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PARTIAL SUMS AND FEJÉR MEANS WITH RESPECT
TO THE ONE-DIMENSIONAL WALSH–FOURIER SERIES



Abstract. In this paper, we prove and discuss some new (Hp, Lp) type inequalities for partial Sums
and Fejér means with respect to the Walsh system. It is also proved that these results are the best
possible in a special sense. As applications, both some well-known and new results are pointed out.
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რეზიუმე. სტატიაში განვიხილავთ და დავამტკიცებთ უოლშ−ფურიეს მწკრივის კერძო ჯამების
და ფეიერის საშუალოების ახალი (Hp, Lp) ტიპის უტოლობებს. ასევე დავამტკიცებთ, რომ
ეს შედეგები განუზოგადებელია. როგორც ამ თეორემების გამოყენებას, მოვიყვანთ ახალ და
კარგად ცნობილ შედეგებს.
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1 Preliminaries
It is well-known that (for details see, e.g., [34, 54] and [44]) for every p > 1, there exists an absolute
constant cp, depending only on p such that

∥Snf∥p ≤ cp∥f∥p, when p > 1 and f ∈ H1(G).

Moreover, Watari [89] (see also Gosselin [35] and Young [96]) proved that there exists an absolute
constant c such that for n = 1, 2, . . . ,

λµ
(
|Snf | > λ

)
≤ c ∥f∥1, f ∈ L1(G), λ > 0.

On the other hand, it is also well-known that (for details see, e.g., [1,54] and [81]) a Walsh system
is not Schauder’s basis in L1(G) space. Moreover, there exists function f ∈ H1(G) such that partial
sums with respect to the Walsh system are not uniformly bounded in L1(G).

Applying Lebesgue constants
L(n) := ∥Dn∥1,

we easily obtain that (for details see, e.g., [2] and [54]) subsequences of partial sums Snk
f with respect

to the Walsh system converge to f in L1 norm if and only if

sup
k∈N

L(nk) ≤ c <∞. (1.1)

Since the n-th Lebesgue constant with respect to the Walsh system, where

n =

∞∑
j=0

nj 2
j (nj ∈ Z2),

can be estimated by the variation of natural number

V (n) = n0 +

∞∑
k=1

|nk − nk−1|,

and it is also well known that (for details see, e.g., [8] and [54]) the following two-sided estimate

1

8
V (n) ≤ L(n) ≤ V (n)

is true, to obtain the convergence of subsequences of partial sums Snk
f with respect to the Walsh

system of f ∈ L1 in f ∈ L1-norm, condition (1.1) can be replaced by

sup
k∈N

V (nk) ≤ c <∞.

It follows that (for details see, e.g., [54] and [90]) a subsequence of partial sums S2n is bounded
from Hp(G) to Hp(G) for every p > 0, whence we obtain

∥S2nf − f∥Hp(G) → 0 as n→ ∞. (1.2)

On the other hand (see, e.g., [68]), there exists a martingale f ∈ Hp(G) (0 < p < 1) such that

sup
n∈N

∥S2n+1f∥weak-Lp(G) = ∞.

The main reason of divergence of the subsequence S2n+1f of partial sums is that (for details
see [69]) the Fourier coefficients of f ∈ Hp(G) are not uniformly bounded for 0 < p < 1.

When 0 < p < 1, in [9] and [82], the boundedness of subsequences of partial sums with respect to
the Walsh system from Hp(G) to Hp(G) was investigated. In particular, the following result is true.
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Theorem T1. Let 0 < p < 1 and f ∈ Hp(G). Then there exists an absolute constant cp, depending
only on p, such that

∥Smk
f∥Hp(G) ≤ cp∥f∥Hp(G)

if and only if the following condition holds:

sup
k∈N

d(mk) < c <∞, (1.3)

where
d(mk) := |mk| − ⟨mk⟩.

In particular, from Theorem T1 immediately follows

Theorem T2. Let p > 0 and f ∈ Hp(G). Then there exists an absolute constant cp, depending only
on p, such that

∥S2nf∥Hp(G) ≤ cp∥f∥Hp(G)

and
∥S2n+2n−1f∥Hp(G) ≤ cp∥f∥Hp(G).

On the other hand, we have the following result.

Theorem T3. Let p > 0. Then there exists a martingale f ∈ Hp(G) such that

sup
n∈N

∥S2n+1f∥Hp(G)
= ∞.

Taking into account these results, it is interesting to find behaviour of a rate of divergence of
subsequences of partials sums with respect to the Walsh system of martingales f ∈ Hp(G) in the
martingale Hardy spaces Hp(G).

In Section 2 (see also [70]), we investigate the above-mentioned problem. For 0 < p < 1, we have
the following result.

Theorem 2.1. Let f ∈ Hp(G). Then there exists an absolute constant cp, depending only on p, such
that the following inequality is true:

∥Snf∥Hp(G) ≤ cp 2
d(n)(1/p−1)∥f∥Hp(G). (1.4)

On the other hand, if 0 < p < 1, {mk : k ≥ 0} is an increasing subsequence of natural numbers
such that

sup
k∈N

d(mk) = ∞ (1.5)

and Φ : N+ → [1,∞) is a non-decreasing function satisfying the condition

lim
k→∞

2d(mk)(1/p−1)

Φ(mk)
= ∞,

then there exists a martingale f ∈ Hp(G) such that

sup
k∈N

∥∥∥ Smk
f

Φ(mk)

∥∥∥
weak-Lp(G)

= ∞.

Theorem 2.1 easily implies the following

Corollary 2.1. Let 0 < p < 1 and f ∈ Hp(G). Then there exists an absolute constant cp, depending
only on p, such that

∥Snf∥Hp(G) ≤ cp
(
nµ{supp(Dn)}

)1/p−1∥f∥Hp(G).
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On the other hand, if 0 < p < 1, {mk : k ≥ 0} is an increasing sequence of natural numbers such
that

sup
k∈N

mkµ
{

supp(Dmk
)
}
= ∞

and Φ : N+ → [1,∞) is a non-decreasing function satisfying the condition

lim
k→∞

(mkµ{supp(Dmk
)})1/p−1

Φ(mk)
= ∞,

then there exists a martingale f ∈ Hp(G) such that

sup
k∈N

∥∥∥ Smk
f

Φ(mk)

∥∥∥
weak-Lp(G)

= ∞.

In particular, we also get the proofs of Theorem T1 and Theorem T2.
In Section 2, we also investigate the case p = 1. In this case, the following result is true.

Theorem 2.2. Let n ∈ N+ and f ∈ H1(G). Then there exists an absolute constant c such that

∥Snf∥H1(G) ≤ c V (n)∥f∥H1(G). (1.6)

Moreover, if {mk : k ≥ 0} is an increasing sequence of natural numbers N+ such that

sup
k∈N

V (mk) = ∞

and Φ : N+ → [1,∞) is a non-decreasing function satisfying the condition

lim
k→∞

V (mk)

Φ(mk)
= ∞.

then there exists a martingale f ∈ H1(G) such that

sup
k∈N

∥∥∥ Smk
f

Φ(mk)

∥∥∥
1
= ∞.

When 0 < p < 1, in [82] the boundedness of maximal operators of subsequences of partial sums
from Hp(G) to Lp(G) was proved. In particular, the following theorem is true.
Theorem T4. Let 0 < p < 1 and f ∈ Hp(G). Then the maximal operator

sup
k∈N

|Smk
f |

is bounded from Hp(G) to Lp(G) if and only if condition (1.3) is fulfilled.

In the special cases we find that the following theorem is true.
Theorem T5. Let p > 0 and f ∈ Hp(G). Then there exists an absolute constant cp, depending only
on p, such that ∥∥∥ sup

n∈N
|S2nf |

∥∥∥
p
≤ cp∥f∥Hp(G) (1.7)

and ∥∥∥ sup
n∈N

|S2n+2n−1f |
∥∥∥
p
≤ cp∥f∥Hp(G).

On the other hand, we have the following result.
Theorem T6. Let p > 0. Then there exists a martingale f ∈ Hp(G) such that∥∥∥ sup

n∈N
|S2n+1f |

∥∥∥
p
= ∞.
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The above-mentioned condition (1.3) is sufficient for the case p = 1 as well, but there exist
subsequences which do not satisfy this condition, but maximal operators of these subsequences of
partial sums with respect to the Walsh system are not bounded from H1(G) to L1(G).

Such necessary and sufficient conditions that provide the boundedness of maximal operators of
subsequences of partial sums with respect to the Walsh system from H1(G) to L1(G) remains still an
open problem.

In [69] and [82], the boundedness of weighted maximal operators from Hp(G) to Lp(G), when
0 < p ≤ 1, was investigated.
Theorem T7. Let 0 < p ≤ 1. Then the weighted maximal operator

S̃ ∗
p f := sup

n∈N+

|Snf |
(n+ 1)1/p−1 log[p](n+ 1)

is bounded from Hp(G) to Lp(G), where [p] denotes an integer part of p.
Moreover, for any non-decreasing function φ : N+ → [1,∞) satisfying the condition

lim
n→∞

(n+ 1)1/p−1 log[p](n+ 1)

φ(n+ 1)
= +∞,

there exists a martingale f ∈ Hp(G) (0 < p ≤ 1) such that

sup
n∈N

∥∥∥ Snf

φ(n)

∥∥∥
p
= ∞.

According to the sharpness of result, for the weighted maximal operator of partial sums of Walsh–
Fourier series, we immediately get the following result.
Theorem S1. There exists a martingale f ∈ Hp(G) (0 < p ≤ 1) such that

sup
n∈N

∥Snf∥p = ∞.

On the other hand, the boundedness of weighted maximal operators immediately leads to the
following estimation.
Theorem S2. Let 0 < p ≤ 1. Then there exists an absolute constant cp, depending only on p, such
that

∥Snf∥p ≤ cp(n+ 1)1/p−1 log[p](n+ 1)∥f∥Hp(G) for 0 < p ≤ 1,

where [p] denotes an integer part of p.

Applying this inequality (see [67]), we find the necessary and sufficient conditions for the martingale
f ∈ Hp(G) for which partial sums with respect to the Walsh system of martingales f ∈ Hp(G) converge
in Hp(G) norm.
Theorem T8. Let 0 < p ≤ 1, [p] denote an integer part of p, f ∈ Hp(G) and

ωHp(G)

( 1

2N
, f

)
= o

( 1

2N(1/p−1)N [p]

)
as N → ∞.

Then
∥Snf − f∥p → 0 as n→ ∞.

Moreover, there exists a martingale f ∈ Hp(G), where 0 < p < 1, such that

ωHp(G)

( 1

2N
, f

)
= O

( 1

2N(1/p−1)N [p]

)
as N → ∞

and
∥Snf − f∥weak-Lp(G) ↛ 0 as n→ ∞.
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Taking these results into account, it is interesting to find the necessary and sufficient conditions for
modulus of continuity such that the subsequences of partial sums with respect to the Walsh system
of martingales f ∈ Hp(G) converge in Hp(G) norm.

In Section 2 (see also [70]), we investigate this problem. Combining inequalities (1.4) and (1.6),
we get the following
Theorem 2.3. Let 2k < n ≤ 2k+1. Then there exists an absolute constant cp, depending only on p,
such that

∥Snf − f∥Hp(G) ≤ cp 2
d(n)(1/p−1)ωHp(G)

( 1

2k
, f

)
(0 < p < 1) (1.8)

and
∥Snf − f∥H1(G) ≤ c1V (n)ωH1(G)

( 1

2k
, f

)
. (1.9)

By applying inequality (1.8), in Section 2, the following result is proved.
Theorem 2.4. Let 0 < p < 1, f ∈ Hp(G) and {mk : k ≥ 0} be an increasing sequence of natural
numbers satisfying the condition

ωHp(G)

( 1

2|mk|
, f

)
= o

( 1

2d(mk)(1/p−1)

)
as k → ∞.

Then
∥Smk

f − f∥Hp(G) → 0 as k → ∞. (1.10)

On the other hand, if {mk : k ≥ 0} is an increasing sequence of natural numbers satisfying condition
(1.5), then there exists a martingale f ∈ Hp(G) and a subsequence {αk : k ≥ 0} ⊂ {mk : k ≥ 0} for
which

ωHp(G)

( 1

2|αk|
, f

)
= O

( 1

2d(αk)(1/p−1)

)
as k → ∞

and
lim sup
k→∞

∥Sαk
f − f∥weak-Lp(G) > cp > 0 as k → ∞, (1.11)

where cp is an absolute constant depending only on p.

According to this theorem, we immediately get that the following result is true.
Corollary 2.5. Let 0 < p < 1, f ∈ Hp(G) and {mk : k ≥ 0} be an increasing sequence of natural
numbers satisfying the condition

ωHp(G)

( 1

2|mk|
, f

)
= o

( 1

(mkµ(suppDmk
))1/p−1

)
as k → ∞.

Then (1.10) holds.
On the other hand, if {mk : k ≥ 0} is an increasing sequence of natural numbers satisfying the

condition
lim
k→∞

(mkµ{supp(Dmk
)})1/p−1

Φ(mk)
= ∞,

then there exist a martingale f ∈ Hp(G) and a subsequence {αk : k ≥ 0} ⊂ {mk : k ≥ 0} such that

ωHp(G)

( 1

2|αk|
, f

)
= O

( 1

(αkµ(suppDαk
))1/p−1

)
as k → ∞

and (1.11) holds.

Applying (1.9), we prove that the following result is true.
Theorem 2.5. Let f ∈ H1(G) and {mk : k ≥ 0} be an increasing sequence of natural numbers
satisfying the condition

ωH1(G)

( 1

2|mk|
, f

)
= o

( 1

V (mk)

)
as k → ∞.
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Then
∥Smk

f − f∥H1(G) → 0 as k → ∞.

Moreover, if {mk : k ≥ 0} is an increasing sequence of natural numbers satisfying condition (1.5),
then there exist a martingale f ∈ H1(G) and a subsequence {αk : k ≥ 0} ⊂ {mk : k ≥ 0} for which

ωH1(G)

( 1

2|αk|
, f

)
= O

( 1

V (αk)

)
as k → ∞

and
lim sup
k→∞

∥Sαk
f − f∥1 > c > 0 as k → ∞,

where c is an absolute constant.

Applying Theorems 2.4 and 2.5, we immediately get the proof of Theorem T8.
Weisz [91] considered the convergence in a norm of Fejér means of the one-dimensional Walsh–

Fourier series and proved the following
Theorem We1. Let p > 1/2 and f ∈ Hp(G). Then there exists an absolute constant cp, depending
only on p, such that

∥σkf∥Hp(G) ≤ cp∥f∥Hp(G).

