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Abstract. In this paper, we define a particular class of Fourier Integral Operators with weighted
symbols (FIO, for short). These FIO turn out to be bounded on the spaces S(Rn) of rapidly decreasing
functions (or Schwartz space) and S′(Rn) of temperate distributions. We also prove that FIO is
Hilbert–Schmidt on L2(Rn) when the weight of the symbol a belongs to L2(R2n).
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რეზიუმე. ნაშრომში ჩვენ განვსაზღვრავთ ფურიეს ინტეგრალური ოპერატორების (მოკლედ
FIO) კონკრეტულ კლასს შეწონილი სიმბოლოებით. ირკვევა, რომ ეს FIO შემოსაზღვრულია
სწრაფად კლებად ფუნქციათა S(Rn) სივრცეზე (ანუ შვარცის სივრცეზე) და ზომიერი განა-
წილების S′(Rn) სივრცეზე. ასევე მტკიცდება, რომ FIO არის ჰილბერტ−შმიდტის ოპერატორი
L2(Rn)-ზე, როცა a სიმბოლოს წონა ეკუთვნის L2(R2n)-ს.
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1 Introduction
A Fourier integral operator (FIO, for short) is a singular integral operator of the form

Ia,ϕu(x) =

∫∫
eiϕ(x,y,ξ)a(x, y, ξ)u(y) dy dξ

defined under certain assumptions on the regularity and asymptotic properties of the phase function
ϕ and the amplitude function (or symbol) a. Here, ξ plays the role of the co-variable. In particular,
when ϕ(x, ξ, y) = ⟨x− y, ξ⟩, Ia,ϕ := Op(a) is called a pseudodifferential operator.

Several authors have worked hard since 1970 to learn more about this type of operator (see,
e.g., [2,6,8,11–14,16]). Local properties are the focus of the first works on Fourier integral operators.
We should mention that Hörmander has treated a class of Fourier integral operators for the first
time in [14], after they have been initially used by Lax, Maslov, Egorov and others. Duistermaat and
Hörmander elaborated the results of [14] in findings in their paper [7], where they studied parametrices
of the pseudodifferential operators of principal type as well as the propagation of singularities. In the
meantime, FIOs were also used to analyze hyperbolic equations and spectral theory.

The study of FIO was started by a particular class of amplitudes Sm
ρ,δ introduced by Hörmander

which consists of functions a(x, ξ) ∈ C∞(Rn × RN ) that satisfy∣∣∂αξ ∂βxa(x, ξ)∣∣ ≤ Cα,β(1 + |ξ|)m−ρ|α|+δ|β|,

with m ∈ R, ρ, δ ∈ [0, 1], and the phase functions in C∞(Rn × Rn \ 0) homogenous of degree 1
in the frequency variable ξ and with non-vanishing determinant of the mixed Hessian matrix (i.e.,
non-degenerate phase functions).

Furthermore, G. Eskin [9] (in the case a ∈ S0
1,0) and L. Hörmander [14] (in the case a ∈ S0

ρ,1−ρ,
1
2 < ρ ≤ 1) demonstrated the local L2 boundedness of FIO with non-degenerate phase functions,
R. Beals [3] and A. Greenleaf and G. Uhlmann [10] extended Hörmander’s local L2 result to amplitudes
in S0

1
2 ,

1
2

.
Later on, other types of symbols and phase functions have been investigated. In [13,19], D. Robert

and B. Helffer treated the symbol class Γµ
ρ that consists of smooth functions such that for any multi-

indices (α, β, γ) ∈ Nn × Nn × NN , there exists Cα,β,γ > 0 such that∣∣∂αx ∂βy ∂γξ a(x, y, ξ)∣∣ ≤ Cα,β,γ⟨(x, y, ξ)⟩µ−ρ(|α|+|β|+|γ|),

where
⟨(x, y, ξ)⟩ :=

(
1 + |x|2 + |y|2 + |ξ|2

) 1
2

with µ ∈ R and ρ ∈ [0, 1], and they considered phase functions satisfying certain conditions.
In [16], Messirdi and Senoussaoui treated the L2 boundedness and L2 compactness of FIO with

symbol class just defined. These operators are continuous (respectively, compact) in L2 if the weight
of the symbol is bounded (respectively, tends to 0).

