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Abstract. In this paper, we study the existence and uniqueness of a solution for a system of nonlinear
differential equations with delay. We show its application using a mathematical model that describes
tumor-immune interactions in the bladder as a result of BCG therapy. We also study a mathematical
model that uses a system of nonlinear partial differential equations with delay while considering the
geometrical configuration of the human bladder. We use two-dimensional grid discretization to find
the numerical solution of the systems describing the tumor-immune interaction.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÛÄÓßÀÅËÉËÉÀ ÃÀÂÅÉÀÍÄÁÖËÀÒÂÖÌÄÍÔÉÀÍÉ ÀÒÀßÒ×ÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÉÓ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÀ. ÍÀÜÅÄÍÄÁÉÀ ÌÉÓÉ ÂÀÌÏÚÄÍÄÁÀ
ÌÀÈÄÌÀÔÉÊÖÒ ÌÏÃÄËÆÄ, ÒÏÌÄËÉÝ ÀÙßÄÒÓ ÓÉÌÓÉÅÍÖÒ-ÉÌÖÍÖÒ ÖÒÈÉÄÒÈØÌÄÃÄÁÄÁÓ ÛÀÒÃÉÓ
ÁÖÛÔÛÉ BCG ÈÄÒÀÐÉÉÓ ÛÄÃÄÂÀÃ. ÀÂÒÄÈÅÄ ÛÄÓßÀÅËÉËÉÀ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉ, ÒÏÌÄËÉÝ
ÀÃÀÌÉÀÍÉÓ ÛÀÒÃÉÓ ÁÖÛÔÉÓ ÂÄÏÌÄÔÒÉÖËÉ ÊÏÍ×ÉÂÖÒÀÝÉÉÓ ÂÀÍáÉËÅÉÓÀÓ ÉÚÄÍÄÁÓ ÃÀÂÅÉÀÍÄÁÖË-
ÀÒÂÖÌÄÍÔÉÀÍ ÀÒÀßÒ×ÉÅ ÊÄÒÞÏßÀÒÌÏÄÁÖËÉÀÍ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÀÓ. ÂÀÌÏ-
ÚÄÍÄÁÖËÉÀ ÃÉÓÊÒÄÔÉÆÀÝÉÀ ÏÒÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÁÀÃÉÈ ÉÌ ÓÉÓÔÄÌÉÓ ÒÉÝáÅÉÈÉ ÀÌÏáÓÍÉÓ ÌÏÓÀ-
ÞÄÁÍÀÃ, ÒÏÌÄËÉÝ ÀÙßÄÒÓ ÓÉÌÓÉÅÍÖÒ-ÉÌÖÍÖÒ ÖÒÈÉÄÒÈØÌÄÃÄÁÀÓ.
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1 Introduction
Differential equations with delay have attracted the attention of many researchers. Note the mono-
graphs [2, 3, 6, 8, 10], in which the problems of existence, uniqueness and stability are considered.

In this paper, we study a system of nonlinear ODEs with delay and a system of nonlinear PDEs
with delay. In the first part of the paper, we reduce these problems to a system of equations without
delay by generalizing the approach proposed in [7], and use the approach proposed in [17] in order
to prove the uniqueness and existence of their solutions. This approach is based on the Galerkin
approximations method. In the second part of this paper, we present an application to these systems
with delay.

Bladder cancer is among the top ten most common cancers around the world [16]. Immunotherapy
with Bacillus Calmette–Guerin (BCG) has been used to treat non-invasive bladder cancer for several
decades [14]. It is considered to be one of the most successful treatments for non-invasive cancer
currently in use with around 60% success rate according to [11]. Even though researchers have a lot
of experience with BCG, it is still under research for its therapeutic effects. Shortening the dwell time
and dose differences are the well studied and important topics and much research on the topics has
been done via clinical trials [1,13,15]. In this paper, we try to approach this topic using a mathematical
model. According to Prof. Mary Bakhanashvili, Head of AIDS Lab Infectious Diseases Unit, Sheba
Medical Center, Tel-Hashomer, Israel (https://eng.sheba.co.il/bakhanashvili_mary), there is a
period of time from the initial BCG instillation until all the various cells react to the BCG. The time
it takes for all the cells in the bladder to react to the BCG introduces a delay into this model.

