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Abstract. In this paper, we prove and discuss some new (H,, L,) type inequalities for partial Sums
and Fejér means with respect to the Walsh system. It is also proved that these results are the best
possible in a special sense. As applications, both some well-known and new results are pointed out.
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1 Preliminaries

It is well-known that (for details see, e.g., [34,54] and [44]) for every p > 1, there exists an absolute
constant ¢,, depending only on p such that

1Snfllp < cpllfllp, when p>1 and f e Hi(G).

Moreover, Watari [89] (see also Gosselin [35] and Young [96]) proved that there exists an absolute
constant ¢ such that forn=1,2,...,

Au(Sufl > A) <cellfll, feLi(G), A>0.

On the other hand, it is also well-known that (for details see, e.g., [1,54] and [81]) a Walsh system
is not Schauder’s basis in L, (G) space. Moreover, there exists function f € H;(G) such that partial
sums with respect to the Walsh system are not uniformly bounded in L;(G).

Applying Lebesgue constants

L(n) = | Dall,

we easily obtain that (for details see, e.g., [2] and [54]) subsequences of partial sums S, f with respect
to the Walsh system converge to f in Ly norm if and only if

sup L(ng) < ¢ < oc. (1.1)
keN

Since the n-th Lebesgue constant with respect to the Walsh system, where
o0
n = an 27 (Tl]‘ S ZQ),
j=0

can be estimated by the variation of natural number
oo
V(n)=no+ Y _ |nx —nial,
k=1

and it is also well known that (for details see, e.g., [8] and [54]) the following two-sided estimate

éV(n) < L(n) <V(n)

is true, to obtain the convergence of subsequences of partial sums S, f with respect to the Walsh
system of f € Ly in f € Li-norm, condition (1.1) can be replaced by

sup V(ng) < ¢ < o0.
keN

It follows that (for details see, e.g., [54] and [90]) a subsequence of partial sums So» is bounded
from H,(G) to H,(G) for every p > 0, whence we obtain

1520 f — fllz, @) — 0 as n— oc. (1.2)
On the other hand (see, e.g., [68]), there exists a martingale f € H,(G) (0 < p < 1) such that

sup ||S2"+1f||weak—Lp(G) = Q.
neN

The main reason of divergence of the subsequence Sonyif of partial sums is that (for details
see [69]) the Fourier coefficients of f € H,(G) are not uniformly bounded for 0 < p < 1.

When 0 < p < 1, in [9] and [82], the boundedness of subsequences of partial sums with respect to
the Walsh system from H,(G) to H,(G) was investigated. In particular, the following result is true.
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Theorem T1. Let0<p <1 and f € Hy(G). Then there exists an absolute constant c,, depending
only on p, such that

||Smkf||Hp(G) < cpr”Hp(G)

if and only if the following condition holds:

supd(my) < ¢ < oo, (1.3)
keN

where
d(my) = |mg| — (my).

In particular, from Theorem T1 immediately follows
Theorem T2. Let p > 0 and f € Hy(G). Then there exists an absolute constant c,, depending only
on p, such that
1820 fll#r,6) < epllfllm, @)
and
[1S2n y2n=1 fllm,(c) < pll fllm,)-

On the other hand, we have the following result.

Theorem T3. Let p > 0. Then there exists a martingale f € H,(G) such that

sup ||52n+1f||Hp(G) = 0.
neN

Taking into account these results, it is interesting to find behaviour of a rate of divergence of
subsequences of partials sums with respect to the Walsh system of martingales f € H,(G) in the
martingale Hardy spaces H,(G).

In Section 2 (see also [70]), we investigate the above-mentioned problem. For 0 < p < 1, we have
the following result.

Theorem 2.1. Let f € H,(G). Then there exists an absolute constant ¢, depending only on p, such
that the following inequality is true:

1S f 00y < € 2P| £, 6)- (1.4)

On the other hand, if 0 < p < 1, {my : k > 0} is an increasing subsequence of natural numbers
such that
sup d(my) = oo (1.5)
keN

and ® : Ny — [1,00) is a non-decreasing function satisfying the condition

= 9d(my)(1/p—1)
kggo @(mk) %

then there exists a martingale f € Hy(G) such that

bl

sup
weak-L, (G)

keN

Theorem 2.1 easily implies the following

Corollary 2.1. Let 0 <p < 1 and f € Hy(G). Then there exists an absolute constant c,, depending
only on p, such that

1/p—1
1S f 1,0y < p(nu{supp(Dn)}) 7 1 f L1, (-
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On the other hand, if 0 <p <1, {my : k > 0} is an increasing sequence of natural numbers such
that

sup g pi{ supp(Dn, ) } = 00
kEN
and ® : Ny — [1,00) is a non-decreasing function satisfying the condition

i (map{supp(Dm, )P
k—o0 @(mk)

= 00,

then there exists a martingale f € Hy(G) such that

]

sup
kEN

weak-L,(G)

In particular, we also get the proofs of Theorem T1 and Theorem T2.
In Section 2, we also investigate the case p = 1. In this case, the following result is true.

Theorem 2.2. Letn € Ny and f € Hi(G). Then there exists an absolute constant ¢ such that
190y (@) < V)l (6)- (1.6)
Moreover, if {my, : k > 0} is an increasing sequence of natural numbers N such that

sup V(my) = oo
keN

and ® : Ny — [1,00) is a non-decreasing function satisfying the condition

Tim V(mg) _
k—o0 CI)(mk)

then there exists a martingale f € Hy(G) such that

ol =

sup
keN

When 0 < p < 1, in [82] the boundedness of maximal operators of subsequences of partial sums
from Hp,(G) to L,(G) was proved. In particular, the following theorem is true.

Theorem T4. Let 0 < p <1 and f € Hy,(G). Then the mazimal operator

Sup | S, f|

keN
is bounded from Hy,(G) to L,(G) if and only if condition (1.3) is fulfilled.
In the special cases we find that the following theorem is true.

Theorem T5. Let p > 0 and f € Hy(G). Then there exists an absolute constant c,, depending only
on p, such that

| sup1S2n 1] < el iy (1.7)
neN P

and
| sup[Ssesonsl]| < ol
neN P

On the other hand, we have the following result.

Theorem T6. Let p > 0. Then there exists a martingale f € H,(G) such that

H sup |SQn+1f|H = 00.
neN p
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The above-mentioned condition (1.3) is sufficient for the case p = 1 as well, but there exist
subsequences which do not satisfy this condition, but maximal operators of these subsequences of
partial sums with respect to the Walsh system are not bounded from H;(G) to Li(G).

Such necessary and sufficient conditions that provide the boundedness of maximal operators of
subsequences of partial sums with respect to the Walsh system from H;(G) to L;(G) remains still an
open problem.

In [69] and [82], the boundedness of weighted maximal operators from H,(G) to L,(G), when
0 < p <1, was investigated.

Theorem T7. Let 0 < p < 1. Then the weighted maximal operator

o[ = sup ST
neNy (n+ 1)Y/P=1log®(n + 1)

is bounded from Hy,(G) to L,(G), where [p] denotes an integer part of p.
Moreover, for any non-decreasing function ¢ : Ny — [1,00) satisfying the condition

o 1)1/p=1150P] 1
S o+ 1)

there exists a martingale f € H,(G) (0 < p < 1) such that

ol
p(n)llp

sup |
neN

According to the sharpness of result, for the weighted maximal operator of partial sums of Walsh—
Fourier series, we immediately get the following result.

Theorem S1. There exists a martingale f € H,(G) (0 < p < 1) such that

sup ||y flp = oo.
neN

On the other hand, the boundedness of weighted maximal operators immediately leads to the
following estimation.

Theorem S2. Let 0 < p < 1. Then there exists an absolute constant c,, depending only on p, such
that

10 fllp < ep(n+ )Y~ og ™ (n+ D fllm, ) for 0<p<1,
where [p] denotes an integer part of p.

Applying this inequality (see [67]), we find the necessary and sufficient conditions for the martingale
f € H,(G) for which partial sums with respect to the Walsh system of martingales f € H,(G) converge
in H,(G) norm.

Theorem T8. Let 0 < p <1, [p| denote an integer part of p, f € Hy(G) and

Then
|Snf — fllp = 0 as n— oo.

Moreover, there exists a martingale f € Hy(G), where 0 < p < 1, such that

pr(G)(QLN’f) = O(m) as N — 0o

and
[Snf = fllweak-L,(c) + 0 as n — oo.
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Taking these results into account, it is interesting to find the necessary and sufficient conditions for
modulus of continuity such that the subsequences of partial sums with respect to the Walsh system
of martingales f € H,(G) converge in H,(G) norm.

In Section 2 (see also [70]), we investigate this problem. Combining inequalities (1.4) and (1.6),
we get the following

Theorem 2.3. Let 28 < n < 281, Then there exists an absolute constant cp, depending only on p,
such that

1Snf = flla, @) < e 2d(n)(1/p_1)WHp(G) (2%7 f) (0<p<1) (1.8)
and
1Snf = fllme) < aV(n)wn, @) (2%1 f)- (1.9)
By applying inequality (1.8), in Section 2, the following result is proved.

Theorem 2.4. Let 0 < p <1, f € Hy(G) and {my : k > 0} be an increasing sequence of natural
numbers satisfying the condition

1 1
wH”(G)(Q\mkl’f> - O(W) as k= oo.
Then
1Sme f = flla, @ — 0 as k — . (1.10)

On the other hand, if {my : k > 0} is an increasing sequence of natural numbers satisfying condition
(1.5), then there exists a martingale f € H,(G) and a subsequence {oy, : k >0} C {my, : k> 0} for
which

1 1
WH, (@) (zwak,\ ’f) - O(Qd(akxup—l)) as k= oc
and
limsup [|Sa, f — fllweak-£, (@) > ¢p >0 as k — oo, (1.11)
k—o0
where ¢, is an absolute constant depending only on p.
According to this theorem, we immediately get that the following result is true.

Corollary 2.5. Let 0 < p < 1, f € Hy(G) and {my : k > 0} be an increasing sequence of natural
numbers satisfying the condition
(g 1) =( 1
w —— f]=o0
o (&N ghmi] (myp(supp Dy, ) /Pt

) as k — oc.

Then (1.10) holds.
On the other hand, if {my : k > 0} is an increasing sequence of natural numbers satisfying the

condition

i (mep{supp(Dim ) )7~
k—o0 <I>(mk)

= 00,

then there exist a martingale f € H,(G) and a subsequence {ay : k> 0} C {my : k > 0} such that

) 1
WH, (G) (W f) - O<(O¢ku(supp D,))t/r=1

) as k — oo

and (1.11) holds.
Applying (1.9), we prove that the following result is true.

Theorem 2.5. Let f € H1(G) and {my, : k > 0} be an increasing sequence of natural numbers

satisfying the condition
1

le(G)(M,f) = 0(@) as k — oo.
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Then
HSmkf - f||H1(G) —0 as k — oo.

Moreover, if {my : k > 0} is an increasing sequence of natural numbers satisfying condition (1.5),
then there exist a martingale f € H1(G) and a subsequence {ay : k> 0} C {my : k > 0} for which

le(G)(ﬁ,]ﬁ = O(@) as k— oo

and
limsup ||[Sa, f — fll1 >¢>0 as k — oo,
k— oo
where ¢ 1s an absolute constant.

