differential systems (1.1) formed by one of the four
cubic isochronous centers (S1) or (S2) or (S3) or (S4) and a class with one parameter of linear
differential system of the form

ẋ = x+ βy +
1

10
, ẏ =

1

4β
(3x+ 4), (1.10)

with β ∈ (−∞,−1.405 6), have exactly one algebraic crossing limit cycle. Moreover, this limit cycle is
given by

Γ =
{
(x, y) ∈ ΣR : Hj(x, y) = hj

}
∪
{
(x, y) ∈ ΣL : Hs(x, y) = −3.281 8

}
,

where j ∈ {1, 2, 3, 4}, h1 = ( 0.541 03
β )4 and h2 = h3 = h4 = ( 0.541 03

β )2,

Hs(x, y) =
(
− 1

2
x+ βy − 19

10

)3(3
2
x+ βy +

23

30

)
.

See Figure 3.

(a) Case when Sj = S1. (b) Case when Sj = S2.

(c) Case when Sj = S3. (d) Case when Sj = S4.

Figure 3: The unique crossing limit cycle of systems (1.10) + (Sj) with β = −2.

In the next proposition, we show that there are discontinuous piecewise differential systems (1.1)
of the type linear node with different eigenvalues and cubic isochronous center at the origin, with one
algebraic crossing limit cycle.

Proposition 1.5. The discontinuous piecewise differential systems (1.1) formed by one of the four
cubic isochronous centers (S1) or (S2) or (S3) or (S4) and a class with one parameter of linear
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(a) Case when Sj = S1. (b) Case when Sj = S2.

(c) Case when Sj = S3. (d) Case when Sj = S4.

Figure 4: The unique crossing limit cycle of systems (1.11) + (Sj) with β = −5.

differential system of the form

ẋ = 6x+ βy + 1, ẏ =
8

β
x+

4

β
, (1.11)

with β ∈ (−∞,−4.500 1), have exactly one algebraic crossing limit cycle. Moreover, this limit cycle is
given by

Γ =
{
(x, y) ∈ ΣR : Hj(x, y) = hj

}
∪
{
(x, y) ∈ ΣL : Hn(x, y) = 36.008

}
,

where j ∈ {1, 2, 3, 4}, h1 = (− 1.732 1
β )4 and h2 = h3 = h4 = (− 1.732 1

β )2

Hn(x, y) =
(2x+ βy + 3)4

(4x+ βy + 2)2
.

See Figure 4.

In the next proposition, we show that there are discontinuous piecewise differential systems (1.1)
of the type linear non-diagonalizable node with equal eigenvalues and cubic isochronous center at the
origin, with one non-algebraic crossing limit cycle.

Proposition 1.6. The discontinuous piecewise differential systems (1.1) formed by one of the four
cubic isochronous centers (S1) or (S2) or (S3) or (S4) and a family with one parameter of linear
differential system of the form

ẋ = x+ βy − 1, ẏ = − 1

β
(4x+ 3βy − 4), (1.12)

with β ∈ (−∞,−4.092 5) have exactly one non-algebraic crossing limit cycle. Moreover, this limit
cycle is given explicitly by

Γ =
{
(x, y) ∈ ΣR : Hj(x, y) = hj

}
∪
{
(x, y) ∈ ΣL : Hn′(x, y) = 0.211 46

}
,
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(a) Case when Sj = S1. (b) Case when Sj = S2.

(c) Case when Sj = S3. (d) Case when Sj = S4.

Figure 5: The unique crossing limit cycle of systems (1.12) + (Sj) with β = −5.

where j ∈ {1, 2, 3, 4}, h1 = ( 1.575 2
β )4 and h2 = h3 = h4 = ( 1.575 2

β )2

Hn′(x, y) =
1

2− βy − 2x
e

x−1
2−βy−2x .

See Figure 5.

Remark 1.1. The assumption on the parameter β in Propositions 1.2–1.6 is a necessary condition such
that the cubic polynomial differential system with homogeneous nonlinearity (S3) has an unbounded
period annulus surrounding the origin (i.e., is a necessary condition for h3 < 4

27 ) is also a necessary
condition for the existence of crossing limit cycles of systems (S3) + (1.8)− (S3) + (1.12).

For (Sj) + (1.8)− (Sj) + (1.12), j = 1 or 2 or 4, the assumption β < 0 is a sufficient condition for
the existence of crossing limit cycles because if β < 0, the two intersection points (0, y0) and (0, y1)
of the orbit arc in ΣR and the orbit arc in ΣL, satisfy (−y)(βy + γ) ≤ 0. This implies that the two
intersection points (0, y0) and (0, y1) are sliding points and this prevents the existence of the crossing
limit cycle.

In the next proposition, we show that there are discontinuous piecewise differential systems (1.1)
of the type linear without equilibria and cubic isochronous center at the origin, with one non-algebraic
crossing limit cycle.

Proposition 1.7. The discontinuous piecewise differential systems (1.1) formed by one of the four
cubic isochronous centers (S1) or (S2) or (S3) or (S4) and a class with one parameter of linear
differential system of the form

ẋ = (µ− 1)x− y − 1

100
, ẏ = µ(µ− 1)x− µy − µ+ 100

100
, (1.13)

when µ ̸= 0, have one explicit non-algebraic crossing limit cycle given by

Γ =
{
(x, y) ∈ ΣR : Hj(x, y) = hj

}
∪
{
(x, y) ∈ ΣL : Hw(x, y) = 0.995 01

}
,
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(a) Case when Sj = S1. (b) Case when Sj = S2.

(c) Case when Sj = S3. (d) Case when Sj = S4.

Figure 6: The unique crossing limit cycle of systems (1.13) + (Sj) with µ = 3.

where j = j ∈ {1, 2, 3, 4}, h1 = (0.173 38)4 and h2 = h3 = h4 = (0.173 38)2 and

Hw(x, y) =
(101
100

+ (1− µ)x+ y
)
eµx−y.