Weisz (for details see, e.g., [90]) also considered the boundedness of subsequences of Fejér means
σ2n of the one-dimensional Walsh–Fourier series from Hp(G) to Hp(G) when p > 0.
Theorem We2. Let p > 0 and f ∈ Hp(G). Then

∥σ2kf − f∥Hp(G) → 0 as k → ∞. (1.12)

On the other hand, in [63], the following result was proved.
Theorem T9. There exists a martingale f ∈ Hp(G) (0 < p ≤ 1/2) such that

sup
n∈N

∥σ2n+1f∥Hp(G) = ∞.

Goginava [29] (see also [51]) proved that the following result is true.
Theorem Gog1. Let 0 < p ≤ 1. Then the sequence of operators |σ2nf | is not bounded from Hp(G)
to Hp(G).

If 0 < p < 1/2, then in [52] it was proved the boundedness of subsequences of Fejér means of the
one-dimensional Walsh–Fourier from Hp(G) to Hp(G). In particular, the following statement is true.
Theorem T10. Let 0 < p < 1/2 and f ∈ Hp(G). Then there exists an absolute constant cp,
depending only on p, such that the estimation

∥σmk
f∥Hp(G) ≤ cp∥f∥Hp(G)

holds if and only if condition (1.3) is fulfilled.

Theorem T10 immediately follows from theorem of Weisz (see Theorem We2) and we get the
interesting results.
Theorem T11. Let p > 0 and f ∈ Hp(G). Then there exists an absolute constant cp, depending only
on p, such that

∥σ2nf∥Hp(G) ≤ cp∥f∥Hp(G)

and
∥σ2n+2n−1f∥Hp(G) ≤ cp∥f∥Hp(G).

On the other hand, we have the following result.
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Theorem T12. Let p > 0. Then there exists a martingale f ∈ Hp(G) such that

sup
n∈N

∥σ2n+1f∥Hp(G)
= ∞.

According to the above-mentioned results, it is interesting to find a rate of divergence of subse-
quences σnk

f of Fejér means of the one-dimensional Walsh–Fourier series in the Hardy spaces Hp(G).
In Section 3 (see also [71]), we find a rate of divergence of subsequences of Fejér means of the

one-dimensional Walsh–Fourier series on the martingale Hardy spaces Hp(G), when 0 < p ≤ 1/2.
First, we consider the case p = 1/2.

Theorem 3.1. Let n ∈ N+ and f ∈ H1/2(G). Then there exists an absolute constant c such that

∥σnf∥H1/2(G) ≤ c V 2(n)∥f∥H1/2(G). (1.13)

Moreover, if {mk : k ≥ 0} is an increasing sequence of natural numbers such that

sup
k∈N

V (mk) = ∞,

and Φ : N+ → [1,∞] is a non-decreasing function satisfying the condition

lim
k→∞

V 2(mk)

Φ(mk)
= ∞,

then there exists a martingale f ∈ H1/2(G) such that

sup
k∈N

∥∥∥ σmk
f

Φ(mk)

∥∥∥
1/2

= ∞.

The case 0 < p < 1/2 was also been considered and it was proved that the following statement is
true.
Theorem 3.2. Let 0 < p < 1/2 and f ∈ Hp(G). Then there exists an absolute constant cp, depending
only on p, such that

∥σnf∥Hp(G) ≤ cp 2
d(n)(1/p−2)∥f∥Hp(G). (1.14)

On the other hand, if 0 < p < 1/2, {mk : k ≥ 0} is an increasing sequence of natural numbers
satisfying condition (1.5) and Φ : N+ → [1,∞) is a non-decreasing function such that

lim
k→∞

2d(mk)(1/p−2)

Φ(mk)
= ∞,

then there exists a martingale f ∈ Hp(G) such that

sup
k∈N

∥∥∥ σmk
f

Φ(mk)

∥∥∥
weak-Lp(G)

= ∞.

From these results also follows the proof of Theorem We2.
In 1975, Schipp [53] (see also [2] and [97]) proved that the maximal operator of Fejér means σ∗ is

of type weak − (1, 1):
µ(σ∗f > λ) ≤ c

λ
∥f∥1 (λ > 0).

Using the Marcinkiewicz interpolation theorem, it follows that σ∗ is of strong type-(p, p), when p > 1:

∥σ∗f∥p ≤ c ∥f∥p (p > 1).

The boundedness does not hold for p = 1, but Fujii [20] (see also [95]) proved that the maximal
operator of Fejér means is bounded from H1(G) to L1(G). Weisz in [92] generalized the result of
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Fujii and proved that the maximal operator of Fejér means is bounded from Hp(G) to Lp(G), when
p > 1/2. Simon [55] constructed the counterexample showing that the boundedness does not hold
when 0 < p < 1/2. Goginava [25] (see also [14] and [15]) generalized this result for 0 < p ≤ 1/2 and
proved that the following theorem is true.
Theorem Gog2. There exists a martingale f ∈ Hp(G) (0 < p ≤ 1/2) such that

sup
n∈N

∥σnf∥p = ∞.

Weisz [93] (see also Goginava [27]) proved that the following theorem is true.
Theorem We3. Let f ∈ H1/2(G). Then there exists an absolute constant c such that

∥σ∗f∥weak−L1/2(G) ≤ c ∥f∥H1/2(G).

In [52], the boundedness of maximal operators of subsequences of Fejér means of the one-dimensio-
nal Walsh–Fourier series from Hp(G) to Lp(G) for 0 < p < 1/2 was considered. In particular, the
following result is true.
Theorem T13. Let 0 < p < 1/2 and f ∈ Hp(G). Then the maximal operator

σ̃ ∗f := sup
k∈N

|σmk
f |

is bounded from Hp(G) to Lp(G) if and only if condition (1.3) is fulfilled.

As consequences, the following results are true.
Theorem T14. Let p > 0 and f ∈ Hp(G). Then there exists an absolute constant cp, depending only
on p, such that ∥∥∥ sup

n∈N
|σ2nf |

∥∥∥
p
≤ cp∥f∥Hp(G) (1.15)

and ∥∥∥ sup
n∈N

|σ2n+2n−1f |
∥∥∥
p
≤ cp∥f∥Hp(G).

On the other hand, we have the following negative result.
Theorem T15. Let 0 < p < 1/2. Then there exists a martingale f ∈ Hp(G) such that∥∥∥ sup

n∈N
|σ2n+1f |

∥∥∥
p
= ∞.

The above-mentioned condition is sufficient for the case p = 1/2 too, but there exist the subse-
quences that do not satisfy condition (1.3) and the maximal operator of subsequences of Fejér means
of the one-dimensional Walsh–Fourier series are bounded from H1/2(G) to L1/2(G).

However, the problem of finding the necessary and sufficient conditions on the indices, which
provide the boundedness of maximal operator of subsequences of Fejér means of the one-dimensional
Walsh–Fourier series from H1/2(G) to L1/2(G) is still open.

In [26] and [63] (see also [30,50,62,65]), it is proved
Theorem GT1. Let 0 < p ≤ 1/2 and f ∈ Hp(G). Then the maximal operator

σ̃ ∗
p f := sup

n∈N

|σnf |
(n+ 1)1/p−2 log2[1/2+p](n+ 1)

is bounded from Hp(G) to Lp(G).
Moreover, for any nondecreasing function φ : N+ → [1,∞) satisfying the condition

lim
n→∞

(n+ 1)1/p−2 log2[1/2+p](n+ 1)

φ(n)
= +∞,
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there exists a martingale f ∈ Hp(G) (0 < p < 1/2) such that

sup
n∈N

∥∥∥ σnf
φ(n)

∥∥∥
p
= ∞.

From the divergence of weighted maximal operators we immediately get that there exists a mar-
tingale f ∈ Hp(G) (0 < p ≤ 1/2) such that

sup
n∈N

∥σnf∥p = ∞,

and from the boundedness results of weighted maximal operators we immediately get that for any
f ∈ Hp(G) there exists an absolute constant cp such that the inequality

∥σnf∥p ≤ cpn
1/p−2 log2[1/2+p](n+ 1)∥f∥Hp(G) as 0 < p ≤ 1

2
(1.16)

holds true. Applying inequality (1.16) in [67], the necessary and sufficient conditions were found for
the modulus of continuity of a martingale f ∈ Hp(G), for which Fejér means of the one-dimensional
Walsh–Fourier series converge in Hp(G) norm.
Theorem T16. Let 0 < p ≤ 1/2, f ∈ Hp(G) and

ωHp(G)

( 1

2N
, f

)
= o

( 1

2N(1/p−2)N2[1/2+p]

)
as N → ∞.

Then
∥σnf − f∥p → 0 as n→ ∞.

Moreover, there exists a martingale f ∈ Hp(G), for which

ωH1/2(G)

( 1

2N
, f

)
= O

( 1

2N(1/p−2)N2[1/2+p]

)
as N → ∞

and
∥σnf − f∥p ↛ 0 as n→ ∞.

According to the above-mentioned results, it is of interest to find the necessary and sufficient
conditions for the modulus of continuity, for which subsequences σnk

f of Fejér means of the one-
dimensional Walsh–Fourier series converge in Hp(G) norm.

In Section 3, we find the necessary and sufficient conditions for the modulus of continuity, for
which subsequences σnk

f of Fejér means of the one-dimensional Walsh–Fourier series converge in
Hp(G) norm (see also [71]).

Applying inequality (1.13) to the case p = 1/2, the following necessary and sufficient conditions
are found.
Theorem 3.3. Let f ∈ H1/2(G) and {mk : k ≥ 0} be an increasing sequence of natural numbers
such that

ωH1/2(G)

( 1

2|mk|
, f

)
= o

( 1

V 2(mk)

)
as k → ∞.

Then
∥σmk

f − f∥H1/2(G) → 0 as k → ∞.

Moreover, if {mk : k ≥ 0} is an increasing sequence of natural numbers such that (1.5) holds true,
then there exist a martingale f ∈ H1/2(G) and a subsequence {αk : k ≥ 0} ⊂ {mk : k ≥ 0} such that

ωH1/2(G)

( 1

2|αk|
, f

)
= O

( 1

V 2(αk)

)
as k → ∞

and
lim sup
k→∞

∥σαk
f − f∥1/2 > c > 0 as k → ∞,
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where c is an absolute constant.

Applying inequality (1.14), we investigate the case 0 < p < 1/2. In Section 3, we prove that the
following theorem is true.
Theorem 3.4. Let 0 < p < 1/2, f ∈ Hp(G) and {mk : k ≥ 0} be an increasing sequence of natural
numbers such that

ωHp(G)

( 1

2|mk|
, f

)
= o

( 1

2d(mk)(1/p−2)

)
as k → ∞.

Then
∥σmk

f − f∥Hp(G) → 0 as k → ∞.

On the other hand, if {mk : k ≥ 0} is an increasing sequence of natural numbers satisfying condition
(1.5), then there exist a martingale f ∈ Hp(G) and a subsequence {αk : k ≥ 0} ⊂ {mk : k ≥ 0}, for
which

ωHp(G)

( 1

2|αk|
, f

)
= O

( 1

2d(αk)(1/p−2)

)
as k → ∞

and
lim sup
k→∞

∥σαk
f − f∥weak-Lp(G) > cp > 0 as k → ∞,

where cp is constant depending only on p.

However, Simon in [56] and [58] (see also [18, 57, 59]) considered strong convergence theorems of
the one-dimensional Walsh–Fourier series and proved the following
Theorem Si1. Let 0 < p ≤ 1 and f ∈ H1(G). Then there exists an absolute constant cp, depending
only on p, such that the following inequality is true:

1

log[p] n

n∑
k=1

∥Skf∥Hp(G)

k2−p
≤ cp∥f∥Hp(G),

Analogous result for trigonometric system was proved in [60], and for unbounded Walsh systems
in [22].

In [64], it was proved that the following theorem is true.
Theorem T17. For any 0 < p < 1 and non-decreasing function φ : N+ → [1, ∞) satisfying the
condition

lim
n→∞

n2−p

φ(n)
= +∞,

there exists a martingale f ∈ Hp(G) such that
∞∑
k=1

∥Skf∥pweak-Lp(G)

φ(k)
= ∞ (0 < p < 1).

From Theorem Si1 it follows that if f ∈ H1(G), then the following equalities are true:

lim
n→∞

1

logn

n∑
k=1

∥Skf − f∥1
k

= 0

and
lim
n→∞

1

logn

n∑
k=1

∥Skf∥1
k

= ∥f∥H1(G).

When 0 < p < 1 and f ∈ Hp(G), then from Theorem Si1 follows that there exists an absolute
constant cp, depending only on p, such that

1

n1/2−p/2

n∑
k=1

∥Skf∥pHp(G)

k3/2−p/2
≤ cp∥f∥pHp(G).
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Moreover,
1

n1/2−p/2

n∑
k=1

∥Skf − f∥pHp(G)

k3/2−p
= 0.

We have the equality
1

n1/2−p/2

n∑
k=1

∥Skf∥pHp(G)

k3/2−p/2
= ∥f∥pHp(G).

In Section 3, we consider strong convergence results of Fejér means of the one-dimensional Walsh–
Fourier series. According to Theorem We1 and Theorem Gog2, we only have to consider the case
0 < p ≤ 1/2 (for details see [66] and also [8, 10–13]):
Theorem 3.5. Let 0 < p ≤ 1/2 and f ∈ Hp(G). Then there exists an absolute constant cp depending
only on p, such that

1

log[1/2+p] n

n∑
m=1

∥σmf∥pHp(G)

m2−2p
≤ cp∥f∥pHp(G).

Moreover, let 0 < p < 1/2 and Φ : N+ → [1,∞) be a non-decreasing, non-negative function such
that Φ(n) ↑ ∞ and

lim
k→∞

k2−2p

Φ(k)
= ∞.

Then there exists a martingale f ∈ Hp(G) such that
∞∑

m=1

∥σmf∥pweak-Lp(G)

Φ(m)
= ∞.

When p = 1/2, it was also proved that the following theorem is true.
Theorem 3.6. Let f ∈ H1/2(G). Then

sup
n∈N+

sup
∥f∥Hp(G)≤1

1

n

n∑
m=1

∥σmf∥1/21/2 = ∞.

Theorem 3.5 implies that if f ∈ H1/2(G), then the following equalities are true:

lim
n→∞

1

logn

n∑
k=1

∥σkf − f∥1/2H1/2(G)

k
= 0

and

lim
n→∞

1

logn

n∑
k=1

∥σkf∥1/2H1/2(G)

k
= ∥f∥1/2H1/2(G).

When 0 < p < 1/2 and f ∈ Hp(G), then Theorem 3.5 impliles that there exists an absolute
constant cp, depending only on p, such that

1

n1/2−p

n∑
k=1

∥σkf∥pHp(G)

k3/2−p
≤ cp∥f∥pHp(G).

Moreover,
1

n1/2−p

n∑
k=1

∥σkf − f∥pHp(G)

k3/2−p
= 0.