Applying Theorems 2.4 and 2.5, we immediately get the proof of Theorem T8.
Weisz [91] considered the convergence in a norm of Fejér means of the one-dimensional Walsh—
Fourier series and proved the following

Theorem Wel. Let p > 1/2 and f € H,(G). Then there exists an absolute constant cp, depending
only on p, such that

ok flla, @) < eoll fll, (@)

Weisz (for details see, e.g., [90]) also considered the boundedness of subsequences of Fejér means
ogn of the one-dimensional Walsh-Fourier series from H,(G) to H,(G) when p > 0.

Theorem We2. Let p > 0 and f € Hy,(G). Then

oo f — fllz, @) — 0 as k — oo. (1.12)

On the other hand, in [63], the following result was proved.
Theorem T9. There exists a martingale f € Hy(G) (0 < p <1/2) such that

SUP||U2“+1f||Hp(G) = Q.
neN

Goginava [29] (see also [51]) proved that the following result is true.

Theorem Gogl. Let 0 < p < 1. Then the sequence of operators |oon f| is not bounded from H,(G)
to Hy(G).

If 0 < p < 1/2, then in [52] it was proved the boundedness of subsequences of Fejér means of the
one-dimensional Walsh-Fourier from H,(G) to H,(G). In particular, the following statement is true.

Theorem T10. Let 0 < p < 1/2 and f € H,(G). Then there exists an absolute constant c,,

depending only on p, such that the estimation

om fllm, @) < epll fllm, @)

holds if and only if condition (1.3) is fulfilled.

Theorem T10 immediately follows from theorem of Weisz (see Theorem We2) and we get the
interesting results.

Theorem T11. Let p > 0 and f € Hy(G). Then there exists an absolute constant c,, depending only
on p, such that
loan flla, ) < eoll flla,(6)

and
loanyon-1 fllm, @) < cpllfllm, )

On the other hand, we have the following result.
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Theorem T12. Let p > 0. Then there exists a martingale f € Hy(G) such that

sup ||0'2”+1f||Hp(c) = 0.
neN

According to the above-mentioned results, it is interesting to find a rate of divergence of subse-
quences oy, f of Fejér means of the one-dimensional Walsh-Fourier series in the Hardy spaces H,(G).
In Section 3 (see also [71]), we find a rate of divergence of subsequences of Fejér means of the
one-dimensional Walsh-Fourier series on the martingale Hardy spaces H,(G), when 0 < p < 1/2.
First, we consider the case p = 1/2.

Theorem 3.1. Let n € Ny and f € Hy/5(G). Then there exists an absolute constant ¢ such that
lowflle, o) < VA, 0)- (1.13)
Moreover, if {my, : k > 0} is an increasing sequence of natural numbers such that

sup V(my) = oo,
keN

and ® : Ny — [1,00] is a non-decreasing function satisfying the condition

k—oc0 <I>(mk) -

then there exists a martingale f € Hy;5(G) such that

s

i ¢ D (my) H1/2 -

keN

The case 0 < p < 1/2 was also been considered and it was proved that the following statement is
true.

Theorem 3.2. Let 0 < p < 1/2 and f € H,(G). Then there exists an absolute constant c,, depending
only on p, such that
lon il < ep 292D £l g, (o) (1.14)

On the other hand, if 0 < p < 1/2, {my : k > 0} is an increasing sequence of natural numbers
satisfying condition (1.5) and ® : N. — [1,00) is a non-decreasing function such that

— 2l
Y

then there exists a martingale f € Hy(G) such that

o
su =
kEN q)(mk) weak-L, (G)

From these results also follows the proof of Theorem We2.
In 1975, Schipp [53] (see also [2] and [97]) proved that the maximal operator of Fejér means o* is
of type weak — (1,1):

. c
pof>A) < Sl (A>0).
Using the Marcinkiewicz interpolation theorem, it follows that o* is of strong type-(p,p), when p > 1:
o™ fllp < cllflly (p>1).

The boundedness does not hold for p = 1, but Fujii [20] (see also [95]) proved that the maximal
operator of Fejér means is bounded from H;(G) to L1(G). Weisz in [92] generalized the result of
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Fujii and proved that the maximal operator of Fejér means is bounded from H,(G) to L,(G), when
p > 1/2. Simon [55] constructed the counterexample showing that the boundedness does not hold
when 0 < p < 1/2. Goginava [25] (see also [14] and [15]) generalized this result for 0 < p < 1/2 and
proved that the following theorem is true.

Theorem Gog2. There exists a martingale f € H,(G) (0 < p <1/2) such that

sup [lon f|lp = oc.
neN

Weisz [93] (see also Goginava [27]) proved that the following theorem is true.
Theorem We3. Let f € Hy/3(G). Then there exists an absolute constant ¢ such that

Ho-*waeakal/g(G) < CHf”Hl/g(G)'

In [52], the boundedness of maximal operators of subsequences of Fejér means of the one-dimensio-
nal Walsh-Fourier series from H,(G) to L,(G) for 0 < p < 1/2 was considered. In particular, the
following result is true.

Theorem T13. Let 0 < p < 1/2 and f € H,(G). Then the mazimal operator
o " f = sup|om,f|
keN

is bounded from Hy,(G) to L,(G) if and only if condition (1.3) is fulfilled.
As consequences, the following results are true.

Theorem T14. Let p > 0 and f € H,(G). Then there exists an absolute constant c,, depending only
on p, such that

| suplow 1| < epll o (1.15)
neN P

and

suplozn s Sl < Gl -
neN P

On the other hand, we have the following negative result.

Theorem T15. Let 0 < p < 1/2. Then there exists a martingale f € H,(G) such that

Hsup|agn+1f|H = 00.
neN p

The above-mentioned condition is sufficient for the case p = 1/2 too, but there exist the subse-
quences that do not satisfy condition (1.3) and the maximal operator of subsequences of Fejér means
of the one-dimensional Walsh-Fourier series are bounded from Hy/5(G) to Ly /2(G).

However, the problem of finding the necessary and sufficient conditions on the indices, which
provide the boundedness of maximal operator of subsequences of Fejér means of the one-dimensional
Walsh-Fourier series from Hy/5(G) to Ly/2(G) is still open.

In [26] and [63] (see also [30,50,62,65]), it is proved

Theorem GT1. Let 0 < p <1/2 and f € H,(G). Then the mazimal operator

o, f = sup |Jn£[|1/2+ ]
neN (n+1)1/r=2log Pln +1)

is bounded from Hy,(G) to L,y(G).

Moreover, for any nondecreasing function ¢ : Ni — [1,00) satisfying the condition
= (et DYP 2 log?2 (4 1)

n—o0 p(n)

= +OO7
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there exists a martingale f € H,(G) (0 < p < 1/2) such that

p

neN

O'nf
¢(n)

From the divergence of weighted maximal operators we immediately get that there exists a mar-
tingale f € H,(G) (0 < p <1/2) such that

sup [lon f||p = oo,
neN

and from the boundedness results of weighted maximal operators we immediately get that for any
f € H,(G) there exists an absolute constant ¢, such that the inequality

_ 1
lonfllp < cpn'/P=21og? 2P (n 4 1)[|f | ) as 0 <p < 3 (1.16)

holds true. Applying inequality (1.16) in [67], the necessary and sufficient conditions were found for
the modulus of continuity of a martingale f € H,(G), for which Fejér means of the one-dimensional
Walsh-Fourier series converge in H,(G) norm.

Theorem T16. Let 0 <p <1/2, f € H,(G) and

pr<G>(2LN’f) - 0(2N(1/p72>1N2[1/2+p]) as N = oc.

Then
lonf — fllp =0 as n — oo.

Moreover, there exists a martingale f € Hy(G), for which

1 1
“’Hl/ﬂG)(TN’f ) - O(2N<1/p—2> N2[1/2+p1> as NV = 0

and
lonf — fllp 0 as n — oo.

According to the above-mentioned results, it is of interest to find the necessary and sufficient
conditions for the modulus of continuity, for which subsequences oy, f of Fejér means of the one-
dimensional Walsh-Fourier series converge in H,(G) norm.

In Section 3, we find the necessary and sufficient conditions for the modulus of continuity, for
which subsequences oy, f of Fejér means of the one-dimensional Walsh-Fourier series converge in
H,(G) norm (see also [71]).

Applying inequality (1.13) to the case p = 1/2, the following necessary and sufficient conditions
are found.

Theorem 3.3. Let f € Hy)5(G) and {my : k > 0} be an increasing sequence of natural numbers
such that

le/Q(G)(ﬁ,f) = O(Vz(lmk)) as k — oc.

Then
lom, f — f||H1/2(G) —0 as k — oo.

Moreover, if {my, : k > 0} is an increasing sequence of natural numbers such that (1.5) holds true,
then there exist a martingale f € Hy/9(G) and a subsequence {cy, : k> 0} C {my : k> 0} such that

le/z(G)(ﬁvf) = O(Vz(lak)) as k — 0o

and
limsup ||oa, f — fllij2 > ¢ >0 as k — oo,
k—o0
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where ¢ s an absolute constant.

Applying inequality (1.14), we investigate the case 0 < p < 1/2. In Section 3, we prove that the
following theorem is true.

Theorem 3.4. Let 0 < p < 1/2, f € H,(G) and {my, : k > 0} be an increasing sequence of natural

numbers such that )

wH”(G)(2\mk|’f> (m) as k — oo.
Then
lomef — flla, (@) — 0 as k — oo.

On the other hand, if {my : k > 0} is an increasing sequence of natural numbers satisfying condition
(1.5), then there exist a martingale f € Hy(G) and a subsequence {ay : k> 0} C {my : k> 0}, for
which

and
lim sup ”Uakf - waeak—Lp(G) >cp > 0 as k — oo,
k—oc0
where ¢, is constant depending only on p.

However, Simon in [56] and [58] (see also [18,57,59]) considered strong convergence theorems of
the one-dimensional Walsh—Fourier series and proved the following

Theorem Sil. Let 0 < p <1 and f € H1(G). Then there exists an absolute constant c,, depending
only on p, such that the following inequality is true:

1 & Seflla, @
Z - <olfla
2— p »(G)
log[p] n = k2—p
Analogous result for trigonometric system was proved in [60], and for unbounded Walsh systems
in [22].
In [64], it was proved that the following theorem is true.