See Figure 2.3.

Remark 1.2. The assumption b < 0 in Proposition 1.7 is a necessary condition for the existence of a
crossing limit cycle of thesystem because the crossing region of these systems is given by −by(y+ 1

100 ) >
0, hence this last inequality implies that the crossing region is an open interval (− 1

100 , 0) of the line Σ if
b > 0 and is an open interval (0,+∞)∪(−∞,− 1

100 ) of the line Σ if b < 0. Since the intersection points
(0, y1) and (0, y2), where y1 = −0.173 38 and y2 = 0.173 38, are located in (−∞,− 1

100 ) ∪ (0,+∞), we
have to choose b < 0.

2 Proof of Theorem 1.1
To prove our main result, we need the following lemmas.

Lemma 2.1 ([2]). A linear differential system without equilibrium points can be written as

ẋ = ax+ by + c, ẏ = µax+ µby + d, (2.1)

where a, b, c, µ and d are real constants such that d ̸= µc and µ ̸= 0. Moreover, this system has the
first integral

Hw(x, y) =

{
bµ2x2 − 2bµxy − 2dx+ by2 + 2cy if a+ bµ = 0,(
(a+ bµ)(ax+ by) + ac+ bd

)
e

a+bµ
d−cµ (µx−y) if a+ bµ ̸= 0.

(2.2)

The following lemma provides a normal form for an arbitrary linear differential system having a
real focus (resp. a center), saddle, node with different eigenvalues and non-diagonalizable node with
equal eigenvalues, respectively
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Lemma 2.2.

(i) A linear differential system having a focus (resp. a center) can be written as

ẋ = αx+ βy + γ, ẏ = − 1

β

(
(α− λ)2 + ω2

)
x+ (2λ− α)y + ξ, (2.3)

with ω > 0, β ̸= 0, λ ̸= 0 (resp. ω > 0, β ̸= 0 and λ = 0). Moreover, when λ ̸= 0, this system
has the first integral

Hf (x, y) =

(
(ω2 + (α− λ)2)x2 + 2β(α− λ)xy + β2y2

+ 2
λγ((α− λ)2 + ω2) + βξ(αλ− λ2 − ω2)

λ2 + ω2
x

+ 2β
(
γ +

λ(βξ − γ(2λ− α))

λ2 + ω2

)
y +

γ2((α− λ)2 + ω2) + βξ(2γ(α− λ) + βξ)

λ2 + ω2

)
× e

− 2λ
ω arctan ω((λ2+ω2)x+2λγ−αγ−βξ)

(λ2+ω2)(α−λ)x+β(λ2+ω2)y+(ω2−λ2+αλ)γ+βλξ , (2.4)

and if λ = 0, the first integral of (2.3) is

Hc(x, y) = (ω2 + α2)x2 + 2βαxy + β2y2 − 2βξx+ 2βγy +
γ2(α2 + ω2) + βξ(2γα+ βξ)

ω2
.

(ii) A linear differential system having a saddle (resp. a node with different eigenvalues) (resp. a
non-diagonalizable node with equal eigenvalues) can be written as

ẋ = αx+ βy + γ, ẏ =
1

β
(ρ2 − (α− r)2)x+ (2r − α)y + ξ, (2.5)

with β ̸= 0 and ρ2 > r2 > 0 (resp. β ̸= 0 and r2 > ρ2 > 0) (resp. β ̸= 0, r ̸= 0 and ρ = 0).
Moreover, when ρ ̸= 0, this system has the first integral

Hs,n(x, y)

=
(
(α−r−ρ)x+βy+γ+

βξ−γ(2r−α)

r−ρ

)(
(α−r+ρ)x+βy+γ+

βξ−γ(2r−α)

r+ρ

) ρ−r
r+ρ

, (2.6)

when ρ = 0, the first integral of (2.5) is given by

Hn′(x, y) =
1

r(r − δ)x+ βry + rγ + βξ − γδ
e

r2x−βξ+γδ
r(r−δ)x+βry+rγ+βξ−γδ . (2.7)

Proof. Consider the general linear differential system

ẋ = αx+ βy + γ, ẏ = ηx+ δy + ξ. (2.8)

Its eigenvalues are given by λ1,2 = 1
2 (α+ δ ±

√
(α− δ)2 + 4βη).

(i) We know that system (2.8) has a focus if 1
2 (α+δ) = λ and (α−δ)2+4βη = −4ω2 for some ω > 0,

βη < 0 and λ ∈ R, then δ = 2λ− α and η = − 1
β ((α− λ)2 + ω2). Therefore, we obtain system (2.3).

(ii) The linear differential system (2.8) has a saddle if 1
2 (α + δ) = r and (α − δ)2 + 4βη = 4ρ2 for

some r2 < ρ2, then α = 2r − δ and η = − 1
β ((r − δ)2 − ρ2). Therefore, we obtain system (2.5).

Analogously to the previous case, the linear differential system (2.8) has a node with different
eigenvalues if 1

2 (α + δ) = r and (α − δ)2 + 4βη = 4ρ2 for some r2 > ρ2, then α = 2r − δ, η =
− 1

β ((r − δ)2 − ρ2).
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We know that system (2.8) has a non-diagonalizable node with equal eigenvalues if (α−δ)2+4βη =
0 and 1

2 (α + δ) = r ̸= 0, then δ = 2r − α and η = − 1
β (r − δ)2. Therefore, we obtain system (2.5)

with ρ = 0.
It is clear that Hf , Hc, Hs,n, and Hn′ are the first integrals of systems (2.3), (2.3) with λ = 0,

(2.5) with ρ ̸= 0 and (2.5) with ρ = 0, respectively. In fact, all the following equations are satisfied:
dHi

dt
= ẋ

∂Hi

∂x
+ ẏ

∂Hi

∂y
≡ 0, i = f, c, s, n, n′.

