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Abstract. In the present paper, we consider quasilinear ordinary differential equations of the form
D(an, ap_1,...,00)x =p(t)|z|’sgnz, t>a, (1.1)
where D(c,, ap—1,...,a1) is the nth-order iterated differential operator such that
D(an, an-1,...,a1)x = D(apn)D(ap—1) - D(ay)x

and, in general, D(«) is the first-order differential operator defined by D(a)z = (d/dt)(|z|* sgnz) for
a > 0. For the case where ajas---a,, < [, we present a new sufficient condition for all strongly
increasing solutions of (1.1) to be singular. If @; = ag = -+ = a;,, = 1, then one of the main results,
Corollary 3.2, gives an extension of the well-known theorem of Kiguradze and Chanturia [2].
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1 Introduction

For a positive constant «, let D(«) be the first-order differential operator defined by

— d «
D(a)z = pn (|z|* sgnz),

and for n positive constants ay, aa, . .., @, let D(ay,, @p_1, ..., 1) be the nth-order iterated differential
operator defined by
D(ap,n-1,...,01)x = D(aw,)D(ap—1) -+ - D(aq)x.

Further, for an interval I C R, we denote by C'(a;, a;—1,. .., a1)(I) the set of all real-valued continuous
functions x(t) which are defined on I such that

D(ay)x(t), D(ag, ar)x(t), ..., D(as, -1, ..., a1)z(t)

exist and are continuous on I (i =1,2,...,n).
In this paper, we consider nth-order quasilinear ordinary differential equations of the form

D(p,p_1,...,00)x =p(t)|z|’ sgnz, t>a, (1.1)
where it is assumed that
(a) n > 2 is an integer;
(b) a1,as,...,a, and 8 are positive constants;

(c) p(t) is a continuous function on an interval [a, 00), and p(t) > 0 on [a, 00).

By a solution z(¢) of (1.1) on a subinterval I C [a,00), we mean that z(¢) belongs to the set
C(an,an-1,...,01)(I) and satisfies (1.1) at every point ¢ € I. A solution z(t) of (1.1) on an in-
terval I (C [a,00)) is said to be strongly increasing on I if x(t) # 0 on I and

D(a,...,a0)x(t) >0 (te€l) forall i=0,1,2,...,n— 1. (1.2)

Here, if ¢ = 0, then D(a, ..., a1)z(t) is interpreted as z(t). To make our idea definite, we will restrict
our attention to solutions x(¢) of (1.1) which exist on some intervals of the form I = [a,b), a < b < 0.
Here, b may depend on the particular solution z(t).

By the definition, a strongly increasing solution z(t) of (1.1) on [a,b), a < b < oo, satisfies

D(oy,...,01)xz(a) >0 forall i=0,1,2,...,n— 1.
Conversely, if z(t) is a solution of (1.1) defined on a right neighborhood of a such that

D(w,...,a1)x(a) >0 for all 4 €{0,1,2,...,n—1},
D(ey, ... ,a1)z(a) > 0 for some i € {0,1,2,...,n— 1},

then x(t) is strongly increasing on the maximal interval [a, b) of existence. The right end point b may
be finite or infinite.

Suppose that x(t) is a strongly increasing solution of (1.1) on [a,b), and let [a,b) be the maximal
interval of existence of x(t). If b is finite, then x(¢) is called singular. A singular strongly increasing
solution is often said to be a second kind singular solution of (1.1).

Let a1, aq,...,a, be positive constants and I (C R) be an interval. To shorten the notation, we
denote the set C(ay,...,a1)(I) briefly by C;(I) (i = 0,1,2,...,n). The set Cy(I) is interpreted as
C(I): the set of all real-valued continuous functions on I. Furthermore, we set

D(ay,...,a0)x(t) = Dix(t) for i =0,1,2,...,n.
Then equation (1.1) may be expressed as

Dz = p(t)|z|’sgnzx, t>a, (1.3)
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and, for the case I = [a,b) (a < b < 00), condition (1.2) becomes
Dix(t) >0 (a<t<b) for i=0,1,2,...,n—1. (1.4)

It can be proved [6, Theorem 4.1] that, for the case ajaz- -, > B, all solutions of (1.3) can be
continued to co. Therefore, in this case, none of strongly increasing solutions of (1.3) are singular.