Theorem T17. For any 0 < p < 1 and non-decreasing function ¢ : Np — [1, 00) satisfying the

condition
n2-P
lim = 400,
n— o0 gp(n

there exists a martingale f € H,(G) such that

oo

Z HSkf”vvemk L (G)

o0 oo (0<p<l).
k=1

From Theorem Sil it follows that if f € H(G), then the following equalities are true:

. 1 < Sef = fla
1 =
im E A 0

n—oo logn —

and

1 S
Z 1510 _ .,

n~>oo logn

When 0 < p < 1 and f € H,(G), then from Theorem Sil follows that there exists an absolute
constant ¢,, depending only on p, such that

1541, 6
n1/2 p/2 Z 13/2—p/2 Cpr”H 2 (G)"
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Moreover,
1Skf = fllr,
—— Z e

We have the equality

|| kaH »(G)
nl/2— p/2z k3/2—p/2 ”pr

In Section 3, we consider strong convergence results of Fejér means of the one-dimensional Walsh—
Fourier series. According to Theorem Wel and Theorem Gog2, we only have to consider the case
0 < p < 1/2 (for details see [66] and also [8,10-13]):

Theorem 3.5. Let 0 < p < 1/2 and f € H,(G). Then there exists an absolute constant ¢, depending

only on p, such that
L& oI
logl!/2+Pl Z m2—2p < ol fII (@)

Moreover, let 0 < p < 1/2 and ® : Ny — [1,00) be a non-decreasing, non-negative function such

that ®(n) 1 co and
o k‘2_2p
lim ——— =0

Then there exists a martingale f € Hy(G) such that

= Q.

i Ho-ﬂ’Lfoveak-Lp(G)

When p = 1/2, it was also proved that the following theorem is true.
Theorem 3.6. Let f € Hy/5(G). Then

1/2
sup  su Z lowm f111)5 = oo

neNy ”fHHp(G)<1 n -

Theorem 3.5 implies that if f € H;/5(G), then the following equalities are true:

1/2
1 Dot = £l o)

li =0
00 logn kz1 k

and

1/2
1 & ol
R PL LTSGR PP

n— 00 lognk 1 k H1/2

When 0 < p < 1/2 and f € H,(G), then Theorem 3.5 impliles that there exists an absolute
constant c,, depending only on p, such that

N
nl/2-p Z 13/2—p Cp”fHH (G)
k=1

Moreover,
n _ p
nl/2-p k3/2*p -

k=1

Thus we have

1 Zn: ||ka||?{P(G)

n1/2_1’ k_3/2_p = Hf”H (G)
k=
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2 Partial sums with respect to the one-dimensional
Walsh—Fourier series on the martingale Hardy spaces

2.1 Basic notations

Denote by N the set of positive integers and by N := N U {0} the set of non-negative integers.
Denote by Zs an additive group of integers modulo-2, which contains only two elements Zs := {0,1},
group operation is modulo-2 sum and all sets are open.

Define the group G as the complete direct product of the groups Zs with the product of the discrete
topologies Z5. The direct product p of measures u,({j}) := 1/2 (j € Z3) is the Haar measure on G
with u(G) = 1.

The elements of GG are represented by the sequences

T = (.I‘Q,J?l,...,l‘j,...) (Jﬁk = 0,1)
It is easy to give a base for the neighbourhood of G,

Io(l'):G,
I,(x) ::{y€G| y(]:xo,...,yn,lzxn,l} (r € G, neN).

Set I,, := I,,(0) for any n € N and I,, := G\ I,,.
It is evident that

M—2 M—1 M-1 M—1
Tu=(U U Intee+en)u( U Duten) = U I\ T (2.1)
k=0 I=k+1 k=0 k=0

S} .
If n € N, then it can be uniquely expressed as n = > n;2’, where n; € Z, (j € N), and only a
k=0
finite number of n;s differs from zero. Set

(n) :=min{j €N, n; #0} and |n|:=max{j € N, n; # 0},
It is evident that 271 < n < 2Inl+1 et
d(n) := |n| — (n) for any n € N.

Denote by V(n) the variation of natural number n € N,
o0
V(n) =mno+ Z |ng — ng—1].
k=1

Define k-th Rademacher functions by
rp(z) == (-1)" (x € G, keN).

By using Rademacher functions, we define the Walsh system w := (w,, : n € N) G as:

o Inj=1
wp () = H ek (x) = 1 (2)(—1) Z, T (n €N).
k=0

The norm (quasi-norm) of the space L,(G) and weak-L,(G) for (0 < p < o0) are respectively
defined as

1913 5= ([ 1P )+ 1) = 500 P € G 111> )
& A>0
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The Walsh system is orthonormal and complete in Lo(G) (see [54]).
For any f € L1(G), the numbers

Fn) = / F(@)wn () dy(z)
G

are called n-th Walsh—Fourier coefficient of f.
The n-th partial sum is denoted by

|
_

Su(f32) =Y fliywi(w).

%

I
<)

The Dirichlet kernels are defined by

D, (z) = z_:wl(x)
=0

We also define the following maximal operators:
S*f =sup |Snfl, §;}f = sup | Son f].
neN neN
The c-algebra generated by the intervals I, (x) with measure 27" is denoted by F ,(n € N). The

conditional exponential operator with respect to f,, (n € N) is denoted by F,, and it is given by

2" —1

B (@) = S f(@) = Y Flkywn(o) = 5 / f() du(a),

k=0

where |I,,(z)| = 27" denotes length of the set I,,(x).
The sequence f = (f,, n € N) of functions f,, € L1(G) is called a dyadic martingale (for details
see [43,54]) if

(i) fn is measurable with respect to o-algebras F,, for any n € N,
(ii) By fm = fn for any n < m.

The maximal function of a martingale f is defined by

[T =sup|ful.

neN
In case f € L1(G), the maximal functions are also given by

*(x) = su - U U
() = sup (I))’I(/)f()du()

neN .U(In

For 0 < p < 00, the Hardy martingale space H,(G) consists of all martingales, for which

1f ez, () = 17 llp < oo

A bounded measurable function a is said to be a p-atom if there exists a dyadic interval I such
that

/adﬂ =0, [laflo < pu(I)"/?, supp(a) C I.
T
It is easy to show that for a martingale f = (f,, n € N) and for any k € N, there exists a limit

Fley = tim [ fol@)un (@) du(a)

n—oo

G
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and it is called the k-th Walsh—Fourier coefficients of f.
If fo € L1(G) and f := (E, fo : n € N) is a regular martingale, then

Fio) = [ s@yune) dute) = o). ke
G
The modulus of continuity in the space H,(G) is defined by

1
wi,@) (552 f) = I = S flly (-

It is important to describe how one can understand the difference f —Son f, where f is a martingale
and Sa» f is a function:

Remark 2.1. Let 0 < p < 1. Since
Sonf = fn € L1(G), where f = (f,: neN)e H,(G),
and

(Szkfn ke N) = (SngQn, ke N)
= (S2Ofa"'7SQ’L*1f7S2"faSQ"f7~--) = (an"'vfn—lvfnafna"')a

under the difference f — Son f we mean the following martingale:

f = ((ffSQ"f)]ﬁ ke N)a

where
0 k=0,...,n,

(f_S”'f)’“:{f;fn, k>n+ L

Consequently, the norm || f — San f|| 17, () is understood as Hy-norm of
f=Sanf=((f—S2nflr, k EN).
Watari [88] showed that there are strong connections between
1
wp(g 1) Ean(Ly.f) and [[f = Sonflp p>1, neN.

In particular,
1 1 1
s<r(gmf) <17 = S fllp < (5. )

and

1
3 |f — Son fllp < Eon(Lp, f) < ||f — San flp-

2.2 Auxiliary lemmas

First, we present and prove equalities and estimations of the Dirichlet kernel and Lebesgue constants
with respect to the one-dimensional Walsh-Fourier systems (see Lemmas 2.1-3.5).
The first equality of the following Lemma is proved in [54] and the second identity is proved in [23].

Lemma 2.1. Let j,n € N. Then
Dj+2n = D2n + U}QnDj, when j S 2n’

and
Dgw,,j = Don — wgnyle]‘, when j < 2",
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The following estimation of the Dirichlet kernel with respect to the one-dimensional Walsh—Fourier
systems is proved in [54].

Lemma 2.2. Letn € N. Then

Don(2) = o if xel,,
00 e g,

and - - -
D,, = w, Z ngrrDox = wy, Z ng(Dar+1 — Do) for n = Z n;2°.
k=0 k=0 i=0
The following two-sided estimations of the Lebesgue constants with respect to the one-dimensional
Walsh—Fourier systems is proved in [54] and the second equality is proved in [19].
Lemma 2.3. Let n € N. Then )
3 V() < [[Dafs < V(n)

and
n

1 1
k)= —— 1).
nlogn ;V( ) 410g2+0( )

The Hardy martingale space H,(G) for any 0 < p < 1 can be characterized by simple functions
which are called p-atoms. The following lemma is true (for details see [57,90,94]).

Lemma 2.4. A martingale f = (f,, n € N) belongs to H,(G) (0 < p < 1) if and only if there exist a
sequence of p-atoms of (ag, k € N) and a sequence of real numbers (ug, k € N) such that

ZMkSQnak =fn forall neN (2.2)
k=0
and
oo
> kP < oo
k=0
Moreover,

> /
1l it (3 Jel?) ™"
k=0

where the infimum is taken over all decomposition of f of form (2.2).

The next five Examples of martingales will be used frequently to prove the sharpness of our main
results. Such counterexamples appeared first in the paper by Goginava [28] (see also [24,27]). Such
constructions of martingales are also used in the papers [3-7,16,17,31-33,36-42,45-49,61, 66, 70-80,
82-87]. So, we leave out the details of proof.

Example 2.1. Let 0 < p <1, {\¢: k € N} be a sequence of real numbers
Z AP < ¢p < 0 (2.3)
k=0
and {ay : k € N} be a sequence of p-atoms given by
ay(x) = 2127V (Do 11 () = Dyl (2)),

where |oy| := max{j € N: (az); # 0} and (o), denotes j-th binary coefficients of real number of
ar € Ni. Then f = (f,: n €N), where

fal@) = ) Mar(z)

{k: |ar|<n}
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is a martingale, which belongs to H,(G) for any 0 < p < 1.
It is easy to show that

A 20/P=Dlekl 5 < {2\%|7...’2|ak|+1 — 1}7
() = > k . 2.4
() 0. je | {2, alesl _ 1) €Ny (2.4)
k=1

Let 2lo-1l+1 < j < 2ll | € N,. Then

-1
Sif = Syler_ai+1 = Z Ay 20201 P (D41 = Dyjan). (2.5)
n=0

Let 21l < j < 2lal+1 1 € N, Then

ij = Sz\azl + N 2(1/P71)|az|w2‘al‘Dj72‘a”
-1
= Z >‘TI 2(1/p71)‘a"|(D2|an\+1 — Dz\an\) + N\ 2(1/1)71)'0‘”’(1)2\@”Dj72|al\ . (2.6)
n=0

Moreover, for the modulus of continuity for 0 < p < 1, we have the following estimation:
1 > 1/p
WH, (2—”,f> = O( Z \/\k|p> as n — 0o. (2.7)
{k: |ou| >n}
Applying Lemma 2.4, we easily obtain that the following lemma is true (see [94]).

Lemma 2.5. Let 0 < p <1 and T be a o-sub-linear operator such that for any p-atom a,
/|Ta(a:)\pd,u(x) < ¢p < 00.
G

Then
1T flly < epll flla, - (2.8)
In addition, if T is bounded from Lo (G) to Lo (G), then to prove (2.8) it suffices to show that

/|Ta(x)|p du(z) < ¢p < 00

1

for every p-atom a, where I denotes a support of the atom a.

In concrete cases, the norm of Hardy martingale spaces can be calculated by simpler formulas (for
details see [57,90,91]).

Lemma 2.6. If g € L1(G) and f := (E,g : n € N) is a reqgular martingale, then for 0 < p <1,
H,(G) norm can be calculated by

11,0 = || sup 12091 | -
neN P

The following lemmas are proved in [66,70,71].

Lemma 2.7. Let 0 < p < 1, 2¥ < n < 21 and S, f be the n-th partial sum with respect to the
one-dimensional Walsh—Fourier series, where f € H,(G). Then for any fired n € N,

p ~
SnflE <|| sup |S + IS fIIE < 1S5 FIE + ||Sn fIE.
150 Wiy < || s 182 f1[] + 1801 < NS5 115 + 150 1



Partial Sums and Fejér Means 127

Proof. Let us consider the following martingales:

f# = (SQkSnf7 ke N+) = (S20752kf78nf7"'7S7lf7"')'

Hence from Lemma 2.6 immediately follows
P ~
IS0 W0y < | sup 127+ 1Sa 717 < IS30 + 1S 1

Lemma is proved. O

2.3 Boundedness of subsequences of partial sums with respect
to the one-dimensional Walsh—Fourier series on the martingale
Hardy spaces

In this section, we consider the boundedness of subsequences of partial sums with respect to the
one-dimensional Walsh—Fourier series in the martingale Hardy spaces (for details see [70]).