Remark 2.1. According to Lemma 2.1 and Lemma 2.2, it seems clear that limit cycles (if exist)
of discontinuous planar piecewise differential systems (1.1) are algebraic, when the left subsystem of
(1.1) is one of the following types:

- a linear center;
- a linear saddle;
- a linear node with different eigenvalues;
- a linear system without equilibria (2.1) with a+ bµ = 0.

While these limit cycles (if exist) of discontinuous planar piecewise differential systems (1.1) are non-
algebraic when the left subsystem of (1.1) is one of the following types:

- a linear focus;
- a non-diagonalizable node with equal eigenvalues;
- a linear system without equilibria (2.1) with a+ bµ ̸= 0.

Proof of Theorem 1.1. We consider the discontinuous piecewise differential systems (1.1). If there
exists a limit cycle of the discontinuous piecewise differential systems (1.1), it must intersect the
discontinuity line Σ at two different points (0, y0) and (0, y1). In order to investigate the limit cycles
of these systems, we use the Poincaré map of (1.1).

We can define a right return map PR as y1 = PR(y0) and a left return map PL as y2 = PL(y1).
Composing the right return map PR with the left return map PL, the Poincaré map P of (1.1) can
be constructed by PL and PR as follows:

y2 = P (y0) = PL ◦ PR(y0).

It is obvious that the zeros of F (y0) = y0 − P (y0) correspond to the limit cycles of the discontinuous
piecewise differential systems (see Figure 7).

In what follows, we give the detailed calculations for the right and left return maps. To determine
the right return map PR, we use the first integrals for the right side systems of (1.1). Assume that
the orbits starting at the point (0, y0) go into the right zone ΣR under the flow of the right differential
systems. If these orbits can reach Σ again at some point (0, y1), then (0, y0) and (0, y1) must satisfy
the following equation:

ej = Hj(0, y0)−Hj(0, y1) = 0,

where j ∈ {1, 2, 3, 4} and Hj are given by (1.2), (1.3), (1.4) and (1.5), respectively. The equations
ej = 0 for j ∈ {1, 2, 3, 4} are equivalent to (y0 − y1)(y1 + y0) = 0. From this equation, the unique
solution satisfying y0 < y1 is y1 = −y0. Then we can define a right Poincaré map as

PR(y0) = −y0. (2.9)

Proof of statement (1) of Theorem 1.1. First, we consider the case where the left subsystem of (1.1)
is a linear focus type satisfying (2.3) with λ ̸= 0. To determine the left return map PL, we use
the parametric representation of the solution of the linear differential system (2.3) in ΣL. Thus the
solution of this system with λ ̸= 0 starting at the point (0, y1) is given by

xL(t) =
eλt(λ(βξ − γ(2λ− α)) + (λ2 + ω2)(γ + βy1)) sinωt

ω(λ2 + ω2)
− (βξ − γ(2λ− α))(etλ cosωt− 1)

λ2 + ω2
,

yL(t) =
(γ((α− λ)2 + ω2) + βξα)(etλ cosωt− 1)

β(λ2 + ω2)
+ eλt

(
cosωt− α− λ

ω
sinωt

)
y1

− (λ(α− λ)(γ(α− λ) + βξ) + (λγ − βξ)ω2)eλt sinωt

ωβ(λ2 + ω2)
.
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(a) The poincaré map of (1.1) (b) The periodic solution of (1.1)

Figure 7: The Poincaré map and the periodic solution of (1.1)

Then from the equation xL(t) = 0, we obtain

y1(t) = −ω(βξ − γ(2λ− α))(e−tλ − cosωt) + (γ(λ2 + ω2) + λ(βξ − γ(2λ− α))) sinωt

β(λ2 + ω2) sinωt
. (2.10)

For this case, the parametric representation of the left return map PL is

PL(y1) =
(γ((α− λ)2 + ω2) + βξα)(etλ cosωt− 1)

β(λ2 + ω2)
+ eλt

(
cosωt− (α− λ)

ω
sinωt

)
y1

− (λ(α− λ)(γ(α− λ) + βξ) + (λγ − βξ)ω2)eλt sinωt

ωβ(λ2 + ω2)
.

Since y1 = −y0, the zeros of the function F are the zeros of the function G given by G(t) = −y1(t)−
PL(y1(t)). When substituting the previous expressions of y1(t) and PL(y1(t)) into the equation G(t) =
0, we obtain the equation

1

β(λ2 + ω2−)

(
(γ(ω2 − λ2) + λ(βξ + γα))− ω(βξ − γ(2λ− α))

sinhλt

sinωt

)
= 0. (2.11)

Now, it is easy to see that the existence of a crossing limit cycle is equivalent to the existence of a
positive t satisfying (2.11). For convenience, we use the notation

f1(t) =
(
γ(ω2 − λ2) + λ(βξ + γα)

)
− ω

(
βξ − γ(2λ− α)

) sinhλt

sinωt
. (2.12)

So, the way of solving equation (2.11) is the same as that of the equation f1(t) = 0. In order to
investigate a number of solutions of f1(t) = 0, and since f1 is a C1-function in R \ {0}, we use the
first derivative of the function f1 with respect to the variable t. Simple calculations yield

f ′
1(t) = −ω(αγ − 2λγ + βξ)

sin2 ωt
(λ sinωt coshλt− ω cosωt sinhλt).

Note that the zeros of f ′
1(t) are the zeros of K1(t), where

K1(t) = λ sinωt coshλt− ω cosωt sinhλt.

Note that the left linear differential system (2.3) has the eigenvalues λ± i
√
ω, ω > 0, at its singularity

(x0, y0) =
(βξ − γ(2λ− α)

λ2 + ω2
,−γ((α− λ)2 + ω2) + βξα

β(λ2 + ω2)

)
.
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So, it follows that the frequency is ω and, consequently, if (x0, y0) is a virtual focus, we have t ∈ (0, π
ω )

and t ∈ (πω ,
2π
ω ) for (x0, y0) is a real focus.

