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Abstract. We study in this paper resonances of Schréodinger operators. Resonance energies are acces-
sible from a general class of complex distortions, they also coincide with the poles of the meromorphic
continuation of the resolvent. We prove that in the Born-Oppenheimer approximation for diatomic
molecules, this study can be reduced to the one of a matrix of semiclassical pseudodifferential opera-
tors with operator-valued symbols, without modifying the Hamiltonian near the collision set of nuclei.
We consider here the case where two electronic levels cross, and where molecular resonances appear
and can be well located. We also investigate the action of the effective Hamiltonian on WKB solutions
and show that these resonances have an imaginary part exponentially small.
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1 Introduction

In this paper, we investigate the resonances in the semiclassical approximation for Hamiltonians of
the form P = —h?A 4+ V and P(h) = —h%*A, — Ay + V(z,y) defined on L*(R") and L*(R" x RP),
respectively, where h tends to 07 and the potential V is assumed to be analytic in a complex strip.
We use analytic dilation, analytic distorsion methods and meromorphic continuation of the resolvent
to define the resonances.

The resonances of the Schrédinger operator P defined on L?(R™) with domain D(P) = H2(R™) N
D(V) are the eigenvalues of Py (respectively of P,) in the lower complex half-plane, where Py (re-
spectively P,) is a dilation (respectively a distorsion) of P, they are independent of # (respectively of
1) in the sense that replacing 6 (respectively u) by a larger value will not change the set of resonances
in the corresponding complex sector.

The theory developed by Hunziker [13], identifies the resonances of P with the poles of the mero-
morphic extension from the upper complex half-plane of the resolvent of P, see also [1,2,13,16,17,
19,22]. In order to prove the existence of resonances, we operate an explicit construction assuming
appropriate conditions on the potential V.

This paper is also devoted to the study of resonances for Born—Oppenheimer Hamiltonians. We
show that one can reduce the problem to a finite matrix of regular semiclassical pseudodifferential
operators for diatomic molecules in the physically interesting case of Coulombic interactions, near
energy levels where resonances may appear.

The Born—Oppenheimer approximation separates the fast electronic motion from the slower motion
of the nuclei. As usual, in the Born—Oppenheimer approximation, the Schrodinger operator P(h) for
a polyatomic molecule in the semiclassical limit, where the mass ratio h? of electronic to nuclear mass
tends to zero, is given by

P(h) = _h2A$ + Q(J?), Q(l‘) = _Ay + V(.I,y),

where z € R™ denotes the nuclear and y € RP the electronic coordinates and V is the potential of
nuclei-nuclei, nuclei-electron and electron-electron interactions. The operator Q(z) is the so-called
electronic Hamiltonian and its eigenvalues are the so-called electronic levels.

Assume first that V' € C*°(R™ x RP;R) is bounded together with all its derivatives, and Q(z)
admits a gap in its spectrum. Let us denote by Aj(z) < Az(x) < -+ < Ay(z) the first N eigenvalues
of Q(x) and assume that there exists a gap between them and the rest of the spectrum of Q(x):

inf dist(a(Q(x)) V@), (@)} (), .,AN(x)}) > 6> 0, (1.1)

rER™

o stands for the spectrum, and dist is the set-to-set distance. The resolvent set p(-) of an operator
is the complement of its spectrum in the complex plane C. I denotes the identity operator and I}, is
the identity matrix of C*, k € N, k > 1. Let T* denote the adjoint of a linear operator T

(1.1) implies that the spectral projection II(z) of Q(z) associated to {\1(x),...,Any(z)} is C*-
regular with respect to z € R™ (see [5]).

Let us remember that, by using symbolic calculus, the spectral study of P(h) on L?(R? x RE)
can be reduced to that of a semiclassical pseudodifferential matrix operator Peyy = P.ss(x,Dy) on

@ L2(R™)®" where N > 0 depends on the energy level,
N

A€ o(P(h)) <= X € o(Pesy).

The reduction for Coulomb-type interactions is treated in [15] and [17] for resonant states when h
tends to 0, a regularization of the Hamiltonian is constructed far from the collision set of the nuclei,
and this gives rise to an effective pseudodifferential Hamiltonian.

In quantum mechanics, a particle is described by a wave function p(z,y) which is normalized
in L2, ||¢|lzz= = 1. The probability of finding the particle in a region @ C R™ x RP is given by
[ lo(x,y)|? dz dy. The time evolution of a semiclassical molecular system is determined by the time-
Q
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dependent Schrodinger equation

L 0
ih Gr (2,9.1) = P(h)p(x.v.1),

@(xaya 0) = %00(3772-/),

(1.2)

where g € L?(R"™ x RP) is the initial state.
The following representation result on the solution of system (1.2) was established by Martinez
and Sordoni in [18].

Theorem 1.1. Let (E\)aer be the family of spectral projections of P(h), and E € R. Then there
exists an orthogonal projection m(x) on L*(R™ x RP) such that

m(x) = 1l(z) + O(h)
and such that any solution ¢ of (1.2) with initial data po € Im &_ g satisfies

p=e i Ma(a)po + e (1 —m(@))po + O(t™ | poll2)
uniformly with respect to h small enough, t € R and g, where
P, =n(x)P(h)m(z) and Py = (1 —w(x))P(h)(1 — m(x)).

If dimIm M(x) = k is finite for all x € R™, then there exists a semiclassical pseudodifferential
operator W : L2(R"™ x RP) — (L?(R?))®* with an operator-valued symbol and a k x k self-adjoint
matriz A of semiclassical pseudodifferential operators on L?(R™) such that the restriction U of W to
Im 7(z), U : Im 7(z) — (L*(R?))®* is a unitary operator which satisfies UPym(z) = AU (x) (thus
e~ Pin(z) = U*e % AUn(x) for all t € R). In addition, the symbol of A is

a(xag) = §ZIk + ,u(x) + Z hj+1rj(x7£)a

Jj=0

where 0°rj(z, &) = O(£2) for any multi-index o and uniformly with respect to (z,€) € R* and h > 0
small enough, and p(z) is the matriz of Il(x)Pesy in a smooth orthonormal basis of Im II(x).
If k =1, then for any t € R, there exists a semiclassical Fourier integral operator F; on L*(R"):

Fof(z) = (2rh) ™ / eh STV Y e b f(y) dyd,

where b is a semiclassical symbol of order 0 and ¢ is a smooth phase function with nonnegative
imaginary part such that any solution ¢ of (1.2) with initial data g satisfying

11 = m(@)poll + [€r, +ocipoll = O(R)

is given by o = W*FyWg + O(h>), O(h™) can be replaced by O(e~/") for some & > 0 when V is
analytic with respect to x and bounded in a complex strip.

In that way, the evolution of the molecule reduces to that of an effective electric potential created
by the electrons. So, there may be an even closer relation between the complete quantum evolution
e~ & P(" and the reduced quantum evolution e h Pﬂf_f. _

In [26], the authors find an approximation of e~ n P in terms of e~ % Fess | and prove an error
estimate in O(h). A whole perturbation of P.ss is constructed in [18] allowing an error estimate in
O(h*°) for the quantum evolution. In [26] and [18], the interaction potential is assumed to be smooth,
and then this situation excludes the physically interesting case of Coulomb interactions.

However, the solution of (1.2) with the initial condition ¢(z,y,to) is given exactly at time ¢ by
oz, y,t) = Ult—to)p(x,y,to), to € R, where U(t—tg) = e~ # () is the evolution operator. Precisely,
if ¥ is an eigenstate of P(h), P(h)y = E1), the time evolution state is given by p(z,y,t) = e~ # Py =

Pe
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e~ "7 1, where ¢(z,y,0) = ¢(x,y). In particular, ||¢||z2 = ||[¢/||12, so the probability density does not
change when the state is propagated and the system is stable.

Turning now to the methods which lead directly to the complex energies, £ = a — zb b > 0,
then ¢(z,y,t) = e~ # e~ #1p and the probability of survival beyond time ¢ is ||¢||r2 =
In particular, tliglo llo | 12 = 0, such states are metastable and their corresponding energies are called

resonances, or resonances encounter complexes. We can therefore associate with a resonance a lifetime
(=~ %) A metastable state of a molecular system has a longer lifetime than the ordinary excited states
and that generally has a shorter lifetime than the lowest, often stable, energy state, called the ground
state. There are many examples of metastable states in atomic and nuclear systems. Thus the lifetime
of a metastable system is important if b = Im FE is small enough, which means that the resonance is
quite close to the real axis. Whatever definition is adopted for a resonance, there is always the idea
that a complex energy is involved, thus analyticity occurs in a natural way, in view of the method
of complex scaling initiated by Aguilar-Combes [1] and Balslev—Combes [2] and further developed by
many authors. In many instances, as in the case of shape resonances, such a complex eigenvalue can
be viewed as arising from the perturbation of an eigenvalue embedded in the continuous spectrum. All
these methods require an indirect procedure for the evaluation of the imaginary part of the resonance
energy.

Here, our goal is to study the resonances, when h tends to 0, of P(h) with potential having
Coulomb-type singularities and when the electronic Hamiltonian admits a local gap in its spectrum:

p b—
a i Cj
V(z, :—+§ J 4+ E _ ok 1.3
=1 j_1<|yjz| |y +w|) * |y — il 43

with @ > 0 constant and b] ,bJ ¢k € R, bf < 0. Tt is well known that P(h) is selfadjoint on
L?(R? x R?P) with domain in the Sobolev space H?(R? x R?P).

Resonances of P(h) will be accessible via analytic distorsion introduced by Hunziker in [13], for
their description we use the arguments developed in [17] and [18] in order to include possible singular-
ities of the potentials. The reduction for resonant states with Coulomb-type interactions was treated
by Martinez and Messirdi in [17], where a regularization of the Hamiltonian P(h) is constructed far
from the collision set of the nuclei and when the singularities coming from the collision set of the nuclei
are avoided. In [20], an effective Hamiltonian, for the exact molecular operator, is constructed as the
sum of a semibounded operator and a semiclassical pseudodifferential operator localized respectively
near and far from the collision set of the nuclei.

In addition, to obtain a suitable approximation of the imaginary part of the resonances, we mainly
define and study semiclassical Fourier integral operators, of which we give a complete description.

Precisely, we investigate resonances of diatomic molecular Hamiltonians and give estimates on
their widths, when the second electronic level forms a well at some energy E, while the first one
is non-trapping at E and when the second and third levels cross on a compact subset of R?. This
situation was considered in [20], where they indicate that their method makes possible to determine
the resonances near E with exponentially small widths as h — 07. Our study provides the necessary
details and proofs concerning molecular predissociation with crossing levels, it also generalizes to the
case of singular potentials the results of Messirdi [22].

We adopt the reduction without modifying P(h) near the collision set of nuclei and study the
resonances of P(h) where two electronic levels cross. We provide a link between the resonances of P(h)
and the discrete spectrum of the pseudodifferential part of the effective Hamiltonian. We examine the
action of the effective Hamiltonian on WKB functions that have an asymptotic expansion in powers
of h'/2 and give estimates on the widths of resonances as h tends to 0. The Grushin problems, Fourier
integral operator theory and pseudodifferential calculus are necessary tools in this work.

Recall that the discrete spectrum of a densely defined, closed linear operator A on a Hilbert space
is the set o4;sc(A) of isolated eigenvalues of A of finite multiplicity. A spectral singularity is said to
be in the essential spectrum of A if it is not an isolated eigenvalue of finite multiplicity, the essential
spectrum of A is oes5(A) = 0(A4) \ 0aisc(4).

If A € 0(A) and Im (A — A) is closed, then A € 04;5.(A) if and only if the resolvent operator
(z—A)~! has a pole of order N at \. In this case, (A — A)Py(A) is nilpotent of index N, where Py (4)
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is the Riesz projection associated with A and defined by the familiar Cauchy integral ( [11])

Py(4) = - f (z — 4)dz,

T 2w
T

I' = 0D, where D is a closed disk centered at A\, z € I' and DNo(A) = {A}.
In addition, the resolvent operator can be expanded as a Laurent series:

m—1 o
(Z—A) 1:2 (Z,)\)jJrl D]+Zf/\P)\(A)_Z(z_)‘>jSJ+17
j=1 =
1 1
r

This definition has the advantage that Weyl’s theorem remains valid for closed non-selfadjoint opera-
tors, that is, an arbitrary commuting compact perturbation leaves the essential spectrum unchanged.
We consider the selfadjoint operator P(h) and fix an energy level E € g.55(P(h)) such that for all
z € R?\ {0},
0’(Q($)) nJ = Jdisc(Q(x)) N Ja
#0aisc(Q(x)) > 3, (1.4)
#o(Q(z))NJ <3,
where J =] — 00, E]. Let us denote by A1(z) < A2(z) < Az(x) the first three eigenvalues of Q(z).