On the other hand, the case ajas - - - a,, < B has a different aspect. A strongly increasing solution
x(t) of (1.3) may be singular. It is known [6, Theorem 4.3] that if ajas -, < 8, then (1.3) always
has a singular solution. Now, consider the initial value problem of the form

Dz = p(t)|z|® sgn, (15)

z(a)=A>0 and Djz(a)=0 (i=1,2,...,n—1), '

where the value of z(a) = A is regarded as a positive parameter. We know [6, Section 3] that the initial

value problem (1.5) has a unique solution x = z(¢) defined on a right neighborhood of a, and that

2 (t) is strongly increasing on the maximal interval of existence. Furthermore, we have the following
result (see [6, Theorem 6.1]). Suppose that ayag - --a, < § and

oo

/(t —a)"1Pp(t) dt < oo, (1.6)

a

where ) ) ) )
Tpe1 = — + + .+ —+ . (17)
aq Qa2 Q1 - Qp_2 Q12 Qp_2Q0p_1

Then there exists A* > 0 such that

(i) if A € (0, A*], then xx(t) exists on [a, 00), i.e., x(t) is not singular
and
(i) if A € (A*,00), then x,(t) is singular.

Roughly speaking, condition (1.6) means that p(¢) is small enough in a neighborhood of co. Conversely,
if p(t) is large enough in a neighborhood of oo, then all of strongly increasing solutions of (1.1) are
singular. Actually, Naito and Usami [6, Theorem 6.2] have proved the following theorem.

Theorem A. Let ajas - o, < 8. If

lim inf#™ -1 +1p(t) > 0, (1.8)

t—o0
then all of strongly increasing solutions of (1.1) are singular.

The main purpose of this paper is to show that Theorem A can be generalized in the following
way.

For the positive constants oy, aq, ..., «, appearing in equation (1.1), we put
Hn = Q2 + (a2a3+a3) +ee (012043"'04n+043044"'an +"'+Otn,—104n+04n), (1.9)
Up = Qa3+ Oy + Qi3Qig ++* Qi+ + + Q10 + Qi (1.10)
&n = a1 +aras + ajasag + -+ agan Qg+ arae - Qp, (1.11)
and
1 1 1
Cn_1:(1+f+ +~-~+7)
az  apas o R e T
1 1 1
(I e )
(%] [6%:1e %1 Q304 - Qp—1
1 1 1
+(1+ Y+ (1+——)+1 (12
Qp_—2 Qp_—2Qp 1 Q1
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Note that if n = 2, then (; = 1. As an important relation between these numbers, we have

Cnfl = —Un + gnrnfb

Further, we have v, = a1y - - - ayrp—1. Here, 1,1 is defined by (1.7).
Then we can show the following theorem.

Theorem 1.1. Let ajas -y < B. Let pin, Vn, &n, CGuo1 and rn—1 be the numbers defined by (1.9),
(1.10), (1.11), (1.12) and (1.7), respectively. Suppose that there exist o > 0 and 7 > 0 such that

(Vn + 1)o + i — 1 <0, (1.13)
(Lynﬂ)aju (un—%)f—lzo, (1.14)
a1a2..-an alaz"'an
and either -
/s_C"*lT_H(T”'*lﬁ“)”p(s)” ds = 0o (a™ > max{a,0}) (1.15)
at
or else
o0
lim sup tc"‘”/374"‘”71“7’"‘1[3“)‘%(3)‘7 ds > 0. (1.16)
t—o00

t

Then all of strongly increasing solutions of (1.1) are singular.
Ifai=ay=---=a, =1, then
Dix(t) = zD(t) (i=0,1,2,...,n),
and so equation (1.1) is reduced to
™ = pt)|z|®sgnz, t>a. (1.17)
If n=2and ay =1, ap = o (> 0), then (1.1) is the second-order quasilinear differential equation
(|x’\“sgnx’)/ = p(t)|z|’ sgnz, t>a. (1.18)

Results on the problem of existence and asymptotic behavior of strongly increasing solutions of (1.17)
are summarized and proved in the book of Kiguradze and Chanturia [2]. This problem has also been
studied by Mizukami, Naito and Usami [3] for equation (1.18), and by Naito and Usami [6] for the
general equation (1.1).