(i) If (x0, y0) is a virtual focus, i.e., if βξ−γ(2λ−α) > 0, we have K1(0) = 0 and K1(t) ̸= 0 for t ̸= 0,
since K ′

1(t) = (λ2 + ω2) sinωt sinhλt cannot vanish in (0, π
ω ), so, f ′

1(t) ̸= 0 for t ∈ (0, π
ω ). Therefore,

the equation f1(t) = 0 with βξ − γ(2λ − α) > 0 may have at most one solution in (0, π
ω ). Hence

systems (1.1) have at most one crossing limit cycle.
(ii) If (x0, y0) is a real focus, i.e., if βξ − γ(2λ − α) < 0, and since K1(

π
ω ) = ω sinh(λπ

ω ) and
K1(

2π
ω ) = −ω sinh(λ 2π

ω ) and sign (K1(
π
ω )K1(

2π
ω )) < 0, while K ′

1(t) ̸= 0 in (πω ,
2π
ω ), then K1 is a strictly

monotone function in (πω ,
2π
ω ). Thus f ′

1(t) = 0 has exactly one solution in (πω ,
2π
ω ) and, consequently,

equation (2.12) has at most two zeros in (πω ,
2π
ω ). From the above analysis, we conclude that systems

(1.1) have at most two crossing limit cycles when βξ − γ(2λ − α) < 0. Using the first integrals of
both differential systems of (1.1) and knowing that the non-algebraic crossing periodic orbits pass
through the points (0, y1i) and through the points (0, y0i), i = 1, 2, where y1i is defined by (2.10) and
y0i = −y1i, we obtain the following expressions:

Γi =
{
(x, y) ∈ ΣR : Hj(0, y) = Hj(0, y0i)

}
∪
{
(x, y) ∈ ΣL : H(x, y) = H(0, y0i)

}
, i = 1, 2,

where j ∈ {1, 2, 3, 4} and Hj are given by (1.2), (1.3), (1.4), (1.5), respectively.
Proof of statement (2) of Theorem 1.1. Using the notation introduced in the proof of statements (1),
we consider that the left subsystem of (1.1) is a linear center type satisfying (2.3) with λ = 0. The
solution of system (2.3) with λ = 0 starting at the point (0, y1) is

xL(t) =
1

ω2

(
(αγ + βξ) + ω(γ + βy1) sinωt− αγ cosωt− βξ cosωt

)
,

yL(t) =
(γ(α2 + ω2) + βξα)(cosωt− 1)

βω2
+

(
cosωt− α

ω
sinωt

)
y1 +

ξ sinωt

ω
.

Then, from the equation xL(t) = 0, we obtain

y1(t) = − (βξ + γα) + γω sinωt+ (−γα− βξ) cosω)
βω sinωt

.

For this case, the parametric representation of the left return map PL is

PL(y1) =
(γ(α2 + ω2) + βξα)(cosωt− 1)

βω2
+

(
cosωt− α

ω
sinωt

)
y1 +

ξ sinωt

ω
.

Since y1 = −y0, substituting the previous two expressions into the equation G(t) = −y1(t) −
PL(y1(t)) = 0, we obtain 2

β γ = 0. Hence, if γ ̸= 0, this last equality does not hold, the equation
F (y0) = 0 has no solutions and, consequently, the discontinuous piecewise differential systems (1.1)
have no periodic solutions. If γ = 0, then G(t) = 0 for all t > 0, i.e., F (y0) = 0 has a continuum
of solutions. So, the discontinuous piecewise differential systems (1.1) either does not have periodic
solutions, or it has a continuum of periodic orbits and, consequently, these differential systems have
no limit cycles.
Proof of statements (3) and (4) of Theorem 1.1. Now, we assume that the left subsystem of (1.1) is
a linear system satisfying (2.5) with ρ ̸= 0. We recall that if r2 > ρ2 > 0, then system (2.5) has a
real or a virtual node with two different eigenvalues, while if r2 > ρ2 > 0, the system has a real or a
virtual saddle. We have to study these cases simultaneously. To determine the left return map PL of
(1.1), we use the parametric representation of the solution of the linear differential system (2.5) with
ρ ̸= 0 in ΣL starting at the point (0, y1), this solution is

xL(t) =
e(r+ρ)t(γ(α− r + ρ) + βξ + β(r + ρ)y1)

2ρ(ρ+ r)

− βξ − γ(2r − α)

ρ2 − r2
+

e(r−ρ)t(γ(α− r − ρ) + βξ + β(r − ρ)y1)

2ρ(ρ− r)
,
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yL(t) =
e(r+ρ)t(γρ2 − γ(α− r)2 + (βξ + β(r + ρ)y1)(ρ+ r − α))

2βρ(r + ρ)

− (γ(α− r)2 + 2βξr − βξ(2r − α)− γρ2)

β(r2 − ρ2)

+
e(r−ρ)t(γ(α− r)2 − γρ2 + (βξ + β(r − ρ)y1)(α− r + ρ))

2βρ(r − ρ)
.