Several attempts of modeling the problem have taken under consideration the population’s size
of different cells in the system over time, based on the biological dynamics of the system using ordi-
nary differential equations [4, 5, 9]. An attempt to improve the model has been done by taking under
consideration an approximation of the geometric configuration of the bladder in the mathematical
modeling yielding partial differential equations. The PDEs Model’s parameters sensitivity and solu-
tion’s stability for the given parameters was the main focus of [12]. In this paper, we add delay which
describes more precisely the process when the various cells are being infected after BCG instillation.
We use a grid based discretization approach to solve the PDEs system numerically.

2 Preliminaries
Let us consider the following system of ordinary differential equations with delay:

dx1(t)

dt
=

[
a11 + a12x2(t− τ2(t)) + a13x3(t− τ3(t)) + a14x4(t− τ4(t))

]
x1(t− τ1(t)) + a15, (2.1)

dx2(t)

dt
=

[
a21x1(t− τ1(t)) + a22 + a23x3(t− τ3(t)) + a24x4(t− τ4(t))

]
x2(t− τ2(t)) + a25

+ αx3(t− τ3(t)), (2.2)
dx3(t)

dt
=

[
a31x1(t− τ1(t)) + a32x2(t− τ2(t)) + a33 + a34x4(t− τ4(t))

]
x3(t− τ3(t)) + a35

+ βx1(t− τ1(t))x4(t− τ4(t)), (2.3)
dx4(t)

dt
=

[
a41x1(t− τ1(t)) + a42x2(t− τ2(t)) + a43x3(t− τ3(t)) + a44

]
x4(t− τ4(t)) + a45, (2.4)

with the initial conditions

x1(0) = c1, x2(0) = c2, x3(0) = c3, x4(0) = c4, (2.5)

and with the condition

x1(t) = 0, x2(t) = 0, x3(t) = 0, x4(t) = 0 for all t < 0. (2.6)

We understand a solution x = (x1, x2, x3, x4) as a vector of differentiable functions satisfying (2.1)–
(2.4) and (2.5), (2.6).
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Furthermore, let us consider the following system of partial differential equations with delay:
∂x1(r, t)

∂t
=

[
a11 + a12x2(r, t− τ2(t)) + a13x3(r, t− τ3(t)) + a14x4(r, t− τ4(t))

]
x1(r, t− τ1(t))

+ a15 +D1
1

r2
∂

∂r

(
r2

∂x1(r, t)

∂r

)
, (2.7)

∂x2(r, t)

∂t
=

[
a21x1(r, t− τ1(t)) + a22 + a23x3(r, t− τ3(t)) + a24x4(r, t− τ4(t))

]
x2(r, t− τ2(t))

+ a25 + αx3(r, t− τ3(t)) +D2
1

r2
∂

∂r

(
r2

∂x2(r, t)

∂r

)
, (2.8)

∂x3(r, t)

∂t
=

[
a31x1(r, t− τ1(t)) + a32x2(r, t− τ2(t)) + a33 + a34x4(r, t− τ4(t))

]
x3(r, t− τ3(t))

+ a35 + βx1(r, t− τ1(t))x4(r, t− τ4(t)) +D3
1

r2
∂

∂r

(
r2

∂x3(r, t)

∂r

)
, (2.9)

∂x4(r, t)

∂t
=

[
a41x1(r, t− τ1(t)) + a42x2(r, t− τ2(t)) + a43x3(r, t− τ3(t)) + a44

]
x4(r, t− τ4(t))

+ a45 +D4
1

r2
∂

∂r

(
r2

∂x4(r, t)

∂r

)
, (2.10)

with the boundary conditions
∂x1(0, t)

∂t
= b1,

∂x2(0, t)

∂t
= b2,

∂x3(0, t)

∂t
= b3,

∂x4(0, t)

∂t
= b4, (2.11)

and with the initial conditions

x1(r, 0) = c1, x2(r, 0) = c2, x3(r, 0) = c3, x4(r, 0) = c4. (2.12)

We understand a solution x = (x1, x2, x3, x4) as a vector of differentiable functions up to the second
order satisfying (2.7)–(2.10) and (2.11), (2.12); aij , α, β ∈ R for all 1 ≤ i, j ≤ 5, D1, D2, D3, D4 are
positive real numbers, and τ1(t), τ2(t), τ3(t), τ4(t) are nonnegative measurable functions.

