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Abstract. The aim of this paper is to present new integral inequalities by using a power β and a
weight function satisfying some hypothesis, in particular, in the case of monotone functions. On the
other hand, we derive new versions of integral inequalities with conformable fractional calculus for
β = 1.
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რეზიუმე. ნაშრომის მიზანია ახალი ინტეგრალური უტოლობის წარმოდგენა β სიმძლავრის ხა-
რისხის მაჩვენებლისა და წონის ფუნქციის გამოყენებით, რომლებიც აკმაყოფილებს გარკვეულ
ჰიპოთეზას, კერძოდ, მონოტონური ფუნქციების შემთხვევაში. მეორე მხრივ, β = 1-თვის ჩვენ
გამოვიყვანთ ინტეგრალური უტოლობების ახალ ვერსიებს კონფორმული წილადური რიგის
აღრიცხვის გამოყენებით.
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1 Introduction and Preliminaries
A number of new definitions have been introduced to provide a new fractional calculation method,
particularly a conformable derivative based on limits was introduced in [3], which were followed by
several recent articles (for more details, we refer the reader to [6, 8, 9].

Definition 1.1 (Conformable fractional derivative). Given a function f : [0,+∞) → R, the “con-
formable fractional derivative” of order α of f is defined by

Dα(f)(t) = lim
ϵ→0

f(t+ εt1−α)− f(t)

ε

for all t > 0, α ∈ (0, 1]. If f is α-differentiable in some interval (0, a), a > 0, and lim
t→0+

Dα(f)(t) exists,
then define

Dα(f)(0) = lim
t→0+

Dα(f)(t).

In addition, if the conformable fractional derivative of order α of f exists, then we simply say f is
α-differentiable.

Definition 1.2 (Conformable fractional integral). Let α ∈ (0, 1] and 0 ≤ a < b. A function f :
[0,+∞) → R is α-fractional integrable on [a, b] if the integral

b∫
a

f(t) dαt :=

b∫
a

f(t)tα−1 dt

exists and is finite.

Definition 1.3 (Conformable fractional integral operator). Let α ∈ (0, 1] and f : [a,+∞) → R for
a ≥ 0. The conformable fractional integral operator of order α of f is defined by

Iaαf(x) =

x∫
a

f(t) dαt :=

x∫
a

f(t)tα−1 dt

for all x ≥ a, α ∈ (0, 1].

For a = 0, we denote Iαf := I0αf .

Theorem 1.1. Let f : (a, b) → R be differentiable and α ∈ (0, 1]. Then for all x ≥ a we have

IaαDαf(x) = f(x)− f(a),

DαI
a
αf(x) = f(x).

In [7], the authors proved the following

Theorem 1.2. Let M > 0, 0 < p < 1 and −1 < r < p−1. If f is a non-negative measurable function
on (0,+∞) satisfying for almost all x > 0 the inequality

f(x) ≤ M

x

( x∫
0

(fp(t)tp−1) dt

) 1
p

a.e. x > 0, (1.1)

then
∞∫
0

(
1

x

x∫
0

f(t) dt

)p

xr dx ≤ Cp

∞∫
0

fp(x)xr dx,

where the Cp := ppMp(1−p)

p−r−1 is sharp.
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We state the following theorem which is useful in proving the main results.

Theorem 1.3 (Minkowski’s integral inequality, [1]). Let −∞ ≤ a < b ≤ +∞ and −∞ ≤ c <
d ≤ +∞. Suppose that f is measurable non-negative (non-positive) function on (a, b) × (c, d) and
f( · , y) ∈ Lp(a, b) for almost all y ∈ (c, d). Then

1. For p ≥ 1, ∥∥∥∥
d∫

c

f(x, y) dy

∥∥∥∥
Lp(a,b)

≤
d∫

c

∥f(x, y)∥Lp(a,b) dy, (1.2)

if the right-hand side is finite.

2. For 0 < p < 1, ∥∥∥∥
d∫

c

f(x, y) dy

∥∥∥∥
Lp(a,b)

≥
d∫

c

∥f(x, y)∥Lp(a,b) dy, (1.3)

if the left-hand side is finite.

Hardy-type inequalities have a great diversity in different branches of analysis and integrative
equations. The aim of this paper is to present some new weighted Hardy-type inequalities by using
Minkowski’s integral inequality, and to derive new conformal fractional integral inequalities.

2 Main results
Theorem 2.1. Let α ∈ (0, 1], β ≥ 1, p > 1 and f be a non-negative measurable function on (0,+∞).
Then the inequality

∞∫
0

(
1

xβ

x∫
0

f(t)tα−1 dt

)p

dx ≤
( p

βp− 1

)p
∞∫
0

(f(x)xα−β)p dx (2.1)

holds if the right-hand side is finite.

Proof. For x > 0, we have

1

xβ

x∫
0

f(t)tα−1 dt =

1∫
0

f(τx)(τx)α−1x1−β dτ.