Suppose assumption (1.1) holds for {A;(x), A2(z), A3(z)} and in order to avoid regularity problems
at infinity, we also assume that Aj(z), A2(z) and A3(z) are simple at infinity:

it () — M) > ~

=g for ol = : 1.
jke{1,2,3) > 5 for |2]2C, C>0 (1.5)

In the following, we set

Q(z) = Q(x) — 2 and Xj(x) =\j(z) — i, je{1,2,3}.

|| ||

So, since bji < 0, there exists ¢’ > 0 such that sup \;(z) < C’, j € {1,2,3}.
z€R3\{0}
Suppose that the second and third levels cross on some sphere |z| = rg < C:

{zeR: X(2) =N(2)} = {2 €R®: |z| =ro} (1.6)

In fact, we can assume that {A;(z), A2(x), A3(z)} can be re-indexed in such a way that they become
smooth functions outside of {0}, and that Aa(x) creates a potential well at the energy E:

Ao >0, inf /\Q(Z‘) =X\ < F,
zeR3\{0}

sup  Ai(z) <0,
z€R3\{0}

/\2_1(/\0) = {x eR?: |z| = 7‘1},
Ay >0 on Ayt (N\o) with 0< 7y < 7.

In order to avoid resonances issue from A;(x) and As(z), we put the virial conditions:

sup  (2\j(z) +2-VAj(z)) <2E—-C <0, je{1,3}. (1.7)
z€eR3\{0}

The paper is organized as follows. In Section 2, we recall some basic results on semiclassical Fourier
integral operators and pseudodifferential operators with operator-valued symbols. Sections 3 and 4
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deal with resonances for semiclassical Schréodinger operators and for Born—-Oppenheimer Hamiltonians.
In Section 5, we give a reduction result, similar to the Feshbach standard result where we find that
the spectral study of P(h) is equivalent to that of the associated effective Hamiltonian. The main
goal of Section 6 is the construction of a regularization of the Hamiltonian P(h) far from the collision
set of the nuclei, the effective Hamiltonian is given in terms of a matrix of smooth pseudodifferential
operators with operator-valued symbols. In Section 7, we obtain estimates on the widths of located
resonances.

2 Semiclassical Fourier integral operators
with operator symbol

In this section, we define semiclassical Fourier integral operators with operator symbol and present
some of their properties. This notion was recently introduced in [6] and [9]. Let H1, H2 and Hs be
Hilbert spaces.

Definition 2.1. A positive function g € C*(R%;R* ) is called an order function if 9% g(X) = O(g(X))
for all @ € N? uniformly with respect to (X,h) € R?x]0,1] (the most common example of order
function is g(X) = (1 + |X])™, m € R).

A family of functions a(X;h) defined on R¢x ]0,1] is said to be an operator symbol if a(-;h) €
C>(R¥x]0,1]; B(H1,Hz)) and if for each multi-index o € N there exists a constant C, > 0 such
that [|0%a(X;h)||B(,,2,) < Cag(X) uniformly with respect to b €]0, 1].

We denote by S%(Hi,Hs2) the space of all operator-valued symbols on R%x 0, 1] into B(H1, Ha),
where B(H1,H2) is the set of all bounded linear operators mapping H; into Hs.

Example 2.1. The operator-valued symbol of the semiclassical Schrédinger operator P(h)= —h2A,+
Q(z) with Q(z) = —A, + V(z,y) is given by a(z,&h) = €2 + Q(z). It is clear that a €
Sen(H*(RP); L*(RP)) if V' € C°(R™ x RP;R) is bounded together with all its derivatives with
gl,€) = 14 Jo] + €.

As a direct consequence of the Leibniz formula, we have ba € Sfi]g/ (H1,Hs) if a € S5(H1,H2) and
be Sg ('Hg,’Hg).

a € S‘;(’Hl,’Hg) is said to be elliptic if there exists a positive constant Cy > 0 independent of h
such that

1
la(X5 P) | B2y 22) = Co 9(X)

uniformly with respect to (X;h) € RV x]0,1]. Thus, if a € Sg(?—h,?—lg) is elliptic, 1 € Sg_l(H1,H2).

Let a € SJ(H1,H2) and (a;);en be a sequence of operator-valued symbols of S%(Hi,Hz). Then

we say that a is asymptotically equivalent to the formal series Y hia; in S§(H1,H2) and we denote
3=0

0 .
a~ > hWa; if and only if for any N € N and for any a € N¢ there exist hnao €]0,1] and Cn o >0
j=0

such that
uniformly on R?x 0, h N,al. In the particular case, where all a; are identically zero, we write a =
O(h*>°) in S;l(Hl,HQ).

In the semiclassical case, a Fourier integral operator on the Schwartz space S(R™, H1) of rapidly
decreasing vector-valued functions in H; with operator symbol a, has the following form:

N
9% (a - hJH < CnahMg(X
3 (2= 2070 g,y < O 9)

Ap(a, ¢; h)u(z)=(2mh) ™" / @O o (2,0, y; Bu(y) dy df, ueS(R™,Hy), (2.1)

n RN
Ry xRy
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where » € R", N € N*, h €]0,1] and for any «, 8 € N*, v € NV there exists a constant Capy >0
such that

050597 a(x,0,y; h HB(H1 12y < Caprg(@,0,y) forall (z,0,y) € R" x RN x R"

uniformly with respect to h €]0,1], ie., a € S§"+N(H1,’H2), and where ¢ is a phase function:
¢ : R" xRN xRn — R is real-valued C*°-function in R” x RV \ {0} x R™ and ¢ is positive-homogeneous
with respect to 6 of degree one, ¢(z, A\, y) = A\é(x,0,y), A > 0, (z,0,y) € R" x RN\ {0} x R™.

Many authors make different hypothesis on phase functions in order to prove more properties
about the related Fourier integral operators. In general, the integral defined in (2.1) is not absolutely
convergent, so we use the technique of the oscillatory integral developed by Hérmander [12], where ¢
satisfies the following assumptions:

(I) for all (o, 8,7) € N™ x N* x NV there exists Clhp >0,
|8§858g</)(m,9,y)| < Copqg(x,0,y) forall (z,0,y) € R" x RY x R™;

(IT) there exist real numbers Cy,Cs > 0 such that

Clg(xagay) S g(f)yci), 89¢7 y) S C2g(xaoay) fOI‘ all (xaoay) S Rn X RN X an

(ITI) there exist real numbers C,C5 > 0 such that

Cig(z,0,y) < g(x,000,0:0) < C3g(z,0,y) for all (z,0,y) € R" x RN x R".

By using some results of [24], essentially the proof of Proposition I1.2, we can easily establish the
following

Theorem 2.1 ([24]). Let ¢ be a phase function satisfying assumptions (1), (II) and (III), and a €
S§n+N(,H1,H2) with g(z,&) = (1 + |z| + 0] + |y])™, m € R. Then:

(1) for all w € S(R™,H1), lim [Ap(as, ¢; h)u)(z) exists for every x € R™, where ay(z,0,y;h) =
T —r 00

9(57275) (,0,y;h), 0 > 0. We put

Ap(a, ¢; h)u(z) = UILII;O[Ah(aU, ¢; h)ul(x).

(2) An(a, ¢;h) is a continuous linear map from S(R™, H1) to S(R™, Ha) (respectively by duality from
S'(R", Hsa) to S'(R™,H1)), where S'(R™,H;) is the Schwartz space of vector-valued temperate
distributions on R™ in H;, j € {1,2}.

Example 2.2. The Basic examples of Fourier integral operators with phase functions satisfying (I)
to (III) are the pseudodifferential operators

Opn(a)u(z) = (277’1)7”/e%hil(m*y)'ea(%@,y; h)u(y) dy do
]Rn
with a € S2"N (Hy, Hs) and ¢(z,0,y) = (z —y) - 6;

and the h-Fourier transform

i(z) = (2mh) " / e e (y) dy,

Rn

where v € S(R”,H;) and h €]0,1].
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S .
Remark 2.1. If a € S2""N (1, Hy) and a ~ Y hia;, we can write
j=0

N

Opp(a) = Z thph(aj) +hNRy(h)
§=0

where Ry (h) is uniformly bounded on L?*(R",H;) into L?R"™, Hs) as h — 0F. The operator-valued
function aq is called the principal symbol of Opp,(a).

Let us observe that some papers deal with the L?-boundedness and L?-compactness for Fourier
integral operators, we can particularly cite the works of Bekkara et al. [3], Senoussaoui [25], Harrat—
Senoussaoui [9], and Habel-Senoussaoui [8].

Here, we present a recent result due to [8] for the special form of the phase function ¢g(z,0,y) =
S(x,0) —y -0, where S € C>°(R?",R), satisfying two conditions below

(IV) for any (a, B) € N™ x N", there exists a constant Cy g > 0 such that
02075(2.6)| < Capg(x.6);

(V) there exists dg > 0 such that

inf
z,0€R™

det (gge)(x,ﬂ)’ > do.

Let Ap(a,¢s;h) be the Fourier integral operator defined by (2.1) with the distribution kernel

K(z,y;h) = (27Th)_"/e"hfl(s(”’g)_y“’)a(x,9,1/) dé,

R

ie.,
A(asihyule) = [ K(a,ihuty) do,
En
where the operator-valued symbol a € S’g” (H1,Hs2) and h €]0,1].

So, K(z,y;h) € C°(R?*", B(H1,H2)), and if A}(a,ds;h) is the adjoint of Ap(a,ds;h), then
Ap(a, ¢s;h)Aj(a, ps; h) and Aj(a, ds; h)Anp(a, ds; k) are the pseudodifferential operators with the
symbols ||a\|%(H1,H2)\ det(%)(x, 0)| given modulo S5™(H1,Hz). Using the stationary phase theorem
and the Caldéron—Vaillancourt theorem [24], Habel and Senoussaoui showed in [8] the boundedness

(respectively compactness) of Ay (a, ¢gs;h) on L?(R™) when the weight of the amplitude a is bounded
(respectively tends to 0). Precisely,

Theorem 2.2.

(1) An(a,¢s;h) is bounded from L*(R"™, H1) into L*(R",Hz) if the order function g is bounded on
R
(2) An(a,ps;h) can be extended to a compact operator from L*(R™, H) into L?(R™, Hsa) if

lim g(z,0) =0.

|z|+|0] =00

3 Resonance theory for —h?A +V

The resonance theory for Schrodinger operators has been developed following several approaches. We
can mention here the analytic dilation (see [1]) or the analytic distortion (see [13]) and the meromorphic
continuation of the resolvent or scattering matrix (see [4]).
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3.1 Resonances via analytic dilation

We give the definition of the deformation for the Schrédinger operator P = —h?A + V by analytic
dilation on R™ and calculate the essential spectrum of the dilation-analytic Schrodinger operator
Py. The discrete eigenvalues of Py are independent of the dilation which justifies the definition of a
resonance as a discrete eigenvalue of the operator Pj.

For 0 € R, we set

U : LA(R™) — LA(R"), s Upf(x) = e™/2f(ae’), f e C(R™),

and
Py = UgPU; = e 2 (—h%A) + V (xe?).

Definition 3.1. The function V : R® — R is dilation-analytic when
0 V(ze?)(=h2A +1)7!
extends as an analytic family of compact operators on L?(R™).
Example 3.1.
(1) Let V € C*°(R™) be such that V extends as an analytic function in the complex strip
Ds={zeC": |[Imz|<d(1+]|Rex|), §>0} and V(2) =0 as z € Dy, |z| = occ.

By virtue of Rellich-Kondrachov’s theorem, we see that V(ze?)(—h?A + 1)~! are compact
operators on L?(R") for § € C, |#| small enough. Then V is dilation-analytic.

(2) Let
V()= ——, 2R\ {0}, V(we®)=——
|z |||

and
V(we’)(—h2A+1)"" = —ﬁ (—h2A 4+ 1)L

Since the function _\719| is analytic and ﬁ (—h2A +1)~1! is compact on L?(R"), we deduce that

the Coulomb potential V(z) = —ﬁ is dilation-analytic.