Let x1, x2, x3 and x4 be the functions defined in a bounded smooth domain Ω in Rn (in our cases,
n = 1 for the ODE system and n = 2 for the PDE system). Introduce the following operators:

L1(x) = a12x2 + a13x3 + a14x4, L2(x) = a21x1 + a23x3 + a24x4,

L3(x) = a31x1 + a32x2 + a34x4, L4(x) = a41x1 + a42x2 + a43x3.

Let us also denote the operator L = (L1, L2, L3, L4).
Let A be the matrix of coefficients

A =


0 a12 a13 a14
a21 0 a23 a24
a31 a32 0 a34
a41 a42 a43 0

 (2.13)

and let H = L2(Ω) and V = H1
0 (Ω). The scalar products and the norms are denoted, respectively, by

(( · , · )), ( · , · ), ∥ · ∥, | · |. Identifying H with its dual, we have V ⊂ H ⊂ V ′ with continuous inclusions.
We also associate with the continuous linear operator L : V → V ′, L ∈ L(V, V ′), a continuous bilinear
form on V × V given by the formula:

∀ v, u ∈ V , a(v, u) = (Lv, u)V ′,V .

Thanks to the continuity of L, we have

∀ v, u ∈ V , |a(v, u)| ≤ M∥v∥ ∥u∥.

Recall that a bilinear form will be called coercive if

∃ γ > 0 ∀ v ∈ V , a(v, v) ≥ γ∥v∥2.

If a(v, u) = ((v, u)) defines the scalar product in V , then L is a canonical isomorphism of V onto
V ′. We have the well-known Lax–Milgram lemma.
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Lemma 2.1. If a is a bilinear continuous and coercive form on V , then L defines an isomorphism
from V onto V ′:

∀L ∈ L(V, V ′) ∃ !f ∈ V , a(x, f) = L(x) for all x ∈ V.

The operator L also defines an isomorphism of its domain D(A) ⊂ H onto H.

2.1 Uniqueness and existence of solutions of systems with delay
In order to prove the uniqueness and existence of solutions we reduce our systems with delays to
systems without delay, by generalizing the approach used in [7]. According to the generalized mean
value theorem for definite integrals, for every differentiable function f(x), there exists c ∈ [a, b]
such that

b∫
a

f(x)g(x) dx = f(c)

b∫
a

g(x) dx,

under the condition that g(x) is an integrable function that does not change sign. Our approach
assumes this theorem according to which there exists τ̃i(t) obeying

xi(t− τi(t))

t∫
−∞

e
u−t
τ̃i(t) du =

t∫
−∞

e
u−t
τ̃i(t)xi(u) du.

Calculating the integral in the left-hand side, we obtain
t∫

−∞

e
u−t
τ̃i(t) du = lim

a→−∞

[
τ̃i(t)e

u−t
τ̃i(t)

]t
a
= lim

a→−∞

[
τ̃i(t)− τ̃i(t)e

a−t
τ̃i(t)

]
= τ̃i(t).

Thus

xi(t− τi(t)) =
1

τ̃i(t)

t∫
−∞

e
u−t
τ̃i(t)xi(u) du.

From this construction we can conclude that τ̃i(t) ̸= 0 for all t. Assuming that τ̃i(t) is differentiable,
we observe that vi(t) := xi(t− τi(t)) obeys

dvi
dt

= − vi
τ̃i(t)

+
xi(t)

τ̃i(t)
− vi

τ̃i(t)

dτ̃i(t)

dt
.