Thus we have
1

n1/2−p

n∑
k=1

∥σkf∥pHp(G)

k3/2−p
= ∥f∥pHp(G).
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2 Partial sums with respect to the one-dimensional
Walsh–Fourier series on the martingale Hardy spaces

2.1 Basic notations
Denote by N+ the set of positive integers and by N := N+ ∪ {0} the set of non-negative integers.
Denote by Z2 an additive group of integers modulo-2, which contains only two elements Z2 := {0, 1},
group operation is modulo-2 sum and all sets are open.

Define the group G as the complete direct product of the groups Z2 with the product of the discrete
topologies Z2. The direct product µ of measures µn({j}) := 1/2 (j ∈ Z2) is the Haar measure on G
with µ(G) = 1.

The elements of G are represented by the sequences

x := (x0, x1, . . . , xj , . . . ) (xk = 0, 1).

It is easy to give a base for the neighbourhood of G,

I0(x) =G,

In(x) :=
{
y ∈ G | y0 = x0, . . . , yn−1 = xn−1

}
(x ∈ G, n ∈ N).

Set In := In(0) for any n ∈ N and In := G \ In.
It is evident that

IM =
(M−2⋃

k=0

M−1⋃
l=k+1

Il+1(ek + el)
)
∪
(M−1⋃

k=0

IM (ek)
)
=

M−1⋃
k=0

Ik \ Ik+1. (2.1)

If n ∈ N, then it can be uniquely expressed as n =
∞∑
k=0

nj 2
j , where nj ∈ Z2 (j ∈ N), and only a

finite number of njs differs from zero. Set

⟨n⟩ := min
{
j ∈ N, nj ̸= 0

}
and |n| := max

{
j ∈ N, nj ̸= 0

}
,

It is evident that 2|n| ≤ n ≤ 2|n|+1. Let

d(n) := |n| − ⟨n⟩ for any n ∈ N.

Denote by V (n) the variation of natural number n ∈ N,

V (n) = n0 +

∞∑
k=1

|nk − nk−1|.

Define k-th Rademacher functions by

rk(x) := (−1)xk (x ∈ G, k ∈ N).

By using Rademacher functions, we define the Walsh system w := (wn : n ∈ N) G as:

wn(x) :=

∞∏
k=0

rnk

k (x) = r|n|(x)(−1)

|n|−1∑
k=0

nkxk

(n ∈ N).

The norm (quasi-norm) of the space Lp(G) and weak-Lp(G) for (0 < p < ∞) are respectively
defined as

∥f∥pp :=

(∫
G

|f(x)|p dµ(x)
)
, ∥f∥pweak-Lp(G) := sup

λ>0
λpµ

(
x ∈ G : |f | > λ

)
.
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The Walsh system is orthonormal and complete in L2(G) (see [54]).
For any f ∈ L1(G), the numbers

f̂(n) :=

∫
G

f(x)wn(x) dµ(x)

are called n-th Walsh–Fourier coefficient of f .
The n-th partial sum is denoted by

Sn(f ;x) :=

n−1∑
i=0

f̂(i)wi(x).

The Dirichlet kernels are defined by

Dn(x) :=

n−1∑
i=0

wi(x).

We also define the following maximal operators:

S∗f = sup
n∈N

|Snf |, S̃∗
#f = sup

n∈N
|S2nf |.

The σ-algebra generated by the intervals In(x) with measure 2−n is denoted by 𝟋n(n ∈ N). The
conditional exponential operator with respect to 𝟋n (n ∈ N) is denoted by En and it is given by

Enf(x) = S2nf(x) =

2n−1∑
k=0

f̂(k)wk(x) =
1

|In(x)|

∫
In(x)

f(x) dµ(x),

where |In(x)| = 2−n denotes length of the set In(x).
The sequence f = (fn, n ∈ N) of functions fn ∈ L1(G) is called a dyadic martingale (for details

see [43,54]) if

(i) fn is measurable with respect to σ-algebras 𝟋n for any n ∈ N,

(ii) Enfm = fn for any n ≤ m.

The maximal function of a martingale f is defined by

f∗ = sup
n∈N

|fn|.

In case f ∈ L1(G), the maximal functions are also given by

f∗(x) = sup
n∈N

1

µ(In(x))

∣∣∣∣ ∫
In(x)

f(u) dµ(u)

∣∣∣∣.
For 0 < p <∞, the Hardy martingale space Hp(G) consists of all martingales, for which

∥f∥Hp(G) := ∥f∗∥p <∞.

A bounded measurable function a is said to be a p-atom if there exists a dyadic interval I such
that ∫

I

a dµ = 0, ∥a∥∞ ≤ µ(I)−1/p, supp(a) ⊂ I.

It is easy to show that for a martingale f = (fn, n ∈ N) and for any k ∈ N, there exists a limit

f̂(k) := lim
n→∞

∫
G

fn(x)wk(x) dµ(x)
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and it is called the k-th Walsh–Fourier coefficients of f .
If f0 ∈ L1(G) and f := (Enf0 : n ∈ N) is a regular martingale, then

f̂(k) =

∫
G

f(x)wk(x) dµ(x) = f̂0(k), k ∈ N.

The modulus of continuity in the space Hp(G) is defined by

ωHp(G)

( 1

2n
, f

)
:= ∥f − S2nf∥Hp(G).

It is important to describe how one can understand the difference f−S2nf , where f is a martingale
and S2nf is a function:

Remark 2.1. Let 0 < p ≤ 1. Since

S2nf = fn ∈ L1(G), where f = (fn : n ∈ N) ∈ Hp(G),

and

(S2kfn : k ∈ N) = (S2kS2n , k ∈ N)
= (S20f, . . . , S2n−1f, S2nf, S2nf, . . . ) = (f0, . . . , fn−1, fn, fn, . . . ),

under the difference f − S2nf we mean the following martingale:

f :=
(
(f − S2nf)k, k ∈ N

)
,

where

(f − S2nf)k =

{
0, k = 0, . . . , n,

fk − fn, k ≥ n+ 1.

Consequently, the norm ∥f − S2nf∥Hp(G) is understood as Hp-norm of

f − S2nf =
(
(f − S2nf)k, k ∈ N

)
.

Watari [88] showed that there are strong connections between

ωp

( 1

2n
, f

)
, E2n(Lp, f) and ∥f − S2nf∥p, p ≥ 1, n ∈ N.

In particular,
1

2
ωp

( 1

2n
, f

)
≤ ∥f − S2nf∥p ≤ ωp

( 1

2n
, f

)
and

1

2
∥f − S2nf∥p ≤ E2n(Lp, f) ≤ ∥f − S2nf∥p.

2.2 Auxiliary lemmas
First, we present and prove equalities and estimations of the Dirichlet kernel and Lebesgue constants
with respect to the one-dimensional Walsh–Fourier systems (see Lemmas 2.1–3.5).

The first equality of the following Lemma is proved in [54] and the second identity is proved in [23].

Lemma 2.1. Let j, n ∈ N. Then

Dj+2n = D2n + w2nDj , when j ≤ 2n,

and
D2n−j = D2n − ψ2n−1Dj , when j < 2n.
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The following estimation of the Dirichlet kernel with respect to the one-dimensional Walsh–Fourier
systems is proved in [54].

Lemma 2.2. Let n ∈ N. Then

D2n(x) =

{
2n if x ∈ In,

0 if x ̸∈ In,

and
Dn = wn

∞∑
k=0

nkrkD2k = wn

∞∑
k=0

nk(D2k+1 −D2k) for n =

∞∑
i=0

ni2
i.

The following two-sided estimations of the Lebesgue constants with respect to the one-dimensional
Walsh–Fourier systems is proved in [54] and the second equality is proved in [19].

Lemma 2.3. Let n ∈ N. Then
1

8
V (n) ≤ ∥Dn∥1 ≤ V (n)

and
1

n logn

n∑
k=1

V (k) =
1

4 log 2 + o(1).

The Hardy martingale space Hp(G) for any 0 < p ≤ 1 can be characterized by simple functions
which are called p-atoms. The following lemma is true (for details see [57,90,94]).

Lemma 2.4. A martingale f = (fn, n ∈ N) belongs to Hp(G) (0 < p ≤ 1) if and only if there exist a
sequence of p-atoms of (ak, k ∈ N) and a sequence of real numbers (µk, k ∈ N) such that

∞∑
k=0

µkS2nak = fn for all n ∈ N (2.2)

and
∞∑
k=0

|µk|p <∞.

Moreover,

∥f∥Hp(G) ∽ inf
( ∞∑

k=0

|µk|p
)1/p

,

where the infimum is taken over all decomposition of f of form (2.2).

The next five Examples of martingales will be used frequently to prove the sharpness of our main
results. Such counterexamples appeared first in the paper by Goginava [28] (see also [24, 27]). Such
constructions of martingales are also used in the papers [3–7, 16, 17, 31–33,36–42,45–49,61, 66, 70–80,
82–87]. So, we leave out the details of proof.

Example 2.1. Let 0 < p ≤ 1, {λk : k ∈ N} be a sequence of real numbers
∞∑
k=0

|λk|p ≤ cp <∞ (2.3)

and {ak : k ∈ N} be a sequence of p-atoms given by

ak(x) := 2|αk|(1/p−1)
(
D2|αk|+1(x)−D2|αk|(x)

)
,

where |αk| := max{j ∈ N : (αk)j ̸= 0} and (αk)j denotes j-th binary coefficients of real number of
αk ∈ N+. Then f = (fn : n ∈ N), where

fn(x) :=
∑

{k: |αk|<n}

λkak(x)
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is a martingale, which belongs to Hp(G) for any 0 < p ≤ 1.
It is easy to show that

f̂(j) =


λk 2

(1/p−1)|αk|, j ∈
{
2|αk|, . . . , 2|αk|+1 − 1

}
,

0, j ̸∈
∞⋃
k=1

{
2|αk|, . . . , 2|αk|+1 − 1

}
,

k ∈ N+. (2.4)

Let 2|αl−1|+1 ≤ j ≤ 2|αl|, l ∈ N+. Then

Sjf = S
2|αl−1|+1 =

l−1∑
η=0

λη 2|αη|(1/p−1)(D2|αη|+1 −D2|αη|). (2.5)

Let 2|αl| ≤ j < 2|αl|+1, l ∈ N+. Then

Sjf = S2|αl| + λl 2
(1/p−1)|αl|w2|αl|Dj−2|αl|

=

l−1∑
η=0

λη 2
(1/p−1)|αη|(D2|αη|+1 −D2|αη|) + λl 2

(1/p−1)|αl|w2|αl|Dj−2|αl| . (2.6)

Moreover, for the modulus of continuity for 0 < p ≤ 1, we have the following estimation:

ωHp

( 1

2n
, f

)
= O

( ∞∑
{k: |αk|≥n}

|λk|p
)1/p

as n→ ∞. (2.7)

Applying Lemma 2.4, we easily obtain that the following lemma is true (see [94]).

Lemma 2.5. Let 0 < p ≤ 1 and T be a σ-sub-linear operator such that for any p-atom a,∫
G

|Ta(x)|p dµ(x) ≤ cp <∞.

Then
∥Tf∥p ≤ cp∥f∥Hp(G). (2.8)

In addition, if T is bounded from L∞(G) to L∞(G), then to prove (2.8) it suffices to show that∫
I

|Ta(x)|p dµ(x) ≤ cp <∞

for every p-atom a, where I denotes a support of the atom a.

In concrete cases, the norm of Hardy martingale spaces can be calculated by simpler formulas (for
details see [57,90,91]).

Lemma 2.6. If g ∈ L1(G) and f := (Eng : n ∈ N) is a regular martingale, then for 0 < p ≤ 1,
Hp(G) norm can be calculated by

∥f∥Hp(G) =
∥∥∥ sup

n∈N
|S2ng|

∥∥∥
p
.

The following lemmas are proved in [66,70,71].

Lemma 2.7. Let 0 < p ≤ 1, 2k ≤ n < 2k+1 and Snf be the n-th partial sum with respect to the
one-dimensional Walsh–Fourier series, where f ∈ Hp(G). Then for any fixed n ∈ N,

∥Snf∥pHp(G) ≤
∥∥∥ sup

0≤l≤k
|S2lf |

∥∥∥p
p
+ ∥Snf∥pp ≤ ∥S̃∗

#f∥pp + ∥Snf∥pp.
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Proof. Let us consider the following martingales:

f# := (S2kSnf, k ∈ N+) = (S20 , S2kf, Snf, . . . , Snf, . . . ).

Hence from Lemma 2.6 immediately follows

∥Snf∥pHp(G) ≤
∥∥∥ sup

0≤l≤k
|S2lf |

∥∥∥p
p
+ ∥Snf∥pp ≤ ∥S̃∗

#f∥pp + ∥Snf∥pp.

Lemma is proved.

2.3 Boundedness of subsequences of partial sums with respect
to the one-dimensional Walsh–Fourier series on the martingale
Hardy spaces

In this section, we consider the boundedness of subsequences of partial sums with respect to the
one-dimensional Walsh–Fourier series in the martingale Hardy spaces (for details see [70]).
Theorem 2.1.

(a) Let 0 < p < 1 and f ∈ Hp(G). Then there exists an absolute constant cp, depending only on p,
such that

∥Snf∥Hp(G) ≤ cp 2
d(n)(1/p−1)∥f∥Hp(G).

(b) Let 0 < p < 1, {mk : k ∈ N+} be a non-negative, increasing sequence of natural numbers such
that

sup
k∈N

d(mk) = ∞ (2.9)

and let Φ : N+ → [1,∞) be a non-decreasing function satisfying the condition

lim
k→∞

2d(mk)(1/p−1)

Φ(mk)
= ∞. (2.10)

Then there exists a martingale f ∈ Hp(G) such that

sup
k∈N

∥∥∥ Smk
f

Φ(mk)

∥∥∥
weak-Lp(G)

= ∞.