We denote by Lhs the left-hand side of inequality (2.1) Using the Minkowski inequality (1.2), we get

(Lhs)
1
p =

( ∞∫
0

( 1∫
0

f(tx)(tx)α−1x1−β dt

)p

dx

) 1
p

≤
1∫

0

( ∞∫
0

xp(1−β)(f(tx)(tx)α−1)p dx

) 1
p

dt

=

1∫
0

( ∞∫
0

(tx)p(1−β)

tp(1−β)
(f(tx)(tx)α−1)p dx

) 1
p

dt =

1∫
0

( ∞∫
0

(f(µ)µα−β)p
dµ

t

) 1
p 1

t(1−β)
dt

=

1∫
0

1

t
1
p+1−β

dt

( ∞∫
0

(f(µ)µα−β)p dµ

) 1
p

=
( p

βp− 1

)( ∞∫
0

(f(µ)µα−β)p dµ

) 1
p

.

From the equality
1

xβ

x∫
0

f(t)tα−1 dt =
1

xβ

x∫
0

f(t) dαt

and for β = 1, we obtain the following Corollary.
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Corollary 2.1. Let α ∈ (0, 1], f be a non-negative measurable function on (0,+∞) and
∞∫
0

fp(x)
xp(1−α) dx <

∞, then for p > 1 we have
∞∫
0

( 1

x
Iα(x)

)p

dx ≤
( p

p− 1

)p
∞∫
0

( 1

x1−α
f(x)

)p

dx.

Theorem 2.2. Let α ∈ (0, 1], β, p ≥ 1, r < 0 and let f , w be non-negative measurable functions on
(0,+∞), where the weight function w satisfies the following hypothesis:

for all t ∈ (0, 1), w(tx) ≤ t w(x). (2.2)

Then the inequality
∞∫
0

(
1

xβ

x∫
0

f(t)tα−1 dt

)p

wr(x) dx ≤
( p

βp− r − 1

)p
∞∫
0

(f(x)xα−β)pwr(x) dx (2.3)

holds if the right-hand side is finite.

Remark 2.1. Note that inequality (2.2) is satisfied, for example, by polynomial functions w(x) = xn

for any integer n ≥ 1, by constant functions w(x) = c where c is a strictly negative constant.

Proof. We denote by Lhs the left-hand side of inequality (2.3). Using the Minkowski inequality (1.2)
and hypothesis (2.2), we conclude that

(Lhs)
1
p =

( ∞∫
0

(
1

xβ

x∫
0

f(t)tα−1 dt

)p

wr(x) dx

) 1
p

=

( ∞∫
0

( 1∫
0

f(tx)(tx)α−1x1−βw
r
p (x) dt

)p

dx

) 1
p

≤
1∫

0

( ∞∫
0

xp(1−β)(f(tx)(tx)α−1)pwr(x) dx

) 1
p

dt =

1∫
0

( ∞∫
0

(f(tx)(tx)α−β)pwr(x) dx

) 1
p 1

t1−β
dt

≤
1∫

0

( ∞∫
0

(f(tx)(tx)α−β)p
wr(tx)

tr
dx

) 1
p 1

t1−β
dt =

1∫
0

( ∞∫
0

(f(µ)µα−β)p
wr(µ)

tr
dµ

t

) 1
p 1

t1−β
dt

=

1∫
0

1

t
r+1
p +1−β

dt

( ∞∫
0

(f(µ)µα−β)pwr(µ) dµ

) 1
p

=
( p

βp− r − 1

)( ∞∫
0

(f(µ)µα−β)pwr(µ) dµ

) 1
p

.

Taking β = 1 and w(x) = x, we obtain the following

Corollary 2.2. Let α ∈ (0, 1], r < 0, and let f be a non-negative measurable function on (0,+∞)

and
∞∫
0

fp(x)
xp(1−α) dx <∞, then for p ≥ 1 we have

∞∫
0

( 1

x
Iα(x)

)p

xr dx ≤
( p

p− r − 1

)p
∞∫
0

( 1

x1−α
f(x)

)p

xr dx.

Now we present some new inequalities related to the monotone functions.

Proposition. Let α ∈ (0, 1], p > 0, 1 ≤ β < 1 + pα and let f be a non-negative measurable and
decreasing function on (0,+∞), then

f(x) ≤ K

xλ

( x∫
0

(fp(t)tpα−β) dt

) 1
p

, (2.4)

where K > 0 and 0 < λ ≤ α.
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Proof. f is assumed decreasing on (0, x), then

( x∫
0

(fp(t)tpα−β) dt

) 1
p

≥ f(x)

( x∫
0

tpα−β dt

) 1
p

=
xα+

1−β
p

(pα+ 1− β)
1
p

f(x) =
xλ

K
f(x),

and since 1 ≤ β < 1 + pα, we get −pα < 1− β ≤ 0, so 0 < α+ 1−β
p ≤ α.

Condition (2.4) is a more general condition of monotonicity and is a generalization of (1.1).