Remark 3.1. If V is dilation-analytic, one can then define the operator Py on L?(R™), for § complex,
Im 0 > 0 and |#| small enough,

Py = e 2(=h2A) + [V (ze?)(=h*A + 1) (=h*A + 1)

with domain D(Pp) = H?*(R").
As [V (ze?)(—=h?A +1)"1(=h?A +1) is a compact operator, we deduce from Weyl’s theorem that

Oess(Pp) = 0ess(e7 2 (=h2A)) = e 2R,
Definition 3.2. Let V be dilation-analytic in |#|] < . The discrete eigenvalues of Py that are located

in the complex sector {z € C: —2Im 6 < arg(z) < 0} are called the resonances of P.
The set T'(P) of resonances of P is

T(P)= |J oasc(P)N{z€C: —2Im ¢ < arg(2) < 0}.
0<|0]<éd
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3.2 Analytic vectors

We consider here a large set of vectors ¢ for which the map 6 — Uy is analytic in some disc around 0.
We say that ¢ € L?(R") is an analytic vector if ¢)(z) is an entire function on C" and there exists
€ > 0 such that

lim esz21/1(z) =0

|z| =00, |arg z| <26

with § > 0 and 22 = 22 + -+ + 22 if 2 = (21,...,2,) € C™.
The set of analytic vectors is denoted by As. It is clear that Aj is a linear subspace of L?(R™)

and examples of functions ¢ € As are ¥)(z) = e~**" P(z) with a > 0 and P an arbitrary polynomial:
As C L*(R"™) and Uy As C L2(R™) for 6 € C, |Im 0] < § and |0| small enough.

Proposition 3.1.
(1) For any ¢ € As, 0+ Uptp is an L*(R™)-valued analytic function in some disc around 0.
(2) UpAs is dense in L*(R™), 0 € C, |Im 0| < & and || small enough.

Proof. (1) See [13, Theorem 3].

(2) 1) @ = 0. Let ¢ € L*(R") and € > 0. Thus there exists ¢. € CJ(R™), the set of continuous
functions compactly supported in R™ such that ||1) — ¢c||r2mn) < €.
Let

D(z,A) = CA/e_’\(z_w)ZwE(x) dxr, X >0 large enough,

]Rn
Cyt = /e—MHV dr = A—”/2/e—lz dz.
R™ Rn

We set K,y = {x € R" : dist(z,K) <n}, n >0, and K} the complement of K, in R", where K is the
support of ..
In particular, if [z — 2| < and x € K7, one has ¢.(z) = ¢:(2) = 0 and

e (W () — e (2)) da = 0.
{lz—z|<n}nKg
Thus, splitting the integral, we write

(2, A) — P:(2) = C» / e AT (g (2) — e (2)) dx = L1 (2) + In(2),

R”

I(z) = Cy / N (4 () — e (2) dor,

[z—=z|>n

I(z) = Cy / e (Y (2) — e (2)) dav.

{lz=z|<n}nkK,
For any given € > 0 and sufficiently small n > 0,
|B(2)| ECy / e gy
K277
uniformly with respect to A. Thus
|I2(2)] < E|Koy|'/? < e,

where £ < | Ky, |~'/2¢ and |K3,| is the volume of the compact set Ka,.
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Moreover,
|11 (2)| <Cx sup Iwe(w)Ie_A"2/2/€_A(Z_Z)2/2 d:c+CAWJa(z)Ie_A"Q/Q/e‘*(Z‘“”V/2 dz.
zeK i )
Hence . )
11(2)| < Cre ™7 /2 sup e ()|0x(2) + Coltpe(2)]e= 7 /2
Te
with Cp > 0 and 0,(z) = fe—k(z—z)2/2 dr.
K
Using the fact that

0x(2)] = O(1)
and
|I(2)] = O(C)\Q*Anz/Z “612 the ()| + COHwEHLQRH)(37)\772/2)7
we obtain
11 (2) || L2(rn) < € uniformly as A — oco.
Thus

H¢5 — wlle(Rn) S ||¢8 — wg(z)HL2(Rn) + ||’(/}E — w||L2(]Rn) S 3e uniformly as A — oo.

That is, As is dense in L*(R™) for § > 0 small enough.
(ii) 0 € C, |Im 0] < §. Tt follows from (i) that for any ¢ € L?(R") and ¢ > 0, there is ¢. € As

such that [|¢. — ¥[|L2mn) < €, thus ¢. = U_gp. € As and ||t — Z/[0$5||L2(Rn) < g, which proves the
density of Uy As in L?(R™). O

3.3 Resonances via meromorphic continuation of the resolvent

We will see here that the resonances of P = —h?A + V can also be viewed as the poles of the
meromorphic extension, from {Im z > 0} of some matrix elements of the resolvent R(z) = (P — z)~!
on the set of analytic vectors (see, e.g., [21]).

Definition 3.3. Let 2 be a complex connected open set. H; and Hs are Hilbert spaces.

(1) 2z — A(z) € B(H1,Hs2) is holomorphic on Q if for any x € H; and y € Hs, the function
Q35 2z (A(2)x,y)n, € C is holomorphic in Q. Thus, for any zy € €, there exist operators
Aj(z0) € B(H1,H2) and p > 0 such that

(2 — 20)? Aj(2) for |z — zo| small enough.

I

Il
o

> 14;(20) |33 1) < 00 and A(z) =
j=0 J

(2) We say that z — A(z) € B(H1,Hz2) is a finitely meromorphic family of operators on € if for any
2o € Q, there exist operators A_;(z9) € B(H1,Hz), 1 < j < N, of finite rank and a family of

operators A(z) € B(H1,Hz2) holomorphic near zy such that

A_N(Zo) n i A_l(ZO)

A(Z):i(z—zo)f\’ )

+ A(2), near z.
Then A(z) has Laurent expansion around zy of the type
A(z) = > (2= 20) Aj(20),

Aj(z0) € B(H1,H2), j €Z,j > —N; A_n(20),...,A_1(20) are of finite rank, 0 < |z — 29| < ¢,
for some N = N(zp) and some 0 < € = () sufficiently small.



Semiclassical Resonances, Theory and Application to a General Diatomic Molecular Hamiltonian 45

(3) We say that A(z) € B(H1,Hz) is a finitely meromorphic family of Fredholm operators in € if
for every zp € Q, A(z) is a Fredholm operator for z near zo. For nonsingular zg, A(z) = A(z).

Recall that the operator A € B(H1,Hs) is Fredholm if the kernel of A, ker A, and the cokernel
of A, coker A = Hs/Im A, are both finite dimensional. The index of a Fredholm operator A is
1(A) = dimker A — dimcoker A. Many important Fredholm operators of index 0 have the form
A =1+ K, where K is a compact operator mapping a Hilbert space H to itself.

The Cauchy formula is valid for holomorphic families of operators

A9 =5 § 2 e

the integral is over a positively oriented closed curve ~ enclosing &.
One then recalls the analytic Fredholm theorem in the following form.

Theorem 3.1 ([23,27]). Let @ C C be open and connected and A : Q> z — A(z) € B(H) be a
holomorphic family of Fredholm operators on a Hilbert space H.
Then either:

(1) A(z) is not boundedly invertible for any z € Q,
or else,

(2) A(-)~1 is finitely meromorphic on Q. More precisely, there exists a discrete subset D C Q
(possibly, D = @) such that A(z)~t € B(H) for all z € Q\ D, A(-)~1 is holomorphic on Q\ D
and finitely meromorphic on Q. In addition, A(z)~! is a Fredholm operator for all z € Q\ D,
and if zg € D, then

o0

A7 = ) (2= 20)Bj(z0), 0< |z - 2| < (),
j=—N(z0)

where B_;(z9), 1 < j < N(zp), are finite rank operators, Bo(zo) is a Fredholm operator on H
and Bj(z9) € B(H), j € N.

Moreover, if (I — A(z)) is compact on H for all z € Q, then (I — A(2)71), z € Q\ D, and
(I — Bo(20)), 20 € D, are compact operators on H.

If A(z0)~! exists at some point zy € 2, then Q > A(2)~! is a meromorphic family of operators
with poles of finite rank.

Let the potential V(x) be a smooth real function on R™ such that V(—h2A + 1)~! is compact
and V extends analytically in [Im 6| < 8y, 6o > 0. It follows that V(e?x)(—A + 1)~! is a compact
operator-valued analytic function of @ in the strip |Im 6| < dp. Then Py = Uy PU; is an analytic
family of non-selfadjoint operators, where 6 runs in the strip |Im 0| < dp.

It is well known (see, e.g., the works of Messirdi [21,22]) that the resolvent operator R(z) =
(P —2)71, 2 € C\ R, admits an analytic extension in C* = {z € C: Im z > 0}, and under the
assumption that V (e?z) is analytic, we can extend R(z) to a meromorphic function in a larger domain,
the set of poles of this extension is precisely I'(P).

Effectively,

Py—z=—h?e A+ V(ex) — 2= [I+ V(e’x)(=h*e A - 2) " (=h%e A - 2).
But [+ V(e?z)(—h%e 2 A — 2)~1] is invertible for |Im z| — oo, since

lim  V(e?z)(—h%e A —2)~L =0 in B(L*(R")),

| Im z|—o00

and (—h%e 2?A — 2)71 € B(L}(R")) if z € C\ e 2R,
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Furthermore, for all ¢, € As, 6 € R and |Im z| > 1,

(R(2)p,¥) L2@ny = (Us R(2)p, Upp) L2(rn) = (Ro(2)Upp, Ugt) L2 (rn) s
where
Ro(2) =UsR(2)U; = (Py — 2) .
Let us first show that (Rg(2)Upw,Uq V) 12wn) has a meromorphic extension with respect to 6 € C, |0

small enough.

Lemma 3.1. For each ¢,v € As, the function 0 — (Rg(2)Ugp,Uz1)) 2(rn) defined for [Im z| > 1 is
holomoprhic on |Im 0| < 0.

Proof. If |Im z| > 1, then 2z € p(Py), therewith Upp, Uz € L*(R™), since ¢,¢ € As, so, 6 —
(Ro(2)Upp,Ugth) L2(rny is well-defined.
For 6 = a + i3, one has

1,0
2 (Rol oo U ) e *5(*4-1*)(39 Yoo Uz ) s
1 R -R Ry - R
_1 lim [ 0+ (2) = Ro(2) | . Roviny(2) 9(2)]%%?/{51/) .
2 h1,ha—0, hi,h2€R hy ha L2(R7)

But

Roin,(2) — Ro(z 1 _ _ 1 _ _
oem(2) = Ro(2) _ 1 gyt (B - ) ) = L (Bran —2) NPy — Popn)(Py — 2)
hl hl hl
1

= (Popyn, —2)7 " [ — (e720 — e 2OFhNR2N L (V(ePz) — V(P ha)) (P — 2)7 L
1

Since V is dilation-analytic, we have

iy Bo+m (2) — Ro(2)
h1—0 h1

= (Py—2)"" [% (e 2)h2A — a% (V(e"a))|(Py = 2) 7" in B(L*(R"))
with

[i (V(eex))} (Py—2)"' = ai (V(eex)(—hQA + 1)_1) ((—th +1)(Py — z)_l).

Oa o

We also have

hlzigo R0+ih2 ('2)2_ RG(Z) _ (PG o Z)_l [% (6—29)h2A o % (V(GQx))} (PG _ Z)—l in B(L2(Rn)),
and
[3 V()| (Py — )" = O V() (B2 4 1)) (A 1)(Py— )
B ¢ ~ 0B g '
Then
0 0 201 2 0
55 (R (Moo U ) 12wy = <RO(2) [@ (A = — (V(e"))| Ro(2)Ua, U w>L2(R”) =0,
since o . B 5 ) )
%(6 ) =0 and ﬁ(V(em))—O. O

Lemma 3.2. For each ¢, € As, the function z — (R(2)@,¥)r2®n), Im 2z > 0, admits a finitely
meromorphic continuation to the set {z € C: —26 <argz < T},
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Proof. Using Lemma 3.1 and the uniqueness of analytic continuation, we deduce for ¢, € As,
Im z>0and 0 <Im 6 < ¢ that

(R(2)p, V) L2mn) = (Ro(2)Uop, U V) 12(Rn).- (3.1)

In particular, since ocss(Pp) = e 2R, C {Im z < 0}, one obtains from the analytic Fredholm theo-
rem, Theorem 3.1, that Ry (z) and z — (Rg(2)Usp,Uz 1) 12(rn) are finitely meromorphic on C\e™ 2R,
Consequently, using (3.1), we immediately obtain that (R(z)y, )2 is finitely meromorphic on
C\ e 2R} and a fortiori in the complex band {z € C: —2§ < argz < Z}. O

Remark 3.2. If f and g are finitely meromorphic continuations of the function z — (R(2)®, %) 2(®n),
@, € As,ontheband {z € C: —26 < argz < T}, then f = g throughout {z € C: 2§ <argz <}
and f and g are meromorphic continuations of each other.