Proof. Suppose that ∥∥2(1−1/p)d(n)Snf
∥∥
p
≤ cp∥f∥Hp(G). (2.11)

Combining Lemma 2.7 and inequalities (1.7) and (2.11), since 2(1−1/p)d(n) ≤ cp, we obtain∥∥2(1−1/p)d(n)Snf
∥∥p
Hp(G)

≤
∥∥2(1−1/p)d(n)Snf

∥∥p
p
+ 2(1−1/p)d(n)∥S̃∗

#f∥pp ≤ cp∥f∥pHp(G) + cp∥S̃∗
#f∥pp ≤ cp∥f∥pHp(G). (2.12)

Combining Lemma 2.5 and (2.12), it suffices to show that∫
G

∣∣2(1−1/p)d(n)Sna
∣∣p dµ ≤ cp <∞ (2.13)

for every p-atom a, with support I, such that µ(I) = 2−M .
Without loss of generality, we may assume that a p-atom a has support I = IM . Then it is easy

to see that Sna = 0, where 2M ≥ n. So, we may assume that 2M < n. Since ∥a∥∞ ≤ 2M/p, we can
conclude that∣∣2(1−1/p)d(n)Sna(x)

∣∣
≤ 2(1−1/p)d(n)∥a∥∞

∫
IM

|Dn(x+ t)| dµ(t) ≤ 2M/p 2(1−1/p)d(n)

∫
IM

|Dn(x+ t)| dµ(t). (2.14)
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Let x ∈ IM . Since V (n) ≤ 2d(n), using the first estimations of Lemma 2.3, we can conclude that∣∣2(1−1/p)d(n)Sna
∣∣ ≤ 2M/p 2(1−1/p)d(n)V (n) ≤ 2M/pd(n) 2(1−1/p)d(n)

and ∫
IM

∣∣2(1−1/p)d(n)Sna
∣∣p dµ ≤ d(n) 2(1−1/p)d(n) < cp <∞. (2.15)

Let t ∈ IM and x ∈ Is \ Is+1, where 0 ≤ s ≤ M − 1 < ⟨n⟩ or 0 ≤ s < ⟨n⟩ ≤ M − 1. Then x + t
∈ Is \ Is+1 and if we use both equalities of Lemma 2.2, we get Dn(x+ t) = 0 and thus∣∣2(1−1/p)d(n)Sna(x)

∣∣ = 0. (2.16)

Let x ∈ Is \ Is+1, ⟨n⟩ ≤ s ≤ M − 1. Then x + t ∈ Is \ Is+1, where t ∈ IM . Then by using again
both equality of Lemma 2.2 we have that

|Dn(x+ t)| ≤
s∑

j=0

nj 2
j ≤ c 2s.

If we apply again (2.14), we can conclude that

∣∣2(1−1/p)d(n)Sna(x)
∣∣ ≤ 2(1−1/p)d(n) 2M/p 2s

2M

≤ 2⟨n⟩(1/p−1) 2M(1/p−1) 2s

2|n|(1/p−1)
≤ 2⟨n⟩(1/p−1) 2s. (2.17)

By identity (2.1) and inequalities (2.16) and (2.17), we find that∫
IM

∣∣2(1−1/p)d(n)Sna(x)
∣∣p dµ(x) = M−1∑

s=⟨n⟩

∫
Is\Is+1

∣∣2⟨n⟩(1/p−1) 2s
∣∣p dµ(x) ≤ c

M−1∑
s=⟨n⟩

2⟨n⟩(1−p)

2s(1−p)
≤ cp <∞.

Now, we prove part b) of Theorem 2.1. Using condition (2.10), there exists the sequence of natural
numbers {αk : k ∈ N+} ⊂ {mk : k ∈ N+} such that

∞∑
η=0

Φp/2(αη)

2d(αη)(1−p)/2
<∞. (2.18)

Let f = (fn, n ∈ N+) ∈ Hp(G) be a martingale from Example 2.1, where

λk =
Φ1/2(αk)

2d(αk)(1/p−1)/2
. (2.19)

Then if we use (2.18), we find that condition (2.3) is fulfilled, and hence f = (fn, n ∈ N+) ∈ Hp(G).
If we apply (2.4) when λk are given by formula (2.19), then we get

f̂(j) =


Φ1/2(αk) 2

(|αk|+⟨αk⟩)(1/p−1)/2, if j ∈
{
2|αk| , . . . , 2|αk|+1 − 1

}
,

0, if j ̸∈
∞⋃
k=0

{
2|αk| , . . . , 2|αk|+1 − 1

}
,

k ∈ N+. (2.20)

In view of (2.6), when λk are given by (2.19), we get

Sαk
f

Φ(αk)
=

1

Φ(αk)

k−1∑
η=0

Φ1/2(αη) 2
(|αη|+⟨αη⟩)(1/p−1)/2(D2|αη|+1 −D2|αη|)

+
2(|αk|+⟨αk⟩)(1/p−1)/2w2|αk|Dαk−2|αk|

Φ1/2(αk)
:= I + II. (2.21)
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Using (2.18), for I we have

∥I∥pweak-Lp(G) ≤
1

Φp(αk)

k−1∑
η=0

Φp/2(αη)

2d(αη)(1−p)/2

∥∥2|αη|(1/p−1)(D2|αη|+1 −D2|αη|)
∥∥p

weak-Lp(G)

≤ 1

Φp(αk)

∞∑
η=0

Φp/2(αη)

2d(αη)(1−p)/2
≤ c <∞. (2.22)

Let x ∈ I⟨αk⟩ \ I⟨αk⟩+1. Since |αk| ̸= ⟨αk⟩ and ⟨αk − 2|αk|⟩ = ⟨αk⟩, using both inequalities of
Lemma 2.2, we get

|Dαk−2|αk|(x)| =
∣∣∣(D2⟨αk⟩+1(x)−D2⟨αk⟩(x)

)
+

|αk|−1∑
j=⟨αk⟩+1

(αk)j(D2i+1(x)−D2i(x))
∣∣∣ = | −D2⟨αk⟩(x)| = 2⟨αk⟩ (2.23)

and
|II| = 2(|αk|+⟨αk⟩)(1/p−1)/2

Φ1/2(αk)
|Dαk−2|αk|(x)| =

2|αk|(1/p−1)/2 2⟨αk⟩(1/p+1)/2

Φ1/2(αk)
. (2.24)

Combining (2.22) and (2.24), we obtain∥∥∥ Sαk
f

Φ(αk)

∥∥∥p
weak-Lp(G)

≥ ∥II∥pweak-Lp(G) − ∥I∥pweak-Lp(G)

≥ 2(|αk|)(1/p−1)/2 2⟨αk⟩(1/p+1)/2

Φ1/2(αk)
µ

{
x ∈ G : |II| ≥ 2(|αk|)(1/p−1)/2 2⟨αk⟩(1/p+1)/2

Φ1/2(αk)

}1/p

≥ 2(|αk|)(1/p−1)/2 2⟨αk⟩(1/p+1)/2

Φ1/2(αk)

(
µ{I⟨αk⟩ \ I⟨αk⟩+1}

)1/p ≥ c
2d(αk)(1/p−1)/2

Φ1/2(αk)
→ ∞ as k → ∞.

The proof of Theorem 2.1 is complete.

Corollary 2.1.
(a) Let n ∈ N+, 0 < p < 1 and f ∈ Hp(G). Then there exists an absolute constant cp, depending

only on p, such that

∥Snf∥Hp(G) ≤ cp
(
nµ{supp(Dn)}

)1/p−1∥f∥Hp(G).

(b) Let 0 < p < 1, {mk : k ∈ N+} be an increasing sequence of natural numbers such that

sup
k∈N

mkµ{supp(Dmk
)} = ∞ (2.25)

and let Φ : N+ → [1,∞) be a non-decreasing function satisfying the condition

lim
k→∞

(mkµ{supp(Dmk
)})1/p−1

Φ(mk)
= ∞. (2.26)

Then there exists a martingale f ∈ Hp(G) such that

sup
k∈N

∥∥∥ Smk
f

Φ(mk)

∥∥∥
weak-Lp(G)

= ∞.

Proof. Applying both inequalities of Lemma 2.2, we get

I⟨n⟩ \ I⟨n⟩+1 ⊂ supp{Dn} ⊂ I⟨n⟩ and 2−⟨n⟩−1 ≤ µ{supp(Dn)} ≤ 2−⟨n⟩.

Hence
2d(n)(1/p−1)

4
≤

(
nµ{supp(Dn)}

)1/p−1 ≤ 2d(n)(1/p−1).

Corollary 2.1 is proved.
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Theorem 2.2.

(a) Let n ∈ N+ and f ∈ H1(G). Then there exists an absolute constant c such that

∥Snf∥H1(G) ≤ c V (n)∥f∥H1(G).

(b) Let {mk : k ∈ N+} be a non-negative increasing sequence of natural numbers such that

sup
k∈N

V (mk) = ∞ (2.27)

and let Φ : N+ → [1,∞) be a non-decreasing function satisfying the condition

lim
k→∞

V (mk)

Φ(mk)
= ∞. (2.28)

Then there exists a martingale f ∈ H1(G) such that

sup
k∈N

∥∥∥ Smk
f

Φ(mk)

∥∥∥
1
= ∞.

Proof. Since ∥∥∥ Snf

V (n)

∥∥∥
1
≤ ∥f∥1 ≤ ∥f∥H1(G), (2.29)

combining Lemmas 2.7 and (2.29), we can conclude that∥∥∥ Snf

V (n)

∥∥∥
H1(G)

≤
∥∥∥ Snf

V (n)

∥∥∥
1
+

1

V (n)
∥S̃∗

#f∥1 ≤ c ∥f∥H1(G) + c ∥S̃∗
#f∥1 ≤ c ∥f∥H1(G). (2.30)

Now, we prove the second part of Theorem 2.2. Let {mk : k ∈ N+} be an increasing sequence of
natural numbers and the function Φ : N+ → [1,∞) satisfy conditions (2.27) and (2.28). Then there
exists a non-negative, increasing sequence {αk : k ∈ N+} ⊂ {mk : k ∈ N+} such that

∞∑
k=1

Φ1/2(αk)

V 1/2(αk)
≤ β <∞. (2.31)

Let f = (fn, n ∈ N+) be a martingale from Example 2.1, where

λk =
Φ1/2(αk)

V 1/2(αk)
. (2.32)

Applying condition (2.31), we can conclude that condition (2.3) is fulfilled and it follows that
f = (fn, n ∈ N+) ∈ H1(G).

In view of (2.4), when λk are given by (2.32), we get

f̂(j) =


Φ1/2(αk)

V 1/2(αk)
, if j ∈

{
2|αk| , . . . , 2|αk|+1 − 1

}
,

0, if j ̸∈
∞⋃
k=0

{
2|αk| , . . . , 2|αk|+1 − 1

}
,

k = 0, 1, . . . . (2.33)

Analogously to (2.21), if we apply (2.6), when λk are given by (2.32) we get

Sαk
f =

k−1∑
η=0

Φ1/2(αη)

V 1/2(αη)
(D2|αη|+1 −D2|αη|) +

Φ1/2(αk)

V 1/2(αk)
w2|αk|Dαk−2|αk| .
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Applying first the estimation of Lemma 2.3 and (2.31), we can conclude that

∥∥∥ Sαk
f

Φ(αk)

∥∥∥
1
≥ Φ1/2(αk)

Φ(αk)V 1/2(αk)
∥Dαk−2|αk|∥1 −

1

Φ(αk)

k−1∑
η=0

Φ1/2(αη)

V 1/2(αη)
∥D2|αη|+1 −D2|αη|∥1

≥ V (αk − 2|αk|)Φ1/2(αk)

8Φ(αk)V 1/2(αk)
− 1

Φ(αk)

∞∑
η=0

Φ1/2(αη)

V 1/2(αη)
≥ c V 1/2(αk)

Φ1/2(αk)
→ ∞ as k → ∞.

Thus Theorem 2.2 is proved.

Corollary 2.2. Let n ∈ N, 0 < p ≤ 1 and f ∈ Hp(G). Then there exists an absolute constant cp,
depending only on p, such that

∥S2nf∥Hp(G) ≤ cp∥f∥Hp(G). (2.34)

Proof. To prove Theorem 2.2, we have only to show that

|2n| = n, ⟨2n⟩ = n− 1 and d(2n) = 0.

Applying the first part of Theorem 2.1, we immediately obtain (2.34) for any 0 < p ≤ 1 and thus
Corollary 2.2 is proved.

Corollary 2.3. Let n ∈ N, 0 < p ≤ 1 and f ∈ Hp(G). Then there exists an absolute constant cp,
depending only on p, such that

∥S2n+2n−1f∥Hp(G) ≤ cp∥f∥Hp(G). (2.35)

Proof. Since
|2n + 2n−1| = n, ⟨2n + 2n−1⟩ = n− 1 and d(2n + 2n−1) = 1,

by the first part of Theorem 2.1 we get that (2.35) holds for any 0 < p ≤ 1 and the proof of Corollary 2.3
is complete.

Corollary 2.4. Let n ∈ N and 0 < p < 1. Then there exists a martingale f ∈ Hp(G) such that

sup
n∈N

∥S2n+1f∥weak-Lp(G) = ∞. (2.36)

On the other hand, there exists an absolute constant c, such that

∥S2n+1f∥H1(G) ≤ c ∥f∥H1(G). (2.37)

Proof. Since
|2n + 1| = n, ⟨2n + 1⟩ = 0 and d(2n + 1) = n, (2.38)

applying the second part of Theorem 2.1, we get that there exists a martingale f = (fn, n ∈ N+) ∈
Hp(G) for 0 < p < 1 such that (2.36) holds.

On the other hand, the proof of (2.37) leads to a simple observation that

V (2n + 1) = 4 <∞.

Thus Corollary 2.4 is proved.
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2.4 Modulus of continuity and convergence in norm of subsequences
of partial sums with respect to the one-dimensional
Walsh–Fourier series on the martingale Hardy spaces

In this section, we apply Theorems 2.1 and 2.2 to find the necessary and sufficient conditions for the
modulus of continuity, for which subsequences of partial sums with respect to the one-dimensional
Walsh–Fourier series are bounded in the martingale Hardy spaces.

First, we prove the following estimation.

Theorem 2.3. Let n ∈ N+ and 2k < n ≤ 2k+1. Then there exists an absolute constant cp, depending
only on p, such that

∥Snf − f∥Hp(G) ≤ cp 2
d(n)(1/p−1)ωHp(G)

( 1

2k
, f

)
(f ∈ Hp(G)) (0 < p < 1) (2.39)

and
∥Snf − f∥H1(G) ≤ c1V (n)ωH1(G)

( 1

2k
, f

)
(f ∈ H1(G)). (2.40)

Proof. Let 0 < p < 1 and 2k < n ≤ 2k+1. Applying the first part of Theorem 2.1, we get

∥Snf − f∥pHp(G) ≤ cp∥Snf − S2kf∥
p
Hp(G) + cp∥S2kf − f∥pHp(G)

= cp
∥∥Sn(S2kf − f)

∥∥p
Hp(G)

+ cp∥S2kf − f∥pHp(G)

≤ cp
(
1 + 2d(n)(1−p)

)
ωp
Hp(G)

( 1

2k
, f

)
≤ cp 2

d(n)(1−p)ωp
Hp(G)

( 1

2k
, f

)
. (2.41)

The proof of (2.40) is analogous to that of (2.39). So, we leave out the details. Theorem 2.3 is
proved.

Theorem 2.4.