The proof of Theorem 1.1 is given in Section 2. In Section 3, Theorem 1.1 is restated in different
forms, and some important corollaries are mentioned.

A function z(t) is said to be a Kneser solution of the equation

Dy = (=1)"p(t)|z|’ sgnz, t>a, (1.19)
on [a,0) if z(t) is a nontrivial solution of (1.19) on [a, c0) and satisfies
(-1)'Dsz(t) >0 (t>a) forall i=0,1,2,...,n— 1.
Moreover, a Kneser solution z(t) of (1.19) is said to be singular if there is b > a such that
z(t) >0 (a<t<b) and z(t) =0 (t>0).

A singular Kneser solution of (1.19) is also said to be a first kind singular solution of (1.19). There
is a remarkable duality between Kneser solutions of (1.19) and strongly increasing solutions of (1.3)
(see [6,7]). In [5], the first author has established a new sufficient condition for all Kneser solutions
of (1.19) to be singular. The present paper corresponds to [5].
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2 Proof of Theorem 1.1

For brevity, we use the notation
£ =[¢]"sgn¢, €R, a>0.

It is clear that for each a > 0, f(§) = £** is a continuous and strictly increasing function of £ € R.

Expediently, if £ = oo [resp. £ = —o¢], then £€** = oo [resp. £** = —o0].

Let I C R be an interval and let € C(a)(I), o > 0. Then it follows from the equality D(a)z(t)

(d/dt)z(t)** that
(2.1)

x(t) = (x(r)a* + /tD(oz)as(s) ds)u/a)*7 t,Tel.

Therefore, by (2.1), we see that if D(a)x(t) > 0 [resp. > 0, < 0, < 0] on I, then z(t) is increasing

[resp. strictly increasing, decreasing, strictly decreasing] on I.
Moreover, we have the following
Lemma 2.1. Suppose that x, y € C(a)[a,o0), a > 0. If
D t
2t ) e R foo} U{—oo),

Jim y(t) = oo and  lim D(a)y(t)

then
lim 8 _ gasa-
t—00 y(t)

Proof. Since 1tliﬁm y(t)** = oo, it follows from L’Hospital’s rule that
D(a)x(t)} (1/c)x _ y1/a)e

x(t)a*}(l/a)* _ [ lim

x(t) Iy
B % Dlayy(t
O

tirgo m s y(t)ox

The proof of Lemma 2.1 is complete.

In Lemma 2.1, take y(t) = ¢t*/%, a > 0. Then we find that
tli}m D(a)x(t) =¢ € RU {0} U{—o0}

implies
iim 2O /e
t—00 tl/a

Now, let ai,as,...,a,—1 be fixed positive constants. Then we define the numbers r(i) (i

0,1,2,...,n—1) by
(2.2)

r(0) =0
1

Ap—iQp—i4+1 " QAp—1

r(i) = +
Op—j A —i Oy —j 41

Observe that the number r(n — 1) is identical with the number r,_; which is given by (1.7). In

addition, we define the positive numbers k(i) (i =0,1,2,...,n — 1) by
(2.3)

k0)=1, k(1)=1
k(i) = [1 +r(1)] Y @n—ian—itian-2)[] 4 p(2)] 71/ (@n-i@n-iti=an-3) .
X[1+47(i — 2)] Y (@n—ion—it)[] 4p(j — 1)) 7V G =2, n—1

Applying Lemma 2.1 repeatedly, we have the following
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Lemma 2.2. Let a; >0 (i =1,2,...,n— 1) and suppose that x € Cy,_1[a,00). If

lim D, _12(t) =¢ € RU{oc0} U{—o00},

t—o00

then

lim Dn—i—ll'(t) _ k(i)g(l/[anfianf'hkl"'O‘ﬂ-*l])*

t—o00 tr(?)

where (i) and k(i) are defined by (2.2) and (2.3), respectively.

Lemma 2.2 will be effectively used in the proof of Theorem 1.1.