Hence, the left Poincaré map is written as follows:

PL(y1) =
γρ2 − γ(α− r)2 + (βξ + β(r + ρ)y1)(ρ+ r − α)

2βρ(r + ρ)
e(r+ρ)t

+
γ(α− r)2 − γρ2 + (βξ + β(r − ρ)y1)(α− r + ρ)

2βρ(r − ρ)
e(r−ρ)t − γ(α− r)2 − γρ2 + βξ(α− r)

β(r2 − ρ2)
,

and from the equation xL(t) = 0, we obtain

y1(t) =
e(ρ+r)t(ρ− r)(γ(α− r + ρ) + βξ)− 2ρ(βξ − γ(2r − α))

β(ρ2 − r2)(e(r−ρ)t − e(r+ρ)t)

+
e(r−ρ)t(r + ρ)(γ(α− r − ρ) + βξ)

β(ρ2 − r2)(e(r−ρ)t − e(r+ρ)t)
. (2.13)

But y1 = −y0, so this reduces the equation y0 − P (y0) = 0 to the form

1

β(ρ2 − r2)

(
(ρ2 − r2)(−2γ) + 2r(βξ − γ(2r − α))

) sinh ρt

sinh rt
− 2ρ(βξ − γ(2r − α)) = 0. (2.14)

For convenience, we use the notation

f2(t) =
(
2r(βξ − γ(2r − α))− 2γ(ρ2 − r2)

) sinh ρt

sinh rt
− 2ρ(βξ − γ(2r − α)). (2.15)

Now, the way of solving (2.14) is equivalent to that of finding the solutions t of the equation f2(t) = 0.
In order to investigate a number of solutions of f2(t) = 0, and since f2 is a C1-function in R \ {0}, we
use the first derivative of the function f with respect to the variable t. Simple calculations yield

f ′
2(t) = −2r(βξ − γ(2r − α))− 2γ(ρ2 − r2)(r cosh rt sinh ρt− ρ sinh rt cosh ρt)

sinh2 rt
.

Note that the zero of f ′
2 is the zero of K2, where

K2(t) = r cosh rt sinh tρ− ρ sinh rt cosh tρ.

Since K2(0) = 0 and K ′
2(t) = (r2 − ρ2) sinh rt sinh ρt ̸= 0 for any t > 0 (because r ̸= 0 and ρ ̸= 0),

we can conclude that equation (2.14) has at most one real solution, and there are the values of r,
γ, ρ, β, ξ and α for which this solution exists. Hence systems (1.1) have at most one crossing limit
cycle. Using the first integrals of both differential systems of (1.1) and knowing that the algebraic
crossing periodic orbit passes through the points (0, y0) and (0, y1), where y1 is defined by (2.13) and
y0 = −y1, we get the following expressions:

Γ =
{
(x, y) ∈ ΣR : Hj(0, y) = Hj(0, y0)

}
∪
{
(x, y) ∈ ΣL : H(x, y) = H(0, y0)

}
,

where j ∈ {1, 2, 3, 4} and Hj are given by (1.2), (1.3), (1.4), (1.5), respectively. This completes the
proof of statements (3) and (4) of Theorem 1.1.
Proof of statement (5) of Theorem 1.1. Now, we consider the case, where the left subsystem of (1.1)
is a linear system satisfying (2.5) with ρ = 0. By an analogous analysis of previous statements, the
solution (xL(t), yL(t)) of system (2.5) with ρ = 0 which passes through the point (0, y1) is

xL(t) =
ert(γ(2r − α)− βξ)− (γ(2r − α)− βξ)

r2
+

tert(γ(α− r) + βξ + βry1)

(r)
,
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yL(t) =
ert(γ(α− r)2 + β(αξ + r2y1))− (γ(α− r)2 + βξ(α− r))

βr2

− tert(γ(α− r)2 + β(α− r)(ξ + ry1))

βr
,

whence for the left Poincaré map we get the following parametric representation:

PL(y1) =
ert(γ(α− r)2 + β(αξ + r2y1))− (γ(α− r)2 + βξ(α− r))

βr2

− tert(γ(α− r)2 + β(α− r)(ξ + ry1))

βr
. (2.16)

From the equation xL(t) = 0, we obtain

y1(t) = − 1

tβert

(
− 1

r2
(γ(2r − α)− βξ) +

1

r2
ert(γ(2r − α)− βξ) +

t

r
ert(βξ − γ(r − α))

)
. (2.17)

Using (2.16), (2.17), and taking into account that y0 = −y1(t) and P (y0) = PL(y1(t)), the equation
y0 − P (y0) = 0 becomes

1

βr

( (γ(2r − α)− βξ) sinh rt

rt
+ γ(α− r) + βξ

)
= 0, (2.18)

the previous equation is equivalent to f3(t) = 0, where

f3(t) =
sinh rt

rt
+

βξ − γ(r − α)

γ(2r − α)− βξ
. (2.19)

Now, the way of solving (2.18) is equivalent to that of finding the solutions t of the equation f3(t) = 0.
The study of the maximum number of zeros of f3(t) = 0 is equivalent to finding of the maximum num-
ber of intersection points zi of the curve F : y = sinh z

z with the horizontal line L : y = − βξ−γ(r−α)
γ(2r−α)−βξ .

It is easy to check that K3(z) =
sinh z

z is an even function and K3(z) for z > 0 is strictly increasing
and strictly decreasing for z < 0, and lim

z→0
K3(z) = 1.

Clearly, we can choose the values of the parameters of system (2.5) with ρ = 0 such that the
straight line L intersects the curve F at either zero point or at one or two points.

If L does not intersect F , then f3(t) = 0 has no solution, and systems (1.1) has no limit cycles.
If L intersects F at a unique point, then the intersection point is multiple to two, this point should

be y = 1 and z = 0. This implies that t = 0; again, systems (1.1) have no limit cycles.
If the intersection points are two, we denote them by (z1, y

′
1) and (z2, y

′
2). Taking into account

the evenness of the function K3(z) =
sinh z

z , it follows that z1 = −z2 and y′1 = y′2. So, the equation
f3(t) = 0 has at most one solution in t ∈ (0,+∞) for z = rt and, consequently, a unique solution for
y1 and y0. Hence systems (1.1) has at most one crossing limit cycle. Using the first integrals of both
differential systems of (1.1) and knowing that the algebraic crossing periodic orbit passes through
the points (0, y0) and (0, y1), where y1 is defined by (2.17) and y0i = −y1i, we obtain the following
expressions:

Γ =
{
(x, y) ∈ ΣR : Hj(0, y) = Hj(0, y0)

}
∪
{
(x, y) ∈ ΣL : H(x, y) = H(0, y0)

}
,

where j ∈ {1, 2, 3, 4} and Hj are given by (1.2), (1.3), (1.4), (1.5), respectively. This completes the
proof of statement (5) of Theorem 1.1.
Proof of statement (6) of Theorem 1.1. Finally, we consider the case where the left subsystem of (1.1)
is a linear system having no equilibria, neither real nor virtual, satisfying (2.1). In a similar way as
in the previous cases, the solution of system (2.1) with a+ µb ̸= 0, starting at the point (0, y1), is

xL(t) =
b(cµ− d)(a+ bµ)t+ (eat+btµ − 1)(ac+ bd+ b(a+ bµ)y1)

(a+ bµ)2
,
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yL(t) =
a(d− cµ)t+ ay1

(a+ bµ)
− µ(ac+ bd)

(a+ bµ)2
+

eat+btµµ(ac+ bd+ b(a+ bµ)y1)

(a+ bµ)2
.

Then the left Poincaré map is

PL(y1) =
a(d− cµ)t+ ay1

(a+ bµ)
− µ(ac+ bd)

(a+ bµ)2
+

eat+btµµ(ac+ bd+ b(a+ bµ)y1)

(a+ bµ)2
,

and from equation xL(t) = 0, we obtain

y1(t) = − (eat+btµ − 1)(ac+ bd)− b(a+ bµ)(d− cµ)t

b(eat+btµ − 1)(bµ+ a)
. (2.20)

Since y1 = −y0, the equation y0−P (y0) = 0 is equivalent to −y1(t)−PL(y1(t)) = 0. Substituting the
previous two expressions into −y1(t)− PL(y1(t)) = 0, we obtain

−(d− cµ)t coth
(1
2
(a+ bµ)t

)
− 2

b(a+ bµ)
(ac+ bd) = 0 (2.21)

or, equivalently, f4(t) = 0, where

f4(t) =
1

2
(a+ bµ)t coth

(1
2
(a+ bµ)t

)
+

ac+ bd

b(d− cµ)
. (2.22)

By an analogous analysis of the previous case, in order to investigate the number of solutions of
f4(t) = 0, we find a number of intersection points zi of the curve F ′ : y = z coth(z) with the straight
line L′ : y = −1

b(d−cµ) (ac+ bd).
The function K(z) = z coth z is even and for z > 0 is strictly increasing and strictly decreasing for

z < 0, and K(0) = 0.
Clearly, the straight line L′ may intersect the curve F ′ at either zero point or at one or two points.
If L′ does not intersect F ′, then f4(t) = 0 has no solution, and systems (1.1) have no limit cycles.
If L′ intersects F ′ at a unique point, then the intersection point is multiple of two, this point

should be y = 0 and z = 0. This implies that t = 0 (because a + bµ ̸= 0); again, systems (1.1) have
no limit cycles.

If the intersection points are two, we denote them by (z1, y
′
1) and (z2, y

′
2). Since K3(z) = z coth z

is an even function and the straight line L′ is horizontal, it follows that z1 = −z2 and y′1 = y′2. So,
equation (2.21) has at most one solution t > 0 for z = 1

2 t(a+ bµ) and, consequently, a unique solution
for y1 and y0 follows from (2.20) and (2.9), respectively. To obtain in this way at most one limit
cycle for the discontinuous piecewise differential systems, we use the first integrals of both differential
systems knowing that the non-algebraic periodic orbit passes through the points (0, y0) and (0,−y0),
where y1 is defined by (2.20) and y0i = −y1i, we get the following expression:

Γ =
{
(x, y) ∈ ΣR : Hj(0, y) = Hj(0, y0)

}
∪
{
(x, y) ∈ ΣL : H(x, y) = H(0, y0)

}
,

where j ∈ {1, 2, 3, 4}, and Hj are given by (1.2), (1.3), (1.4), (1.5), respectively.
Now, we consider system (2.1) with a+ µb = 0. In this case, the solution of system (2.1), starting

at the point (0, y1), is

xL(t) = (c+ by1)t+
1

2
(bd− bcµ)t2,

yL(t) = y1 +
1

2
(bdµ− bcµ2)t2 + (byµ+ d)t.

If xL(t) = 0, we get
y1(t) = − 1

2b
(2c+ b(d− cµ)t),

and the parametric representation of the left Poincaré map is

PL(y1) = y1 +
1

2
(bdµ− bcµ2)t2 + (by1µ+ d)t.
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Since y1 = −y0, the equation F (y0) = y0 − P (y0) = 0 is equivalent to G(t) = −y1(t)− PL(y1(t)) = 0.
Substituting the previous two expressions of y1(t) and PL(y1(t)) into G(t) = 0, we obtain 2

b c = 0.
Hence, if c ̸= 0, this last equality does not hold, and F (y0) = 0 has no solutions and, consequently, the
discontinuous piecewise differential systems (1.1) have no periodic solutions. If c = 0, then G(t) = 0
for all t > 0, i.e., F (y0) = 0 has a continuum of solutions. So, in this case, the discontinuous piecewise
differential systems (1.1) either do not have periodic solutions, or have a continuum of periodic orbits
and, consequently, these differential systems have no limit cycles. So, statement (6) of theorem 1.1 is
proved.

3 Proof of propositions
Proof of Proposition 1.2. We consider that we have the piecewise differential systems (Sj)+(1.8) with
j = 1 or 2 or 3 or 4, we remark that the equilibrium point (− 5

52 ,
9

104β ) of system (1.8) has eigenvalues
− 1

5 ± i. So, it is a real focus. Those piecewise differential systems have the first integral

Hf1(x, y) =
(26
25

x2 − 2

5
βxy +

61

260
x+ β2y2 − 11

52
βy +

17

832

)
e−

2
5 arctan 520x+50

104x−520yβ+55

if x ∈ ΣL, and the first integral Hj with j = 1 or 2 or 3 or 4, and Hj are given by (1.2), (1.3), (1.4)
and (1.5), respectively if x ∈ ΣR.