(a) Let k ∈ N+, 0 < p < 1, f ∈ Hp(G) and {mk : k ∈ N+} be an increasing sequence of natural
numbers such that

ωHp(G)

( 1

2|mk|
, f

)
= o

( 1

2d(mk)(1/p−1)

)
as k → ∞. (2.42)

Then
∥Smk

f − f∥Hp(G) → 0 as k → ∞. (2.43)

(b) Let {mk : k ∈ N+} be an increasing sequence of natural numberssuch that condition (2.9) is
fulfilled. Then there exist a martingale f ∈ Hp(G) and an increasing sequence of natural numbers
{αk : k ∈ N+} ⊂ {mk : k ∈ N+} such that

ωHp(G)

( 1

2|αk|
, f

)
= O

( 1

2d(αk)(1/p−1)

)
as k → ∞

and
lim sup
k→∞

∥Sαk
f − f∥weak-Lp(G) > cp > 0 as k → ∞, (2.44)

where cp is an absolute constant, depending only on p.

Proof. Let 0 < p < 1, f ∈ Hp(G) and {mk : k ∈ N+} be an increasing sequence of natural numbers
such that condition (2.42) is fulfilled. Combining Theorem 2.3 and estimation (2.39), we get that
(2.43) holds true.

Now, we prove the second part of Theorem 2.4. In view of (2.9), we simply get that there exists a
sequence {αk : k ∈ N+} ⊂ {mk : k ∈ N+} such that

2d(αk) ↑ ∞ as k → ∞, 22(1/p−1)d(αk) ≤ 2(1/p−1)d(αk+1). (2.45)
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Let f = (fn, n ∈ N) be a martingale from Example 2.1 such that

λi = 2−(1/p−1)d(αi). (2.46)

Applying (2.45), we obtain that condition (2.3) is fulfilled, and hence f ∈ Hp(G).
Applying (2.4), when λk are given by (2.46), we have

f̂(j) =


2(1/p−1)⟨αk⟩, if j ∈ {2|αk| , . . . , 2|αk|+1 − 1},

0, if j ̸∈
∞⋃
k=0

{2|αk| , . . . , 2|αk|+1 − 1}, k ∈ N+ (2.47)

Combining (2.45) and (2.7), we have

ωHp(G)

( 1

2|αk|
, f

)
≤

∞∑
i=k

1

2(1/p−1)d(αi)
= O

( 1

2(1/p−1)d(αk)

)
as k → ∞. (2.48)

Using (2.23), we get
|Dαk−2⟨αk⟩ | ≥ 2⟨αk⟩, where I⟨αk⟩ \ I⟨αk⟩+1.

In view of (2.6), we can conclude that

Sαk
f = S2|αk|f + 2(1/p−1)⟨αk⟩w2|αk|Dαk−2|αk| .

Since

∥Dαk
∥weak-Lp(G) ≥ 2⟨αk⟩µ

{
x ∈ I⟨αk⟩ \ I⟨αk⟩+1 : |Dαk

| ≥ 2⟨αk⟩
}1/p

≥ 2⟨αk⟩
(
µ
{
I⟨αk⟩ \ I⟨αk⟩+1

})1/p ≥ 2⟨αk⟩(1−1/p),

if we apply (1.2) (see also Theorem T2), we obtain

∥f − Sαk
f∥pweak-Lp(G) ≥ 2(1−p)⟨αk⟩

∥∥w2|αk|Dαk−2|αk|

∥∥p
weak-Lp(G)

−
∥∥f − S2|αk|f

∥∥p
weak-Lp(G)

≥ c− o(1) > c > 0 as k → ∞.

The proof of Theorem 2.4 is complete.

Corollary 2.5.

(a) Let 0 < p < 1, f ∈ Hp(G) and {mk : k ∈ N+} be an increasing sequence of natural numbers
such that

ωHp(G)

( 1

2|mk|
, f

)
= o

( 1

(mkµ(suppDmk
))1/p−1

)
as k → ∞. (2.49)

Then (2.43) holds.

(b) Let {mk : k ∈ N+} be an increasing sequence of natural numbers such that

sup
k∈N+

mkµ
{

supp(Dmk
)
}
= ∞. (2.50)

Then there exist a martingale f ∈ Hp(G) and a sequence {αk : k ∈ N+} ⊂ {mk : k ∈ N+} such
that

ωHp(G)

( 1

2|αk|
, f

)
= O

( 1

(αkµ(suppDαk
))1/p−1

)
as k → ∞

and (2.44) holds.
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Theorem 2.5.

(a) Let f ∈ H1(G) and {mk : k ∈ N+} be an increasing sequence of natural numbers such that

ωH1(G)

( 1

2|mk|
, f

)
= o

( 1

V (mk)

)
as k → ∞. (2.51)

Then
∥Smk

f − f∥H1(G) → 0 as k → ∞. (2.52)

(b) Let {mk : k ∈ N+} be an increasing sequence of natural numbers such that condition (2.27)
is fulfilled. Then there exist a martingale f ∈ H1(G) and an increasing sequence of natural
numbers {αk : k ∈ N+} ⊂ {mk : k ∈ N+} such that

ωH1(G)

( 1

2|αk|
, f

)
= O

( 1

V (αk)

)
as k → ∞

and
lim sup
k→∞

∥Sαk
f − f∥1 > c > 0 as k → ∞, (2.53)

where c is an absolute constant.

Proof. Let f ∈ H1(G) and {mk : k ∈ N+} be an increasing sequence of natural numbers such that
(2.51). Applying Theorem 2.3, we get that condition (2.52) is fulfilled.

Now, we prove the second part of Theorem 2.5. Due to (2.27), we conclude that there exists a
sequence {αk : k ∈ N+} ⊂ {mk : k ∈ N+} such that

V (αk) ↑ ∞ as k → ∞ and V 2(αk) ≤ V (αk+1), k ∈ N+. (2.54)

Let f = (fn, n ∈ N+) be a martingale from Example 2.1, where

λk =
1

V (αk)
.

Applying (2.54), we conclude that (2.3) is fulfilled and thus f = (fn, n ∈ N+) ∈ H1(G).
In view of (2.4), we have

f̂(j) =


1

V (αk)
, if j ∈

{
2|αk| , . . . , 2|αk|+1 − 1

}
,

0, if j ̸∈
∞⋃
k=0

{
2|αk| , . . . , 2|αk|+1 − 1

}
,

k = 0, 1, . . . . (2.55)

According to (2.7), we get

wH1(G)

( 1

2n
, f

)
= ∥f − S2nf∥H1(G) ≤

∞∑
i=n+1

1

V (αi)
= O

( 1

V (αn)

)
as n→ ∞.

Applying (2.6), we can conclude that

Sαk
f = S2|αk|f +

w2|αk|Dαk−2|αk|

V (αk)
,

If we use (1.2) and Theorem T2, we get

∥f − Sαk
f∥1 ≥

∥∥∥w2|αk|Dαk−2|αk|

V (αk)

∥∥∥
1
− ∥f − S2|αk|f∥1 ≥ V (αk − 2|αk|)

8V (αk)
− o(1) > c > 0 as k → ∞.

The proof of Theorem 2.5 is complete.
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Theorem 3.4 implies the following corollaries from [68].

Corollary 2.6.

(a) Let 0 < p < 1, f ∈ Hp(G) and

ωHp(G)

( 1

2k
, f

)
= o

( 1

2k(1/p−1)

)
as k → ∞.

Then
∥Skf − f∥Hp(G) → 0 as k → ∞.

(b) There exists a martingale f ∈ Hp(G) (0 < p < 1) such that

ωHp(G)

( 1

2k
, f

)
= O

( 1

2k(1/p−1)

)
as k → ∞

and
∥Skf − f∥weak-Lp(G) ↛ 0 as k → ∞.

Corollary 2.7.

(a) Let f ∈ H1(G) and
ωH1(G)

( 1

2k
, f

)
= o

(1
k

)
as k → ∞.

Then
∥Skf − f∥H1(G) → 0 as k → ∞.

(b) There exists a martingale f ∈ H1(G) such that

ωH1(G)

( 1

2k
, f

)
= O

(1
k

)
as k → ∞

and
∥Skf − f∥1 ↛ 0 as k → ∞.

3 Fejér means with respect to the one-dimensional
Walsh–Fourier series on the martingale Hardy spaces

3.1 Basic notations
For the one-dimensional case, the Fejér means with respect to the one-dimensional Walsh–Fourier
series σn are defined by

σnf(x) :=
1

n

n∑
k=1

Skf(x) (n ∈ N+).

The following equality is true (for details see [2] and [54]):

σnf(x) =
1

n

n−1∑
k=0

(Dk ∗ f)(x) = (f ∗Kn)(x) =

∫
G

f(t)Kn(x− t) dµ(t),

where

Kn(x) :=
1

n

n∑
k=1

Dk(x) (n ∈ N+).

In the literature Kn is called an n-th Fejér kernel.
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We also define the following maximal operators:

σ∗f = sup
n∈N

|σnf |,

σ̃∗
#f = sup

n∈N
|σ2nf |.

For any natural number n ∈ N, we need the following expression:

n =

s∑
i=1

2ni , n1 < n2 < · · · < ns.

Set
n(i) := 2n1 + · · ·+ 2ni−1 , i = 2, . . . , s,

and

A0,2 :=
{
n ∈ N : n = 20 + 22 +

sn∑
i=3

2ni

}
.

Then for any natural number n ∈ N, there exist the numbers

0 ≤ l1 ≤ m1 ≤ l2 − 2 < l2 ≤ m2 ≤ · · · ≤ ls − 2 < ls ≤ ms

such that it can be written as

n =

s∑
i=1

mi∑
k=li

2k,

where s is depending on n.
It is evident that

s ≤ V (n) ≤ 2s+ 1.

3.2 Auxiliary lemmas
The following equality and estimation of Fejér kernels with respect to the one-dimensional Walsh–
Fourier series are proved in [54].

Lemma 3.1. Let n ∈ N and n =
s∑

i=1

2ni , n1 < n2 < · · · < ns. Then

nKn =

s∑
r=1

( s∏
j=r+1

w2nj

)
2nrK2nr +

s∑
t=2

( s∑
j=t+1

w2nj

)
n(t)D2nt

and
sup
n∈N

∫
G

|Kn(x)| dµ(x) ≤ c <∞,

where c is an absolute constant.

The following equality is proved in [54] (see also [21]).

Lemma 3.2. Let n > t and t, n ∈ N. Then for the 2n-th Fejér kernels with respect to the one-
dimensional Walsh–Fourier series, we have the following expression:

K2n(x) =


2t−1, if x ∈ In(et),
2n + 1

2
, if x ∈ In,

0 otherwise.

The following estimation has been proved by Goginava [26].
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Lemma 3.3. Let x ∈ Il+1(ek + el), k = 0, . . . ,M − 2, l = 0, . . . ,M − 1. Then∫
IM

|Kn(x+ t)| dµ(t) ≤ c 2l+k

n 2M
, where n > 2M .

Let x ∈ IM (ek),m = 0, . . . ,M − 1. Then∫
IM

|Kn(x+ t)| dµ(t) ≤ c 2k

2M
for n > 2M ,

where c is an absolute constant.

The following estimations of Fejér kernels with respect to the one-dimensional Walsh–Fourier series
are proved in [71]:

Lemma 3.4. Let

n =

r∑
i=1

mi∑
k=li

2k,

where
m1 ≥ l1 > l1 − 2 ≥ m2 ≥ l2 > l2 − 2 > · · · > ms ≥ ls ≥ 0.

Then

|nKn| ≤ c

r∑
A=1

(
2lA |K2lA |+ 2mA |K2mA |+ 2lA

mA∑
k=lA

D2k

)
+ c V (n),

where c is an absolute constant.

Proof. Let

n =

r∑
i=1

2ni , n1 > n2 > · · · > nr ≥ 0.

Using Lemma 3.1 for the n-th Fejér kernels, we can conclude that

nKn =

r∑
A=1

(A−1∏
j=1

w2nj

)(
2nAK2nA + (2nA − 1)D2nA

)
−

r∑
A=1

(A−1∑
j=1

w2nj

)
(2nA − 1− n(A))D2nA = I1 − I2.

For I1, we have the following equality:

I1 =

r∑
v=1

( v−1∏
j=1

mj∏
i=lj

w2i

)( mv∑
k=lv

( mv∏
j=k+1

w2j

)
(2kK2k − (2k − 1)D2k)

)

=

r∑
v=1

( v−1∏
j=1

mj∏
i=lj

w2i

)( mv∑
k=0

−
lv−1∑
k=0

)( mv∏
j=k+1

w2j

)(
2kK2k − (2k − 1)D2k

)
=

r∑
v=1

( v−1∏
j=1

mj∏
i=lj

w2i

)( mv∑
k=0

( mv∏
j=k+1

w2j

)(
2kK2k − (2k − 1)D2k

))

−
r∑

v=1

( v∏
j=1

mj∏
i=lj

w2i

)( lv−1∑
k=0

( lv−1∏
j=k+1

w2j

)(
2kK2k − (2k − 1)D2k

))
.
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Since

2n − 1 =

n−1∑
k=0

2k

and

(2n − 1)K2n−1 =

n−1∑
k=0

( n−1∏
j=k+1

w2j

)(
2kK2k − (2k − 1)D2k

)
,

we obtain

I1 =

r∑
v=1

( v−1∏
j=1

mj∏
i=lj

w2i

)
(2mv+1 − 1)K2mv+1−1 −

r∑
v=1

( v∏
j=1

mj∏
i=lj

w2i

)
(2lv − 1)K2lv−1.

If we apply estimations
|K2n | ≤ c |K2n−1 |

and
|K2n−1| ≤ c |K2n |+ c,

we get

|I1| ≤ c

r∑
v=1

(
2lv |K2lv |+ 2mv |K2mv |+ cr

)
. (3.1)

Let lj < nA ≤ mj , where j = 1, . . . , s. Then

n(A) ≥
nA−1∑
v=lj

2v ≥ 2nA − 2lj

and
2nA − 1− n(A) ≤ 2lj .

If lj = nA, where j = 1, . . . , s, then

n(A) ≤ 2mj−1+1 < 2lj .

Using these estimations, we can conclude that

|I2| ≤ c

r∑
v=1

2lv
mv∑
k=lv

D2k . (3.2)

Combining (3.1), (3.2), we obtain the proof of Lemma 3.4.

The following estimations of Fejér kernels with respect to the one-dimensional Walsh–Fourier series
are proved in [71].

Lemma 3.5. Let

n =

s∑
i=1

mi∑
k=li

2k,

where
0 ≤ l1 ≤ m1 ≤ l2 − 2 < l2 ≤ m2 ≤ · · · ≤ ls − 2 < ls ≤ ms.