Theorem 2.1.

(a) Let 0 <p <1 and f € Hy(G). Then there exists an absolute constant c,, depending only on p,
such that
1Snfll ) < € 22027V £l 11, 0)-
(b) Let 0 <p <1, {my : k € N} be a non-negative, increasing sequence of natural numbers such
that

supd(my) = oo (2.9)
keN

and let ® : Ny — [1,00) be a non-decreasing function satisfying the condition
_ 9d(mi)(1/p—1)

Then there exists a martingale f € Hy(G) such that

bl

weak-L, (G)

sup
keN

Proof. Suppose that
2022140 5, £ < el iy - (2.11)

Combining Lemma 2.7 and inequalities (1.7) and (2.11), since 201 71/P4(") < ¢ we obtain
1-1/p)d(n P
s, 7,
< [[ptm1mm g, [P 4 20 DAE 2 < I o0 + T < I e (212)

Combining Lemma 2.5 and (2.12), it suffices to show that

/|2<1—1/P>d(”>sna\” dp < ¢ < 00 (2.13)
G

for every p-atom a, with support I, such that u(l) =2"M.

Without loss of generality, we may assume that a p-atom a has support I = I;. Then it is easy
to see that S,a = 0, where 2M > n. So, we may assume that 2 < n. Since ||al|oo < 2™/P, we can
conclude that

‘2(1—1/p)d(n)5na(m)|

< 9=/ || / Dy (2 + 1)| da(t) < 2M/p 20-1/9)d(m) / Do (z+ )| du(t). (2.14)

I]u IZ\/I



128 George Tephnadze

Let x € Ips. Since V(n) < 2d(n), using the first estimations of Lemma 2.3, we can conclude that
‘2(1_1/”)‘1(")5'”(1‘ < oM/p 2(1—1/p)d(n)v(n) < 2M/pd(n) 9(1=1/p)d(n)
and
/ 201/ g 6" dpy < d(n) 2071/ < ) < o0, (2.15)

Ine

Let t € Iny and @ € I\ Iy41, where 0 < s < M —1<(n)or0<s< (n) <M —1. Then z +¢
€ I\ I;41 and if we use both equalities of Lemma 2.2, we get D,,(z +¢) = 0 and thus

|2(1*1/”)d(”)5na(z)| —0. (2.16)
Let @ € I;\ Is41, (n) < s < M —1. Then x +t € I, \ I;41, where t € I;. Then by using again
both equality of Lemma 2.2 we have that
|Dp(x +1)| < an 27 < 2%
3=0

If we apply again (2.14), we can conclude that

|20-1/P) 5, 42| < 201 1/)d) M/ 2

oM
< 2 (1/p—1) M (1/p-1) W < (M /p=1) g5 (2.17)
By identity (2.1) and inequalities (2.16) and (2.17), we find that
M1 M1 o (n)(1-p)
/ ’2(171/P)d(n)sna(x)|l’ du(z) = Z / |2(n>(1/p71) 25|p du(z) <c Z 08 < ¢, < oo.
TM SZ(n)I@\Ierl s={n)

Now, we prove part b) of Theorem 2.1. Using condition (2.10), there exists the sequence of natural
numbers {ay : kK € Ny} C {my : k€ Ny} such that

- (I)p/z(an)
ZO ST i=gyz < % (2.18)
=

Let f = (fn, n € N}) € Hy(G) be a martingale from Example 2.1, where

(1)1/2(0%)

Ak = 2d(ar)(1/p—1)/2

(2.19)

Then if we use (2.18), we find that condition (2.3) is fulfilled, and hence f = (f,,, n € N;) € H,(G).
If we apply (2.4) when Ay are given by formula (2.19), then we get

O1/2 () 2UenlH ) A/p=1)/2 " 4f j ¢ {Q\le, s, 2lekltt — 1},

10 =4, it g ) {20 2 1), keNp.  (220)
k=0
In view of (2.6), when \; are given by (2.19), we get
S f =
@F(;k) N O (ag) Z(I)l/z(an) 2(‘%|+<a">)(1/p71)/2(Dg\ﬂn\“ — Dyiay1)
n=0

2l +a))(/p=1)/24p 1 D

ay—2lokl
— I+ 11 (221
B2 (ap) I (2.21)

+
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Using (2.18), for I we have

k—1
1 <I>P/2(an) (11 .
”I”aeak_Lp(G) = P (k) Z;) 2d(ay)(1—p)/2 |2| Wi )(D2|D‘T/H—1 - Dg\an\)Hweak—Lp(G)
7’]:
1 > (bp/Q(O[n)
= Br(a) Z;) Sdlan(-p)/z = €< (2.22)
’r]:

Let © € Lo,y \ Liag)+1- Since |ay| # (ay) and (ay — 2%y = (ay), using both inequalities of
Lemma 2.2, we get

1D, —gtest ()] = | (Dytes 1 (@) = Doy ()

ok |—1
+ > (@)i(Das (@) = Da@)| = | = Dygeo () = 209 (2.23)
Jj={ar)+1
and
(log[+(ar))(1/p—1)/2 9lak|(1/p—1)/2 9{ar)(1/p+1)/2
=gy Paan @12 T (ar) 220
Combining (2.22) and (2.24), we obtain
Sa P
[ s 2 VT ricr = M e
9(lax)(1/p—1)/2 9{ar)(1/p+1)/2 o(lak)(1/p—=1)/2 9(ar)(1/p+1)/2 ) 1/P
= D2 (ey) u{x €G-z DY/ (oy) }
9(lax)(1/p—1)/2 9{ar)(1/p+1)/2 1/p 9d(ar)(1/p—1)/2
Z @1/2(0%) (M{I(aw \I<Oék>+1}) > C(I)I/Q—(ak) — 00 as k — oo.
The proof of Theorem 2.1 is complete. O

Corollary 2.1.

(a) Let n € Np, 0 <p <1 and f € Hy(G). Then there exists an absolute constant c,, depending
only on p, such that

18 F (e < e (riedsupp(D)}) L, -
(b) Let 0 <p <1, {my: k €Ny} be an increasing sequence of natural numbers such that
sup mp{supp (D, )} = 00 (2.25)
and let ® : Ny — [1,00) be a non-decreasing function satisfying the condition

— (mgpf{supp(Dp,, )PP
T & o -

Then there exists a martingale f € H,(G) such that

bl

sup
keN

weak-L, (G)

Proof. Applying both inequalities of Lemma 2.2, we get
Iy \ Tny1 Csupp{ Dy} C Iy and 2771 < pufsupp(Dy)} < 277,

Hence
9d(n)(1/p—1)

4
Corollary 2.1 is proved. O

< (nu{supp(Dn)})l/p% < 2d(n)(1/p71)'
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Theorem 2.2.

(a) Let n € Ny and f € Hi(G). Then there exists an absolute constant ¢ such that

1SSl @) < V)l fllac)-

(b) Let {my : k € N;} be a non-negative increasing sequence of natural numbers such that

sup V(my) = oo (2.27)
keN

and let ® : Ny — [1,00) be a non-decreasing function satisfying the condition

<

(my) _
klggo B(m )—oo. (2.28)

Then there exists a martingale f € Hi(G) such that

H S | H
keN O(m

Proof. Since

|7

el < W < 17l o (2:29)

combining Lemmas 2.7 and (2.29), we can conclude that

’ 1
1 V{(n)
Now, we prove the second part of Theorem 2.2. Let {my : k € N, } be an increasing sequence of

natural numbers and the function @ : N — [1,00) satisfy conditions (2.27) and (2.28). Then there
exists a non-negative, increasing sequence {ay : k € Ny} C {my : k € Ny} such that

155/ 1 < el fllme) +ellS5F I < ellfllao)- (2.30)

Hl(G)

e (I)l/Z
> ‘MEZ’;; < B < 0. (2.31)
k=1

Let f = (fn, n € N1) be a martingale from Example 2.1, where

(1)1/2(ak)

Ay = —— "
k V1/2( o)

(2.32)

Applying condition (2.31), we can conclude that condition (2.3) is fulfilled and it follows that
f={(fn, neNy) € Hi(G).
In view of (2.4), when \; are given by (2.32), we get

@1/2(0%)

T 1 /0, < i ] loge | leg | _
. V1/2(ay) if je {20l . 2lentt — 1},
0, if jg |J {2, . 2e0 — 1},
k=0

Analogously to (2.21), if we apply (2.6), when )y are given by (2.32) we get

cI)1/2 @1/2( )
Sa, [ = Zvl/2 (Dytani+1 — Dyjani) + WT()wgmkaak_gwam-
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Applying first the estimation of Lemma 2.3 and (2.31), we can conclude that

Sarf O/ (cur) 1 @Y%(ay)
2l = v 9o~ 3, ) &= 2 7 (a, 1P = Dot
Vv _ 2|ak\ @1/2 1 (I)I/Q V1/2
> (o 1)/2 (o) - 1/2(0‘?7) > < 72 (o) — 00 as k — oo.
80 () V12 (ag) () g V2 (an) — @V ()
Thus Theorem 2.2 is proved. O

Corollary 2.2. Letn € N, 0 < p <1 and f € Hy,(G). Then there exists an absolute constant c,,
depending only on p, such that

12n fllm, () < epll fllm,(c)- (2.34)
Proof. To prove Theorem 2.2, we have only to show that
2" =n, (2")=n—1 and d(2") =0.

Applying the first part of Theorem 2.1, we immediately obtain (2.34) for any 0 < p < 1 and thus
Corollary 2.2 is proved. O

Corollary 2.3. Letn € N, 0 < p <1 and f € Hy(G). Then there exists an absolute constant c,,
depending only on p, such that

[1S2n pon—1 flla, () < cpll fllm,(0)- (2.35)

Proof. Since
2" +2" | =n, 2"+2" Y =n—1 and d(2" +2""!) =1,

by the first part of Theorem 2.1 we get that (2.35) holds for any 0 < p < 1 and the proof of Corollary 2.3
is complete. O

Corollary 2.4. Letn € N and 0 < p < 1. Then there exists a martingale f € H,(G) such that

sug 1527 41 f lweak-L,(q) = 00 (2.36)
ne

On the other hand, there exists an absolute constant ¢, such that

1S2n 1 f ey @) < ellfllay @) (2.37)

Proof. Since
2" + 1] =n, (2" +1)=0 and d(2" +1) =n, (2.38)
applying the second part of Theorem 2.1, we get that there exists a martingale f = (f,, n € N} ) €
H,(G) for 0 < p < 1 such that (2.36) holds.
On the other hand, the proof of (2.37) leads to a simple observation that
V(Er+1)=4< .

Thus Corollary 2.4 is proved. O
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2.4 Modulus of continuity and convergence in norm of subsequences
of partial sums with respect to the one-dimensional
Walsh—Fourier series on the martingale Hardy spaces

In this section, we apply Theorems 2.1 and 2.2 to find the necessary and sufficient conditions for the
modulus of continuity, for which subsequences of partial sums with respect to the one-dimensional
Walsh-Fourier series are bounded in the martingale Hardy spaces.

First, we prove the following estimation.