Let us now show that the discrete eigenvalues of Py can also be viewed as the poles of the finitely
meromorphic extension from {Im z > 0} of (Ry(2)Usp,Ug ) 12wy for all @, ¢ € Ajs.

Theorem 3.2. Let V be dilation-analytic in |0] < §. Then

odisc(Py(h)) = U {poles of z v+ (R(z)ga,w>Lz(Rn)} N {zE(C : —2Im f<argz< g},
0,1

F(P) = U Udisc(PH(h))'

Im 6>0, |0|<é

Proof. If the finitely meromorphic extension from {Im z > 0} of (R(2)p,%)r2®n), ¢,9 € Ajs, has a
pole at p, then there is a number N € N such that

f (2 — )N (R(2) ) p2gam dz £ 0,

~

where v is a simple closed oriented curve surrounding p and v C p(FPp).
By (3.1), we have

<Z{(z — )N Ry (2)Uygp dz,u9¢>m(w) #0.

However, since (Py — p)Rg(z) = I+ (z— p)Ry(2) and the identity operator I on L?(R") is holomorphic
on and inside 7,

FG- 0 Ral)d= (P - ) § Ro(2)d,

v v

<(P9 -pN fRe(Z)UW dZ,U91/1>

Y

~( fRoop @z, (P -9 Ugw) 0.

L?(R") L2 (R")

Therefore,
1
Iy = — — Pp)~tdz #0, 3.2
0= 5 o= Po) N £ (32)
¥

I1y is the spectral projector associated to Py and the interior of v, Iy is of finite rank, since Rp(z) is
finitely meromorphic.

Consequently, we deduce from (3.2) that there exists p € 04;s.(Pp) and p is inside 7. We necessarily
have p = p, since ~ is chosen sufficiently small in p(P).

Conversely, let p € 04i5.(Py). We denote by u € H?(R™) a normalized eigenstate of Py associated

to p, Ppu = pu. Then

(Hou, u) r2mny = HUH%%R") =1, <7{R9(z)udz7u> = —24m,
) L2(R)
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7 is the closed contour defined above in (3.2). Using density of Uy As in L2(R™), |Im 0] < § and |0)]
small enough (Proposition 3.1), we can find, for € > 0 sufficiently small, ¢, € A such that

||u — U9<p||L2(Rn) < e and Hu — U§7/1||L2(R") <E.

Moreover, since (Rp(z))se~ is a family of uniformly bounded operators on L*(R"), we see that

% <R9(2)U9<p,u§ ¢>L2(Rn) dz 7& 0.
5

But, since (Rg(2)Uyp,U7) 2(rn) is the meromorphic extension of (R(z)g, ) r2rn), we deduce that
(R(2)¢,v) 12 ®n) admits a pole inside v, this pole is necessarily p, since +y is chosen arbitrarily small. [

Corollary 3.1.

(1) If 61,02 € C are such that 0 < Im 61 < Im 0y, then ogisc(Po, (R)) C ogisc(Po, (R)).
(2) The definition of the resonances is independent of the dilation Uy and the particular choice of As.

Theorem 3.3.

(1) T'(P) is a discrete subset of C, located in the lower half-plane {Im z < 0}.

(2) For any resonance p € T'(P), there are two linear subspaces F, g and G, ¢ of L*(R™), 0 < Im 6 <
0 such that

Foo®Gppo = LQ(Rn)a
Py(F,g N H*(R™) C F,p, Py(Gpon H*R™)) C Gy,

(Pp—p) : Gpo N HA(R™) — L*(R™) is boundedly invertible operator, dim F, 9 < oo and the
restriction of (Py — p) to F, g is nilpotent. F, ¢ is called the space of resonant states of Py.

Proof. (1) By construction, I'(P) is discrete. Indeed, if p € I'(P), there exist # € C, 0 < Im 6 < 6,
and a neighborhood W of p such that

F(P) NW = Udisc(PO) NnWw.

Furthermore, for each ¢,v € As, z — (R(2)¢, %) 2 is holomorphic on {0 < argz < §} C
{20 < argz < T}, so, the meromorphic extension of (R(z)y,v)r2rn) is in fact holomorphic on
{z€C: 0<argz < T} This implies that

F(P)ﬂ{zE(C: O<argz<g}:®,

and
I'(P)c{zeC: Im 2 <0}.

(2) We denote by
1 _
Hpﬂ:% (Z*P@) 1dZ
¥

the spectral projection of Py associated to p and a simple closed curve + isolating p from the rest of the
spectrum of Py, with —26 < —2Im 6 < arg p. Since p € 04;sc(Ps), the multiplicity of the resonance p
is finite and is equal to the rank of II, g.

Then, if we set

F,o=ImIl, s and G, ¢ = kerll, o,

we easily obtain the stated properties. O



Semiclassical Resonances, Theory and Application to a General Diatomic Molecular Hamiltonian 49

3.4 Resonances via distortion analyticity

Here we define the resonances of P by using the analytic distortion. This approach to resonances was
initiated by Hunziker [13] and then followed by many others.

Let w : R™ — R™ be a smooth vector field such that w(z) = = outside a compact subset of R™. We
deduce the existence of a constant C' > 0 such that

lw(z) —w(y)| < Cle —y| for all x,y € R™ (3.3)
For p € R small enough, we define U/, : L?(R™) — L?(R™) as the unitary operator:

))|1/2

Uud(x) = | det(1 + pdw( ¢z + pw(z)),

and the distorted operator
P, =U,PU;",
defined on L?(R"™) with the domain H?(R"™).

As before, when P, can be extended to small enough complex values of 1 as an analytic family,
eigenvalues of P, that are located in the complex sector {Re z > 0, —2§ < argz < 0} are called the
resonances of P, and the set of resonances of P is I'(P).

Note that in case w(x) = 2 on R™, the distorsion is a dilation U, = Uy with ¢ =1 + p.

Definition 3.4. Let V : H*(R") — L?*(R"™) be a compact multiplication operator and V,,(z) =
UV (x)U; ', p € R small enough. V is called distortion-analytic if (V,,(z)(=h*A 4 1)) can be
extended to an analytic family of compact operators on L?(R") in the nelghborhood of 0 in C.

The following are typical examples of distortion-analytic potentials.
Example 3.2.

(1) Let V be a continuous function on R™ with compact support K = SuppV. Let K. = {« €
R™ : dist(z,K) < €}, € > 0 be fixed small enough, and dist(x, K) be the distance from z to
the compact subset K of R™. Consider w € C*°(R™,R") such that w = 0 on K.. Then V is
istortion-analytic.

Indeed, V,(z) = V() for all z € R™ and by using the Rellich-Kondrachov theorem, it is clear that
V is compact from H?(R") into L?(R").
N
(2) V(z)=>_ zfjcl is a potential energy in a field of N fixed nuclei {z1,...,zn}, z,21,...,2N €
j=1" "
R™ and a4, ...,ay are real constants.

In particular, we know that W are compact operators from H?(R™) into L?(R") (see [14]). Let

w be a smooth vector field on R™ such that w(z) = x for sufficiently large |z| and w(z;) = 0 for each
jed{l,...,N}L

The last condition on w states that the Coulomb singularities ﬁ
transformation © — « + pw(x). The transformed potential is then given by

are not displaced under the

« a; 1
Vi) = Via + o) = 3 L =37 7
g ;W*‘MW(@")—%’\ ;'x_xﬂ |1+M%|
where
‘ﬂ9444ﬁ<0 C >0,
|z — ]
and 1+ u% is analytic with respect u € C, |u| small enough.
So,
N
Va@)(—h?a+ 1) =3 2 L Cn2agn)
! SN+ )| e -

is an analytic family of compact operators on L?(R") in the neighborhood of 0 in C. Therefore, V is
distortion-analytic with respect to the vector field w.
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Nextm, we study the distorted operator
P, =U,PU, " = —hPU AU + V()

when V is w-distortion-analytic and w(z) = x for |z| large enough. We start with establishing the
following result on the operator U, AU, L

Proposition 3.2.

_ 1
UAUT ﬁAJrRM(:v,Dx%
where
Ru(anz) = Z aa(mnu)Dg
a€N" |a|<2

[e]
is a second order differential operator, where the coefficients aq(z, 1) € C§°(K), K is a compact subset
of R™; p v an(x, 1) is an analytic function with respect to p and

sup  |Dfan(z, 1) = O(|u|) for all « €N", |a| <2, peC,
BEN", xeR"™

|| small enough.

Proof. By (3.3), ||dw(z)|| < C as an operator on R”, then |J,(x)| > (1 — C|p)™ > 0 if p is small

enough, where J,(z) = det(1 + pdw(x)) is the Jacobian of the transformation F,(z) = = + pw(z).

Thus F),(z) is a C*-diffeomorphism of R™. Let G, = F;' = (Gp.1,...,G ) be the inverse of F,.
For x = (z1,...,2z,) € R" and f € C§°(R™), we have

32

U 5n U, f(z) = Uit [F(G () T ()]

of 8Gu,j - 0 _
uﬂaxl(; 5 (Cul@) (@) () + F(Gla)) 5 (7 (@)

n 2 ) n 2 .
| 3 G (Gule) 522 (o) T () 0) + Y- S (G T @1 )
k

22 0,0, o " "ow, 2o,
+ 22 2 (@uta) 2 () S (0) + G (a) Sy )]
- ; afj?xk () Tt () e +Z o azig’j (Fu(x))
r23 o ) Tt (Ful) aé];”ll (@) (o) + 1) 2 e (B ().

Let Ky be the closure of {z € R" : w(z) # 2} and K. = {z € R" : dist(x, Ky) < e} for € > 0 small
enough. Let

Ry(z,Dy) = U AU — (14 p)2A
In particular, since F,(z) = (1 + )z, Ju(z) = (1 4+ p)" and Gz = (1 + p) 'z for all z € R™\ K.,
one obtains

UAU () = UA[FI(L+ )" )1+ p 772
= U1+ p) 2 AN+ p) " )L+ p ™2 = (1 + @) A f(2).

Thus R, (z,D;) =0 on R"\ K.

Therefore, R, (x, D,) is a second order differential operator with smooth coefficients a, (x, 1) com-
pactly supported in R™, analytic in u, and it is easy to verify that for any o € N”, |a| < 2, one has
|D8ag(x, 1)| = O(|u|) uniformly. O
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Corollary 3.2. U,AU; " and

—h2 9
P, = WA —h*R,(z, D) + V()

are analytic families of operators on L*(R™) in some neighborhood of yu = 0.

Since U,, is unitary for p € R, P, has the same spectrum as P on the real line, but, for nonreal
i, the continuous part of the spectrum of P, is obtained from the one of P by some rotation in the
complex plane. Let us observe that R, (z, D,) is not necessarily A-compact, thus, in particular, the
Weyl perturbation theorem does not hold to determine the essential spectrum of P,,.

3.4.1 Essential spectrum of P,

We investigate now the essential spectrum oeqs(P,) of the distorted operator P,, this will be used
to construct the resonances of P. However, ocss(P,) cannot be described here using Weyl’s theorem
directly, since P, is not selfadjoint for ;1 € C small enough, with Im g > 0.

Remember that the distorted potential V,,(x) is a compact multiplication operator from H?(R™)
into L2(R"), u € C, |u| small enough. Furthermore, with the notation as in Proposition 3.2, we can
write

CLa<.'L‘, M)Dg = [aa(x, M)a Dg] + Dj o CLa<.'L‘, 1)

where the commutator [aq(z, 1), DZ] is a first order differential operator for @ € N", |a| = 2, and

Ru@. D)= Y aale))D2+ S aale,w)DS

aeN", |a|=2 aeN”, o<1

= Y (Dfoaalz.p)+ D Galz,p)DS,

aeN" |a|=2 a€ENn, |a|<1

o]
ao(x, 1) € C§°(K,) resulting from the sum of [aq(z, 1), D] for |a| = 2, and coefficients a, (2, 1) for
laf < 1.
As > Ga(x,n)DE is A-compact, it suffices to study the spectral behavior of operators

a€eN” |a|<1
Su(x, Dy) = Z (Dg o aa(z, 1))
a€eN" | |a|=2
and _
Ay =47+ S,(x,Dy,),
where A, = ﬁ A, u € C, |p] small enough.

Lemma 3.3. For all A € R, |A\| > 1, and p € C, |u| small enough, (i\) € p(ﬁﬂ).
(A

Proof. If ;1 € C is small enough and A € R, |[A| > 1, we have to prove that
invertible on L*(R") and (A, —i\)~! = O(J]A|7!) uniformly.
Indeed,

u — 1A) is boundedly

(A —iN) ' = /fA(t) dE,
R
where (E})cr is the spectral resolution of A (selfadjoint on L?(R™) with the domain H?(R")) and

falt) = (ﬁ —i/\)il.