Then
n|Kn(x)| ≥

22li

16
for x ∈ Ili+1(eli−1 + eli).
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Proof. If we apply Lemma 3.1 for n =
s∑

i=1

mi∑
k=li

2k, we can write

nKn =

s∑
r=1

mr∑
k=lr

( s∏
j=r+1

mj∏
q=lj

w2q

mr∏
j=k+1

w2j

)
2kK2k

+

s∑
r=1

mr∑
k=lr

( s∏
j=r+1

mj∏
q=lj

w2q

mr∏
j=k+1

w2j

)( r−1∑
t=1

mt∑
q=lt

2q +

k−1∑
q=lr

2q
)
D2k .

Let x ∈ Ili+1(eli−1 + eli). Then

n|Kn| ≥ |2liK2li | −
i−1∑
r=1

mr∑
k=lr

|2kK2k | −
i−1∑
r=1

mr∑
k=lr

|2kD2k | = I − II − III.

From Lemma 3.2 it follows that

I = |2liK2li (x)| =
22li

4
. (3.3)

Since mi−1 ≤ li − 2, we easily obtain that the estimation

II ≤
li−2∑
n=0

|2nK2n(x)| ≤
li−2∑
n=0

2n
(2n + 1)

2
≤ 22li

24
+

2li

4
− 2

3
(3.4)

is true.
For III, we get

III ≤
li−2∑
k=0

|2kD2k(x)| ≤
li−2∑
k=0

4k =
22li

12
− 1

3
. (3.5)

Combining (3.3)–(3.5), we can conclude that

n|Kn(x)| ≥ I − II − III ≥ 22li

8
− 2li

4
+ 1. (3.6)

Suppose that li ≥ 2. Then

n|Kn(x)| ≥
22li

8
− 22li

16
≥ 22li

16
.

If li = 0 or li = 1, then applying (3.6), we get

n|Kn(x)| ≥
7

8
≥ 22li

16
.

Lemma is proved.

The following estimations of Fejér kernels with respect to the one-dimensional Walsh–Fourier series
are proved in [71] (see also [82]).
Lemma 3.6. Let 0 < p ≤ 1, 2k ≤ n < 2k+1 and σnf be Fejér means with respect to the one-
dimensional Walsh–Fourier series, where f ∈ Hp(G). Then for any fixed n ∈ N,

∥σnf∥Hp(G) ≤
∥∥∥ sup

0≤l≤k
|σ2lf |

∥∥∥
p
+
∥∥∥ sup

0≤l≤k
|S2lf |

∥∥∥
p
+ ∥σnf∥p ≤ ∥σ̃∗

#f∥p + ∥S̃∗
#f∥p + ∥σnf∥p.

Proof. Let us consider the martingale
f# = (S2kσnf, k ∈ N)

=
(20σ20

n
+

(n− 20)S20f

n
, . . . ,

2kσ2kf

n
+

(n− 2k)S2kf

n
, σnf, . . . , σnf, . . .

)
.

Using Lemma 2.6, we immediately get

∥σnf∥pHp(G2) ≤
∥∥∥ sup

0≤l≤k
|σ2lf |

∥∥∥p
p
+
∥∥∥ sup

0≤l≤k
|S2lf |∥pp +

∥∥∥Snf∥pp ≤ ∥σ̃∗
#f∥pp + ∥S̃∗

#f∥pp + ∥σnf∥pp.

Thus the lemma is proved.
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3.3 Boundedness of subsequences of Fejér means with respect
to the one-dimensional Walsh–Fourier series
on the martingale Hardy spaces

In this subsection, we study the boundedness of subsequences of Fejér means with respect to the
one-dimensional Walsh–Fourier series in the martingale Hardy spaces (for details see [71]).

First, we consider the case p = 1/2. The following estimation is true.

Theorem 3.1.

(a) Let f ∈ H1/2(G). Then there exists an absolute constant c such that

∥σnf∥H1/2(G) ≤ c V 2(n)∥f∥H1/2(G).

(b) Let {nk : k ∈ N+} be an increasing sequence of natural numbers such that supk∈N+
V (nk) = ∞

and let Φ : N+ → [1,∞) be a non-decreasing function satisfying the conditions Φ(n) ↑ ∞ and

lim
k→∞

V 2(nk)

Φ(nk)
= ∞. (3.7)

Then there exists a martingale f ∈ H1/2(G) such that

sup
k∈N

∥∥∥ σnk
f

Φ(nk)

∥∥∥
1/2

= ∞.

Proof. Suppose that ∥∥∥ σnf

V 2(n)

∥∥∥
1/2

≤ c ∥f∥H1/2(G). (3.8)

Combining estimations (1.7), (1.15) and Lemma 3.6, we can conclude that

∥∥∥ σnf

V 2(n)

∥∥∥1/2
H1/2(G)

≤
∥∥∥ σnf

V 2(n)

∥∥∥1/2
1/2

+
1

V 2(n)
∥σ∗

#f∥
1/2
1/2 +

1

V 2(n)
∥S̃∗

#∥1/21/2

≤
∥∥∥ σ̃nf

V 2(n)

∥∥∥1/2
1/2

+ ∥σ̃∗
#f∥

1/2
1/2 + ∥S̃∗

#f∥
1/2
1/2 ≤ c ∥f∥1/2H1/2(G). (3.9)

Combining Lemma 2.5 and (3.9), Theorem 3.1 will be proved if we show that∫
IM

( |σna|
V 2(n)

)1/2

dµ ≤ c <∞

for any 1/2-atom a.
Without loss of generality, we may assume that a is 1/2-atom, with support I, for which µ(I) =

2−M , I = IM . It is easy to check that σn(a) = 0, when n ≤ 2M . Therefore, we may assume that
n > 2M . Set

II1αA
(x) := 2M

∫
IM

2αA |K2αA (x+ t)| dµ(t),

II2lA(x) = 2M
∫
IM

2lA
mA∑
k=lA

D2k(x+ t) dµ(t).

Let x ∈ IM . Since σn is bounded from L∞(G) to L∞(G), for n > 2M and ∥a∥∞ ≤ 22M , using
Lemma 3.3, we can conclude that
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|σna(x)|
V 2(n)

≤ c

V 2(n)

∫
IM

|a(x)| |Kn(x+ t)| dµ(t)

≤ c ∥a∥∞
V 2(n)

∫
IM

|Kn(x+ t)| dµ(t) ≤ c 22M

V 2(n)

∫
IM

|Kn(x+ t)| dµ(t)

≤ c 2M

V 2(n)

{ s∑
A=1

∫
IM

2lA |K2lA (x+ t)| dµ(t) +
∫
IM

2mA |K2mA (x+ t)| dµ(t)
}

+
c 2M

V 2(n)

s∑
A=1

∫
IM

2lA
mA∑
k=lA

D2k(x+ t) dµ(t) +
c 2M

V 2(n)

∫
IM

V (n) dµ(t)

=
c

V 2(n)

s∑
A=1

(
II1lA (x) + II1mA (x) + II2lA(x)

)
+ c.

Hence∫
IM

∣∣∣ σna()
V 2(n)

∣∣∣1/2 dµ(x)
≤ c

V (n)

( s∑
A=1

∫
IM

|II1lA(x)|
1/2 dµ(x) +

∫
IM

|II1mA
(x)|1/2 dµ(x) +

∫
IM

|II2lA(x)|
1/2 dµ(x)

)
+ c.

Since s ≤ 4V (n), we obtain that Theorem 3.1 will be proved if we show that∫
IM

|II1αA
(x)|1/2 dµ(x) ≤ c <∞,

∫
IM

|II2lA(x)|
1/2 dµ(x) ≤ c <∞, (3.10)

where αA = lA or αA = mA, A = 1, . . . , s.
Let t ∈ IM and x ∈ Il+1(ek + el), 0 ≤ k < l < αA ≤ M or 0 ≤ k < l ≤ M ≤ αA. Since

x+ t ∈ Il+1(ek + el), applying Lemma 3.2, we can conclude that

K2αA (x+ t) = 0 and II1αA
(x) = 0. (3.11)

Let x ∈ Il+1(ek + el), 0 ≤ k < αA ≤ l ≤ M . Then x + t ∈ Il+1(ek + el), where t ∈ IM , and if we
apply again Lemma 3.2, we get

2αA |K2αA (x+ t)| ≤ 2αA+k and II1αA
(x) ≤ 2αA+k. (3.12)

Analogously to (3.12), for 0 ≤ αA ≤ k < l ≤M , we can prove that

2αA |K2αA (x+ t)| ≤ 22αA , II1αA
(x) ≤ 22αA , t ∈ IM , x ∈ Il+1(ek + el). (3.13)

Let 0 ≤ αA ≤M − 1, where A = 1, . . . , s. According to (2.1) and (3.11)–(3.13), we find that∫
IM

|II1αA
(x)|1/2 dµ(x)

=

M−2∑
k=0

M−1∑
l=k+1

∫
Il+1(ek+el)

|II1αA
(x)|1/2 dµ(x) +

M−1∑
k=0

∫
IM (ek)

|II1αA
(x)|1/2 dµ(x)

≤ c

αA−1∑
k=0

M−1∑
l=αA+1

∫
Il+1(ek+el)

2(αA+k)/2 dµ(x) + c

M−2∑
k=αA

M−1∑
l=k+1

∫
Il+1(ek+el)

2αA dµ(x)
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+ c

αA−1∑
k=0

∫
IM (ek)

2(αA+k)/2 dµ(x) + c

M−1∑
k=αA

∫
IM (ek)

2αA dµ(x)

≤ c

αA−1∑
k=0

M−1∑
l=αA+1

2(αA+k)/2

2l
+ c

M−2∑
k=αA

M−1∑
l=k+1

2αA

2l
+ c

αA−1∑
k=0

2(αA+k)/2

2M
+ c

M−1∑
k=αA

2αA

2M
≤ c <∞.

Let αA ≥M . Analogously to II1αA
(x), we can prove (3.10) for A = 1, . . . , s.

Now, we prove the boundedness of II2lA . Let t ∈ IM and x ∈ Ii \ Ii+1, i ≤ lA − 1. Since
x+ t ∈ Ii \ Ii+1, if we apply the first equality of Lemma 2.2, we get

II2lA(x) = 0. (3.14)

Let x ∈ Ii \ Ii+1, lA ≤ i ≤ mA. Since n ≥ 2M and t ∈ IM , if we apply the first equality of
Lemma 2.2, we get

II2lA(x) ≤ 2M
∫
IM

2lA
i∑

k=lA

D2k(x+ t) dµ(t) ≤ c 2lA+i. (3.15)

Let x ∈ Ii \ Ii+1, mA < i ≤M − 1. Then x+ t ∈ Ii \ Ii+1 for any t ∈ IM , and by the first equality
of Lemma 2.2, we have

II2lA(x) ≤ c 2M
∫
IM

2lA+mA ≤ c 2lA+mA . (3.16)

Let 0 ≤ lA ≤ mA ≤M . Then, in view of (2.1) and (3.14)–(3.16)) we can conclude that

∫
IM

|II2lA(x)|
1/2 dµ(x) =

( lA−1∑
i=0

+

mA∑
i=lA

+

M−1∑
i=mA+1

) ∫
Ii\Ii+1

|II2lA(x)|
1/2 dµ(x)

≤ c

mA∑
i=lA

∫
Ii\Ii+1

2(lA+i)/2 dµ(x) + c

M−1∑
i=mA+1

∫
Ii\Ii+1

2(lA+mA)/2 dµ(x)

≤ c

mA∑
i=lA

2(lA+i)/2 1

2i
+ c

M−1∑
i=mA+1

2(lA+mA)/2 1

2i
≤ c <∞.

Analogously, we can prove same estimations for the cases 0 ≤ lA ≤M < mA and M ≤ lA ≤ mA.
Now, we prove part (b) of Theorem 3.1. According to (3.7), there exists an increasing sequence

{αk : k ∈ N+} ⊂ {nk : k ∈ N+} of natural numbers such that
∞∑
k=1

Φ1/4(αk)

V 1/2(αk)
≤ c <∞. (3.17)

Let f = (fn, n ∈ N+) be a martingale from Example 2.1, where

λk :=
Φ1/2(αk)

V (αk)
.

According to (3.17), we get that condition (2.3) is fulfilled and it follows that f = (fn, n ∈ N+).
Applying (2.4), we get

f̂(j) =


2|αk|Φ1/2(αk)

V (αk)
, j ∈

{
2|αk|, . . . , 2|αk|+1 − 1

}
,

0, j ̸∈
∞⋃
k=0

{
2|αk| , . . . , 2|αk|+1 − 1

}
,

k ∈ N+ (3.18)
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Let 2|αk| < j < αk. If we apply (2.6), we get

Sjf = S2|αk|f +
w2|αk|Dj−2|αk|Φ1/2(αk)

V (αk)
. (3.19)

Hence

σ
αk
f

Φ(αk)
=

1

Φ(αk)αk

2|αk|∑
j=1

Sjf +
1

Φ(αk)αk

αk∑
j=2|αk|+1

Sjf

=
σ

2|αk| f

Φ(αk)αk
+

(αk − 2|αk|)S2|αk|f

Φ(αk)αk
+
w2|αk|2|αk|Φ1/2(αk)

Φ(αk)V (αk)αk

αk∑
j=2|αk|+1

Dj−2|αk|

= III1 + III2 + III3. (3.20)

For III3, we can conclude that

|III3| =
2|αk|Φ1/2(αk)

Φ(αk)V (αk)αk

∣∣∣ αk−2|αk|∑
j=1

Dj

∣∣∣
=

2|αk|Φ1/2(αk)

Φ(αk)V (αk)αk
(αk − 2|αk|)|Kαk−2|αk| | ≥

c(αk − 2|αk|)|Kαk−2|αk| |
Φ1/2(αk)V (αk)

. (3.21)

Let

αk =

rk∑
i=1

mk
i∑

k=lki

2k,

where
mk

1 ≥ lk1 > lk1 − 2 ≥ mk
2 ≥ lk2 > lk2 − 2 ≥ · · · ≥ mk

s ≥ lks ≥ 0.

Since (see Theorems 2.1 and 3.1)

∥III1∥1/2 ≤ c, ∥III2∥1/2 ≤ c

and
µ{Elki

} ≥ 1

2l
k
i −1

,

combining (3.20), (3.21) and Lemma 3.5, we get∫
G

∣∣∣σαk
f(x)

Φ(αk)

∣∣∣1/2 dµ(x) ≥ ∥III3∥1/21/2 − ∥III2∥1/21/2 − ∥III1∥1/21/2

≥ c

rk−2∑
i=2

∫
E

lk
i

∣∣∣ 22l
k
i

Φ1/2(αk)V (αk)

∣∣∣1/2 dµ(x)− 2c ≥ c

rk−2∑
i=2

1

V 1/2(αk)Φ1/4(αk)
− 2c

≥ c rk
V 1/2(αk)Φ1/4(αk)

≥ c V 1/2(αk)

Φ1/4(αk)
→ ∞ as k → ∞.

Thus Theorem 3.1 is proved.

Theorem 3.2.