Theorem 2.3. Letn € Ny and 28 < n < 28t Then there exists an absolute constant cp, depending

only on p, such that

_ 1
18nF = Flli,c) < ep 27 Vo ) (5. F) (F € Hy(@) (0<p<1) (2.39)

and

180f = Fllie) < eV (g5 7) (f € Hi(@). (2.40)

Proof. Let 0 < p <1 and 2F < n < 2F+1. Applying the first part of Theorem 2.1, we get

|Snf — f“H »(G) < cpHS f- SZkf”% »(G) +Cp||S2kf - fHI;[p(G)
- C;UHS SQkf f ||H »(G) +Cp||S2’€f - f”l]){ »(@)

d d(n
< e (1 + 2400 2. (G)<2k’f> < ¢y 24D 2 (G)(2k,f) (2.41)

The proof of (2.40) is analogous to that of (2.39). So, we leave out the details. Theorem 2.3 is
proved. O

Theorem 2.4.

a Let k S Ii 0 < p < 1 € li G and my k S Ii be an wncn etlSan Sequence 9 natu? a/l
+ ) p +
Tlumbe’f’s SUCh that

1
“Hp (C) (mmkl’f) (W) as k — oo. (2.42)

Then
| S f — e, @) — 0 as k — oo. (2.43)

(b) Let {my : k € Ny} be an increasing sequence of natural numberssuch that condition (2.9) is
fulfilled. Then there exist a martingale f € Hy(G) and an increasing sequence of natural numbers
{ap: keNy} C{my: ke N} such that

1 1
vty (g 1) = O (g ) o5 b= o0

and
limsup [[Sa,, f — fllweak-1, (@) > ¢p >0 as k — oo, (2.44)

k—oc0

where ¢, is an absolute constant, depending only on p.

Proof. Let 0 < p <1, f € Hy(G) and {my, : k € N4} be an increasing sequence of natural numbers
such that condition (2.42) is fulfilled. Combining Theorem 2.3 and estimation (2.39), we get that
(2.43) holds true.

Now, we prove the second part of Theorem 2.4. In view of (2.9), we simply get that there exists a
sequence {ay : k€ Ny} C {my: k € N;} such that

2Uk) 4 00 as k — o0, 22(/PmDdlar) < o(1/p=ld(ar+1) (2.45)
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Let f = (fn, n € N) be a martingale from Example 2.1 such that
A\ = 9—(1/p—1)d(a;) (2.46)

Applying (2.45), we obtain that condition (2.3) is fulfilled, and hence f € H,(G).
Applying (2.4), when )\ are given by (2.46), we have

oW/p=1lak) = if j e {21ekl ... 2lekl+t — 1}

Fh=1, it ¢ (g2 — 1), FEN: (2.47)
k=0
Combining (2.45) and (2.7), we have
-
<G>(2\ak|’f) Z; 201/ 1),1(%) O(z(l/p—lnd(ak)) as k= co. (2.48)

Using (2.23), we get
|Do¢k—2<‘1k>| > 2<ak>, where I(ak) \I<ak)+1~

In view of (2.6), we can conclude that
Sakf = SQ\aklf + 2(1/p_1)<ak>w2\aklDak—Q\aklo
Since

1/p
”Dakllweak-LP(G) > 2<ak>/£{l‘ S I(ak> \I<ak>+1 : |Dak‘ > 2(0%)}

> 2008) (u{ Ty \ Loy a1 }) /7 > 2R O=1/p),
if we apply (1.2) (see also Theorem T2), we obtain
1F = Sex fvear-r,, () = 2072 [y Doy, gt ca Ly(G)
—||f- S2‘ak‘f||weak_Lp(G) >c—o(l)>c>0 as k — oo.
The proof of Theorem 2.4 is complete. O
Corollary 2.5.

a) Let 0 <p <1, fe Hy(G) and {my : k € N} be an increasing sequence of natural numbers
P +
such that

1 1
)= k — 0. 2.4
wH”(G)(Z‘m’“"f> 0((mku(suppok))1/P‘1> wET 249

Then (2.43) holds.

(b) Let {my : k € N1} be an increasing sequence of natural numbers such that

sup mip{ supp(Di, )} = 0. (2.50)
keNy

Then there exist a martingale f € Hy(G) and a sequence {oy, : k € Ny} C {my: k€ Ny} such

that
1

1
WH, (@) (Wﬁ - O<(Oéku(supp Dq,))t/r=1
and (2.44) holds.

) as k — 0o
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Theorem 2.5.

(a) Let f € Hi(G) and {my : k € N1} be an increasing sequence of natural numbers such that

1 1
le(G)(W’f) = o(m) as k — oo. (2.51)
Then
1Sm f — fllz ) — 0 as k — oo. (2.52)

(b) Let {my : k € N4} be an increasing sequence of natural numbers such that condition (2.27)
is fulfilled. Then there exist a martingale f € H1(G) and an increasing sequence of natural
numbers {ay : k€ Ny} C {my: k € Ny} such that

le(G)(ﬁ,!ﬁ = O(@) as k — oo

and
limsup [|Sa, f — fll1 >¢>0 as k — oo, (2.53)
k—oo

where ¢ is an absolute constant.

Proof. Let f € H1(G) and {my, : k € N;} be an increasing sequence of natural numbers such that
(2.51). Applying Theorem 2.3, we get that condition (2.52) is fulfilled.

Now, we prove the second part of Theorem 2.5. Due to (2.27), we conclude that there exists a
sequence {ay : k€ N1} C {my: k € Ny} such that

V(ag) Too as k— oo and VZ(ag) < V(agy1), k € Ny (2.54)

Let f = (fn, n € Ny) be a martingale from Example 2.1, where

Applying (2.54), we conclude that (2.3) is fulfilled and thus f = (f,, n € Ny) € Hi(G).
In view of (2.4), we have

1
Vo if je{2lexl,. .. 2enltr — 1},
- et
7G) = g o0 k=0,1,.... (2.55)
0, if jg {2, 200 — 1},
k=0
According to (2.7), we get
1 — 1 1
— — — n < = .
wine (g f) =1 = S fllne) < i:;rl V() O(V(an)) as m e
Applying (2.6), we can conclude that
w \ak|Da _olagl
Sarf = Sia et
k.f 2l k|f+ V(Oék)
If we use (1.2) and Theorem T2, we get
V(Oék — 2|ak‘)

Wolayl Dy, _glol
Hf_Sa’“f”lZHV— —0o(1)>c¢>0 as k — oo.

(o)

The proof of Theorem 2.5 is complete. O

’1 —|If = Syrari fll1 > 8V (o)
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Theorem 3.4 implies the following corollaries from [68].
Corollary 2.6.
(a) Let 0 <p <1, f e Hy(G) and

1 1
pr(G)(Q—k,f) = 0(721@(1/1071)) as k — oo.

Then
HSk’f*fHHp(G) —0 as k— oo.

(b) There exists a martingale f € Hy(G) (0 < p < 1) such that

WH,,(G)(%af) = O(W) as k — oo

and
Sk f = fllweak-L,(@) = 0 as k — oo.

Corollary 2.7.
(a) Let f € Hi(G) and
1 1
le(G)<2—k,f> = 0(%) as k — oo.

Then
|Skf — flla (@) — 0 as k — oc.

(b) There exists a martingale f € Hi(G) such that

le(G)(%k,f) = O(%) as k — o0

and
|Skf — fllh - 0 as k — oo.

3 Fejér means with respect to the one-dimensional
Walsh—Fourier series on the martingale Hardy spaces

3.1 Basic notations

For the one-dimensional case, the Fejér means with respect to the one-dimensional Walsh—Fourier
series o, are defined by

o) = -3 5f(@) (neNy).
k=1

The following equality is true (for details see [2] and [54]):

n—1

ot (@) = 1 3 (Du s 1)) = (£ Ka)w) = [ F0K(o = 0)du)
k=0 G
where .
Ko (z) = %ZDk(x) (n €N,).
k=1

In the literature K, is called an n-th Fejér kernel.
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We also define the following maximal operators:
o f =suplonf],
neN
oy f =sup |ogn f|.
neN
For any natural number n € N, we need the following expression:

S
n:ZT”, ny <ng <---<ng.
i=1

Set )
n(l) ::2711_’_...4_2”1'*1’ i:2,...78,
and s
Ago = {nEN: n:20+22+z2’“}-
i=3

Then for any natural number n € N there exist the numbers
Ogllgml§12_2<12§m2§"'gl5_2<ls§ms

such that it can be written as R
k
n=> > 2,
i=1 k=1,
where s is depending on n.

It is evident that
s<V(n)<2s+1.

3.2 Auxiliary lemmas

The following equality and estimation of Fejér kernels with respect to the one-dimensional Walsh—
Fourier series are proved in [54].
S

Lemma 3.1. Letn €N andn= 5> 2", n; <ng <---<ng. Then
i=1

nk, = i ( f[ wg"j) 2" Konr + i < i w2”.¢)n(t)D2nt
r=1 j=r+1 t=2 j=t+1

and

sup/|Kn(x)| du(z) < ¢ < o0,
neN
G

where ¢ is an absolute constant.

The following equality is proved in [54] (see also [21]).

Lemma 3.2. Let n > t and t,n € N. Then for the 2"-th Fejér kernels with respect to the one-
dimensional Walsh—Fourier series, we have the following expression:

2t-1 if ©€ L(e),

2"+ 1
2 b

0 otherwise.

KQ"(‘T) = Zf x € Iy,

The following estimation has been proved by Goginava [26].
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Lemma 3.3. Letxz € I;11(ex+¢), k=0,.... M —2,1=0,....M — 1. Then

c2l+k
where n > 2M.

/ Ko+ 1) dpa(t) <

Ine

Let x € Inf(eg),m=0,...,M — 1. Then

2k:
[ 1+ 0l dut) < 53 or n > 2,

In
where ¢ is an absolute constant.

The following estimations of Fejér kernels with respect to the one-dimensional Walsh—Fourier series
are proved in [71]:

Lemma 3.4. Let

T m;

n=> 2"
i=1 k=l;
where
miy >l > —2>me>lg >l —2>--->mg > 1, >0.
Then

[ ma
nk,| <ey (21A|K2,,A| + 274 [Kyma | 4214 Y Dzk) +cV(n),
A=1 k=l

where ¢ is an absolute constant.
Proof. Let

.
n:ZQ"i,n1>n2>--~>nT20.

i=1

Using Lemma 3.1 for the n-th Fejér kernels, we can conclude that

T

A—-1
oy = 30 (T wos ) (274 Kana + (274 = 1) Dyo)
A=1  j=1

T A-1
- ( w2nj)(2”A 1) Dyes = 1) — .
A=1  j=1
For I, we have the following equality:
r v—1 My My My
11=Z( w2)<Z( I1 wzj)(ngzk—(zk_nDzk))
v=1  j=1i=l; k=l, j=k+1
r v—1 m; My ly,—1 My
_ ( w2,-) ( _ ) ( I1 ng) (2K — (2% — 1)Dys)
v=1 j=1i=l; k=0 k=0 j=k+1
T v—1 mj My Lo
= ( w2z) (Z ( wzj) (2kK2k- - (2k - 1)D2k))
v=1 j=1i=l, k=0 j=k+1
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Since
n—1
2 —1=>) 2
k=0
and
( K2n 1—2( H 'l,U2;> 2 K2k7(2k71)D2k),
=0 j=k+1
we obtain
v—1 m; v
(H H Wi ) va+1 — 1)K2mv+1,1 — Z (H H ’wzz) KQLU_l
v=1 j=1i=ly v=1 j=1li=l;
If we apply estimations
‘K2n| S & |K2n71|
and
|K2n_1| S C|K2n +c
we get
L] <> (2" Ky |+ 27 [Kom| + cr). (3.1)
v=1
Let I[; <na <mj, where j =1,...,s. Then
nA—l
A) > Z 21}2271A_2lj
’U:lj
and
"4 — 1 —nM) <9l
Ifl; =na, where j =1,...,s, then

n) < gmi-itl <ol

Using these estimations, we can conclude that

|I| < CZ ol Z Do (3.2)

k=l

Combining (3.1), (3.2), we obtain the proof of Lemma 3.4. O

The following estimations of Fejér kernels with respect to the one-dimensional Walsh—Fourier series
are proved in [71].