This equation allows us to represent the ODE system (2.1)–(2.4) as

dx1

dt
= L1(v)v1(t) + a11v1(t) + a15, (2.14)

dx2

dt
= L2(v)v2(t) + a22v2(t) + a25 + αv3(t), (2.15)

dx3

dt
= L3(v)v3(t) + a33v3(t) + a35 + βv1(t)v4(t), (2.16)

dx4

dt
= L4(v)v4(t) + a44v4(t) + a45, (2.17)

where
dvi
dt

= −vi(t)

τ̃i(t)
+

xi(t)

τ̃i(t)
− vi(t)

τ̃i(t)

dτ̃i(t)

dt

for i = 1, 2, 3, 4. This reduces the problem with delay to the usual local in time system where we will
study the uniqueness and existence of solutions by the usual methods. Multiplying both sides of the
last equation by τ̃i(t), we get

τ̃i(t)
dvi
dt

= −vi(t) + xi(t)− vi(t)
dτ̃i(t)

dt
,
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and we can write this equation in the following simple form:

d

dt

[
τ̃i(t)vi(t)

]
= xi(t)− vi(t). (2.18)

Following a similar process, we can represent the PDE system (2.7)–(2.10) as

∂x1

∂t
= L1(v)v1(r, t) + a11v1(r, t) + a15 +D1

1

r2
∂

∂r

(
r2

∂x1(r, t)

∂r

)
,

∂x2

∂t
= L2(v)v2(r, t) + a22v2(r, t) + a25 + αv3(r, t) +D2

1

r2
∂

∂r

(
r2

∂x2(r, t)

∂r

)
,

∂x3

∂t
= L3(v)v3(r, t) + a33v3(r, t) + a35 + βv1(r, t)v4(r, t) +D3

1

r2
∂

∂r

(
r2

∂x3(r, t)

∂r

)
,

∂x4

∂t
= L4(v)v4(r, t) + a44v4(r, t) + a45 +D4

1

r2
∂

∂r

(
r2

∂x4(r, t)

∂r

)
,

where
∂vi
∂t

= −vi(r, t)

τ̃i(t)
+

xi(r, t)

τ̃i(t)
− vi(r, t)

τ̃i(t)

dτ̃i(t)

dt

for i = 1, 2, 3, 4.
For the following theorems, we denote

f1 = (a11, a22, a33, a44), f2 = (a15, a25, a35, a45);

α̃ = (0, α, 0, 0), β̃ = (0, 0, β, 0).

Using similar approach proposed in [17], we formulate and prove the following statement.

Theorem 2.1. If the matrix A defined by (2.13) is a symmetric invertible matrix, then there exists
a unique weak solution x of (2.1)–(2.4) and (2.5), (2.6) such that

x ∈ L2(0, T : V ) ∩ L∞(0, T : H), x′ ∈ L2(0, T : V ′).

Remark 2.1. In the context of this theorem and the following proof, we use the notations x′, v′, dx
dt ,

dv
dt for the weak derivatives of the corresponding functions.

Proof. In the first part of the proof, we use the eigenfunctions and eigenvalues in order to obtain a
system of linear ordinary differential equations where its global existence and uniqueness results are
known. First of all, we have to prove that such eigenfunctions and eigenvalues exist.

Since for all v ∈ V ,
a(v, v) = (Lv, v)V ′,V = (Av, v),

from the assumption that A is a symmetric invertible matrix, there exists a scalar γ > 0 such that

a(v, v) ≥ γ∥v∥2

for all v ∈ V . Thus a is a bilinear continuous and coercive form on V ; hence we can use Lemma 2.1.
Since A is a symmetric matrix, we get

a(v, u) = (Au, v) = (u,AT v) = (u,Av) = (Av, u) = a(u, v),

which means that the form a(v, u) is symmetric. Since the inclusion V ⊂ H is compact and the
form is symmetric, we can consider an orthonormal base of V that consists of eigenfunctions of the
operator L:

∀ j ∈ N, Lwj = λjwj .