Lemma. Let α ∈ (0, 1], M > 0, β ≥ 1 and 0 < p < 1, let f be a non-negative measurable function on
(0,+∞) satisfying the following condition:

f(x) ≤ M

xα

( x∫
0

(fp(t)tpα−β) dt

) 1
p

a.e. x > 0. (2.5)

Then the inequality ( x∫
0

f(t)tα−β dt

)p

≤ ppMp(1−p)

x∫
0

(fp(t)tpα−β) dt

holds if the right-hand side is finite.

Proof. Let x > 0 and f satisfy inequality (2.5) almost everywhere in (0, x). Since

f(t) = (f(t)t)1−p(fp(t)tp−1),

we have

f(t) ≤
[
M

tα

( t∫
0

fp(µ)µpα−β dµ

) 1
p

t

]1−p

(fp(t)tp−1)

=M1−p

( t∫
0

fp(µ)µpα−β dµ

) 1
p−1

(fp(t)tpα−α).

Hence we obtain

f(t)tα−β ≤M1−p

( t∫
0

fp(µ)µpα−β dµ

) 1
p−1

(fp(t)tpα−β).

Integrating the above inequality on (0, x) and taking ψ(t) =
t∫
0

fp(µ)µpα−β dµ, we obtain

x∫
0

f(t)tα−β dt ≤M1−p

x∫
0

[( t∫
0

fp(µ)µpα−β dµ

) 1
p−1

(fp(t)tpα−β)

]
dt

=M1−p

x∫
0

(ψ(t))
1
p−1ψ′(t) dt = pM1−p(ψ(x))

1
p = pM1−p

( x∫
0

fp(µ)µpα−β dµ

) 1
p

,

which completes the proof.

Remark 2.2. Lemma 2 is a new generalization of Lemma 2.1 [7].

Taking β = 1 in Lemma 2, we obtain the following
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Corollary 2.3. Let α ∈ (0, 1], M > 0 and 0 < p < 1, let f be a non-negative measurable function on
(0,+∞) satisfying the following condition:

f(x) ≤ M

xα

( x∫
0

(fp(t)tpα−1) dt

) 1
p

a.e. x > 0,

Then the inequality ( x∫
0

f(t)tα−1 dt

)p

≤ ppMp(1−p)

x∫
0

(fp(t)tpα−1) dt

holds if the right-hand side is finite.
Theorem 2.3. Let α ∈ (0, 1], β ≥ 1, r < βp−1, 0 < p < 1 and let v be a weight function on (0,+∞).
If v(x)

x is non-decreasing and f is a non-negative measurable function on (0,+∞) satisfying condition
(2.5), then the inequality( ∞∫

0

(
1

xβ

x∫
0

f(t)tα−1 dt

)p

vr(x) dx

) 1
p

≤ Cp

( ∞∫
0

(f(x)xα−β)px1−βvr(x) dx

) 1
p

(2.6)

holds if the right-hand side is finite, where Cp := ppMp(1−p)

βp−r−1 .

Proof. Let x > 0 and f satisfy inequality (2.5) almost everywhere in (0, x). Denote by Lhs the integral
in the left-hand side of inequality (2.6). By applying Lemma 2 and Fubini’s Theorem, we get

Lhs =

∞∫
0

(
1

xβ

x∫
0

f(t)tα−1 dt

)p

vr(x) dx =

∞∫
0

( x∫
0

f(t)tα−1 dt

)p
vr(x)

xβp
dx

≤
∞∫
0

ppMp(1−p)

x∫
0

(fp(t)tpα−β) dt
vr(x)

xβp
dx = ppMp(1−p)

∞∫
0

( ∞∫
t

vr(x)

xβp
dx

)
fp(t)tpα−β dt.

Since the function v(x)
x is non-decreasing on [t,∞[, we get

∀x ∈ [t,∞[ ,
vr(x)

xr
≤ vr(t)

tr
.

Consequently, we deduce that

Lhs ≤ ppMp(1−p)

∞∫
0

(
vr(t)

tr

∞∫
t

1

xβp−r
dx

)
fp(t)tpα−β dt

=
ppMp(1−p)

βp− r − 1

∞∫
0

(
vr(t)

tr
t−βp+r+1fp(t)tpα−β

)
dt

=
ppMp(1−p)

βp− r − 1

∞∫
0

(f(t)tα−β)pvr(t)t1−β dt.

Setting β = 1 and v(x) = x, we obtain the following
Corollary 2.4. Let α ∈ (0, 1], r < p − 1, 0 < p < 1. If f is a non-negative measurable function on
(0,+∞) and satisfies condition (2.5), then the inequality( ∞∫

0

(
1

x

x∫
0

f(t) dαt

)p

xr dx

) 1
p

≤ Cp

( ∞∫
0

(f(x)xα−1)pxr dx

) 1
p

holds if the right-hand side is finite, where Cp := ppMp(1−p)

p−r−1 .
Remark 2.3. By taking α = 1 in the above corollary, we get Theorem 1.2.
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