Lemma 3.5. Let

s  m;
=>_ > %
i=1 k=,

where
OgllSml§l2_2<12§m2S"’Sls_2<ls§ms'

Then

2
Kn(z)| >
nlKu(o)] 2 =

for x € I, 41(e;,—1 +er,).
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S

mi
Proof. 1f we apply Lemma 3.1 for n = Y Y 2* we can write

i=1 k=1,
s My s my My
=385 (I T IT ) 2k
r=1k=l, j=r+1g=l, j=k+1
s Mmg s m; M. r—1 mq k—1
eSS (TT T 1T ) (X324 S 7).
r=1k=l, j=r+1q=l; j=k+1 t=1 q=1, q=1,
Let © € Ij,11(e;;—1 +€1,). Then
i—1 m, i—1 m,
K| > 25Ky | =Y 0> (28 Ko = > > 28Dy | =T — 1T - I11.
r=1k=l, r=1k=l,
From Lemma 3.2 it follows that
I= 24Ky, (z)| = T (3.3)
Since m;_1 < I; — 2, we easily obtain that the estimation
1,—2 1,—2
. ‘ (2n4+1) 22 2l 2
II < 2" Kon < AR - = 34
< Do) < Y2 S < S - (3.4)
is true.
For 111, we get
1;—2 l;—2 22li 1
k k __
I <Y 2" Doi(a)| < )48 = 53 (3.5)
k=0 k=0
Combining (3.3)—(3.5), we can conclude that
n|K,(x)| >1—-1I—-1II > ~ + 1. (3.6)
Suppose that I; > 2. Then
92l; 92l; 22
K, > — > .
e R TR
If ; =0 or I; =1, then applying (3.6), we get
7 2%
Ko(z)| > - > 2.
Lemma is proved. O

The following estimations of Fejér kernels with respect to the one-dimensional Walsh—Fourier series
are proved in [71] (see also [82]).

Lemma 3.6. Let 0 < p < 1, 28 < n < 25 and o, f be Fejér means with respect to the one-
dimensional Walsh—Fourier series, where f € H,(G). Then for any fized n € N,

lowllay) < || sup loofl]| +| sup 185 Al + llonfllp < 155 + 155 Fllp + oS -
0<I<k P 0<i<k P

Proof. Let us consider the martingale

f# = (SZ’CUn.ﬂ ke N)

n n n

Using Lemma 2.6, we immediately get

Snfllp < 155 15 + 1% F15 + lon flp-

||0'nf“1;[p(g2) S Hosup |0’21f|

p
| sup IS 1l + |
<i<k P 0<i<k

Thus the lemma is proved. O
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3.3 Boundedness of subsequences of Fejér means with respect
to the one-dimensional Walsh—Fourier series
on the martingale Hardy spaces

In this subsection, we study the boundedness of subsequences of Fejér means with respect to the
one-dimensional Walsh-Fourier series in the martingale Hardy spaces (for details see [71]).
First, we consider the case p = 1/2. The following estimation is true.

Theorem 3.1.

(a) Let f € Hy/2(G). Then there exists an absolute constant c such that
||Unf||H1/2(G) < CV?(”)”f”Huz(G)

(b) Let {ny : k € Ny} be an increasing sequence of natural numbers such that supyen, V(ny) = o0
and let ® : Ny — [1,00) be a non-decreasing function satisfying the conditions ®(n) 1 oo and

_— VQ(nk)
li = .
hoe B(ny) (37)
Then there exists a martingale f € Hy/o(G) such that
it
ken Il @(ng) ll1/2
Proof. Suppose that
onf
[ty ]2 = 1700 (3.8)

Combining estimations (1.7), (1.15) and Lemma 3.6, we can conclude that

[ o <[5 e+ 7 Vit gy 156117

Hy/5(G) 1/2 ( ) lo #f‘|1/2 2(TL) ”S#Hl/g
< Il

~ 1/2 = £11/2 < 1/2
Lo HIFRFI ISR < el fILf2, - (39)

Combining Lemma 2.5 and (3.9), Theorem 3.1 will be proved if we show that

|onal \1/2
<
/(VQ(n)) dp <c< oo

Iy

for any 1/2-atom a.

Without loss of generality, we may assume that a is 1/2-atom, with support I, for which u(I) =
2=M [ = I. Tt is easy to check that o,(a) = 0, when n < 2. Therefore, we may assume that
n>2M . Set

11}, () =2V / 204 | Ko (& + )| dpa(t),

Inm

117 (x) _2M/2lA Z Doy (z +t) dp(t).

k=la

Let = € Ip;. Since o, is bounded from L. (G) to Loo(G), for n > 2™ and ||al|e < 22M, using
Lemma 3.3, we can conclude that
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Ic;;;((s))l < V;(n) / |a(@)| | K (z + t)| dpu(t)

clla 2M
[ ||oo/|K (o +8)]du(t) < 2 /|K (2 + )| du(t)

IM
02M L . )
> V2 {Azll/Q ‘KQZA $+t>|dﬂ() I/2 |K2mA( —|—t)|d,u(t)}
2/2 ;:AD% du(t) + V2<n)I/V( ) du(t)
)+ I, (x) + 117, (7)) +c.
Hence
1/2 (o)

c ) <AZ_:11{|H;A(:C)|1/2 /|] 2)|[Y2 d(z) +I{ |Hl2A(93)|1/2du($)> Le

Since s < 4V (n), we obtain that Theorem 3.1 will be proved if we show that

/ \I];A(a?)|1/2 du(z) < ¢ < oo, / |IIIQA(ac)|1/2 du(z) < ¢ < o0, (3.10)
7M 7Z\/I
where ay =lqoraqg =my, A=1,...,s

Let t € Inj and « € Iyi(eg +6€), 0 <k <l <aga < Mor0<k<l<M< as. Since
x4+t € lyi(ex + €), applying Lemma 3.2, we can conclude that

Kyoa(z+t)=0 and II} (z)=0. (3.11)

Let x € [I11(ex +e), 0 <k <ag <1< M. Then z +t € I;11(ex + €1), where t € I, and if we
apply again Lemma 3.2, we get

294 | Koau (z + )| < 247K and I} (z) < 2%tk (3.12)
Analogously to (3.12), for 0 < ay < k <1 < M, we can prove that
294 | Kgaa (z 4+ 1) < 2°%4, II) (z) <2°*4, t€ly, x € Lpi(er+e). (3.13)

Let 0 <asq <M —1, where A=1,...,s. According to (2.1) and (3.11)—(3.13), we find that

/ T, ()2 dp()

M-2 M-1 M—1
/ T (@) V2 dpr) + / T ()2 dy(e)

Iiya(ep+er) TV I (er)

M- _
Z / 2@atk)/2 4 (2) 4 ¢ Z Z / 294 du(x)

+11l+1(€k+€z) k=aa l:k+1ll+1(5k+el)

k=0 l=k+1

ap—1

k=0 I=
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as—1 M—-1

+c Z / 2(@atk)/2 gy (z) + ¢ Z / 294 du(x)
k=0 Inr(er) k:aAIM(ek:)
apa—1 M-1 M-2 M-1 as—1 M—-1
2(04A+k)/ 90a 2(aA+k)/2 90a
S SIS S Dk SN o
k=0 l=aa+1 k=aa l=k+1 k=aa

Let ay > M. Analogously to I} (x), we can prove (3.10) for A=1,...,s
Now, we prove the boundedness of IIl2A. Let t € Ipy and = € I; \ I;41, © < la — 1. Since
x4+t eI\ I11, if we apply the first equality of Lemma 2.2, we get

117 (z) = 0. (3.14)

Let v € I; \ I;11, la < i < ma. Since n > 2M and t € Iy, if we apply the first equality of
Lemma 2.2, we get

117 ( 2M/2lA Z Do (24 t) dp(t) < e2at, (3.15)

k=la

Let x € [;\ I;1+1, ma <t <M —1. Then x4+t € I; \ I;41 for any t € I;, and by the first equality
of Lemma 2.2, we have

IIE (z) < c2M / glatma < colatma, (3.16)
In

Let 0 <14 <my < M. Then, in view of (2.1) and (3.14)—(3.16)) we can conclude that

la—1 ma M-—1

JACACIRE =(X+2+ X ) [ 1z @) duo)
Iy

i=la i=ma+1 JAVA

M—-1
<CZ / g(tatd) /Zdu(x)—kc‘ Z / oUatma)/2 g (z)
= lAIz\Iz+1 Z:mA+1Ii\I7:+1
ma M—1
I R
i=la i=ma+1

Analogously, we can prove same estimations for the cases 0 <y < M <my and M <y < my.
Now, we prove part (b) of Theorem 3.1. According to (3.7), there exists an increasing sequence
{ar: ke N} C{ng: ke Ny} of natural numbers such that

iwgc<oo. (3.17)

=1

=

Let f = (fn, n € Ny) be a martingale from Example 2.1, where

@1/2(0%)

M= )

According to (3.17), we get that condition (2.3) is fulfilled and it follows that f = (f,, n € N;).
Applying (2.4), we get

2lorl®1/2 ()
V(ax)

0, §& | {2, 2000 — 1,
k=0

, JE {2|ak‘7...,2|0‘k‘+1 _ 1}’
ke Ny (3.18)
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Let 2l¢l < j < ay,. If we apply (2.6), we get

wZ\ak\Dj72|ak\ (1)1/2(Ozk)

Sif = S50 3.19
Jf 2l k|f+ V(Oék;) ( )
Hence
olagl ak
o, f 1 1
= S. - S,
Sog) = Bagar 2= T wagar 2 S
j=1 j=2lerl41
_ el (o = 2D Spaf | wyien 2941212 (ay) i D,
® (o) ok @ (o) ok Slap)V(og)ay = I
j=2lokl 41
=111 + 11, + I1I;. (3.20)
For I3, we can conclude that
_9lagl
2lonlpL/2(qy) | ** 2
) = == %) D»‘
REEE D (o) V (o) ; J
2|ak|(1>1/2(ak) clag — 216N K, slapl]
— _ — 9l V| K il > el 3.21
(I)(Ozk)V(Oék)Olk (ak k )| ap—2! k'l = (1)1/2(0%)‘/(0%) ( )
Let
Tk mf
k= > 2
i=1 k=1}
where

my >l >—2>mb>tb > -2>...>mb>1b >0
Since (see Theorems 2.1 and 3.1)
111112 < ¢ |[I11a]l12 < c

and )
p{Ep} = o1

combining (3.20), (3.21) and Lemma 3.5, we get

G

1/2
M\ du(x) > |15y — | 1Thl 5 — | TT113),

D (o) 1/2 1/2 1/2
Tk72 2”9 ’l‘k72
921; 1/2 L
Z o d —2c> 9
- EE/ Ve | M L e
1k
€Tk c V2 (ay)
= 2 — k — 0.
T VY2(qp) 04 (o) T @4 () o0 as 00
Thus Theorem 3.1 is proved. -

Theorem 3.2.