For each fixed m, define an approximated solution xm, vm of (2.14)–(2.17) and (2.18):

xm =

m∑
i=1

gimwi, vm =

m∑
i=1

himwi
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such that
d

dt
(xm, wj) = (L(vm)vm, wj)+(f1vm, wj)+(f2, wj)+(α̃v3m, wj)+(β̃v1mv4m, wj), j=1, . . . ,m,

d

dt
(τ̃ vm, wj) = (xm, wj)− (vm, wj), j = 1, . . . ,m.

By the definition of the form a(v, u), we can write this system as follows:

d

dt
(xm, wj) = a(vm, wj) + (f1vm, wj) + (f2, wj)

+ (α̃v3m, wj) + (β̃v1mv4m, wj), j = 1, . . . ,m, (2.19)
d

dt
(τ̃ vm, wj) = (xm, wj)− (vm, wj), j = 1, . . . ,m. (2.20)

With the assumption of {w1, . . . , wm, . . . } being an orthonormal base of eigenfunctions and the as-
sumption of xm, vm being the functions satisfying this system of ordinary differential equations, we
can conclude that the functions gjm, hjm are differentiable. We get

d

dt
gjm(t)(wj , wj) = λjhjm(t)(wj , wj) + f1hjm(t)(wj , wj) + (f2, wj)

+ α̃h3jm(t)(wj , wj) + β̃h1jm(t)h4jm(t)(wj , wj), j = 1, . . . ,m,

d

dt

[
hjm(t)τ̃

]
(wj , wj) = gjm(t)(wj , wj)− hjm(t)(wj , wj), j = 1, . . . ,m.

We have obtained a linear system of 2m ordinary differential equations for the unknown functions
gim(t), him(t), i = 1, . . . ,m. Thus the global existence and uniqueness of its solution is known. The
functions xm, vm belong to C([0, T ] : V ), and the derivatives x′

m, v′m ∈ L2(0, T : V ). Multiplying
equations (2.19), (2.20) by gjm and hjm, adding the results for j = 1, . . . ,m, we get

(x′
m, xm) = a(vm, xm) + (f1vm, xm) + (f2, xm) + (α̃v3m, xm) + (β̃v1mv4m, xm),(

(τ̃ vm)′, vm
)
= (xm, vm)− (vm, vm),

or
1

2

d

dt
(xm, xm) ≤ ((vm, xm)) + ∥f1∥ · ∥vm∥ · ∥xm∥+ ∥f2∥ · ∥xm∥

+ |α| · ∥vm∥ · ∥xm∥+ |β| · ∥vm∥ · ∥xm∥,
1

2

d

dt
(τ̃ vm, vm) + ∥vm∥2 ≤ ∥xm∥ · ∥vm∥,

1

2

d

dt
|xm|2 ≤ M∥vm∥ · ∥xm∥+ ∥f1∥ · ∥vm∥ · ∥xm∥+ ∥f2∥ · ∥xm∥

+ |α| · ∥vm∥ · ∥xm∥+ |β| · ∥vm∥ · ∥xm∥,
1

2

d

dt
|vm|2 + ∥vm∥2 ≤ ∥xm∥ · ∥vm∥.

Integrating the above over [0, t] and using the Cauchy inequality to the left-hand side, we get

|xm(t)|2 ≤ |xm(0)|2 + 2M

t∫
0

(∥vm∥2 + ∥xm∥2) du

+

t∫
0

(
∥f1∥2 + ∥vm∥2 + ∥xm∥2

)
du+

t∫
0

(
∥f2∥2 + ∥xm∥2

)
du

+

t∫
0

(
α2 + ∥vm∥2 + ∥xm∥2

)
du+

t∫
0

(
β2 + ∥vm∥2 + ∥xm∥2

)
du,
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|vm|2 + 2

t∫
0

∥vm∥2 du ≤
t∫

0

(
∥xm∥2 + ∥vm∥2

)
du,

or

|xm(t)|2 ≤ |xm(0)|2 + (2M + 3)

t∫
0

∥vm∥2 du

+ (2M + 4)

t∫
0

∥xm∥2 du+

t∫
0

(
∥f1∥2 + ∥f2∥2 + α2 + β2

)
du,

|vm(t)|2 +
t∫

0

∥vm∥2 du ≤
t∫

0

∥xm∥2 du.