Therefore,
I £xlloe = O(IN™Y) and )\lim (A, —i\)"' =0 uniformly.
— 00
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Moreover, let v € L*(R") and u = (A, — i)~ v, we then have
(A, —iNu=v and Au= (1+ p)?v +i\(1 + p)?u.

So,
[Aul| L2 @ny < |1+ pl?[loll2@ny + ML+ P lu]l L2@n) < CllollL2@ny,

since

C/
lullL2@ny < I vl L2®ny, C,C" > 0.
As S, (x, D) = O(|pu|), it follows that

S, (2, Dy)(A,, —i\) "t = O(|u|) uniformly on L?(R™) for |A|> 1.

Consequently,
1+ Su(z, Dy)(A, —iX) !
and B
(A, —iX) = [1+Su(z, Do) (A, —iN) (A, — i),
are the boundedly invertible operators for A € R, [A| > 1, and p € C, |u| small enough. O

Lemma 3.4. For all A\ € R, |[X\| > 1, and p € C, |u| small enough,

0o 0

(A, —iN) 0 T € B(H*(R"), L*(R™)), j,ke{l,...,n}.
J 7
Proof. From Lemma 3.3, we already have

(A, =N = (A — N1+ Su(@, Do) (A, —iN) 7Y ~' e B(LA(R"), H(R™))

and 3 8
O ! 2/mn :
9z, Dur (A, —iXN)" € B(L*(R")), j,ke{l,...,n}.
On the other hand
- o 9 .« - )
_a\)y1 =z a1 RN
Bu=iNt g = g B (B =i, 8%}, (3.4)
< ) < o o
-1 _ -1 . o -1
(B, =) ,—%} (B, —iN) (—axj (B = i) g (B =i )

~ on-1[ 9 % TR -
= (A, —iN) 1[@7%} (A, — N
Let us observe that %(ﬁu —i\) "t e B(LA(R"™)). [%, AH} is a second-order differential operator with
bounded coefficients, it is therefore continuous from H?(R") into L*(R"). Then (A, —i\)~! % €

B(L*(R")).
Similarly,
A, —in L0 o (A —m)—1+[(£ — i) o ]
a Ox; Oz Ox;0zy " a " Oxj0xyl’
9? <
A -1 L2 R™
5 B =N € BIE)
and ) X
0 ~ 0 ~ 1,%
_ -1 -1 -1
(B =N ] = B =i 5 B B =i
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where [%{;%, Eu] is a third-order differential operator with smooth coefficients and bounded deriva-
tives of any order. We set

92
aA = D;l ba ’ 9
bx]—axk “] aEN;a|<3 ©ba(@, 1)
then
N < N <
(A —iN) %W} — A=Y D2 oba(w ) (B —iN)
3k aeN™, |a|<2
+ > (A, =N DE] [DE (ba(z, ) (A, —iX)7H)].
a€N"| |a|=3, a=a'+8,
a'<a, |B|=1

From Lemma 3.3 and (3.4), we conclude that [(AN —i\)~! 872] € B(L*(R™)). Finally,

? 8%63%

~ o1 O 0 n n .
(A, — i) 1%6)—“68(112(11% ), LA(R™), j.ke€{l,...,n}. O
L Oz,

Moreover, using Lemma 3.3, (A, —i\)~' € B(L?(R™), H?(R™)), and from Proposition 3.2 and the
fact that Supp(a,) C K. for any a € N, |a] < 2, we also obtain that the coefficients a, (z, 1) are
bounded from H?(R") into Hj_(R™), where Hi (R") = {f € H*(R") : Supp(f) € K.}. As the

€

embedding from Hi (R") into L*(R™) is compact, we get the following result.

Lemma 3.5. For all A\ € R, [X\| > 1, and p € C, |u| small enough,
qaq (@, 1) (A, —iN) 7!, a €N, al <2,
1S a compact operator on LQ(R").

We will also need the spectral mapping theorem for the essential spectrum of any closed linear
operator with non-empty resolvent set, acting in a complex Hilbert space. We use the following
extension of Weyl’s theorem.

Lemma 3.6 (Weyl’s theorem). Let A be a closed linear operator acting in a Hilbert space H with
domain D(A) and let T' be A-relatively compact operator. If for every open connected component §2
of C\ 0ess(A), there is z € Q such that A+ T — z is boundedly invertible from D(A) into H, then
Uess(A + T) = O'ess(A)-

Proposition 3.3. For all A € R, |\| > 1, and p € C, |u| small enough,
Tess (B —iN) 1) = Gess (A —iX) 7).
Proof. From the three preceding lemmas, we see that
By =iV = (A —iN) = (A, —iN) S, Do)(A, — iA) !
=— Y (A —iNTH(DYoaa(m ) (A, —iN)!

aeN™, |a|=2

is a compact operator on L?(R").

One can then apply Weyl’s theorem if QN p((ﬁﬂ —i\)71) # @, for any connected component €2
of the resolvent set p((A, —i\)™1).

Using the classical spectral mapping theorem, we have

o((A, —iNY) = {(ﬁ - M)fl te R+},
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hence p((A, —i\)™!) is a connected subset of C.
Let z € C*, z = -+, |Im 2’| > 1, then

N0
(A, —iXN) " =2l = —(A, —iN) N2 —iN)HA, - 2)
= (A, —iNTHE —iNTHA, = [+ (A, = 2) S, (2, D)),
where I + (A, — 2')71S,(x, D,) is boundedly invertible on L?(R™), for |u| small enough, with
(Bp =iV =2) " = =(Z' =N+ (A = 2) 7 Su(@, Da)] (A = 2) (A — id) € BLA(R™)).
Thus, if 2/ =N, X > 1, N # )\,

2= oy € B =N N a8 = i)

Now, by Weyl’s theorem, we get the result. O

Lemma 3.7 (Spectral mapping theorem). Let A be a closed linear operator on a Hilbert space H and
let z € p(A). Then

{t i i te a*(A)} Co.((A-2)hcC { tte a*(A)} U{0}, 0. €{0,0css,0disc}-

t—=z

Proof. First, we prove that

{ 1 cte O’(A)} co((A-2)c {%z : tGU(A)}U{O}. (3.5)

t—z t

Indeed, let 2’ € o((A —2)71) \ {0}. Using the spectral mapping theorem for unbounded closed linear
operators with non-empty resolvent [7], we have 2’ = (t — 2)~! with ¢t € o(A) \ {z}. Moreover,

(A=2)t—(s—2) ' =(A-2)"Ys—2)"1(s— A) forall scC.

Thus (s — A) is boundedly invertible if and only if so is (A — 2z) ™! — (s — 2) 7!, this gives (3.5).
We also show that

Gess((A—2)71) C {

Using (3.5), it suffices to prove

tte JeSS(A)} U {0}.

t—2z

{i tte Udisc(A)} = UdiSC((A - z)_l)‘

Let t € 04isc(A), then the corresponding Riesz projection

P(A) = ! j{(zfA)fldz

211
T

has finite rank, where I' is a contour that enlaces only ¢ as element of the spectrum of A. Notice that
= {Z,l_z : 2/ € T'} is a closed contour, which encloses (t — z)~! and lies entirely within the resolvent

set p((A — 2z)~1) of the resolvent operator (A — 2)~!, and define

H=— ¢(s— (A—zI) ") tds.

Then
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(A —2')~! is a meromorphic function with Laurent series

(A-2) "= 3 A =),

j=—N
where the coefficients A_p, ..., A_1 are bounded, finite rank operators.
Then,
~ 1
IT = A—zI)A_
T (A—2A
and )
A1 =——PF(A
1= “gm D),

that is, II is of finite rank.
Finally, it remains to show

{ L e aess(A)} C Gess (A — 2)71).

t—z

By taking complements in o(A), it suffices to verify that

oaise((A—2)"1) C {% 1 te O’disc(A)}.

Let tg € 0gisc((A—2)71) and T'g = dDy, where Dy is a closed disk centered at ty and DoNo(A) =
{to}, to # 0 (if ty = 0, there exists ug # 0 in the domain of A such that (A — z) lug = 0 and hence
ug = 0, which is impossible).

Let I" = {1 + 2z : t' € I'o}, then I" is a closed contour which encloses % + z and lies entirely
within p((A — 2I)~1!). We deduce from (3.5) that ﬁ is an isolated point of the spectrum o(A) of
A. Furthermore,

j{(th)*ldt: 7{ ((ﬁl +z) —A>_1(— fi;) - %(Az)ljf((Az)l —v) "t

then 1f(t — A)~1dt is of finite rank and (% + 2) € ogisc(A). O

Now we use Lemma 3.7 to deduce the following result.

Corollary 3.3. _
Oess(Ap) = 0ess (D), p€C, || small enough.

Proof. From Proposition 3.3 and Lemma 3.7, we know that if ¢ € o.55(A,,), then ﬁ € Tess (A —

iA)7!) for A € R, [A| > 1, and p € C, |u| small enough. So, t € 0ess(A,).
The reverse inclusion follows in the same way. O

Thanks to these results, Proposition 3.2, Lemmas 3.3-3.6, Proposition 3.3, Lemma 3.7 and Corol-
lary 3.3; we are now able to show the following theorem concerning the location of essential spectrum
of P,(h).

Theorem 3.4. For u € C sufficiently small, we have
Oess(Pu) = {z € C: arg(z) = —2arg(l +p)}.
Proof.

O'ess(Pp,) = O'ess(*hZBp‘) = m O'ess(*hQAx)
1

ZWR+:{Z€C: arg(z):—Qarg(l-}M}. O
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In the same way as in the previous section, the resonances of P can be identified with the poles
of the meromorphic extensions of z — (P — z) !¢, ) 2(gn) for Im z > 0 and ¢, € As, § > 0 small
enough.

Theorem 3.5.

(1) For each ¢, € As, the function z — ((P — z)’1<p71/1>L2(Rn), Im z > 0, admits a finitely
meromorphic continuation to the set {z € C: =26 <argz < T} and

U {poles of z+ (R(z)g@,w>Lz(Rn)} N {z eC: 2arg(l+p) <argz < g}

P, hEAs
= Jdisc(Pu)v we C? Im > 0, |/~L‘ < 57
F(;(P) = U Udisc(P,u) .
O<arg(l4+p)<d

p€eC, Im pu>0, |p| small enough

(2) If 0 < arg(l+ p1) < arg(l + po2), then

Odisc(Puy) C 0dise(Puy) € {z € C: Im 2 < 0}.

(3) For every p € T's(P), there are two P,-invariant complementary subspaces F,, and G, , of
L2(R™) such that

(P, —p): G, N H*(R™) — L*(R™) is boundedly invertible,
dim F, , < co and (Py—p): F,, N H*R") — L*(R™) is nilpotent.

Since the meromorphic extension of (P—z) ¢, V) 2wny, 9,0 € As, is unique, the poles of these
functions are independent of the dilation- or of the distortion-analytic, then the two definitions
of the resonances of the operator P mecessarily coincide. So, if V' is both dilation-analytic and
distortion-analytic, then I'gilation(p) = [ distortion(py,

Theorem 3.6 ([10]). When their domain of validity overlap, these different definitions of resonance
(as well as more sophisticated ones) coincide.

4 Resonances theory for P(h) = —h*A, — A, + V(z,y)

In general, resonances can be defined by dilation-analytic (see Aguilar—Combes [1]) or distortion-
analytic (see Hunziker [13]) and by meromorphic continuation of the resolvent or scattering matrix.
We introduce here the resonances for P(h), with Coulomb-type potentials (1.3), as the discrete eigen-
values of the non-selfadjoint operators P,(h) obtained from the Schrodinger operator P(h) by analytic
distortion.

Let x € C*°(R4,R) such that x(¢) = 1 for ¢ > 1 large enough, and x(¢) =0 when t < R, R >0
large enough. Let w : R? — R? be a smooth vector field defined by w(z) = x(|z|)z.