(a) Let 0 <p < 1/2, f € Hy(G). Then there exists an absolute constant c,, depending only on p,
such that

lonfllm, @ < 2P 2| flIg ).
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(b) Let 0 < p <1/2 and ®(n) : Ny — [1,00) be a non-decreasing function such that

7 2"d(nk)(1/p — 2)
sup d(ng) = oo, lim = 00. 3.22
keNp+ () k—+o00 (ng) (3.22)
Then there exists a martingale f € Hy(G) such that
sup Inif ’ =
ke, || @(ng) llweak-L,(G)

Proof. Let n € N. Analogously to (3.9), it is sufficient to prove that

/ (24 E=1P)|g, (a)]) dp < ¢ < 00

I

for every p-atom a, where I denotes the support of the atom.
Analogously to Theorem 3.1, we may assume that a is p-atom with the support I = I, u(Ipy) =
2=M and n > 2M. Since |all < 2M/P, we can conclude that

2d(n)(2—1/p)|ana‘ < 2d(n)(2—1/p)||a||00 / |Kn($+t)|d,u(t) < 2d(")(2—1/p)2M/p/|Kn(:1c+t)|du(t).

I]u II\/I

Let « € I111(ex+€1), 0 < k,1 < [n] < M. Then, applying Lemma 3.2, we get K,,(x+t) = 0, where

t € Ips and hence
2MC=1/P)| 5 a| = 0. (3.23)

Let x € Iy1(e +er), [n] <k,I <M ork<[n] <l<M. Then Lemma 3.4 results in

2d(")(2_1/p)|ana| < 9d(n)(2—1/p) 9M(1/p=2)+k+l <¢p o[n](1/p=2)+k+1 (3.24)

Combining (2.1), (3.23) and (3.24), we can conclude that

/ |2d(n)(271/p)gna(x)|1’ dp(z)

I
[n]=2 [n]-1  [n]-1M-1 M-2 M-1
SOIDIED I ) 2 5000 d(o)
k=0 I=k+1 k=0 I=[n] k=[n]i=h+1" 1 =

1
Jrz / |2d”)(2 Urg, a(x | du(x

kZOIM(ek)
M—-2 M-1 [n] M-—1
o Z 2[n1(2p D gp(kth 4 ¢ Z Z n](2p—1) op(k+1)
k=[n] = k+1 k=0l= [n]+1

glnl(2p—1) [l
CPT Z 2p(k+M) < Cp < Q.

k=0

Now, we prove part b) of Theorem 3.2. According to (3.22), there exists an increasing sequence of
natural numbers {ay : k € N+} C {nk: k€ Ny} such that op > 3 and

9d(ax)(1/p=2)/2
Let f be a martingale from Example 2.1, where

e =u tag).
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If we apply (3.25), we get that (2.3) is fulfilled and it follows that f € H,(G). According to (2.4),

we have )

gl |1/p—
. je{alesl . 2lerir 1)
u(ag) { }

N ke Ny. (3.26)
O, .]¢ U {2‘ak|7“_’2lak\+1 _ 1}7
k=0

Let 2l*¢l < j < ay. Then, analogously to (3.19) and (3.20), if we apply (3.26), we get

ap—1
o, f T o f (an —2191) S0, f 2lexl@/p=1) &
— E D. —Dgja,)) =1 I IVs.
D(ag)  Plag)oy D () D (o )u(ag)ag (D, 2lenl) Vit IVe +1Vs

j=2lokl

Let oy € Nand Ejo,) := I |, (€[ay]—1 F €[ay])- Since o — 2lexl] = [ay], analogously to (3.21), if
we apply Lemma 3.5, for I'V3 we have the following estimation:

olak|(1/p—1)
[1V3] = Blar)ulan)ar (g — 2|ak‘)\Karz\akl|
_allary el > glewl(1/p-2) gloxi—4 _ plawl/p-2)/2 g2lor)—4
B (ap)u(ag) oy lo]} = b (ap)ul(ag) - DL/2(ay,)
Hence
lakl(1/p—2)/2 92[ar]—4 lak|(1/p—2)/2 92[ar]—4
HIV3”]\:zeak-Lp(G) = (2 @1/2(045) )p,u{z eqG: |IV3] > 2 @1/2(0%2) }

92[ar]+larl(1/p=2)/2 p o(lar|=lar])(1/p=2) | p/2

>

2 Cp( B1/2(ay) ) M Eay)) 2 CP( D (o) )
9d(ak)(1/p=2)

= Cp(i

)p/2 — k—
oo as 0.
P (o)

Combining Corollary 2.2 and the first part of Theorem 3.2, we find that
11V1 [[weak-L, (@) < ¢p <00, [ {Vallweak-L, (@) < ¢p < 00

On the other hand, for sufficiently large n, we can conclude that

||O—O‘kf||€veak—Lp(G) Z ||IV‘3||€veak—Lp(G) - ||I‘/2H€veak-Lp(G) - ”IVl”s/eak—Lp(G)

Y

1
3 HIVSvaeak—LP(G) — o0 as k — oo.
Theorem 3.2 is proved. O

The proofs of Corollaries 3.1-3.3 are similar to those of Corollaries 2.2-2.4. So, we leave out the
details and just present these results.

Corollary 3.1. Letp > 0 and f € H,(G). Then
lloox f — f||Hp(G) — 0 as k — oo.
Corollary 3.2. Letp >0 and f € H,(G). Then
ook yor—1 f = flla, @) — 0 as k — oo.
Corollary 3.3. Let 0 < p < 1/2. Then there exists a martingale f € H,(G) such that

look 11 f — f||weak_Lp(G) -+ 0 as k — oo.

On the other hand, for any f € Hy/2(G), the following is true:

ook 1 f — f||H1/2(G) —0 as k — oo.
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3.4 Modulus of continuity and convergence in norm of subsequences
of Fejér means with respect to the one-dimensional
Walsh—Fourier series on the martingale Hardy spaces

In this section, we apply Theorems 3.1 and 3.2 to find the necessary and sufficient conditions for the
modulus of continuity of a martingale f € H,,, for which subsequences of Fejér means with respect to
the one-dimensional Walsh-Fourier series converge in H,-norm.

First, we prove

Theorem 3.3.
(a) Let f € Hy/2(G), sup V(ng) = oo and
kEN+
1 1
pr(G) <W7 f) = O(m) as k — oo. (327)
Then

o, f — f||H1/2(G) —0 as k — oo.

(b) Let sup V(ng) = occ. Then there exists a martingale f € Hy/5(G) such that
keNL

WH, 14 (G) <2|m\ ,f) (V2(1nk)> as k — oo (3.28)

and
o, f — f||H1/2(G) -0 as k — oo. (3.29)

Proof. Let f € Hy2(G) and 2% < n < 281, Then

1/2 1/2 1/2

lowf = 142 i < ot = onSar fll3; o TS S = Fllt

1/2 1/2
= Han SQkf - f ||H/1/2(G) + HSQ’Cf - f”}[/f/z(g + ||0n52kf - SzkaH/l/g(G)

y \|onSar f = S f|

< eV + 0}, 6 (g0 F) + louSanf = Soe12,

It is evident that

2k 2k
onSor f — Sor [ = n (Szkazkf—szkf) = gszk(aﬁf—f)-

Let p > 0. Combining Corollaries 2.2 and 3.1, we can conclude that

|0 Sar f — SQ,CfH;I/fn(G 1/2 HSzk oo f — f) Hf/z@ < ||oge f — f||;l/f/2(G 0 as k — oo.
Now, we prove part b) of Theorem 3.3. Since sup V(ay) = oo, there exists a martingale {ay :
ke Ny} C {nr: ke N} such that V(ag) T oo as IZ:GN; oo and
V(o) < V(agsr)- (3.30)

Let f be a martingale from Example 2.1, where
)\k: = V_Q(Oék).

If we apply (3.30), we get that condition (2.3) is fulfilled and it follows that f € H,(G). Using
(2.4), we find that

Qlap|

0, je{2lewl . 2laxitr 1),

o V2(ay)’ jef ’ * i
fU) = oo ke Ny. (3.31)

0, jd U {2lenl, ... 2o+ — 1},
k=0
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Combining (2.7) and (3.30), we can conclude that

1 1
wHI/z(G)(ijf) If = Son fllm,)0(0) < Z;H V2 = <7V2(an)) as n — oo. (3.32)

Let 2!kl < j < ay. Using (2.6), we get

2lekl Wo oy, | Dj_zlﬂk\

ij = 52\0k|f+ V2(ak)

Hence
Q‘lewglak\ (ak - 2|ak‘)Kak72‘”k‘

OszQ(ak)

Ol Qg — 2lokl

Uakf f=— o (Oz\ak\f f)

(Salat f = f)+ . (3.33)

According to (1.2), (1.12) and (3.33), we have

1/2 1/2
”O'ozkf lejz = m ||(O‘k - 2|ak‘)Kak72‘ak‘ H1/2

 (B2) Pl = 10 = () S £~ 115 330

Let
Tk mf
=23 2,
i=1 k=it
where
my > sih—2>mb> > -2 >mh >0k >0
and

Elf = Iz,’;’+1<€l§—1 + eli_c).

By Lemma 3.5, we get

/ |(Otk — 2|”k‘)Kak72|ak\ (1‘)’1/2 d,u
G
k—2

1 ' 1<~ 1
—6 Z / |(ok — 2121 ) K, _giap (;v)|1/2 du(z) > 6 Z o ol > ey > cV(ag). (3.35)
i=2 5 °

i=2
Combining estimations (3.34), (3.35), Corollaries 2.2 and 3.1, we find that (3.29) holds true and
Theorem 3.3 is proved. O
Theorem 3.4.
(a) Let 0 <p<1/2, f € Hy(G), sup d(ng) = o0 and

kEN,
1
WH,(G) (2|nk| ) f) (W) as k — oo. (336)
Then
lone f = flla, @) — 0 as k — oo. (3.37)
(b) Let sup d(ny) = oco. Then there exists a martingale f € H,(G) (0 <p < 1/2) such that
keNy
1
o) (g £) = O (Gt o k= o0 (3.38)
and

one f — fllweak-L, (@) # 0 as k — oc. (3.39)
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Proof. Let 0 < p < 1/2. Then under condition (3.36), if we repeat the steps of the proof of Theo-
rem 3.3, we immediately get that (3.37) holds.