In this work, we use the same technique as in [5] to show the Hilbert–Schmidtness of the operators
the type

(Fu)(x) = (2π)−n

∫∫
ei(s(x,ξ)−⟨y,ξ⟩)a(x, ξ)u(y) dy dξ.

We mainly prove that operator F is Hilbert–Schmidt on L2(Rn) when the weight of the amplitude a
belongs to L2(R2n).

The article is organized as follows. In Section 2, we define symbol and phase functions used in this
paper and recall the continuity of some general class of Fourier integral operators on S(Rn) and on
S ′(Rn). In Section 3, we discuss a special case of phase functions of type ϕ(x, y, ξ) = s(x, ξ)− ⟨y, ξ⟩.
The last section is devoted to the proof of the main result.
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2 Notations and preliminaries
We assume that n ∈ N throughout the paper unless otherwise noted. In particular, n ̸= 0. For all
x, y, ξ ∈ Rn, we define

⟨x, ξ⟩ :=
n∑

j=0

xjξj and d̂ξ := (2π)−n dξ.

Additionally,
⟨x⟩ := (1 + |x|2) 1

2 , ⟨(x, y)⟩ := (1 + |x|2 + |y|2) 1
2

and
⟨(x, y, ξ)⟩ :=

(
1 + |x|2 + |y|2 + |ξ|2

) 1
2 .

Partial derivatives with respect to a variable x ∈ Rn scaled with the factor −i are denoted by

Dα
x := (−i)|α|∂αx := (−i)|α|∂α1

x1
· · · ∂αn

xn
,

where α = (α1, . . . , αn) ∈ Nn is a multi-index and |α| =
n∑

j=1

αj is the length of α.

Considering two Freshet spaces E and F , the set L(E,F ) contains all linear and bounded operators
A : E → F . If E = F , we also just write L(E).

Definition 2.1. The space of tempered weights ω(Rn) is the set of all continuous functions m : Rn →
R+ such that

∃C0 > 0, ∃ k0 ∈ R, m(x) ≤ C0m(y)
(
1 + |x− y|

)k0
, ∀x, y ∈ Rn.

Example 2.1. The simplest example of tempered weight is given by

m(x) = ⟨x⟩k for x ∈ Rn,

where k ∈ R.

Lemma 2.1. If k > 2n, then ⟨x⟩−k ∈ L2(Rn) for all x ∈ Rn.

Proof. The lemma can easily be proved by using polar coordinates. An alternative approach can be
found in [18, Lemma 1.3].

Definition 2.2. Let Ω be an open subset of Rn, m ∈ ω(Rn) and ρ ∈ [0, 1]. A smooth function
a : Ω → C is called an (m, ρ)-weighted symbol on Ω if

∀α ∈ Nn, ∃Cα > 0, |∂αx a(x)| ≤ Cαm(x)
(
1 + |x|

)−ρ|α|
, ∀x ∈ Ω.

We note that Γm
ρ (Ω) is the space of all (m, ρ)-weighted symbols.

Remark 2.1. Instead of Γm
ρ (Rn

x×RN
ξ ×Rn

y ) we simply write Γm
ρ . Furthermore, if ρ = 0, we write Γm.

Now, we are interested in giving a sense to the following integral transformations

Ia,ϕu(x) =

∫∫
eiϕ(x,ξ,y)a(x, ξ, y)u(y) dy d̂ξ, u ∈ S(Rn), (2.1)

where a ∈ Γm
ρ , m ∈ ω and ϕ is a phase function which satisfies the following conditions:

(C1) ϕ : Rn
x × RN

ξ × Rn
y → R is a C∞ application.