Suppose that ajag - -+, < 8, and let z(¢t) # 0 be a strongly increasing solution of equation (1.3)
on [a,b), a < b < oo. We have (1.4). In addition, it follows from (1.3) that D,z(t) > 0, # 0 on [a, b).
Therefore, D;z(t) (i =0,1,2,...,n — 1) are increasing on [a, ). It can be found that

Diz(t) >0, a<t<b, i=0,1,2,...,n— 1.
To see this, suppose that there is i = 0,1,2,...,n — 1 such that D;,z(c) = 0 for some ¢, a < ¢ < b.
Since D;,x(t) is nonnegative and increasing on [a, ], this implies that D;,z(t) = 0 on [a, ], and so
D,z(t) = 0 on [a,c]. Then, by (1.3), we have x(t) = 0 on [a, ], and, in particular, D;z(a) = 0

for all ¢ = 0,1,2,...,n — 1. Therefore, we have z(t) = 0 on [a,b) (see [7, Theorem 5.1]). This is a
contradiction.

Proof of Theorem 1.1. The proof is done by contradiction. Suppose that equation (1.1) has a strongly
increasing solution x(t) # 0 on the entire interval [a, c0). By the above remark, we see that

Diz(t) >0, t>a, i=0,1,2,...,n—1. (2.4)

Since D,,_1x(t) is positive and (strictly) increasing on (a, c0), we have either

tl;rgo Dy_1z(t) = 00 (2.5)
or
lim D,,_qx(t) exists and is a positive finite value. (2.6)

t—o0

As the first case, assume that (2.5) holds. Then, by Lemma 2.2,

D, _i—1x(t
lim 7@( )

t—o00 tr(i)

=00, 1=1,2,...,n—1. (2.7)

Therefore, by (2.5) and (2.7), we see that there exists a number a; > max{a, 0} such that

Dyt .
ti(l)x() >1 for t>a; (i=0,1,2,...,n—1).
In particular,
Dyp_q1z(t) > 1 and z(t) > ¢ for t > ay. (2.8)

For i =0,1,2,...,n — 1, define the functions w,_;_1(t) by

Wn—i—1 (t) =

Then we have
tlim Wp—i—1(t) =00 (1=0,1,2,...,n—1). (2.10)
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Now, define the numbers A1, A2, ..., Ap—1, Ap by

M= —agean(l =0 = pn7) + (02 + @20+ g,
1
)\227043"'0171(1—0—/%7)-1-(a3+a3064+"~+a3"'an)7'7
1
A1 = —an(l—0 — up7) + T,
Vn
An =0,

where ¢ and 7 are positive constants satisfying (1.13) and (1.14), and p, and v,, are given by (1.9)
and (1.10), respectively. It is easy to see that

A Agt- A, =1, (2.11)
)\i _ai+1)\i+1 = 041 T (Z: 1,2,...,”—2). (2.12)
Further, we have
A >0 (i=1,2,...,n). (2.13)
In fact, it follows from (1.13) that
A1 — (0 +7) = =2 [(p + 1)o + pi7 — 1] > 0, (2.14)

n

which yields
An—1 > anp(oc+71)>0.

Therefore, by induction, (2.12) gives
Ai = @ip1Aip1 F 17 >0 for i=n—-—2,n-3,...,1.

Clearly, A, = o > 0. Thus we have (2.13).
Next, define the function y(¢) by

y(t) = x(®)™ [Drz ()] (Do ()] - - [Dpaz(t))™, > ar, (2.15)
By (2.4), we have y(t) > 0 (t > a1). It is easy to find that the derivative y'(t) of y(¢) is given by

v | Drx(t) Dox(t) D, x(t)
VO = e ¥ Do) Do ra(D)]or

y(t), t>as. (2.16)

As a general inequality, we have
uflug‘Q v ’LLQ" < Aug + Asus + - -+ Apug

n

for u; > 0, \; > 0, > A; = 1 (see, for example, [1, pp. 13-14]). This inequality may be written
i=1

equivalently as

Lodtvy? - -vpn <wp +vg 4 -4 v, with L= AMA;22 - A (2.17)

n

n
for v; > 0, A; > 0, >, A\; = 1. Therefore, by (2.16) and (2.17) of the case v; = D;z(t)/[D;i—1x(t)]*,

we obtain =
8 T

= La(t)= M [Dya(p)] MM
% [Dnaa ()] Dy ya()] M D) (1)
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for t > a;. Then, on account of (2.12), (1.3) and (2.15), we see that

y'(t) > La(t)” M=t P g ()17 [Dyar(t) |57 -

Qp—1T anT —anTHAn—1—anAn
X [Dn,gx(t)] ! [Dn,lx(t)] [Dn,lx(t)] ! p(t)A"y(t)
_ Lx(t)—al)\lfaﬂukﬁo’ [anll'(t)] )\n71*an(’r+0)p(t)ay(t)l+‘r
for t > a;. Since
—041)\1—0417'4'@7:0[10[2“.&” {( o Vn"'l)g‘f'(ﬂn_yngn)T_l] >0
Vn a1Qg - Oy, a1Qg - O,