Let us prove part b) of Theorem 3.4. Since sup d(ny) = oo, there exists {ay : k € Ny} C {ng :
k

k € N} such that supyey, d(ax) = oo and
92d(a)(1/p=2) < 9d(ar+1)(1/p=2) (3.40)
Let f be a martingale from Lemma 2.1, where
i = 9—(1/p—2)d(a;)

If we use (3.40), we can conclude that condition (2.3) is fulfilled and it follows that f € H,(G).
According to (2.4), we get

o/p=2)ax] 4 {2\@k|7._.72|ak\+1 — 1}’
OESTS 5 ) 2o 2o 1), k€ N, (3.41)
n=0
Combining (2.7) and (3.40), we have
3 ! =0 ! k 3.42
YHy(G (Q\Otkl ’f> Z; 9d(a)(1/p=2) (2d<ak><1/p72>) as oo (3-42)

Analogously to the proof of the previous theorem, if we use also Corollaries 2.2 and 3.1, then for
the sufficiently large k, we can conclude that

> 9(1=2p)[ax] H g — 2|ak\) a2l vaeak-L, @)

B (2| k‘) l|ogan f — wacakL _(M> 8001 7 = Fllveas n(@

> 9(1-2p) k] - 1” (ay — 2‘ak|)Kak_2‘ak‘ Hweak_Lp(G) (

||O-O(kf waeak L,(G)

3.43)

Let x € E|,). From Lemma 3.5 it follows that

M(x €G: (ap —21)|K,, _piapi| > 22[%]_4) > (Efay)) 2 Q[TIH
and
22p[°‘k]_4u(ac €G: (o —2100)|K, _piapi| > 22[%]—4) > 9(@p=Dlax]—4, (3.44)
Hence combining (1.2), (1.12), (3.43) and (3.44), we get
lone f — fllweak—r,(c) = 0 as k — oo.
The proof of Theorem 3.4 is complete. O

Using Theorem 3.4, we easily get an important result proved in [67].
Corollary 3.4.
(a) Let f € Hy/2(G) and
1 1
le/z(G)(?,f) = 0(@) as k — oo.

Then
lokf = flla, o) — 0 as k — oo.
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(b) There exists a martingale f € Hy,5(G) for which

wH1/2(G)<2ik,f> = O(%) as k — oo

and
lowf = flli2 =0 as k— oco.

Corollary 3.5.
(a) Let 0 <p<1/2, f € Hy(G) and

wH,,(g)(%,c,f) = O(W) as k — oo.

Then
lloxf — fHHp(G) —0 as k — o0.

(b) There exists a martingale f € Hy(G) (0 < p < 1/2) for which

oo (3.) =0l ) 004

and
lorf — fllweak-,(G) # 0 as k — oo.

3.5 Strong convergence of Fejér means with respect to the one-dimensional
Walsh—Fourier series on the martingale Hardy spaces

In this section, we consider the strong convergence results of Fejér means with respect to the one-
dimensional Walsh-Fourier series in the martingale Hardy spaces, when 0 < p < 1/2 (for details
see [66]).

Theorem 3.5.

(a) Let 0 < p < 1/2 and f € H,(G). Then there exists a constant c,, depending only on p, such
that

n p
1 Z ||UmeHp(G)
I'n

p
logl 72+ w2z = @l

(b) Let 0 <p<1/2, ®:N; — [1,00) be a non-decreasing function such that ®(n) 1 co and

k272p

Jm S

Then there exists a martingale f € Hy(G) such that

s Jrm ey _
— ®(m)

Proof. Suppose that

n

1 lowm f17
> L < el f11% -
1

1Og[1/2+p] n = m2—2p

Combining (1.7), (1.15) and Lemma 3.6, we can conclude that

1 i ||Umf||11)qp(c)

log[1/2+p] n ~— m2—2p

1 L lowm fIIB S
= logll/2+7] 5, 2;1 m2—2pp o fll, @) + 195, @) < Cp”f”?fp(G)' (3.45)
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According to Lemma 2.5 and (3.45), Theorem 3.5 will be proved if we show that

Ll
log/2+#] p =CS00 M=29...,

for any p-atom a. We may assume that a is p-atom, with support I, u(I) = 2=™ and I = Ip;. It is
evident that o, (a) = 0, when n < 2M. Therefore, we may assume that n > 2.

Let « € Ips. Since oy, is bounded from Lo (G) to Lo (G) (the boundedness follows from the fact
that Fejér kernels are uniformly bounded in the space L;(G), which is proved in Lemma 3.1) and
llalleo < 2M/P we can conclude that

g _1
In
Let 0 < p <1/2. Then
B L
M
1Og[1/2+p] n mz::l m2—2p < log[1/2+p] . mZ::l 22D <c < oo.

It is evident that

loma(z)] §/|a(t)|\Km(x+t)|du(t) SQM/”/|Km(x+t)|du(t).

Inv
It follows from Lemma 3.2 that
c2k+l 2M(1/p71)
loma(z)| < — x € Lipi(eg+e), 0<k<l<M (3.46)
and
loma(z)| < c2MA/P=1 9k = 0 e Iy(er), 0<k< M. (3.47)
If we use identity (2.1) and (3.46), (3.47) we get that
M—-2 M—1 M—1
[lona@pdu@) =3 3 [ lona@P @)+ Y [ lonate)? duto)
Ty k=0 1= k+1[1+1(€k+€z) k:OIM(ek)
M—-2 M-1
1 2p(k+l 2M(1 D)
<o¥ 3 AT S gy
k=0 1= k+1
coM(1—p) M2 M1 2P(k+l) ok
ST *e Z it
k=0 I=k+1
¢ 2M(1=p) prl1/2+p]
< s +c. (3.48)
Hence
1 L T loma@l? du(a)
Iy
log!1/2+7] m:;H m2-2p
1 n c2M@1=p) pr(1/24p] n c
< logl/Z+7] n( Z m2—>p T Z m272p) < €< 00
m=2M 41 m=2M 41

The proof of part (a) of Theorem 3.5 is complete.
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Now, we prove part (b) of Theorem 3.5. Let ®(n) be a non-decreasing function satisfying the
condition
o(Inkl+1)(2-2p)

o P(2lmlty (3.49)

According to (3.49), there exists an increasing sequence {ay : k € Ny} C {nr : k € Ny} such
that

|ag| > 2, where k € Ny, (3.50)
and
X U/2(glaml+1y 2 p1/2(glanl+1)
- = S _9l-p e m )
z;) olan|(l-p) 2 2% 9(Jan|+1)(1—p) < €< 0. (3.51)
n= n=

Let f = (fn, n € N;) € Hy(G) be a martingale from Example 2.1, where

@1/2p(2|ak\+1)
A= e )
2(lax)(1/p—1)

Combining (2.3) and (3.51), we get that f € Hp(G). According to (2.4), we have

1/2p(2lenl+l) - if e {2lonl [ glexl+l 11

k=0
Let 2lxl < n < 2lokl+1 Then
13 1 &
o.f=— Z Sif+— > Sif=II+1V. (3.53)
j=1 j=2lekl41
It is evident that
S;f =0, if 0<j <2kl (3.54)
Let 2l@sl < j < 2losl+1 where s = 1,2,...,k. If we apply (2.6), we get
s—1
ij = Z (I)I/ZP(Q‘Q"‘JFI)(DQ\QM-H - Dg\an\) + @1/2p(2|a5‘+1)w2‘as|Dj_2|n/s‘. (355)
n=0

Let 2lasl+l < j < 9lastil s =0,1,...,k — 1. Then if we use (2.5), we can conclude that

531 = 30 @YDy 11— Dy (3.56)
n=0

Let x € Is(eg + e1). Since (see Lemmas 2.2 and 3.2)
Don(z) = Kon(z) =0, where n > 2, (3.57)
combining (3.50) and (3.54)—(3.57), we get

k—1 olan|+1
11T = %Z ol/2p(lenltly N Dy ()
n=0 v=2lonl41
1 k—1
= > @t zr(lenlty (2leal K L () — 2197 Ky, (2)) = 0. (3.58)
n=0
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If we use (3.55), when s = k, for IV we can write that

n — 2ol 2
v — L Z;) <I>1/2p(2|a”IH)(Dg\anHl — Dyjayi)
=

@1/21) 2\ak|+l n
M Gl > Wy Dy_giap = IVi+ Vo (3.59)

n
j=2loxl 41
Combining (3.50) and (3.57), we can conclude that
IVy =0, where z € Ix(eg + e1). (3.60)

Let oy € Ag 2, 2lorl < < 2lewl*1 and o € Ih(eg + ey). Since n — 2lexl € A2, from Lemmas 2.1
and 3.1 and (3.57), it follows that

neglap|

[IVa| =

J

Pl/2p(9lok|+1
ePE™T) ’ D,(x)‘
j=1

o1/2p (glokl+1y

1/2p(9|ak|+1
e S ’(n _ Q‘Qk‘)Kn_Q\akl (CL‘)| > W

- > — T (3.61)

Let 0 < p <1/2 and n € Ag2. Combining (3.53)-(3.61), we get

c @1/2(2|ak\+1) c @1/2p(2|ak\+1)
||0'nf||§,eak_Lp(G) > Wﬂ{x € I(eg +e1): |onf| > UT}

cpq>1/2(2|ak\+1) cpq,1/2(2|ak\+1)
> ey Ml te)} 2 T (362)

Hence

o0

3 1o hvenicryi) 3 170 Byear )
®(n) = ®(n)

n=1 {n€ho,2: 2lokl <n<2lokl+1y

> ; Z 1 cpg(l—p)(lak\ﬂ)
= (I>1/2(2|ak|+1) op(Jak|+1) = (I>1/2(2|0¢k|+1)

{n€hg, 2: 2okl <n<2lorl+1}

— 00 as k — oo.

The proof of Theorem 3.5 is complete. O

Theorem 3.6. Let f € Hy/5(G). Then

1 1/2
sup sup — lom fll1)5 = oc.
neNs |||, <1 T ,;1 mz

Proof. Let 0 < p <1 and
fk(a:) = 2k (D2k+1 (m) — ng (.r))

Since

supp(fx) = I, /ak dp =20

Iy

and ,
[ felloo < 2% = (u(supp fi))

we can conclude that fj is 1/2-atom, for every k € N.
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Moreover, if we use the orthogonality of Walsh functions, we get

0, n=0,...,k,
Son(fr, 7)) = {(D2k+1(x) - Dzk(x))7 nzk+l,

and

Sg§|52"(fk,$)| = ’(D2k+1($> - ng(x)) )

where z € G.
Combining the first equality of Lemma 2.1 and Lemma 2.6, we obtain

= QkH Son (D - D H
||ak||Hp(G) ilelg | 2 ( ok+1 (.’b) ok ($)) | 1/2
= QkH (ng+1 (:17) — Doyr (.Z‘)) ||1/2 = 2k||1)2k (I)HI/Q < ok 9=k <1.

It is easy to show that

~ 2m if g=2m, ... 2mtl 1,
Jm) = {O otherwise (3:63)
and
2m(Di — ng) if i=2m4+1,...,2mH 1,
Sifm =13 fm if ¢ >2m+l (3.64)
0 otherwise.

Let 0 < n < 2™. Using the first equality of Lemma 2.1, we have

n+2" 1 n+2™
|O'n+2""fm‘ = ‘ Z S fm‘ = ‘Qm Z (Dj — DQm)
n+2m =2m41 n+ 27 j=2m41
_ n+2m ‘2 ;(Dmm —Don)| = —— ‘2 ZIDJ-’ . (3.65)
Let .
=y 3
i=1 k=1,
where

0<h<m<lh—-2<lkh<my< - <Ily—2<l, <ms,.
Applying Lemma 3.5 and (3.65), we find that
|0 tom frn(x)] > 2% where o € Ij, (e, 1 + ey,).
Hence

/ O o (@)|Y2 dis(2)

G

s
ZZ / |0'n+2’"fm(x)|l/2du >CZ ol >CS>CV( )
12011i+1(61i—1+€zi)

According to the second estimation of Lemma 2.3, we can conclude that

2mtl_q
1/2 5 1/2
sup. - sup Hakal 22 ||kam||1 2
neNy ”f“Hp<1 " ; / QmH ;—&-1 /
2m+1 1 om _1
—2m+1 Z V(k—-2m) 2 Py ZV > clogm — 0o as m — oo.

k=2m+1

Thus The proof is complete.
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