(a) Let 0 < p < 1/2, f ∈ Hp(G). Then there exists an absolute constant cp, depending only on p,
such that

∥σnf∥Hp(G) ≤ cp2
d(n)(1/p−2)∥f∥Hp(G).
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(b) Let 0 < p < 1/2 and Φ(n) : N+ → [1,∞) be a non-decreasing function such that

sup
k∈N+

d(nk) = ∞, lim
k→∞

2nd(nk)(1/p− 2)

Φ(nk)
= ∞. (3.22)

Then there exists a martingale f ∈ Hp(G) such that

sup
k∈N+

∥∥∥ σnk
f

Φ(nk)

∥∥∥
weak-Lp(G)

= ∞.

Proof. Let n ∈ N. Analogously to (3.9), it is sufficient to prove that∫
IM

(
2d(n)(2−1/p)|σn(a)|

)p
dµ ≤ cp <∞

for every p-atom a, where I denotes the support of the atom.
Analogously to Theorem 3.1, we may assume that a is p-atom with the support I = IM , µ(IM ) =

2−M and n > 2M . Since ∥a∥∞ ≤ 2M/p, we can conclude that

2d(n)(2−1/p)|σna| ≤ 2d(n)(2−1/p)∥a∥∞
∫
IM

|Kn(x+ t)| dµ(t) ≤ 2d(n)(2−1/p)2M/p

∫
IM

|Kn(x+ t)| dµ(t).

Let x ∈ Il+1(ek+el), 0 ≤ k, l ≤ [n] ≤M . Then, applying Lemma 3.2, we get Kn(x+ t) = 0, where
t ∈ IM and hence

2d(n)(2−1/p)|σna| = 0. (3.23)
Let x ∈ Il+1(ek + el), [n] ≤ k, l ≤M or k ≤ [n] ≤ l ≤M . Then Lemma 3.4 results in

2d(n)(2−1/p)|σna| ≤ 2d(n)(2−1/p) 2M(1/p−2)+k+l ≤ cp 2
[n](1/p−2)+k+l. (3.24)

Combining (2.1), (3.23) and (3.24), we can conclude that∫
IM

∣∣2d(n)(2−1/p)σna(x)
∣∣p dµ(x)

≤
( [n]−2∑

k=0

[n]−1∑
l=k+1

+

[n]−1∑
k=0

M−1∑
l=[n]

+

M−2∑
k=[n]

M−1∑
l=k+1

) ∫
Il+1(ek+el)

∣∣2d(n)(2−1/p)σna(x)
∣∣p dµ(x)

+

M−1∑
k=0

∫
IM (ek)

∣∣2d(n)(2−1/p)σna(x)
∣∣p dµ(x)

≤ cp

M−2∑
k=[n]

M−1∑
l=k+1

1

2l
2[n](2p−1) 2p(k+l) + cp

[n]∑
k=0

M−1∑
l=[n]+1

1

2l
2[n](2p−1)2p(k+l)

+
cp 2

[n](2p−1)

2M

[n]∑
k=0

2p(k+M) < cp <∞.

Now, we prove part b) of Theorem 3.2. According to (3.22), there exists an increasing sequence of
natural numbers {αk : k ∈ N+} ⊂ {nk : k ∈ N+} such that α0 ≥ 3 and

∞∑
η=0

u−p(αη) < cp <∞, u(αk) =
2d(αk)(1/p−2)/2

Φ1/2(αk)
. (3.25)

Let f be a martingale from Example 2.1, where

λk = u−1(αk).
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If we apply (3.25), we get that (2.3) is fulfilled and it follows that f ∈ Hp(G). According to (2.4),
we have

f̂(j) =


2|αk|(1/p−1)

u(αk)
, j ∈

{
2|αk|, . . . , 2|αk|+1 − 1

}
,

0, j ̸∈
∞⋃
k=0

{
2|αk|, . . . , 2|αk|+1 − 1

}
,

k ∈ N+. (3.26)

Let 2|αk| < j < αk. Then, analogously to (3.19) and (3.20), if we apply (3.26), we get

σαk
f

Φ(αk)
=

σ
2|αk| f

Φ(αk)αk
+

(αk − 2|αk|)S2|αk|f

Φ(αk)αk
+

2|αk|(1/p−1)

Φ(αk)u(αk)αk

αk−1∑
j=2|αk|

(D
j
−D2|αk|) = IV1 + IV2 + IV3.

Let αk ∈ N and E[αk] := I
[αk]+1

(e[αk]−1 + e[αk]). Since [αk − 2|αk|] = [αk], analogously to (3.21), if
we apply Lemma 3.5, for IV3 we have the following estimation:

|IV3| =
2|αk|(1/p−1)

Φ(αk)u(αk)αk
(αk − 2|αk|)|Kαk−2|αk| |

=
2|αk|(1/p−1)

Φ(αk)u(αk)αk
|2[αk]K[αk]| ≥

2|αk|(1/p−2) 22[αk]−4

Φ(αk)u(αk)
≥ 2|αk|(1/p−2)/2 22[αk]−4

Φ1/2(αk)
.

Hence

∥IV3∥pweak-Lp(G) ≥
(2|αk|(1/p−2)/2 22[αk]−4

Φ1/2(αk)

)p

µ
{
x ∈ G : |IV3| ≥

2|αk|(1/p−2)/2 22[αk]−4

Φ1/2(αk)

}
≥ cp

(22[αk]+|αk|(1/p−2)/2

Φ1/2(αk)

)p

µ(E[αk]) ≥ cp

(2(|αk|−[αk])(1/p−2)

Φ(αk)

)p/2

= cp

(2d(αk)(1/p−2)

Φ(αk)

)p/2

→ ∞ as k → ∞.

Combining Corollary 2.2 and the first part of Theorem 3.2, we find that

∥IV1∥weak-Lp(G) ≤ cp <∞, ∥IV2∥weak-Lp(G) ≤ cp <∞.

On the other hand, for sufficiently large n, we can conclude that

∥σαk
f∥pweak-Lp(G) ≥ ∥IV3∥pweak-Lp(G) − ∥IV2∥pweak-Lp(G) − ∥IV1∥pweak-Lp(G)

≥ 1

2
∥IV3∥pweak-Lp(G) → ∞ as k → ∞.

Theorem 3.2 is proved.

The proofs of Corollaries 3.1-3.3 are similar to those of Corollaries 2.2–2.4. So, we leave out the
details and just present these results.

Corollary 3.1. Let p > 0 and f ∈ Hp(G). Then

∥σ2kf − f∥Hp(G) → 0 as k → ∞.

Corollary 3.2. Let p > 0 and f ∈ Hp(G). Then

∥σ2k+2k−1f − f∥Hp(G) → 0 as k → ∞.

Corollary 3.3. Let 0 < p < 1/2. Then there exists a martingale f ∈ Hp(G) such that

∥σ2k+1f − f∥weak-Lp(G) ↛ 0 as k → ∞.

On the other hand, for any f ∈ H1/2(G), the following is true:

∥σ2k+1f − f∥H1/2(G) → 0 as k → ∞.
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3.4 Modulus of continuity and convergence in norm of subsequences
of Fejér means with respect to the one-dimensional
Walsh–Fourier series on the martingale Hardy spaces

In this section, we apply Theorems 3.1 and 3.2 to find the necessary and sufficient conditions for the
modulus of continuity of a martingale f ∈ Hp, for which subsequences of Fejér means with respect to
the one-dimensional Walsh–Fourier series converge in Hp-norm.

First, we prove
Theorem 3.3.

(a) Let f ∈ H1/2(G), sup
k∈N+

V (nk) = ∞ and

ωHp(G)

( 1

2|nk|
, f

)
= o

( 1

V 2(nk)

)
as k → ∞. (3.27)

Then
∥σnk

f − f∥H1/2(G) → 0 as k → ∞.

(b) Let sup
k∈N+

V (nk) = ∞. Then there exists a martingale f ∈ H1/2(G) such that

ωH1/2(G)

( 1

2|nk|
, f

)
= O

( 1

V 2(nk)

)
as k → ∞ (3.28)

and
∥σnk

f − f∥H1/2(G) ↛ 0 as k → ∞. (3.29)

Proof. Let f ∈ H1/2(G) and 2k < n ≤ 2k+1. Then

∥σnf − f∥1/2H1/2(G) ≤
∥∥σnf − σnS2kf

∥∥1/2
H1/2(G)

+
∥∥σnS2kf − S2kf

∥∥1/2
H1/2(G)

+ ∥S2kf − f∥1/2H1/2(G)

=
∥∥σn(S2kf − f)

∥∥1/2
H1/2(G)

+ ∥S2kf − f∥1/2H1/2(G) +
∥∥σnS2kf − S2kf

∥∥1/2
H1/2(G)

≤ c (V (n) + 1)ω
1/2
H1/2(G)

( 1

2k
, f

)
+
∥∥σnS2kf − S2kf

∥∥1/2
H1/2(G)

.

It is evident that

σnS2kf − S2kf =
2k

n
(S2kσ2kf − S2kf) =

2k

n
S2k(σ2kf − f).

Let p > 0. Combining Corollaries 2.2 and 3.1, we can conclude that∥∥σnS2kf − S2kf
∥∥1/2
H1/2(G)

≤ 2k/2

n1/2

∥∥S2k(σ2kf − f)
∥∥1/2
H1/2(G)

≤ ∥σ2kf − f∥1/2H1/2(G) → 0 as k → ∞.

Now, we prove part b) of Theorem 3.3. Since sup
k∈N+

V (αk) = ∞, there exists a martingale {αk :

k ∈ N+} ⊂ {nk : k ∈ N+} such that V (αk) ↑ ∞ as k → ∞ and

V 2(αk) ≤ V (αk+1). (3.30)

Let f be a martingale from Example 2.1, where

λk = V −2(αk).

If we apply (3.30), we get that condition (2.3) is fulfilled and it follows that f ∈ Hp(G). Using
(2.4), we find that

f̂(j) =


2|αk|

V 2(αk)
, j ∈

{
2|αk|, . . . , 2|αk|+1 − 1

}
,

0, j ̸∈
∞⋃
k=0

{
2|αk| , . . . , 2|αk|+1 − 1

}
,

k ∈ N+. (3.31)
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Combining (2.7) and (3.30), we can conclude that

wH1/2(G)

( 1

2n
, f

)
= ∥f − S2nf∥H1/2(G) ≤

∞∑
i=n+1

1

V 2(αi)
= O

( 1

V 2(αn)

)
as n→ ∞. (3.32)

Let 2|αk| < j ≤ αk. Using (2.6), we get

Sjf = S2|αk| f +
2|αk|w2|αk|Dj−2|αk|

V 2(αk)
.

Hence

σαk
f − f =

2|αk|

αk
(σ2|αk| f − f) +

αk − 2|αk|

αk
(S2|αk| f − f) +

2|αk|w2|αk| (αk − 2|αk|)Kαk−2|αk|

αkV 2(αk)
. (3.33)

According to (1.2), (1.12) and (3.33), we have

∥σαk
f − f∥1/21/2 ≥ c

V (αk)

∥∥(αk − 2|αk|)Kαk−2|αk|

∥∥1/2
1/2

−
(2|αk|

αk

)1/2∥∥σ2|αk| f − f
∥∥1/2
1/2

−
(αk − 2|αk|

αk

)1/2∥∥S2|αk| f − f
∥∥1/2
1/2
. (3.34)

Let

αk =

rk∑
i=1

mk
i∑

k=lki

2k,

where
mk

1 ≥ lk1 > lk1 − 2 ≥ mk
2 ≥ lk2 > lk2 − 2 > · · · > mk

s ≥ lks ≥ 0

and
Elki

:= I
lk
i
+1
(elki −1 + elki ).

By Lemma 3.5, we get∫
G

∣∣(αk − 2|αk|)Kαk−2|αk| (x)
∣∣1/2 dµ

≥ 1

16

rk−2∑
i=2

∫
E

lk
i

∣∣(αk − 2|αk|)Kαk−2|αk| (x)
∣∣1/2 dµ(x) ≥ 1

16

rk−2∑
i=2

1

2l
k
i

2l
k
i ≥ c rk ≥ c V (αk). (3.35)

Combining estimations (3.34), (3.35), Corollaries 2.2 and 3.1, we find that (3.29) holds true and
Theorem 3.3 is proved.

Theorem 3.4.
(a) Let 0 < p < 1/2, f ∈ Hp(G), sup

k∈N+

d(nk) = ∞ and

ωHp(G)

( 1

2|nk|
, f

)
= o

( 1

2d(nk)(1/p−2)

)
as k → ∞. (3.36)

Then
∥σnk

f − f∥Hp(G) → 0 as k → ∞. (3.37)

(b) Let sup
k∈N+

d(nk) = ∞. Then there exists a martingale f ∈ Hp(G) (0 < p < 1/2) such that

ωHp(G)

( 1

2|nk|
, f

)
= O

( 1

2d(nk)(1/p−2)

)
as k → ∞ (3.38)

and
∥σnk

f − f∥weak-Lp(G) ↛ 0 as k → ∞. (3.39)
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Proof. Let 0 < p < 1/2. Then under condition (3.36), if we repeat the steps of the proof of Theo-
rem 3.3, we immediately get that (3.37) holds.

Let us prove part b) of Theorem 3.4. Since sup
k
d(nk) = ∞, there exists {αk : k ∈ N+} ⊂ {nk :

k ∈ N+} such that supk∈N+
d(αk) = ∞ and

22d(αk)(1/p−2) ≤ 2d(αk+1)(1/p−2). (3.40)

Let f be a martingale from Lemma 2.1, where

λk = 2−(1/p−2)d(αi).

If we use (3.40), we can conclude that condition (2.3) is fulfilled and it follows that f ∈ Hp(G).
According to (2.4), we get

f̂(j) =


2(1/p−2)[αk], j ∈

{
2|αk|, . . . , 2|αk|+1 − 1

}
,

0, j ̸∈
∞⋃

n=0

{
2|αn| , . . . , 2|αn|+1 − 1

}
,

k ∈ N+. (3.41)

Combining (2.7) and (3.40), we have

ωHp(G)

( 1

2|αk|
, f

)
≤

∞∑
i=k

1

2d(αi)(1/p−2)
= O

( 1

2d(αk)(1/p−2)

)
as k → ∞. (3.42)

Analogously to the proof of the previous theorem, if we use also Corollaries 2.2 and 3.1, then for
the sufficiently large k, we can conclude that

∥σαk
f − f∥pweak-Lp(G) ≥ 2(1−2p)[αk]

∥∥(αk − 2|αk|)Kαk−2|αk|

∥∥p
weak-Lp(G)

−
(2|αk|

αk

)p∥∥σ2|αk| f − f
∥∥p

weak-Lp(G)
−
(αk − 2|αk|

αk

)p∥∥S2|αk| f − f
∥∥p

weak-Lp(G)

≥ 2(1−2p)[αk]−1
∥∥(αk − 2|αk|)Kαk−2|αk|

∥∥p
weak-Lp(G)

(3.43)

Let x ∈ E[αk]. From Lemma 3.5 it follows that

µ
(
x ∈ G : (αk − 2|αk|)|Kαk−2|αk| | ≥ 22[αk]−4

)
≥ µ(E[αk]) ≥

1

2[αk]−4

and
22p[αk]−4µ

(
x ∈ G : (αk − 2|αk|)|Kαk−2|αk| | ≥ 22[αk]−4

)
≥ 2(2p−1)[αk]−4. (3.44)

Hence combining (1.2), (1.12), (3.43) and (3.44), we get

∥σnk
f − f∥weak−Lp(G) ↛ 0 as k → ∞.