(see (1.14)) and A\,—1 — a (7 + o) > 0 (see (2.14)), it follows from (2.8) that
y’(t) > Lt(_alAl_Q1T+ﬁU)T”’1p(t)0y(t)1+T _ Lt—Cn,17——1+(rn,1,B+l)ap(t)oy(t)1+r’ t>a.

From this inequality it is seen that
T
—y(T)""+yt)" = TL/Sfc”’”71+(T"*1B+1)”p(s)” ds, a1 <t<T.
t

Then, letting T — oo, we find that

/S—Cnf1T—1+(7"n,715+1)0p(8)‘7 ds < 0o (2.18)
ai
and o
y(t) " = 7L / s TG T BT ()7 ds, ¢ > ay. (2.19)

t
By (2.9) and (2.15), we have
y(t) = [t Do ()] 172w (]2 - 1 O (8))
— tr(n—l)al+r(n—2)a2+~~-+r(1)an,1w0(t)alwl (t>a2 . -wnfl(t)a”

=t we ()M wr ()™ - wpq (8).

Therefore, (2.19) gives
o0
{wo(H) ™ wi(t)*? - w1 ()} = LT / s T B oy ()7 ds, ¢ > ay.
t

Then it follows from (2.10) that

lim tfn—”/s—<n—1T—1+<”n—15+1>f’p(s)0 ds = 0. (2.20)

t—o00
t

As the second case, assume that (2.6) holds. Let tlim D,_12z(t) = £ € (0,00). By Lemma 2.2, we
—00

have

tim 20 k(n — 1)t/ [erezanal ¢ (0, 00).

t—oo tTn—1
Then it can be concluded [4, Corollary 1.4] that

o)

/sr"‘lﬁp(s) ds < o0, (2.21)

ai
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where a; is a number satisfying a; > max{a,0}. We will show that (2.21) implies (2.18) and (2.20).
On account of (1.13), we obtain o < 1. Then Holder’s inequality gives

T T o T 1—0o
/57Cn71771+(rn—1ﬁ+1) 7 ds < </s7“n 1ﬁ ) (/S[Cnl"'/(lg)]l ds)
t t t

_ (/srn_lﬁp(s)ds)o< Lo [T=Gnam/(1=0) _ = Cuoar/ (- o>]) -
t

Cn—1T

for a; <t < T. Letting T — oo in the above inequality, we get (2.18) and

tCn,l‘r/S—Cn,17'—1+(7‘n71B-‘rl)Up(S)U ds < (1 _U (/ Tn— 16 ) , t>aj. (222)
t t

Cn—lT

Then it is clear that (2.21) and (2.22) imply (2.20).

We have proved that if equation (1.1) has a strongly increasing solution on [a, 00), then (2.18) and
(2.20) hold. Therefore, if either (1.15) or (1.16) holds, then a strongly increasing solution of (1.1)
cannot exist on [a,00). The proof of Theorem 1.1 is complete. O

For the case n =2, a3 = 1 and as = a > 0, equation (1.1) becomes (1.18). In this case, we have
=1 pp=a wmr=a LH=1l+a =1

Therefore, Theorem 1.1 gives an extension of Theorem 2.7 of [3]. The liminf in condition (2.4) of
Theorem 2.7 of [3] can be replaced to lim sup.