So,

w(xz)=0 for|z| < R,
x for|z| > 1, (4.1)

w(Rz) = Rw(x) for any rotation R on R3.

w(x) =

Let us consider the analytic distortion operator U, defined on C§° (R2 x R‘;p) for u € R small enough by

U f(2,y) = Ju(z,y) fz+ pw(@), yr + pwy), . Y + pwo(yp)), 2 €R? y=(y1,...,y,) € R,

Ju(z,y) = ’ det(1 + pdw(x)) H det(1 + udw(yj))‘l/2
j=1
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Note that J,(z,y) # 0 for all (z,y) € R® x R® and thus the map z — F,(z,y) = (v + pw(z),y1 +

Hw(y1), .-« Yp + pw(yp)) is invertible for real p small enough, with inverse transformation G,, = Fﬂ_l.
Indeed, since sup |dw(X)| < C, C > 0, we have |J,(z,y)| > (1 — C|u|)>T3P > 0 if u is small
XER3

enough. Therefore, U, can be extended to a unitary operator on L*(R3 x R3P). Let P, (h) be the
family of distorted Hamiltonians:

Pu(h) =U,P(WU, " = =PPUN U+ UQ()U, Y, pER,

with domain H?(R3 x R?"); P, (h) will be used to construct the resonances.
We know from Proposition 3.2 that U, AU, l'is an analytic family in some neighbourhood of
=0,
Pu(h) = =R°UN U + Qu(x),

where for x # 0 we have set
Qu(x) = UMQ('T)U;Il = _MMAyuu_l + ‘/;L('ra y)7
Vi(a,y) = V(2 + pw(z), g1+ po(yr), - yp + pw(yp))

(U,, should be considered as acting on L*(R3?) if x is fixed).
The distorted potential V,, has the form

AT L — o ] 1 L , )
O o @) &\ — ] |1+u%l s 2l |14 ===
Cik 1
+y W) =wye) |

#k|yj—yk| 11+ p =] \

Note that by our choice of w odd, the singularities of the potential are not changed under the action
of the operator U, on L*(R3 x R3?).

Since
X)—w(Y
sup wX) —w() <C, C>0,
xyeri\{oy | [X =Y
we have that
1 1 1
|2+ pw(@)| " |1 4 g =@ and 11+ p “) =)
H =y =] R T

are analytic in p for |u| small enough. So, Re Q,(x) > 0, Q.(z) and P,(h) extend for smallenough
complex values of p to analytic families.

o(Py(h)) = o(P(h)) for pn € R, but, for nonreal p1, oess(Py(h)) is obtained from oess(P(h)) by
some rotation in the complex plane. By definition, the resonances of P(h) are the discrete eigenvalues
of P, (h) which are located between oss(P(h)) and oess(Py(h)).

Definition 4.1. We say that a complex number p is a resonance of P(h) if Re p > infoess(P(h)) and
there exists p€C small enough, Im p>0, such that p€ og4isc(Pu(h)). We denote by

F(h) = U Udisc(Pu(h))

Im p>0, |p| small enough
the set of resonances of P(h).

It is well known that when Im p > 0, the discrete spectrum of P, (h) satisfies 0g;sc(Pu(h)) C {z €
C: Im z <0} (see [22]), we consider here just the resonances of P(h) which are near the real axis.

Theorem 4.1 (Absence of resonances). We have put virial conditions on A\ (x) and A3(z) such that
the operators —h?>A,+ A1 (x) and —h?A+ X3(z) do not admit resonance near the energy level E.
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Proof. Set p, ; = uuﬁju;l with p; = —h2A,+ \;(z), j € {1,3}, U, acts only with respect to the
variable z, and consider x, € C§°(R?), x, € C*°(R?) such that
x, =1 on {|z]| <R;}, 0<R< Ry,
Suppx, C {|z| > R1}, w(z) == on |z|> Ry,
{zeR?: x,(2) =1} U{z eR®: x,(z) =1} =R?,
where R is given in (4.1) such as the vector field w = 0 for |z| < R. A1(z) and A3(z) can be reindexed
in such a way that they depend analytically on z # 0, and Aj(z + pw(x)) — Aj(z) = O(|p|) uniformly

with respect to z € R\ {0} and p € C, |u| small enough, j € {1,3} (see [17]).
For u € H?(R?) and j € {1, 3}, we have

<X1 (5] - E)U7X1U>L2(R3) = <(§j - E)X1U7X1U>L2(R3) + <[X17§j]u7X1u>L2(R3)a
[Xnﬁj}u = h2[A7X1} = hQ(AX1) + 2h2(VX1> : V?

then
|(x, (B; — E)u, x,u) (R9) | > ?|V (w72 ms)
+CjlIx, ull72 sy — Cy (B2 Vul| L2s) + WY |lul|2esy)?, Cry > 0.
Furthermore,
Pui=Pi= D, lulaa(@ phleDg
a€N? 0] <2

with aq,; = O(1), uniformly with respect to x and p, so,

(X g = BYus Xy ) oy = (6 By = B)Yus Xy ) ooy F 11l D (X ay (2, )P DY X 1) o )
a€eN3, |o|<2

and

Z <X1aa7j(xaN)h‘ang»X1u>L2(R3)

a€N3, |a|<2

= O(RIV () ey + I, s ay + BVl sy + 12l ).
j € {1,3}. Thus for u small enough,

. h?
‘<X1 (pu,j - E)U7X1u>L2(R3)’ > 7 Ilv(Xlu)||%2(R3)
2 .
+ O{,jHX1U||2L2(R3) -1, (h3/2”vu”L2(R3) + hl/QHUHL?(RS)) , C1; >0, je{1,3}

On the other hand, from assumption (1.7) we have
0
o (4w ((L+ wa) = B)), g =204(2) — B) + 2 VA;(2) < =C; <0

and
[T ((1+ p)2(N((1+ p)x) = B))| > Cj|Tm p| + O(|pf*) > jllmm J€{1,3}

Since w(x) = z on Supp x,, for || small enough and u € H?(R?), one has

~ C; )
|Im <(1 =+ N)2(pu,j - E)X2u7X2u>L2(R3)| > ?J |Im M| ”XQUH%Z(H@)? Cj > O’ J € {173}'
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Moreover,
Re <(1 + /‘)2(5;1«,j - E)quv X2u>L2(R3)
= P2V (w122 (o) + Re ((1+ 1)\ (1 + 1)2) = E)Xo, Xo1) o sy
and

RV OGwlI72@sy — DillxaullFamey < Re (1 + 1) (Buy — B)Xats Xou) 12 3)
< PVl 72msy + Dillxsullizgsy, D; >0, j€{1,3}.

Then,
~ 2
|<(1 + M)Q(pﬂaj - E)X2u7X2u>L2(]R3)’
2 2 2 2 % 2 4
> (P[IV () F2 ey — Dillxaull7zs))” + - 1T 1P DGl e ey
1
2 - |[Im 2 (R IV 0wl 72 @ey + Xl Z2Rs))s Ej >0,
J
and
~ 1
‘<X2 (pj - E)U,X2U>L2(R3){ > F |Im M‘(hQHV(XQU’)”%?(RE‘) + HX2U||%2(R3))
J

— (B2 Vul| g2y + B2 (|ull p2@), Fj >0, j € {1,3}.

As a consequence, for h > 0 and p € C small enough, we obtain

‘<X1 (5/1«;3' - E)U7X1U>L2(R3)’ + ‘<X2 (ﬁlhj - E)U,X2U>L2(R3)‘

2
> G%] | Im M|(kz_1h2||v(xku)%2(n@) + ||Xku||%2(R3)) — G, (B3| Vul| p2(msy + M2 ||ul| 2 (rs))?
1 2 2
> E | Im iu’|<;h2|kau||%2(R3) + HXWH%%R%) - Hj(hS/QHVUHLQ(W) + hl/zHUHL%RS)) )
G, H; >0, je{1,3}.
Since

X ull L2 sy + IxoullL2®sy > llullLz®s),

we also have

[ (g — E)u’X1U>L2(]R3)‘ + ’<X2 (Puj — Eu, X2u>L2(R3)’

1 2
=T [ Tm ] (B2 V72 sy + [l 2 gsy) — Hy (0% Vull 2@s) + b [l 2 sy )
J
1 .
> — [ Tm gl (B?(|Vuul|72 gy + llullZogsy), J5 >0, j€{1,3}.
J

Therefore,

1%, Pug = E)ullz2@s)lIx, wll L2s) + X (g — E)ull ey Ixa ull L2 o)

1
> = [T pl (B[ Vul 2 s + llull72es)),
J

using the fact that
Ixcullz2re) < lull2ee), k€{1,2},
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for h < |Im pul, we obtain
- 1
| (Pp.j — E)ullr2(msy > 7 | Im gl [|u| g2 (rs)
J
and 1
| (Pp.j — 2)ull2wsy > 7 | Tm gl [|u| g2 (rs)
J

for z € C such that |z — E| < |Im pl, j € {1,3}.
This proves that (p, ; — E) is invertible with bounded inverse satisfying

_ _ J; .
(B — 2) lBrewe), m2re)) < m, J€{1,3}. O

5 Reduction of P,(h)

It is shown in [17] that, in the Born-Oppenheimer approximation, the study of P(h) can be reduced
to the one of a finite matrix of regular semiclassical pseudodifferential operators on the base space
R3. This reduction can be obtained, without modifying the distorded Hamiltonian near {0}, following
ideas from [20].

For x # 0, we set

Qulw) = Qula) = s
and
Cjk
Q) = Qo(x +Z(|yj_x| |yj+x|) Zly]—yk\

We need to recall some properties about the operators @M(a:)
For x € R3, let y(x) be a continuous family of simple loops of C enclosing {\1(z), A2(x), Az(z)}
and having the rest of o(Q(x)) in its exterior. By the gap condition (1.1), we may assume that

4]

min dist(r(Q(@)), () > § > 0.

Therefore, y(z) can be taken in a fixed compact set of C (see [17, Lemma 2.1]).
In particular, for all x € R3 and z € y(x),

(2= Q(2))™" € B(L*(R), H*(R*))

and

[\

H(Z - Q(x))_lHB(LZ(]RSP)) < g
Proposition 5.1 ([17]).

(1) (Q(z) + )L emists for t € Ry large enough independently of = and (—A + t)(Q(x) + )~ is
uniformly bounded.

(2) For any j,k € {1,...,p}, j #k, a € N3 |a| < 2, the operators

(= Q@)™ (= Q)" and 9*(z = Q(x))™"

ly; + x| ly; — Ykl

are uniformly bounded on L*(R?P) as x € R® and z € vy(x).

(3) If u € C is small enough, then for any x € R® and 2 € y(x), the operator (z — @#(x))*l exists
and

(2= Qu(@)™ = (= Q(z)) "t = O(|ul) uniformiy.
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Moreover, one can easily check that A;(z), A2(z), As(z) depend on |z| only, and can be reindexed
in such a way that each of them depends analytically on « # 0 and A;(z + pw(z)) — A;j(z) = O(|p))
uniformly with respect to 2 and p € C, |u| small enough, j € {1,2,3}.

We can now define, for p complex small enough, the spectral projectors associated to @#(x) and
the loops v(z),

1 ) —1
I, (z) = i (2 = Qu(z))
v(z)
IT,(z) is of rank 3, it helps us to construct the Grushin problem associated to P,(h). Furthermore,
under the previous assumptions, we can use the constructions made in [17] and obtain an orthonormal
basis {v1 (), va u(x), v3 4 (x)} of Im I, (), depending analytically on p small enough, and normalized
in L?(R") by
<U7€7M('T)7vl,ﬁ(m)>L2(R§p) = O.1-

So,

3
Z (u, vz LQ(Rap)Uk#( z), ue L*(R3 xR%), zcR3.
k=1
Using Proposition 5.1, and (1.1), one can easily prove that
N N N 1 -~
Re (I, (2)(Pu(h) = ) (@)u, O (@)u) > = [T, (@)l

where II u(x) = 1—II,(z). Thus the operator Il . (@)(P,(h) — z) is invertible on {u € H?(R3 x R?) :
I, (z)u = u} and its inverse is bounded, denoted by (P (h) — )_1 for z € C close enough to E.
Observe that we can apply Theorem 2.1 of [20] w1th —h2 U AU, Qu(T),
Pyu(h) = —RPUN U + Qu(a:),
the two open subsets Wy = {|z| < 260} and W7 = {|z| > o} and II,(z) with 0 < 6 <r; <7y < do,
Wo UW; =R3,
Re Q. (z) > E + 6y, p small enough.

Let ©o, @1, 0,101 € C(R3,[0,1]) be cut-off functions such that

Supp ¢; U Suppyp; C Wy, j € {0,1},
A+ =1 R,
;=1 on Suppy;, j € {0,1}.