Hence the sequences xm and vm are bounded in L2(0, T : V ) ∩ L∞(0, T : H) uniformly in m.
The space L2(0, T : V ) is the Hilbert space (and hence reflexive), L∞(0, T : H) is a conjugate of

L1(0, T : H), which is separable. Therefore, from sequences xm, vm bounded in such spaces we can
extract subsequences xmk

and vmk
, respectively, such that

xmk
→ x in L2(0, T : V ) weakly,

vmk
→ v in L2(0, T : V ) weakly,

xmk
→ x in L∞(0, T : H) weak*,

vmk
→ v in L∞(0, T : H) weak*.

Passing in (2.19), (2.20) to the limit, we obtain
d

dt
(x,wj) = a(v, wj) + (f1v, wj) + (f2, wj) + (α̃v3, wj) + (β̃v1v4, wj), j = 1, . . . ,m,

d

dt
(τ̃ v, wj) = (x,wj)− (v, wj), j = 1, . . . ,m,

and, since wj forms a basis in V , we also have

∀u ∈ V ,
d

dt
(x, u) = a(v, u) + (f1v, u) + (f2, u) + (α̃v3, u) + (β̃v1v4, u),

∀u ∈ V ,
d

dt
(τ̃ v, u) = (x, u)− (v, u),

where the equality is understood in the sense of distributions in (0, T ). According to Lemma 3.1
from [17, p. 69], d

dt (x, u) = (x′, u), d
dt (τ̃ v, u) = ((τ̃ v)′, u), and we find that system (2.14)–(2.17) and

(2.18) is satisfied. But since L(v) ∈ L2(0, T : V ), we have dx
dt ∈ L2(0, T : V ′). Now, since L2 ⊂ L1,

the solution x is a.e. equal to a continuous function from [0, T ] into V ′.

3 Application to mathematical modeling of bladder cancer
treatment by using bcg immunotherapy

In this section, we introduce an application to the systems of differential equations with delay that
we studied.

3.1 Mathematical modeling
We develop the mathematical model described in [4] in the following two directions. The first one is
considers the delay for the ordinary differential equations

dB(t)

dt
= −p1E(t− τ2(t))B(t− τ1(t))− p2B(t− τ1(t))Tu(t− τ3(t))− µ1B(t− τ1(t)) + b,
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dE(t)

dt
= −µ2E(t− τ2(t)) + αTi(t− τ3(t)) + p4E(t− τ2(t))B(t− τ1(t))

− p5E(t− τ2(t))Ti(t− τ3(t)),

dTi(t)

dt
= p2B(t− τ1(t))Tu(t− τ3(t))− p3Ti(t− τ3(t))E(t− τ2(t)),

dTu(t)

dt
= λTu(t− τ3(t))− p2B(t− τ1(t))Tu(t− τ3(t)),

where τ1(t), τ2(t) are the delays in B(t), E(t), respectively, and τ3(t) is the delay in Ti(t) and Tu(t).
The state variables B(t), E(t), Ti(t) and Tu(t) represent the concentration of BCG in the bladder,
effector cell population, tumor cell population that has been infected with BCG, and tumor cell
population that is uninfected with BCG, respectively.

The second direction of our development considers the geometrical configuration of the human
bladder (see [12]). This model can be described by the following system of partial differential equations
with delay:

∂B(r, t)

∂t
= −p1E(r, t− τ2(t))B(r, t− τ1(t))− p2B(r, t− τ1(t))Tu(r, t− τ3(t))

− µ1B(r, t− τ1(t)) + b+D1
1

r2
∂

∂r

(
r2

∂B(r, t)

∂r

)
,

∂E(r, t)

∂t
= −µ2E(r, t− τ2(t)) + αTi(r, t− τ3(t)) + p4E(r, t− τ2(t))B(r, t− τ1(t))

− p5E(r, t− τ2(t))Ti(r, t− τ3(t)) +D2
1

r2
∂

∂r

(
r2

∂E(r, t)

∂r

)
,

∂Ti(r, t)