(C2) ∀ (α, β, γ) ∈ Nn × NN × Nn, ∃Cα,β,γ ≥ 0 such that∣∣∂αx ∂βξ ∂γyϕ(x, ξ, y)∣∣ ≤ Cα,β,γ⟨(x, ξ, y)⟩(2−|α|−|β|−|γ|).
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(C3) There exists K > 0 such that

⟨(∂yϕ, ∂ξϕ, y)⟩
⟨(x, ξ, y)⟩

≤ K, ∀ (x, ξ, y) ∈ Rn
x × RN

ξ × Rn
y .

(C∗
3 ) There exists K∗ > 0 such that

⟨(x, ∂ξϕ, ∂xϕ)⟩
⟨(x, ξ, y)⟩

≤ K∗, ∀ (x, ξ, y) ∈ Rn
x × RN

ξ × Rn
y .

In the next theorem, we give a sense to the right-hand side of (2.1), by using the oscillatory integral
technique, and prove the boundedness on the Schwartz space and on its dual. So, we consider g ∈
S(Rn

x × Rn
y × RN

ξ ) such that g(0, 0, 0) = 1.
If a ∈ Γm, we define

ap(x, ξ, y) := g
(x
p
,
ξ

p
,
y

p

)
a(x, ξ, y), p > 0.

Theorem 2.1. If ϕ satisfies (C1), (C2), (C3) and (C3∗), then

(1) For all u ∈ S(Rn), lim
p→∞

Iap,ϕu(x) exists for every x ∈ Rn and is independent of the choice of
the function g. Then we set

Ia,ϕu(x) := lim
p→∞

Iap,ϕu(x), ∀x ∈ Rn.

(2) Ia,ϕ ∈ L(S(Rn)) and Ia,ϕ ∈ L(S ′(Rn)).

Proof. Let δ ∈ C∞
0 (Rn) such that supp δ ⊆ [−2, 2] and δ ≡ 1 on [−1, 1].

For all ε > 0, we set

ωε(x, ξ, y) = δ
( |∂yϕ|2 + |∂ξϕ|2

ε⟨(x, ξ, y)⟩2
)
.

The condition (C3) implies that there exists γ > 0 such that on the support of ωε we have

⟨(x, ξ, y)⟩ ≤ γ
[
(1 + |y|2) 1

2 + ε
1
2 ⟨(x, ξ, y)⟩

]
.

Therefore, there exist ε0 and a constant γ0, such that for all ε ≤ ε0, we have the inequality

⟨(x, ξ, y)⟩ ≤ γ0
(
1 + |y|2

) 1
2

in the support of ωε.
In the sequel, we fix ε = ε0. Then it is immediate that I(ωε0ap, ϕ)f is an absolutely convergent

integral, and we have
lim
p→∞

I(ωε0ap, ϕ)f = I(ωε0a, ϕ)f. (2.2)

Using (C2), we also prove that I(ωε0a, ϕ)f is a continuous operator from S(Rn) into itself. To study
lim
p→∞

I((1− ωε0)ap, ϕ)f , we introduce the operator

L =
1

i

( n∑
j=1

(∂yjϕ)
∂

∂yj
+

N∑
j=1

(∂ξjϕ)
∂

∂ξj

)
|∂yϕ|2 + |∂ξϕ|2

.

Clearly, we have
L(eiϕ) = eiϕ. (2.3)

Let Ω0 be the open subset of Rn × RN × Rn defined by

Ω0 =
{
(x, ξ, y), |∂yϕ|2 + |∂ξϕ|2 >

ε0
2
⟨(x, ξ, y)⟩2

}
.

We need the following
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Lemma 2.2. For all integer q ≥ 0 and b ∈ C∞(Rn
y × RN

ξ ), we have

(tL)q((1− ωε0)b) =
∑

|α|+|β|≤q

gqα,β∂
β
y ∂

β
ξ ((1− ωε0)b),

where the gqα,β are in Γ−q
0 (Ω0) and depend only on ϕ. Recall that tL designates the transpose of L.