The proof of Theorem 3.4 is complete.

Using Theorem 3.4, we easily get an important result proved in [67].

Corollary 3.4.

(a) Let f ∈ H1/2(G) and

ωH1/2(G)

( 1

2k
, f

)
= o

( 1

k2

)
as k → ∞.

Then
∥σkf − f∥H1/2(G) → 0 as k → ∞.
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(b) There exists a martingale f ∈ H1/2(G) for which

ωH1/2(G)

( 1

2k
, f

)
= O

( 1

k2

)
as k → ∞

and
∥σkf − f∥1/2 ↛ 0 as k → ∞.

Corollary 3.5.
(a) Let 0 < p < 1/2, f ∈ Hp(G) and

ωHp(G)

( 1

2k
, f

)
= o

( 1

2k(1/p−2)

)
as k → ∞.

Then
∥σkf − f∥Hp(G) → 0 as k → ∞.

(b) There exists a martingale f ∈ Hp(G) (0 < p < 1/2) for which

ωHp(G)

( 1

2k
, f

)
= O

( 1

2k(1/p−2)

)
as k → ∞

and
∥σkf − f∥weak-Lp(G) ↛ 0 as k → ∞.

3.5 Strong convergence of Fejér means with respect to the one-dimensional
Walsh–Fourier series on the martingale Hardy spaces

In this section, we consider the strong convergence results of Fejér means with respect to the one-
dimensional Walsh–Fourier series in the martingale Hardy spaces, when 0 < p ≤ 1/2 (for details
see [66]).

Theorem 3.5.
(a) Let 0 < p ≤ 1/2 and f ∈ Hp(G). Then there exists a constant cp, depending only on p, such

that
1

log[1/2+p] n

n∑
m=1

∥σmf∥pHp(G)

m2−2p
≤ cp∥f∥pHp(G).

(b) Let 0 < p < 1/2, Φ : N+ → [1,∞) be a non-decreasing function such that Φ(n) ↑ ∞ and

lim
k→∞

k2−2p

Φ(k)
= ∞.

Then there exists a martingale f ∈ Hp(G) such that
∞∑

m=1

∥σmf∥pweak-Lp(G)

Φ(m)
= ∞.

Proof. Suppose that
1

log[1/2+p] n

n∑
m=1

∥σmf∥pp
m2−2p

≤ cp∥f∥pHp(G).

Combining (1.7), (1.15) and Lemma 3.6, we can conclude that

1

log[1/2+p] n

n∑
m=1

∥σmf∥pHp(G)

m2−2p

≤ 1

log[1/2+p] n

n∑
m=1

∥σmf∥pp
m2−2p

+ ∥σ̃∗
#f∥Hp(G) + ∥S̃∗

#f∥Hp(G) ≤ cp∥f∥pHp(G). (3.45)
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According to Lemma 2.5 and (3.45), Theorem 3.5 will be proved if we show that

1

log[1/2+p] n

n∑
m=1

∥σma∥pp
m2−2p

≤ c <∞, m = 2, 3, . . . ,

for any p-atom a. We may assume that a is p-atom, with support I, µ(I) = 2−M and I = IM . It is
evident that σn(a) = 0, when n ≤ 2M . Therefore, we may assume that n > 2M .

Let x ∈ IM . Since σn is bounded from L∞(G) to L∞(G) (the boundedness follows from the fact
that Fejér kernels are uniformly bounded in the space L1(G), which is proved in Lemma 3.1) and
∥a∥∞ ≤ 2M/p, we can conclude that∫

IM

|σma(x)|p dµ(x) ≤
∥σma∥p∞

2M
≤ ∥a∥p∞

2M
≤ c <∞, 0 < p ≤ 1

2
.

Let 0 < p ≤ 1/2. Then

1

log[1/2+p] n

n∑
m=1

∫
IM

|σma(x)|p dµ(x)

m2−2p
≤ c

log[1/2+p] n

n∑
m=1

1

m2−2p
≤ c <∞.

It is evident that

|σma(x)| ≤
∫
IM

|a(t)| |Km(x+ t)| dµ(t) ≤ 2M/p

∫
IM

|Km(x+ t)| dµ(t).

It follows from Lemma 3.2 that

|σma(x)| ≤
c 2k+l 2M(1/p−1)

m
, x ∈ Il+1(ek + el), 0 ≤ k < l < M (3.46)

and
|σma(x)| ≤ c 2M(1/p−1) 2k, x ∈ IM (ek), 0 ≤ k < M. (3.47)

If we use identity (2.1) and (3.46), (3.47) we get that∫
IM

|σma(x)|p dµ(x) =
M−2∑
k=0

M−1∑
l=k+1

∫
Il+1(ek+el)

|σma(x)|p dµ(x) +
M−1∑
k=0

∫
IM (ek)

|σma(x)|p dµ(x)

≤ c

M−2∑
k=0

M−1∑
l=k+1

1

2l
2p(k+l)2M(1−p)

mp
+ c

M−1∑
k=0

1

2M
2M(1−p)2pk

≤ c 2M(1−p)

mp

M−2∑
k=0

M−1∑
l=k+1

2p(k+l)

2l
+ c

M−1∑
k=0

2pk

2pM

≤ c 2M(1−p)M [1/2+p]

mp
+ c. (3.48)

Hence

1

log[1/2+p] n

n∑
m=2M+1

∫
IM

|σma(x)|p dµ(x)

m2−2p

≤ 1

log[1/2+p] n

( n∑
m=2M+1

c 2M(1−p)M [1/2+p]

m2−p
+

n∑
m=2M+1

c

m2−2p

)
< c <∞.

The proof of part (a) of Theorem 3.5 is complete.
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Now, we prove part (b) of Theorem 3.5. Let Φ(n) be a non-decreasing function satisfying the
condition

lim
k→∞

2(|nk|+1)(2−2p)

Φ(2|nk|+1)
= ∞. (3.49)

According to (3.49), there exists an increasing sequence {αk : k ∈ N+} ⊂ {nk : k ∈ N+} such
that

|αk| ≥ 2, where k ∈ N+, (3.50)

and
∞∑
η=0

Φ1/2(2|αη|+1)

2|αη|(1−p)
= 21−p

∞∑
η=0

Φ1/2(2|αη|+1)

2(|αη|+1)(1−p)
< c <∞. (3.51)

Let f = (fn, n ∈ N+) ∈ Hp(G) be a martingale from Example 2.1, where

λk =
Φ1/2p(2|αk|+1)

2(|αk|)(1/p−1)
.

Combining (2.3) and (3.51), we get that f ∈ Hp(G). According to (2.4), we have

f̂(j) =


Φ1/2p(2|αk|+1), if j ∈

{
2|αk|, . . . , 2|αk|+1 − 1

}
,

0, if j ̸∈
∞⋃
k=0

{
2|αk|, . . . , 2|αk|+1 − 1

}
.

k ∈ N+. (3.52)

Let 2|αk| < n < 2|αk|+1. Then

σnf =
1

n

2|αk|∑
j=1

Sjf +
1

n

n∑
j=2|αk|+1

Sjf = III + IV. (3.53)

It is evident that
Sjf = 0, if 0 ≤ j ≤ 2|α1|. (3.54)

Let 2|αs| < j ≤ 2|αs|+1, where s = 1, 2, . . . , k. If we apply (2.6), we get

Sjf =

s−1∑
η=0

Φ1/2p(2|αη|+1)(D2|αη|+1 −D2|αη|) + Φ1/2p(2|αs|+1)w2|αs|Dj−2|αs| . (3.55)

Let 2|αs|+1 ≤ j ≤ 2|αs+1|, s = 0, 1, . . . , k − 1. Then if we use (2.5), we can conclude that

Sjf =

s∑
η=0

Φ1/2p(2|αη|+1)(D2|αη|+1 −D2|αη|). (3.56)

Let x ∈ I2(e0 + e1). Since (see Lemmas 2.2 and 3.2)

D2n(x) = K2n(x) = 0, where n ≥ 2, (3.57)

combining (3.50) and (3.54)–(3.57), we get

III =
1

n

k−1∑
η=0

Φ1/2p(2|αη|+1)

2|αη|+1∑
v=2|αη|+1

Dv(x)

=
1

n

k−1∑
η=0

Φ1/2p(2|αη|+1)
(
2|αη|+1K2|αη|+1(x)− 2|αη|K2|αη|(x)

)
= 0. (3.58)
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If we use (3.55), when s = k, for IV we can write that

IV =
n− 2|αk|

n

k−1∑
η=0

Φ1/2p(2|αη|+1)(D2|αη|+1 −D2|αη|)

+
Φ1/2p(2|αk|+1)

n

n∑
j=2|αk|+1

w2|αk|Dj−2|αk| = IV1 + IV2. (3.59)

Combining (3.50) and (3.57), we can conclude that

IV1 = 0, where x ∈ I2(e0 + e1). (3.60)

Let αk ∈ A0,2, 2|αk| < n < 2|αk|+1 and x ∈ I2(e0 + e1). Since n − 2|αk| ∈ A0,2, from Lemmas 2.1
and 3.1 and (3.57), it follows that

|IV2| =
Φ1/2p(2|αk|+1)

n

∣∣∣ n−2
|αk

|∑
j=1

Dj (x)
∣∣∣

=
Φ1/2p(2|αk|+1)

n

∣∣(n− 2|αk|)Kn−2|αk| (x)
∣∣ ≥ Φ1/2p(2|αk|+1)

2|αk|+1
. (3.61)

Let 0 < p < 1/2 and n ∈ A0,2. Combining (3.53)–(3.61), we get

∥σnf∥pweak-Lp(G) ≥
cpΦ

1/2(2|αk|+1)

2p(|αk|+1)
µ
{
x ∈ I2(e0 + e1) : |σnf | ≥

cpΦ
1/2p(2|αk|+1)

2|αk|+1

}
≥ cpΦ

1/2(2|αk|+1)

2p(|αk|+1)
µ
{
I2(e0 + e1)

}
≥ cpΦ

1/2(2|αk|+1)

2p(|αk|+1)
. (3.62)

Hence

∞∑
n=1

∥σnf∥pweak-Lp(G)

Φ(n)
≥

∑
{n∈A0,2: 2

|αk|<n<2|αk|+1}

∥σnf∥pweak-Lp(G)

Φ(n)

≥ 1

Φ1/2(2|αk|+1)

∑
{n∈A0,2: 2

|αk|<n<2|αk|+1}

1

2p(|αk|+1)
≥ cp2

(1−p)(|αk|+1)

Φ1/2(2|αk|+1)
→ ∞ as k → ∞.

The proof of Theorem 3.5 is complete.

Theorem 3.6. Let f ∈ H1/2(G). Then

sup
n∈N+

sup
∥f∥Hp≤1

1

n

n∑
m=1

∥σmf∥1/21/2 = ∞.

Proof. Let 0 < p ≤ 1 and
fk(x) := 2k

(
D2k+1(x)−D2k(x)

)
Since

supp(fk) = Ik,

∫
Ik

ak dµ = 0

and
∥fk∥∞ ≤ 22k =

(
µ(supp fk)

)−2
,

we can conclude that fk is 1/2-atom, for every k ∈ N.
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Moreover, if we use the orthogonality of Walsh functions, we get

S2n(fk, x)) =

{
0, n = 0, . . . , k,(
D2k+1(x)−D2k(x)

)
, n ≥ k + 1,

and
sup
n∈N

|S2n(fk, x)| =
∣∣(D2k+1(x)−D2k(x)

)∣∣,
where x ∈ G.

Combining the first equality of Lemma 2.1 and Lemma 2.6, we obtain

∥ak∥Hp(G) = 2k
∥∥∥ sup

n∈N

∣∣S2n
(
D2k+1(x)−D2k(x)

)∣∣∥∥∥
1/2

= 2k
∥∥(D2k+1(x)−D2k(x)

)∥∥
1/2

= 2k∥D2k(x)∥1/2 ≤ 2k · 2−k ≤ 1.

It is easy to show that

f̂m(i) =

{
2m if i = 2m, . . . , 2m+1 − 1,

0 otherwise
(3.63)

and

Sifm =


2m

(
Di −D2m

)
if i = 2m + 1, . . . , 2m+1 − 1,

fm if i ≥ 2m+1,

0 otherwise.
(3.64)

Let 0 < n < 2m. Using the first equality of Lemma 2.1, we have

|σn+2mfm| = 1

n+ 2m

∣∣∣ n+2m∑
j=2m+1

Sjfm

∣∣∣ = 1

n+ 2m

∣∣∣2m n+2m∑
j=2m+1

(Dj −D2m)
∣∣∣

=
1

n+ 2m

∣∣∣2m n∑
j=1

(Dj+2m −D2m)
∣∣∣ = 1

n+ 2m

∣∣∣2m n∑
j=1

Dj

∣∣∣ = 2m

n+ 2m
n|Kn|. (3.65)

Let

n =

s∑
i=1

mi∑
k=li

2k,

where
0 ≤ l1 ≤ m1 ≤ l2 − 2 < l2 ≤ m2 ≤ · · · ≤ ls − 2 < ls ≤ ms.

Applying Lemma 3.5 and (3.65), we find that
|σn+2mfm(x)| ≥ c 22li , where x ∈ Ili+1(eli−1 + eli).

Hence ∫
G

|σn+2mfm(x)|1/2 dµ(x)

≥
s∑

i=0

∫
Ili+1(eli−1+eli )

|σn+2mfm(x)|1/2 dµ(x) ≥ c

s∑
i=0

1

2li
2li ≥ cs ≥ c V (n).

According to the second estimation of Lemma 2.3, we can conclude that

sup
n∈N+

sup
∥f∥Hp≤1

1

n

n∑
k=1

∥σkf∥1/21/2 ≥ 1

2m+1

2m+1−1∑
k=2m+1

∥σkfm∥1/21/2

≥ c

2m+1

2m+1−1∑
k=2m+1

V (k − 2m) ≥ c

2m+1

2m−1∑
k=1

V (k) ≥ c logm→ ∞ as m→ ∞.

Thus The proof is complete.
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