For the piecewise differential systems (Sj)+ (1.8) with j ∈ {1, 2, 3, 4}, the function (2.12) becomes

f1(t) =
1

100 sinh 1
5 t

(
10 sinh 1

5
t+ 11 sin t

)
.

The equation f1(t) = 0 has exactly two positive zeros t1 = 4.143 8 and t2 = 4.749 2. From these values
of ti, i = 1, 2, and using (2.10), we get the values of y11 = − 0.139 44

β and y12 = − 0.217 03
β , so, from

y0 = −y1, we have y01 = 0.139 44
β and y02 = 0.217 03

β . Thus these two solutions will correspond to the
isolated periodic orbits Γ1 and Γ1 of systems (Sj) + (1.8), i.e.,to two limit cycles of those systems.
The smallest one Γ1 intersects the switching line Σ at two points (0, y01) and (0, y11) and the biggest
limit cycle Γ2 intersects the switching line Σ at two points (0, y02) and (0, y12). Straightforward
computations show that the solution of (Sj) + (1.8) with j = 1 or 2 or 3, or 4, passing through the
crossing points (0, y01) and (0, y11), corresponds to

Γ1 =
{
(x, y) ∈ ΣR : Hj(x, y) = hj

}
∪
{
(x, y) ∈ ΣL : Hf1(x, y) = 5.974 1× 10−2

}
,

where h1 = ( 0.139 44
β )4, h2 = h3 = h4 = ( 0.139 44

β )2, and the solution of (Sj) + (1.8), passing through
the crossing points (0, y02) and (0, y12), corresponds to

Γ2 =
{
(x, y) ∈ ΣR : Hj(x, y) = h′

j

}
∪
{
(x, y) ∈ ΣL : Hf1(x, y) = 0.101 04

}
,

where h′
1 = ( 0.217 03

β )4, h′
2 = h′

3 = h′
4 = ( 0.217 03

β )2. Moreover, Γ1 and Γ2 are non-algebraic and travel
in a counterclockwise sense around the sliding segment Σs = {(0, y) ∈ Σ : 0 ≤ y ≤ − 1

8β }.

Proof of proposition 1.3. We consider that we have the piecewise differential systems (Sj)+(1.9) with
j = 1 or 2 or 3 or 4. The equilibrium point (1, 0) of system (1.9) has eigenvalues 1 ± i, so, it is a
virtual focus, these piecewise differential systems have the first integral

Hf2(x, y) = (5x2 − 4βxy − 10x+ β2y2 + 4βy + 5)e−2 arctan x−1
yβ−2x+2

if x ∈ ΣL, and the first integral Hj with j = 1 or 2 or 3 or 4, where Hj are given by (1.2), (1.3), (1.4)
and (1.5), respectively, if x ∈ ΣR.

For the piecewise differential systems (Sj)+ (1.9) with j ∈ {1, 2, 3, 4}, the function (2.12) becomes

f1(t) = − 1

sinh t
(2 sinh t− 4 sin t).
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From the equation f1(t) = 0, we obtain the unique solution t = 1.435 4. From this value of t and using
(2.10), we get the values of y1 = − 2.104 0

β , because y1 = −y0, thus y0 = 2.104 0
β . So, the discontinuous

piecewise differential systems (Sj) + (1.9) have exactly one crossing limit cycle. Straightforward
computations show that the solution of (Sj) + (1.9) passing through the crossing points (0, y0) and
(0, y1) corresponds to

Γ1 =
{
(x, y) ∈ ΣR : Hj(x, y) = hj

}
∪
{
(x, y) ∈ ΣL : Hf2(x, y) = 5.374 3× 10−2

}
,

where j ∈ {1, 2, 3, 4}, h1 = ( 2.104 0
β )4 and h2 = h3 = h4 = ( 2.104 0

β )2. We note that this limit cycle is
non-algebraic and travels in a counterclockwise sense, around the sliding segment Σs = {(0, y) ∈ Σ :
0 ≤ y ≤ − 1

β }.

Proof of proposition 1.4. We consider the piecewise differential systems (Sj)+(1.10) with j∈{1, 2, 3, 4}.
Since the eigenvalues of matrices of the linear differential system (1.10) are 3

2 , − 1
2 , this system has a

real saddle at the equilibrium point (− 4
3 ,

37
30β ). The piecewise differential systems (Sj) + (1.10) with

j = 1 or 2 or 3, or 4, have the first integral

Hs(x, y) =
(
− 1

2
x+ βy − 19

10

)3(3
2
x+ βy +

23

30

)
if x ∈ ΣL, and the first integral Hj with j = 1 or 2 or 3, or 4, where Hj are given by (1.2), (1.3), (1.4)
and (1.5), respectively, if x ∈ ΣR.

For the piecewise differential systems (Sj)+(1.10) with j ∈ {1, 2, 3, 4}, the function (2.15) becomes

f2(t) =
17

20

sinh t

sinh 1
2 t

− 2.

The unique solution of f1(t) = 0 is t = 1.171 4. From this value of t and using (2.10), we get the values
of y1 = − 0.541 03

β . Since y1 = −y0, we have y0 = 0.541 03
β . So, the discontinuous piecewise differential

systems (Sj) + (1.10) have exactly one crossing limit cycle. Straightforward computations show that
the crossing limit cycle passing through the crossing points (0, y1) and (0, y2) corresponds to

Γ =
{
(x, y) ∈ ΣR : Hj(x, y) = hj

}
∪
{
(x, y) ∈ ΣL : Hs(x, y) = −3. 281 8

}
,

where j = 1 or 2 or 3, or 4, h1 = ( 0.541 03
β )4 and h2 = h3 = h4 = ( 0.541 03

β )2. Moreover, this limit cycle is
algebraic and the sliding region of systems (Sj)+(1.11) is defined by Σs = {(0, y) ∈ Σ : 0 ≤ y ≤ − 1

10β },
which is inside the periodic orbit. Drawing the orbit Γ, we obtain the limit cycle in Figure 3, which
travels in a counterclockwise sense.