Proof. We prove the lemma by the recurrence. It is obvious for q = 0. Now we can see easily that

tL =
∑
j

Fj
∂

∂yj
+
∑
j

Gj
∂

∂ξj
+H, (2.4)

where Fj ∈ Γ−1
0 (Ω0), Gj ∈ Γ−1

0 (Ω0) and H ∈ Γ−2
0 (Ω0) (which results from the hypothesis (C2)). So,

the recurrence is immediately proved.

For all integer q ≥ 0, from (2.3) we have

I((1− ωε0)ap, ϕ)f(x) =

∫∫
eiϕ(x,ξ,y)(tL)q((1− ωε0)apf) dy dξ. (2.5)

Now (tL)q((1− ωε0)apf) describes (when p varies) a bound of Γµ−q
0 , and

lim
p→∞

(tL)q((1− ωε0)apf)(x, ξ, y) = (tL)q((1− ωε0)af)(x, ξ, y) (2.6)

for all (x, ξ, y) ∈ Rn × RN × Rn.
Finally, for all s > n+N , we have∫∫

⟨(x, ξ, y)⟩−s dξ dy ≤ γs⟨x⟩n+N−s. (2.7)

From (2.5)–(2.7) and by using the Lebesgue’s theorem, we get

lim
p→∞

I((1− ωε0)ap, ϕ)f(x) =

∫∫
eiϕ(x,ξ,y)(tL)q((1− ωε0)af) dy dξ, (2.8)

where q satisfies q > n+N +µ. The first part of the theorem can be proven by using (2.2) and (2.8).
Now let us show that I((1− ωε0)a, ϕ) is continuous. Taking into account (2.4) and (2.8), we get

I((1− ωε0)a, ϕ)f(x) =
∑
|γ|≤q

∫∫
eiϕ(x,ξ,y)b(q)γ (x, ξ, y)∂γy f(y) dy dξ, (2.9)

with b
(q)
γ ∈ Γµ−q

0 . On the other hand, we have

xα∂βx (e
iϕb(q)γ (x, ξ, y)) ∈ Γ

µ−q+|α|+|β|
0 . (2.10)

We deduce from (2.9) and (2.10) that, for all q > n+N + µ+ |α|+ |β|, there exists a constant Cα,β,q

such that ∣∣xα∂βx I((1− ωε0)a, ϕ)f(x)
∣∣ ≤ Cα,β,q sup

x∈Rn

|γ|≤q

|∂γxf(x)|,

which proves the continuity of I((1− ωε0)a, ϕ).
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3 About the special class of FIO
From now on, we will focus, in a particular case, on the phase function ϕ, which is extremely useful
in applications for solving Cauchy problems [15,17]. Let

ϕ(x, ξ, y) = s(x, ξ)− ⟨y, ξ⟩,

where s satisfies the conditions:

(H1) s ∈ C∞(R2n,R).

(H2) For all (α, β) ∈ N2n, there exist Cα,β > 0 such that∣∣∂αx ∂βξ s(x, ξ)∣∣ ≤ Cα,β⟨(x, ξ)⟩(2−|α|−|β|).

(H3) There exists δ0 > 0 such that

inf
x,ξ∈Rn

∣∣∣ det ∂2s

∂x∂ξ
(x, ξ)

∣∣∣ ≥ δ0.

Proposition 3.1. If s satisfies (H1), (H2) and (H3), then the function ϕ(x, ξ, y) = s(x, ξ) − ⟨y, ξ⟩
satisfies (C1), (C2), (C3) and (C∗

3 ).

Proof. (C1) and (C2) are trivially satisfied.