∂t
= p2B(r, t− τ1(t))Tu(r, t− τ3(t))− p3Ti(r, t− τ3(t))E(r, t− τ2(t))

+D3
1

r2
∂

∂r

(
r2

∂Ti(r, t)

∂r

)
,

∂Tu(r, t)

∂t
= λTu(t− τ3(t))− p2B(r, t− τ1(t))Tu(r, t− τ3(t)) +D4

1

r2
∂

∂r

(
r2

∂Tu(r, t)

∂r

)
,

D1, D2, D3, D4 are the diffusion rates in the system for B(r, t), E(r, t), Ti(r, t) and Tu(r, t), respec-
tively. The variable r stands for the Euclidean distance in R3 from the point (0, 0, 0) in the polar
coordinates. The center of the system’s geometry is defined to be (0, 0, 0).

In the scope of this paper, it is assumed that the bladder has a form of a perfect sphere ring
satisfying the condition

r20 ≤ x2 + y2 + z2 ≤ R2.

The variables x, y, z are the Cartesian coordinates system. r0 and R are the radii of the internal and
external spheres of the geometrical configuration, respectively.

The boundary condition of the inner sphere is given by

∂B(r0, t)

∂t
= b,

∂E(r0, t)

∂t
= 0,

∂Ti(r0, t)

∂t
= 0,

∂Tu(r0, t)

∂t
= 0.

In addition, the initial conditions are assumed to be

B(r, t0) = 0, E(r, t0) = 0, Ti(r, t0) = 0, Tu(r, t0) =
cr

R− r0
,

where c > 0 is the tumor cells equal distribution factor.

3.2 Discretization
Our approach consists in a discretization of our system of differential equations, by dividing the domain
into a two-dimensional grid in r and t. Our t-axis partition is

tstart = t0 < t1 < · · · < tn = tend,
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while the r-axis partition is
r0 < r1 < · · · < rn = R.
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b=3*106

b=107

Figure 1. Effect of different dosages on PDE.

For a general function f(r, t), we can use this grid system to get the following approximation of
its derivatives:

∂fi,j
∂t

=
fi,j+1 − fi,j
tj+1 − tj

,

1

r2
∂

∂r

(
r2

∂fi,j
∂r

)
=

2fi+1,j − 2fi,j
ri(ri+1 − ri)

+
fi+2,j − 2fi+1,j + fi,j
(ri+2 − ri+1)(ri+1 − ri)

.

Substituting these approximations into our system of partial differential equations with delay, we get

Bi,j+1 −Bi,j

tj+1 − tj
= −p1Ei,j−τ2Bi,j−τ1 − p2Bi,j−τ1Tui,j−τ3 − µ1Bi,j−τ1 + b

+D1
2Bi+1,j − 2Bi,j

ri(ri+1 − ri)
+D1

Bi+2,j − 2Bi+1,j +Bi,j

(ri+2 − ri+1)(ri+1 − ri)
,

Ei,j+1 − Ei,j

tj+1 − tj
= −µ2Ei,j−τ2 + αTIi,j−τ3 + p4Ei,j−τ2Bi,j−τ1 − p5Ei,j−τ2TIi,j−τ3

+D2
2Ei+1,j − 2Ei,j

ri(ri+1 − ri)
+D2

Ei+2,j − 2Ei+1,j + Ei,j

(ri+2 − ri+1)(ri+1 − ri)
,

T Ii,j+1 − TIi,j
tj+1 − tj

= p2Bi,j−τ1Tui,j−τ3 − p3TIi,j−τ3Ei,j−τ2

+D3
2TIi+1,j − 2TIi,j

ri(ri+1 − ri)
+D3

TIi+2,j − 2TIi+1,j + TIi,j
(ri+2 − ri+1)(ri+1 − ri)

,

Tui,j+1 − Tui,j

tj+1 − tj
= λTui,j−τ3 − p2Bi,j−τ1Tui,j−τ3

+D4
2Tui+1,j − 2Tui,j

ri(ri+1 − ri)
+D4

Tui+2,j − 2Tui+1,j + Tui,j

(ri+2 − ri+1)(ri+1 − ri)
.
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Figure 2. Effect of different delays on PDE.