3 Different forms of Theorem 1.1

It should be remarked that
Unbn — Q10 * Qi > 0,
where p,,, v, and &, are defined by (1.9), (1.10) and (1.11), respectively. Therefore, the term p,, —
[(Vn&n)/(a1as -+ - )] appearing in (1.14) is a negative number. For simplicity of notation, we put
Vngn

Q102 - - Qi fn

By the above remark, 7, is a positive number.
Now, let ajag -+ a, < f. We easily find that ¢ > 0 and 7 > 0 satisfy (1.13) and (1.14) if and
only if

1
<o< 3.1
B/(anazam)rn+1 7 S vp+1 (3.1)
and ) ) 8
< — mi - = —1 b .
e SR (Crree ) Lt S

Suppose first that o > 0 satisfies (3.1). Next, choose 7 > 0 so that the equality holds in the latter
half of (3.2), and put 7 = 7(0). More precisely,

I 1 B
T(U):unmm{l—(un—l—l)o, P [(Mun—l—l)a—l}}. (3.3)
Then conditions (1.15) and (1.16) become
(oo}
/S_C"‘”(‘T)_1+(T"‘15+1)”p(s)” ds = 0o (a™ > max{a,0}) (3.4)

at
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and
o0

lim sup ¢$»—17() /8_4"*17(”)_1+(’"”*1’3+1)‘7p(s)‘7 ds > 0, (3.5)
t—o0
t

respectively. Therefore, Theorem 1.1 produces the following result.

Theorem 3.1. Let ajas -+, < . Suppose that o satisfies (3.1). Define 7(c) by (3.3). If either
(3.4) or (3.5) holds, then all of strongly increasing solutions of (1.1) are singular.

Example. Consider the fourth-order equation

t
t+1

(]z"|* sgn ;v”)” = gt~ 17 [Rat1)8/0] (1 + sint) lz|Psgnz, t>1, (3.6)

where 0 < o < f3, and & is a positive constant. In this equation, n =4 and a1 =1, ag = 1, ag = «,
oy =1, and p(t) = kt~ 1712+ DB/(1 4 (t)sint), where ¢(t) = t/(t + 1). We have

200+ 1 22a+1
rg = s e =2Ra+1), wm=2a+1, & =2a+1), C3=¥, Ny =

1
« a a’
If e9 > 0 is taken sufficiently small, then

1 1— & 1
B/alCat D+l 2@+l 2@t 1)

and

so<a[(§(2a+1)+l)23a__’_€01)—1}

For such an g9 > 0, put

_ 1-—- o
C2(a+1)”
Then o satisfies (3.1). Further, the number 7(o) is given by
7o) =~ mind1—2(a+ 1o a[(§(2a+1)+1)a—1} -0
22a+1) ’ o' 2(2a+1)

Then we have

th‘r(a)/87C3T(0)71+(r35+1)o’p<8)0 ds

t

= (1=<0)/[2(a+1)] o/ / 57170/ (1 4 () sin ) (1—<0)/ 2ot 1)] g,
t

It is seen that for m =1,2,...,

) oo (2(m+14)+1)7
/ 5710/ (1 4 o(s) sin ) (120 (@+D] g > § / s 1-(c0/a) gg
2mm =0 2(m+1i)7
[ee]
- . —1—(eo0/) —eo/a —1—(eo/) —eo/a & —eo/a
22[(2(771—!—1)—!—1)7?] >0 (2s+1) 0/%) dg = gTE0 E(?m—i—l) ofe
=0 4 0
and so,

lim inf (2ma)%o/® / sT17(20/) (1 4 p(s) sins)(17e0)/Rla+D] gg > 2 >0
m— oo 260
2mm
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Consequently, we find that

oo

lim sup ¢527() / s~Cm(@) =1+ (raftop(6)7 g5 > 0.
t—o0
t

By Theorem 3.1, it is concluded that all of strongly increasing solutions of (3.6) are singular. Note
that Theorem A cannot be applied to equation (3.6), since lim inf; ., t"3#+1p(¢) = 0.

Now, let ayag -+ -y, < B, and put

M +1

On = . 3.7
[B/(@raz—an)lvn + 1+ talvn + 1) 3.7
We have )
<oy < ———.
[B/(Oél(XQ"'an)]Vn"'l vp+1
It is easily seen that if o satisfies
< .
o So< T (3.8)
then the number 7(o) which is defined by (3.3) is
1
7(0) = o [1— (vn +1)a]. (3.9)

Therefore, Theorem 3.1 produces the following result.

Theorem 3.2. Let ajas -+, < . Let o be a number satisfying (3.8), where o, is given by (3.7),
and define T(o) by (3.9). If either (3.4) or (3.5) holds, then all of strongly increasing solutions of
(1.1) are singular.