To prove (C3) and (C∗
3 ) we use the following

Lemma 3.1. Assume that s satisfies (H1), (H2) and (H3), then s satisfies the following inequalities:
There exist c1, c2 > 0 such that{

|x| ≤ c1⟨(ξ, ∂ξs)⟩, ∀ (x, ξ) ∈ R2n,

|ξ| ≤ c2⟨(x, ∂xs)⟩, ∀ (x, ξ) ∈ R2n.
(3.1)

Also, there exists c3 > 0 such that for all (x, ξ), (x′, ξ′) ∈ R2n,

|x− x′|+ |ξ − ξ′| ≤ c3

[ ∣∣(∂ξs)(x, ξ)− (∂ξs)(x
′, ξ′)

∣∣+ |ξ − ξ′|
]
.

Proof. The mappings
ξ → fx(ξ) = ∂xs(x, ξ), x→ gξ(x) = ∂ξs(x, ξ)

are diffeomorphisms of Rn. From (H2) and (H3) it follows that ∥(f−1
x )′∥, ∥(g−1

ξ )′∥ are uniformly
bounded on Rn and ∥(ψ−1

2 )′∥ is uniformly bounded on R2n, where

ψ2(x, ξ) = (ξ, ∂ξs(x, ξ)).

Thus (H2) and Taylor’s theorem lead to the following estimate: there exist M,N > 0 such that for
all (x, ξ), (x′, ξ′) ∈ R2n,

|ξ| =
∣∣f−1

x (fx(ξ))− f−1
x (fx(0))

∣∣ ≤M
∣∣∂xs(x, ξ)− ∂xs(x, 0)

∣∣ ≤ c4⟨(x, ∂xs)⟩

with c4 > 0;

|x| =
∣∣g−1

ξ (gξ(ξ))− g−1
ξ (gξ(0))

∣∣ ≤ N
∣∣∂ξs(x, ξ)− ∂ξs(0, ξ)

∣∣ ≤ c5⟨(∂ξs, ξ)⟩

with c5 > 0;

|(x, ξ)− (x′, ξ′)| =
∣∣h−1

2 (h2(x, ξ))− h−1
2 (h2(x

′, ξ′))
∣∣ ≤ c5

∣∣(ξ, ∂ξs(x, ξ))− (ξ′, ∂ξs(x
′, ξ′))

∣∣.
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From (3.1), we have

⟨(x, y, ξ)⟩ ≤ ⟨(x, ξ)⟩+ ⟨y⟩ ≤ c6
[
⟨(ξ, ∂ξs)⟩+ ⟨y⟩

]
with c6 > 0.

Also, we have ∂yjϕ = −ξj and ∂ξjϕ = ∂ξjs− yj , so,

⟨(ξ, ∂ξs)⟩ = ⟨(∂yϕ, ∂ξϕ+ y)⟩ ≤ 2⟨(∂yϕ, ∂ξϕ, y)⟩,

which for some c7 > 0 finally gives

⟨(x, ξ, y)⟩ ≤ 2c6⟨(∂yϕ, ∂ξϕ, y)⟩ ≤
1

c7
⟨(∂yϕ, ∂ξϕ, y)⟩.

The second inequality in (C3) is a consequence of (3.1). We can demonstrate condition (C∗
3 ) using a

similar argument.

Example 3.1. Consider the following function:

s(x, ξ) = k1x
2 + k2ξ

2 + k3xξ,

where k1, k2, k3 ∈ R, s(x, ξ) satisfies (H1), (H2) and (H3).

4 The boundedness of FIO on Hs(Rn)

This section goes over a different collection of bounded operators, or to be more specific, the Hilbert–
Schmidt operators. The class of Hilbert–Schmidt operators has a natural Hilbert space structure. Let
us start with an elementary proposition.

Proposition 4.1. Let H be a separable Hilbert space. If {en} and {fm} are orthonormal bases for
H and A ∈ L(H), then ∑

n

∥Aen∥2 =
∑
m

∥A∗fm∥2 =
∑
n

∑
m

∣∣⟨Aen, fm⟩
∣∣2.