Our discretization consists of a two-dimensional grid where for every i, j < 0, we assume

Bi,j = 0, Ei,j = 0, T Ii,j = 0, Tui,j = 0.

Discretization of the initial condition is given by

Bi,0 = 0, Ei,0 = 0, T Ii,0 = 0, Tui,0 =
cri

R− r0

for every i, while discretization of the boundary condition is given by

B0,j+1 = B0,j + b, E0,j+1 = E0,j , T I0,j+1 = TI0,j , Tu0,j+1 = Tu0,j .

For the system of ordinary differential equations with delay, we use a one-dimensional grid in t,

tstart = t0 < t1 < · · · < tn = tend.

For a general function f(t), we can use this grid system to get the following approximation of its
derivative:

dfj
dt

=
fj+1 − fj
tj+1 − tj

.

Substituting this into our system of ordinary differential equations with delay, we get

Bj+1 −Bj

tj+1 − tj
= −p1Ej−τ2Bj−τ1 − p2Bj−τ1Tuj−τ3 − µ1Bj−τ1 + b,

Ej+1 − Ej

tj+1 − tj
= −µ2Ej−τ2 + αTIj−τ3 + p4Ej−τ2Bj−τ1 − p5Ej−τ2TIj−τ3 ,

T Ij+1 − TIj
tj+1 − tj

= p2Bj−τ1Tuj−τ3 − p3TIj−τ3Ej−τ2 ,

Tuj+1 − Tuj

tj+1 − tj
= λTuj−τ3 − p2Bj−τ1Tuj−τ3 .
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Figure 3. Effect of different delays on ODE.

Discretization of the initial condition is given by

B0 = 0, E0 = 0, T I0 = 0, Tu0 =
c

R− r0
.

The calculation has been performed using Matlab software (version R2020a). Several tests have
been conducted to examine the results, the effect of the delay and different dosage on the PDE and
the ODE models, and the differences between the PDE and the ODE models.

In each figure, the x-axis respresents the time that has been passed from the beginning of the
treatment and the y-axis is the size of the cell population. In Figure 1, we compare different dosages
of BCG injected and how it affects the PDE model. In Figures 2 and 3, we compare different values of
delay for the PDE model and ODE model, respectively. Lastly, Figure 4 shows the absolute difference
between the PDE and ODE models.

4 Conclusions
This study develops a numerical method for the analysis of the solutions for the system of partial
differential equations with delay of a mathematical model with pulsed BCG immunotherapy based on
a two-dimensional grid discretization. Using this numerical method, we created graphs describing the
difference of the system behavior based on specific parameters change. From these graphs, we can
come to the conclusion that the bigger the delay, the less stable these systems become. Furthermore,
we can observe that the partial differential system allows us to get more accurate presentation of how
the BCG affects the bladder early on. This is a result of the geometry of the bladder taking part in
the system using diffusion. Later on, we have got similar behavior for both.

In addition, we can use these calculations to help us determine the dosage needed for each treat-
ment. As can be observed in Figure 1, low dosage of b = 105 has no effect on the cancer cells and will
not result in the cancer being cured. Once we increase the dosage, we can observe that there is an
effect and the cancer is cured. For example, for b = 3 · 106, the cancer takes double the time to get
cured compared to b = 107.
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Figure 4. Difference between PDE and ODE.

In Figure 4, it can be observed that the difference between the PDE and ODE models in all cell
populations at the start of the treatment is of a high magnitude. Later on, the delta between the
models converges to a constant for all cell populations which indicates linear correlation between the
PDE and ODE models. This difference between the models can be explained by the introduction
of the geometry which is reflected in the diffusion coefficients of the system. For the PDE model,
there is diffusion dynamics as opposed to the ODE model where there is an instant reaction to the
introduction of BCG. After the diffusion spreads throughout the bladder, it behaves like an instant
reaction, and therefore the PDE and ODE models eventually behave identically, as can be seen in
Figure 4. However, the PDE model will provide us with a more accurate analysis of the treatment
effect.
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