Proof of proposition 1.5. We consider the piecewise differential systems (Sj) + (1.11) with j = 1 or 2
or 3 or 4. The equilibrium point ( 12 ,−

4
β ) of system (1.11) has eigenvalues 4, 2, so, it is a virtual node.

On the other hand, the piecewise differential systems (Sj) + (1.11) with j ∈ {1, 2, 3, 4} have the first
integral

Hn(x, y) =
(2x+ βy + 3)4

(4x+ βy + 2)2

if x ∈ ΣL, and the first integral Hj with j = 1 or 2 or 3, or 4, where Hj are given by (1.2), (1.3), (1.4)
and (1.5), respectively, if x ∈ ΣR.

For the piecewise differential systems (Sj)+(1.11) with j ∈ {1, 2, 3, 4}, the function (2.15) becomes

f2(t) = 20
sinh t

sinh 3t
− 4.

Now, solving the equation f2(t) = 0 with respect to the variable t, we get t = 0.658 48. Using
the expression of y1 given by (2.13) and taking into account that y1 = −y0, we get y1 = − 1.732 1

β

and y0 = 1.732 1
β . So, the discontinuous piecewise differential systems (Sj) + (1.11) have exactly one
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crossing limit cycle. Straightforward computations show that the crossing limit cycle passing through
the crossing points (0, y1) and (0, y2) corresponds to

Γ =
{
(x, y) ∈ ΣR : Hj(x, y) = hj

}
∪
{
(x, y) ∈ ΣL : Hn(x, y) = 36.008

}
,

where j ∈ {1, 2, 3, 4}, h1 = (− 1.732 1
β )4 and h2 = h3 = h4 = (− 1.732 1

β )2. Moreover, Γ is non-algebraic
and travels in a counterclockwise sense, around the sliding set Σs = {(0, y) ∈ Σ : 0 ≤ y ≤ − 1

β }.

Proof of proposition 1.6. We consider the piecewise differential systems (Sj) + (1.12) with j = 1 or
2 or 3 or 4. Since the eigenvalues of the matrices of the linear differential system (1.12) is −1, this
system has a virtual node with eigenvalue of multiplicity 2 whose linear part does not diagonalize at
the equilibrium point (1, 0). The piecewise differential systems (Sj) + (1.12) with j = 1 or 2 or 3, or
4, have the first integral

Hn′(x, y) =
1

−2x− βy + 2
e

x−1
−2x−βy+2

if x ∈ ΣL, and the first integral Hj with j = 1 or 2 or 3 or 4, where Hj are given by (1.2), (1.3), (1.4)
and (1.5), respectively, if x ∈ ΣR.

For the piecewise differential systems (Sj)+(1.12) with j ∈ {1, 2, 3, 4}, the function (2.19) becomes

f3(t) =
1

t
(sinh t− 2t).

Now, solving f3(t) = 0, we get t = 2.177 3, substituting this value of t into the expression of y1
given by (2.17) and taking into account that y1 = −y0, we get y1 = − 1.575 2

β and y0 = 1.575 2
β . So,

the discontinuous piecewise differential systems (Sj) + (1.12) have exactly one crossing limit cycle.
Straightforward computations show that the crossing limit cycle passing through the crossing points
(0, y1) and (0, y2) corresponds to

Γ =
{
(x, y) ∈ ΣR : Hj(x, y) = hj

}
∪
{
(x, y) ∈ ΣL : Hn′(x, y) = 0.211 46

}
,

where j ∈ {1, 2, 3, 4}, h1 = ( 1.575 2
β )4 and h2 = h3 = h4 = ( 1.575 2

β )2. Moreover, this limit cycle is
non-algebraic and surrounds the sliding segment Σs = {(0, y) ∈ Σ : 1

β ≤ y ≤ 0} counterclockwise.

Proof of proposition 1.7. We consider the piecewise differential systems (Sj)+(1.13) with j∈{1, 2, 3, 4}.
The planar linear differential system (1.13) has the first integral

Hw(x, y) =
(101
100

+ (1− µ)x+ y
)
eµx−y

in ΣL and the cubic polynomial differential systems (Sj) with j ∈ {1, 2, 3, 4} have the first integral
Hj , where Hj are given by (1.2), (1.3), (1.4) and (1.5) with j = 1 or 2 or 3 or 4, respectively, in ΣR.
It is easy to see that (1.13) has no equilibria, neither real nor virtual.

Then for the discontinuous piecewise differential systems (Sj)+(1.13), the function (2.22) becomes

f4(t) = t coth 1

2
t− 101

50
.

This function f4(t) has exactly a unique positive root t = 0.346 76. From this value of t and using
(2.20), we get the values of y1 = 0.173 38. Since y1 = −y0, we have y0 = −0.173 38. So, the
discontinuous piecewise differential systems (Sj)+(1.13) have exactly one non-algebraic crossing limit
cycle. Straightforward computations show that the crossing limit cycle passing through the crossing
points (0, y1) and (0, y2) corresponds to

Γ =
{
(x, y) ∈ ΣR : Hj = hj

}
∪
{
(x, y) ∈ ΣL : Hw(x, y) = 0.995 01

}
,

where j ∈ {1, 2, 3, 4}, h1 = (0.173 38)4 and h2 = h3 = h4 = (0.173 38)2. This limit cycle surrounds
the sliding set Σs = {(0, y) ∈ Σ : −1

100 ≤ y ≤ 0}.
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