Remark 4.1. This result can be taken to mean that one of these infinite sums converges if and only
if they all do, in which case the three sums are equal.

Proof. It follows from Parseval’s Identity that for each n,

∥Aen∥2 =
∑
m

|⟨Aen, fm⟩|2.

Also, for every m,
∥A∗fm∥2 =

∑
n

|⟨en, A∗fm⟩|2.

Definition 4.1. An operator A on H is called a Hilbert–Schmidt operator if
∞∑

n=0

∥Aen∥2H < +∞. (4.1)

The set of all Hilbert–Schmidt operators is denoted by C2(H).

Remark 4.2. The Hilbert–Schmidt norm, also known as the Frobenius norm of the operator A, is
denoted by ∥ · ∥2 and is the square root of the left-hand side of (4.1).

Proposition 4.2. Let A be an operator in C2(H).



L2-Hilbert–Schmidtness of Fourier Integral Operators with Weighted Symbols 9

(i) ∥A∥2 =
(∑

n

∥Aen∥2
) 1

2 for any basis {en}.

(ii) ∥A∥ ≤ ∥A∥2.

(iii) ∥A∗∥2 = ∥A∥2.

(iv) If T ∈ L(H), then AT, TA ∈ C2(H) and

max
{
∥AT∥2, ∥TA∥2

}
≤ ∥T∥ · · · ∥A∥2

Proof. The proof can be found in [20].

Now let Rn be a space with positive measure and H1 = H2 = L2(Rn). In this situation, the
operators A ∈ C2(H1,H2) are described as follows.

Theorem 4.1. The operators A ∈ C2(L2(Rn)) are exactly those which can be represented as

Au(x) =

∫
Rn

k(x, y)u(y) dy, (4.2)

with a kernel k ∈ L2(R2n). We then also have

∥A∥HS = ∥k∥L2(Rn). (4.3)

We have the following results about the Hilbert–Schmidtness of the Fourier integral operator.

Proposition 4.3. Let Fa,s be the Fourier integral operators defined by

Fa,su(x) =

∫∫
ei[s(x,ξ)−⟨y,ξ⟩]a(x, ξ)u(y) dy d̂ξ,

where a ∈ Γm(R2n) and s satisfies (G1), (G2) and (G3). Then for any m ∈ ω(R2n) such that
m ∈ L2(R2n), Fa,s can be extended as a Hilbert–Schmidt operator on L2(Rn).

Proof. First, let us observe that the Fourier integral operator Fa,s can be written as

Fa,su(x) =

∫
eis(x,ξ)a(x, ξ)F(u(ξ)) dξ,

where F is the Fourier transform.
We put

Fa,su = Aa,sF(u). (4.4)

Clearly, we have
Aa,su(x) =

∫
Rn

eis(x,ξ)a(x, ξ)u(ξ) dξ.

This follows from (4.4) and, using (iv) in Proposition 4.2, we have

∥Fa,s∥HS = ∥Aa,sF∥HS

≤ ∥Aa,s∥HS∥F∥L(L2(Rn)).

Now, it is enough to prove that Aa,s ∈ C2(L2(Rn)). Let us first note that Aa,s has the same integral
representation as (4.2) with the kernel ka,s.

In fact, straightforward computation shows us that

Aa,su(x) :=

∫
Rn

ka,s(x, ξ)u(ξ) dξ,
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where
ka,s(x, ξ) := eis(x,ξ)a(x, ξ).

Let us proof that ka,s ∈ L2(R2n),

|ka,s(x, ξ)| = |eis(x,ξ)a(x, ξ)|
= |a(x, ξ)|
≤ C0,0m(x, ξ),

then
|ka,s(x, ξ)|2 ≤ C2

0,0m
2(x, ξ).

So, for all m ∈ L2(R2n),
ka,s ∈ L2(R2n),

and from (4.3) we have
∥Aa,s∥HS = ∥ka,s∥L2(R2n) < +∞,

which proves that Fa,s ∈ C2(L2(Rn)).
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