We have derived Theorem 3.1 from Theorem 1.1, and Theorem 3.2 from Theorem 3.1. We remark
here that Theorem 1.1 can be derived from Theorem 3.2. In this sense, these three theorems are
essentially identical. The following is a brief proof of the fact that Theorem 1.1 is derived from
Theorem 3.2. Let 0 > 0 and 7 > 0 be numbers which satisfy (1.13) and (1.14). As mentioned before,
this is equivalent to the statement that o and 7 satisfy (3.1) and (3.2). Take a number ¢* > 0 such
that o = o* satisfies (3.8) and 7(0*)/0* < 7/0 and ¢ < o*. Here, 7(c*) is defined by (3.9) with
o = o*. If o* is taken sufficiently close to 1/(v, + 1), then it is possible to take such a number o*.
By an application of Holder’s inequality, it is seen that

t t
o/o
/8—@‘,,,_17-—1+(rn_1ﬁ+1)ap(s)a ds < Cy </S—Cn—17'(a )=1+(rn-18+1)c p(s)° dS) . t>at,

at at

and

o0
tCnflT/S_Cnfl7—_1+(70n715+1)0'p(s)0'ds
t

o0 o/o
<0y (tcn1T(a*>/s—<n1T<a*)—1+(m16+1)a*p<s)a* ds) > at

Here, C and C5 are certain positive constants. Therefore, (1.15) implies (3.4) with o = ¢*, and (1.16)
implies (3.5) with ¢ = ¢*. This shows that Theorem 1.1 is derived from Theorem 3.2.

Theorem A stated in Section 1 can be derived from Theorem 3.2. In fact, suppose that (1.8) holds.
Let 0 > 0 and 7(0) > 0 be the numbers in the statement of Theorem 3.2. By (1.8), there is a constant
¢ > 0 such that p(t) > ct~"»-1#~1 and so,

t_gn,flT(O‘)_l“r(rn—16+1)<7p(t)0' Z co-t_CnflT(o-)_l
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for all large ¢. If (3.4) does not hold, then the above inequality implies

/S_Cn—17(0')_1+(Tn71B+1)0'p(8)(7 ds > ¢ t—Sn—17(0)
/ n—17(0)

for all large ¢, and, in consequence, condition (3.5) is satisfied.
It is also clear that if o satisfies

1
<o <oy, 3.10
/(e a1 0 (310
then the number 7(o) defined by (3.3) is
1 s
= 1l)o—1}. A1
T(U) HnTn |:(041042 cr O vn )0 } <3 )

Therefore, by Theorem 3.1, we have the following result.

Corollary 3.1. Let ajasg - -, < . Let o be a number satisfying (3.10), where o, is given by (3.7),
and define (o) by (3.11). If either (3.4) or (3.5) holds, then all of strongly increasing solutions of
(1.1) are singular.

As mentioned before, if o = ap = --- = a,, = 1, then Dyz(t) = O (t) (i = 0,1,2,...,n), and
equation (1.1) is reduced to (1.17). Note that condition (1.4) is rewritten in the form
@) >0 (a<t<b) for i=0,1,2,...,n— 1.
Moreover, in the case a; = as = --- = a,, = 1, we have

n(n —1)

rnflzl/n:n_]-a ,U/n:<n71: 9 P gn:nv nn:]-

Therefore, Theorem 3.2 yields the following result.

Corollary 3.2. Consider equation (1.17) for the superlinear case 8 > 1. Let o be a number satisfying
2/ln+ 14+ (n—-1)8] <o < 1/n. If either

/S*ZH”JFH(”*I)B]“;)(S)“ ds = 0o (a™ > max{a,0})
at
or -
lim sup tl_””/s_2+[”+1+("_1)ﬁ]“p(s)“ ds > 0,
t—o0

t
then all of strongly increasing solutions of (1.17) are singular.

Corollary 3.2 gives an extension of Theorem 11.4 (m = 0, k = 1) in the book of Kiguradze and
Chanturia [2].
By Corollary 3.1, we have the following result.

Corollary 3.3. Consider equation (1.17) for the superlinear case 8 > 1. Let o be a number satisfying
/l+(n-18]<0o<2/[n+1+ (n—1)8]. If either

oo

Jotor =

a

or
00

lim sup ¢~ i+ (=DBle /p(s)" ds > 0,

t—o0
t

then all of strongly increasing solutions of (1.17) are singular.
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