By construction, one has

Qu(x), I, (z)] =0 everywhere, (5.1)
Re P, o(h) > E+do, with P,o(h) = P.(h) + (E + do + C)(1 — vo(x)),

Re 11, (z) (P,L,l(h) _E- %)ﬁu(x) >0

with
Pua(h) = =RPUNUT + Q) (x) 4 (B + 80) (1 — 1 ().
Thus, for z in a small enough complex neighborhood of J, both P, (k) — z and the restriction of

ﬁu(a:)PH’l(h)ﬁM(a:) — z to the range of ﬁu(x) are invertible, with bounded inverse.
Our first main result is the following

Theorem 5.1. For h > 0 small enough and z in a small enough complex neighborhood of J =]—o0, E],
we have z € T'(h) if and only if there exists 1 € C small enough, Im 1 > 0, such that 0 € oaisc(E, *(2)),
where

B (2) = (@) (2 = Bu(h))Iu () + O(h?).
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Proof. We consider the Grushin problems that will lead to the Feshbach reduction. For z € C near
J, define the operators

Puh)y—z I
Pu(z) = < ‘L( ) ) : H2(R3 x R3P) @ Im 11, (z) — L*(R3 x R%) @ Im 11, ()
and

pose = (MY oy (5.2
" ﬁu(x) 0’ o .

Thanks to (5.1), the operator P, ;(z) is invertible and its inverse is given by

FE,i(z Et (2
Pm}@):( w2 Bl >>, je{0,1}

where
Euo(2) = T,(2) (Puo(h) — )7L, (x),
By (2) = (@) (@) (Pua (h) = 2)u(2)) T, (),
E,tj(z) = (1 - Eu;(z)My;), E_J(Z) =1L (2)(1 + My B, ;(2)),
E, 1 (2) = Uu(2) (2 = Puj(h) = My ;B j(2) M),
My,; = [Puyj(h)vnu(xﬂ
Let
Fu(2) = 0oPyo(h)po + 1P 1(h)er.
Then
Fule) = <H (I)gﬁ?’ (z)) I (I)(ZI PY/E;)(Z) Y, (Z)))
Iz 1,1 iz Iz 2
with
Gu(2) = poEu0(2)po + p1E,1(2)¢1,
Y1(2) = poBuo(2) Muopo + 1Eu,1(2) My101,
Y 1(2) = woMu 0B, 0(2)p0 + 1M1 By (2)en,
Y,2(2) = oMy 0B, 0(2) My 000 + 1M1 By i (2) My, 11
So,

Gui(z) I
Toj = [ = PPULU T p5], j€{0,1},
Y, (2) = 00Euo(2)To + 91Eu1(2)Tun,  Yi(2) = TuoEuo(2)po + T Eui(2)er,
Gpui(2) = 1L (2)My0 — Yy 3(2) + (7)Y, 4,
Y, 3(2) = woM,u0EL0(2)Tho+ o1 Mu1Eu1(2)Ta,
Y4 = oM, 000+ 1My 101,

mema = (1a e ).,

since

®o [Pu(h),Hu(x)} = oM, 0, P1 [Pu(h),Hu(ac)} =p1 My 1,

G, (2),(x) =0, Yli,l(z)l_[”(x) =0 and YHAﬁ#(x) =11,(2)Y, 4.
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Note that Y, (z) and Y/(z) are the bounded operators and they will actually be very small
V() oy < 1 and (V22| pogury < 1,

then for z in a small enough complex neighborhood of J and p € C sufficiently small, I +Y},(z) and
I +Y)(z) are the boundedly invertible operators on L*(R3P).

Consequently,

I+Y,(2) 0\ ' - (I+ Y, (2))"! 0 .
< > f#( ) - (—Gu,l(z)(l—&-YM(z))l I) ‘7:#( )
(I +Yu(2)" (I = Yyua(2))

GMJ(Z) I
(I +Y,(2)) " Gu(2)
2))HI = Yyua(2) }

= | ] G +Yu(2) 7' Gu(2) | | —Gra(2)I +Yu(
L (2) (L + Y 1(2)) L (2) (2 = Pu(h) = Yy2(2))

is a left-inverse for P, (z).
We also have

I+Y'(2) Gua(z

PuaR) = (1T e,

— TMOE/%O('Z)MH,OQOO — TuylEml(Z)MuJ‘Pl — YHAH“(I'),

Gp2(2) = My i
> — Fu(2) <(I+Y,6(Z)) —(I+Y:(2)) GM,Q(Z))

I+Y,(2) Gua(?)

f“(z)< 0 I I

is a right-inverse for P, (z).
Thus P, (z) is invertible with the inverse given by

(5.3)

7= (50 50)
Bu(2) = (I +Yu(2)) " Gu(2),

Ef(2) = (I +Yu(2) " (I = Yya(2)),
E;(Z) u( )(1+ Y/ 1(2)) — Gu,l(z)(l + Yu(z))_lGu(Z)a

Bt (2) = Wu(2) (2 = Pu(h) = Yy 2(2) = G (2) (I + You(2))"HI = Yy (2)).

Then
E;+(Z) =, (z)(z — Pu(h))(z) + Au(z),
Au(2) = 1 (2)Y,0(2) = Gua(2)( +Yu(2)) 7 (1 = Vi (2))
=~ (2)Yu2(2) — [ = (@) Mo — Yiu3(2) + Hu(m)YuA] I+ Yu(z))_l(l = Yu1(2))
( DI +Y,(2)) 7 (1= Y1(2) ().

If H5(R?, -), s € R, is equipped with the semiclassical norm

Julle = 12200+ 1ePyr2a ()|

?

L2

it is clear that
=13 12/m3 13 723 .
O@1) : H (R, L*(Ry")) — H (R, L*(R}?)), j € {0,1} (5.4)

By j(2) =

and thus
RS, LA(RYP)) — HY (R, L*(R)P)).

Y, (2);Y,(2) = O(h): H
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Moreover, since —hQL{NAIZ/IM_l is a differential operator of degree 2 with respect to x and Q,(z)II,(x) =
IT,(x)Q,(z) everywhere, one has

M,.; = O(h): L*(R3, L*(R}?)) — H'(R;, L*(R}?)), (5.5)
My ; = O(h) : Hl(Ri7L2(R§p)) - L2(R27L2(R§p))v JE {07 1}7

we also have

Y, ;(z) = O(h*), j €{2,3} uniformly.

Finally, using the fact that
I, ()M, oI, () =0 and II,(2)Y, 411, (z) =0,

we deduce that A, (z) = O(h?) uniformly.
The spectral reduction of P,(h) comes from the following two series of algebraic identities:

(Bu(h) — 2)u = v <= P, (2)(u® 0) = (v @ IL, (¢)u)

. _ Ep(2)o + Ef (L ()u = u,
= P, (@) (vellu(z)u) = (ud0) {E;(Z)U + E;Jr(z)Hu(ac)u —0 (5.6)
and
B ()f =g= P (1)0a f) = (Ef(2)f & g)
_ (Pu(h) = 2)E (2)f +9 =0,
= PUBH) @ 9) = 08 f) = {Hu@)E: e (.7
If z ¢ o(P,(h)), from (5.7) we obtain the following equivalence:
E;+(Z)f =g f= _Hu(x)(Pu(h) - 3)7197
thus 0 ¢ o(E, " (2)) and
E; ()7 = () (Pu(h) — 2) 7
Conversely, if 0 ¢ o(E, *(2)), then (5.6) gives the following equivalence:
e M (@)u = —E; 4 ()7 B (2)v,
(Bulh) = 2) = {u =E.(z)v— Ef (2)E T (2) 7 E,; (2)v.
Therefore, z € o(P,(h)) and
(Pu(h) = 2)7" = Eu(2) — B (1) B (2) 7 B (). O

6 A smooth reduction of P,(h)

It is shown in [17] that, modulo change of variables, the use of the Feshbach method in the Coulombian
case is still possible and one can reduce the problem to a finite matrix of regular pseudodifferential
operators. The main idea is to consider z-dependent changes in the y-variables that will localize the
singularities, regularize ), (x) and permit an adaptable semiclassical pseudodifferential calculus with
operator-valued symbols. The constructions made in [17, Proposition 5.1] show that there are three
functions vy, (), ve, ,(7),v3 ,(z) in CO(R3, H?(R3)) depending analytically on p € C small enough
such that (vkv#(:c),vlﬁ(x)hzmzp) = k1, {viu(x),v2,,(z),v3,(x)} is a basis of Im II,(z) if z € W,
vk, u(7) € C(Wo, HA(R?P)), Qu(z)vk,u(z) = A(z + pw(z)) vk, u(2), k € {1,2,3} for |z| large enough,
and for j € {0,...,L}, k € {1,2,3}, U;(z)vy . (x) € C° (2, H*(R?)), where (;)o<;<z is a finite
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family of open subsets in R3, Qo C {17 = 0}, U Q; =R3, and (U;)o<;<z is a family of unitary oper-

ators defined on L?(Q;, H?(R?)) with Uy = I U (—h2A,)U -_ isa semiclassical differential operator
with operator-valued symbol and U;Q,,(z )77/11Uj_1, U;j(—A, + 1) L e 0=(Q;, B(H?(R?P), L?(R%7))).
Cp° denotes the space of C*° functions whose derivatlves of any order are uniformly bounded.

Let TI,, () be defined on L?(R? x R3) by

3
Z w, Vj 7 ( Lz(]Rsp)’Uj u(z), R
j=1
Thus T, (z) = I,(x) on Wy and Re Q,(x) > E + & for u € C small enough and = € Wy \ {0},
dp > 01 (07 is chosen small enough in the definition of Wy). So, the operator ﬁ# ()(Pu(h) — z)ﬁu(x)
is invertible with f[u(;z:) =1- ﬁu(:z:)
Consider now the following operators:

3

R, : PL’(R?) —» L*(R? x R%),
1

u” = (up,uy,uy ) = Ryju” E ukvku

and

Ry =(R,)",
3
R} L*(R® x R*) —» P L*(R?),
1

U — R:u = ((u, Ul,ﬁ($)>L2(R2P)7 <U, Ug,ﬁ(l‘)>L2(R2p), <u, U3,ﬁ(£)>L2(R2”))'
We immediately observe that

RfTL,(z) =, (2)R} = R,
RiR, =1,
R, R} =1I,(x).

- 3
So, R;f is an isomorphism from Im II,,(z) to @ L*(R?) with inverse R, and R} sends H*(R* x R??)
1
3
into @ H?(R3?).
1

In this case, the Grushin operator P,(z) defined in (5.2) can be expressed as
_ +R- _ ~
o= (i )= R) (4 )6 )
et (2 i (Z

Since (é RO+> and (é R0_> are invertible operators, we deduce that the study of P, (2) is equivalent
w (0
P#(h) -z R; f H2(R3 xR3P 3 L2(R3 L2(R3 x R3P 2 H2(R3
R Q) from AR XE) 6 (D L2(RY) to LR <R (D HA(RY),
for z in a small enough complex neighborhood of J and p € C small enough. _
As a direct consequence of Theorem 5.1, we deduce that, for i small enough, P, (z) is invertible

to that of ﬁﬂ(z) =

and its inverse is given by (5.3), furthermore, the spectral study of the operator 75“(7;) is reduced to
that of 3 x 3-matrices of operators F,(z) = z — E,; " (2) acting on the variable = such that

z €(h) <= Jp € C small enough, Im >0 and z € Udisc(ﬁu(z))
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with
3 3
B, (2) = R} (z— Pu(h) + Au(2)) R, - @ H*(R®) - @ L*(R?),
1 1

Au(2) = =Yua(2) + (Mo + Yas(2) = YVua) (I + Yu(2)) 71 = Yy (2)),
3 3

Fu(2) = z— E; "(2) = R (Pu(h) — Au(2))R;, : @D H*(R®) - @D L*(R®).
1 1

6.1 Agmon-type estimates for P,(h)

Now, it remains to prove that F 1 (2) becomes a family of 3 x 3-matrices of pseudodifferential operators
on R, analytic with respect to u € C small enough. We use the main idea of [20], considering the ef-
fective Hamiltonian ﬁu(z) as the sum of a semiclassical pseudodifferential operator and a semibounded
operator localized near the origin.

We have just established that the study of the operator P,(h) is reduced to that of the Feshbach

operator f'u(z) Using (5.1), we have
Pu(h) = Pua(h) + (Qu(x) — E = 00) (1 — 1 (2)) o (),
Fu(2) = Rf Pua(WR; + R [(Qui@) = E = 00)(1 v (2)o(a) — A,u(2)] By

In particular, R:[(P,L,l(h))R; is a matrix of smooth pseudodifferential operators on R? depending

analytically on p, since P, i(h) is a twisted pseudodifferential operator associated to the family
(,Uj)o<j<r (see [15] and [19]). Moreover, its symbol is a second-order polynomial with respect
to &, and its principal symbol is of the form

(T + ptdeo()) ™€) I + Mu(w),
where M, (x) is the matrix
Mu(z) = Ry [Qu(x)¢r(2) + (B + d0) (1 — ()] Ry,

If z € R\ Wy, ¢1(z) = 1 and the eigenvalues of M, (z) are those of Qu(a:)ﬁu(x), so, these are
Ar(x + pw(x)), Ae2(x + pw(z)) and Az(z + pw(x)).
If 2 € Wy, Re Qu(x) > E + 69 and Re M, (z) > E + Jy for p complex small enough.
Now let ¢ € C°(R3,R) satisfying
Ve(a)]? < 0(z, 2),

6(x,z) = min {E + dp — Re z; ian(Re ﬁu(x)(Qu(z) — z)ﬁ“(x))} -5

Since R (Qu(x) — E — 80)(1 — 1 (2))¢o(x)R, , R} and R, commute with e#(®*)/" we have

oo

ew(z)/hﬁu(z)e—ﬂr)/h — R;:e*”(z)/hPM,l(h)e‘“”(m)/hR;
+ R (Qu(x) — E — 60)(1 — ¢1(2)) Ry o (x) — e? /M A, (2)e # /MR

e*"(w)/hR;fPM,l(h)R; e~ ?(@)/h i a pseudodifferential operator on R® with the principal symbol
(( + ! dw(2)) "M (€ + V) + M, ().
Furthermore, Lemma 4.3 of [20] asserts that for j € {0,1} and p € C, || small enough,

Re ev(x)/hEMj(Z)e—w(w)/h > 0,
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e“’(x)/hEmj(z)e_‘p(m)/h =0(1): L*(R3, LQ(Rzp)) — Hz(Ri7L2(Rgp)) uniformly as h — 04,

E, 1(z) is a pseudodifferential operator.
Let

X, o(2) = esa(r)/hX*(Z)e—w(w)/h
if Xo€{Bu;,Mu;Tu;: j=0,1}U{Y,;: 0<j<4}uiy,, A, F,}.
Then from (5.4) and (5.5) we have

App(2) = =Yu20(2) + (Muo,o — Yiae + Yuse(2)I + pr(z))_l(l = Yiu1,6(2))
= —Yu2,,(2) + (Mu,oyso Y6 — [Mu,OMYu,so(Z) + Yu/hs@]

(oo}

X3 (Vo () + Yo (2)) (1= Vi, o(2)),
=0

where

[My0.0Yr0(2) + Yia o (I + Y o(2)) 7" + Yig o(2)
= meem)/h [00Ep0(2)Th0 + @1Eu71(Z)TH,1]e*W(I)/h
+e# @/ [0, My, 000 + 01 My, 101] e~/
= Myu0.0€° M0 By o (2) T0€™ O™ 4 Miy0,06° ) Mip1 By (2) T e/
+ e?@/hp0 M, gpoe PO/ ep @/ M, e @/

So,

gﬁm&(z) = —Yu26(2) + (M0, = Yuae = BuoTuoe + BuaTuae) (1 = Yiae(2))
with

Byu0;Bug = O(h) : H-'(R3, L*(RP)) — L*(R3, L*(RP)) uniformly as h — 0.
Finally,

App(2) = =1 My 1,0 Eut,0(2) My 1,091
+ My = Yuae + B;L,OT 0.0 T B;,lTuvl,w) (1 - ‘PlEu,Lw(Z)Mu,17<pEu,17<p(Z)‘P1) + By.2%0,

where
Bu2=—R,E,0,(2)R,+ O(h) and R, = [Qu(az),Hu(m)} = g [Qﬂ(x),ﬂu(x)]goo.
Thus
R;AN’W(Z)R; =M1
+ R:LF(B;L,OJIMO#P + BZL71TM717¢)@1E 71,¢(Z)MM71,¢EM71,¢(Z)R;501 + RZBI/J72R/:1/}07

where A, 1, is a semiclassical pseudodifferential operator.
Since T}y j o Epui,0(2)My1,0(1—po) = O(h*°) uniformly as h — 0, j € {0,1} (see [20, Lemma 4.4]),
we obtain a representation of the effective Hamiltonian F),(z) in terms of a matrix operator away from

x = 0, and BKW solutions. A complete proof is given in Theorem 4.1, Proposition 5.1 and Corollary
5.2 of [20].

Theorem 6.1 (][20]).

(1) ze€T'(h) <= Ip € C small enough, Im >0 and z € Udisc(ﬁﬂ(z)),

eW(x)/hﬁu(Z)e_p(x)/h = Do (2) + Ly (2)tho + O,0(2),
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A,.»(2) is a 3 x 3 matriz of pseudodifferential operators on RS with the principal symbol ((I +
phdw(z)) "€+ V)25 + M, (z), M, (x) is a smooth 3 x 3 matriz on R® with eigenvalues
A (7 + pw(z)), Aa(@ + pw(z)) and A3(z + pw(x)) for x € R*\ Wy, and Re M, (z) > E + & for
x € Wy and p complex small enough,
Luol2) = REUPAR) = B = 80)(1 = 1(0)) + BB o) Ryl Ry + O(h),
3
Oup(2) = O(h™) : L*(R2 x Rzp) — @LZ(R:;) uniformly as h — 04.
1
(2) Letu = a(x;h)e ?@/M ¢ (L2(R3))®3, where a € (C=(R3))? admitting an asymptotic expansion
of the type a ~ 3 h*/%ay(x) as h — 04, with ap € (C®°(R*))3, Supp(ax) C R?\ Wy, k € N.
k=0

Then

e”(m)/hﬁu(z)u ~ Z R*/ 2y (x5 2),
k=0
Supp(bi(-:2)) CR*\ Wo, k€N,

bo(-52) = (I + pldw(z)) " V() ag + M, (x)ap.

7 Width of resonances

In this situation, one can work in the same spirit as in [16] and [22] to prove the existence of resonances
near E with exponentially small widths as h — 0.

Let z be a resonance of P(h), z € J+1i[—¢,0], € > 0 and v, be a normalized eigenfunction of P,,(h)
associated to z, p € C small enough, Im g > 0. It follows from Theorem 6.1 that one can associate to

3
v, a normalized function 3, = B1,, @ B2, S B3, € B L*(R3) such that
1

Eu(2)8 = 2B
where the effective operator Et(z) =R} (Pu(h) - gﬂ(z))R; can be written as

3 3

Fu(2)Bu = @/ @u(2) Btk u(2)), v1,7()) g2 geey on €D L*(RY) (7.1)
1 1

with @, (2) = P,(h) — A,(z).

The first 3 eigenvalues are re-indexed in such a way that they become smooth functions of r = |z|
and satisfy hypotheses (1.1) and (1.4)—(1.7).

We see, as in [22], that for m € Z, one has

||E/Jf(z)||B(Hm(]R2’LQ(Rip))’Hnli»j(Rz’L’z(RzP))) = O(h_j), j€{0,1,2},
(A, I, (2)] = OQ) : H™(RS, L*(R3P)) — H™ (RS, L*(R3P)) uniformly as 7 — 0.
Let @ (z) = (®,(2)(v1,u(2)), vl’ﬁ(x)>L2(R2p), |p¢| small enough. Using the virial condition on A;(x)

and Theorem 4.1, one can easily show that the operator ®,(z) — z is invertible from H?(R3, L*(R3P))
into L*(R3, L*(R3?)) for |u|, |z — E|, and h small enough, and

1 -1 —J .
||(<I)M(Z) - Z) HB(Hm(Rg,LQ(]Rgp)),Hm*j(Ri,LQ(RgP))) = O(h’ J)a S {Oa 152} (72)

Using estimations (7.2), we see that equation (7.1) is equivalent to
3

/Bl,u = _((I)L(Z) - Z)il Z <(I’M(Z)(/Bk,uvk,u(x))a'Ul,ﬁ(x)>L2(R$p)

k=2
= (52,/t(z) S S3,M(Z))(/B2,u 2 ﬂ3,ﬂ)7
Hy,(2) (B2, © B3,u) = 2(B2,u @ B3,)
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with
S (2B = =(@4(2) = )7 [(@u(2) Busstr @), 01, 5(@)) paag |

Hy(2) = ({@u(2) [0, (2)) + S10(2)( or,u] 0152 ko€ {2,3).

L2<R2P>>’

So, the spectral study of P,,(h) is now reduced to that of the 2x 2 matrix of pseudodifferential operators
H,(z) acting on L*(R3) & L?(R3).
Applying the calculus of the previous section, H,(z) can be written as

2
H,(z)=— h 5 Azl + N () + Ru(2, h),

(1+mw)
IRu(z,h)|| = O(R) : (H™ (RS, L*(R3?)))®? — (H™ (RS, L*(R3P))®?, m € Z,

PR (2, h)e P@/M = Ry (2, h) + Ra (2, h),
||R1,M(Z’ h‘)||B(Hm(R2,L2(R3p)),HW'(R27L2(Rzp))) < C(h2 + hHVSDHLw)

and
[Ra.u(z, bl = O(h?) : (H™ (R}, L*(R;P))®? — (H™ (RS, L*(R"))®?, m € Z,

¢ is a real-valued Lipschitz function on R? such that

1
IVellze < &5 O>0,
and N, (z) is the diagonal matrix Ao+ po(z)) 0 for z € R3\ W,
" 0 As(z + pw(z)) ‘

Let the Agmon metric
dy =Re [(14 p)*Xe(z + pw(x))] da?

and consider 6,(z) € C*°(R?) such that

% dy(w,0) if min (Re [(1+p)* o + po(@))], Re [(1+ )X (@ + po(a))] ) < % ,
Ou(x) =
constantif min (Re [(1+ 1)2Aa(e + ()] Re [(1+ 02 Xa(e + puo(e)] ) > % ’
and
1V 1 < % everywhere,

As in [16,17,20], one can show the exponential decay of the eigenfunctions of F,(z) and P, (h):

%R By a1 s = O(e/"), (7:3)
le? 0, [ @ayye = O(e/™), > 0.
We then use these estimates to establish the exponential decay of the resonant functions of P(h).

Indeed,
m € H_ Re 0, (z)+¢|Im w\(qu LZ(Rzp)) €> O’

where

QM:{xE(C?’: \x|<|—g|}, C >0,

and H,(Q,,, L*(R3P)) denotes the space of holomorphic functions v(x,h) in a complex neighborhood
of the closure €, of €, with values in L?(R3?) such that

Ve>0, 3C. >0, |v(z, h)||L2(R2p) < CLelp@+e)/h,
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Moreover, if we denote W = {z € R®: |z| < %}, according to the estimates (7.3) we get
o (@, Pl 2w wrzry 21— Cre~ /" uniformly as h — 0, Cy >0 (7.4)
and 1
=3 me%I%{W(Re 0, (x)).

Denote v = U, 'v,. Then v is a holomorphic function on €, with values in L? (Ri”), satisfying

i
(P(h) — z)v=0.
Moreover, in view of Green’s formula, for P(h), we have
2 2 _ov
Im sz||L2(WxR2p) =1Im ((P(h)v7v>L2(Wngp)) = —h*Im U5 ds, (7.5)

AW xR3P

where ds is the surface measure on W and n stands for the outward pointing unit normal to W.
Using (7.3)—(7.5), we deduce that for e; > 0, one has

|Im Z| S OQH’UH eiel/h, CQ >0

-2

L2(W xR3P)

—2

L2(W xR3P)

calculus and Fourier integral operators with complex phase functions.
So, we can write (see [16,22]),

<vu($a h), ¢>L2(1R;°jp)

= (2m) ™" / e =N g 4 — 0! &) (v, (2, 1), ) 1o gy X (&) da’ dE

€<%

uniformly as h — 0. In order to estimate ||v|| , we plan to use the analytic pseudodifferential

+re(x,h), €>0, (7.6)

with
—&'/h !
K

sup |re(z,h)| <e e >0

z€Q,
uniformly with respect to ¢ € L*(R3P), ||1/J||L2(]R;;p) =1, and h > 0 small enough. y € C§°({2’ € R3 :
|z'| < %I}) and y =1on W.

Thus [0 2 «g2r) can be estimated as in [16] and for all € > 0 we obtain

HU”L2(R§”) < CEeE/h”UHL%Wfo,”) 4@/

with C: > 0 and €”(g) > 0.
Thanks to (7.4), we deduce that for all € > 0, there exists C; > 0 such that

|
||”||L2(WXR§3P) 2 ae e/h, (7.7)

Since

1
sup (Re 0,(2)) > |2, €' >0,
reEOW C

representation (7.6) and estimate (7.7) imply that | Im z| is exponentially small,

|Im z| < K.e /M < ng*‘“wc/h, K. >0.
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