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Abstract. This paper deals with the study of a mathematical model that describes a frictional
contact between a piezoelectric body and an obstacle. The material behavior is described with an
electro-elastic constitutive law with long memory and the contact is modelled with Signorini conditions
associated with the non-local friction law in which the adhesion between the contact surfaces is taken
into account. We establish a variational formulation of the model in the form of a system involving the
displacement, stress, electric displacement, electric potential and adhesion field. Under the assumption
that the coefficient of friction is small enough, we prove the existence of a unique weak solution to the
problem. The proof is based on arguments of variational inequalities, nonlinear evolutionary equations
with monotone operators, differential equations and the Banach fixed-point theorem.
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1 Introduction

Contact problems involving deformable bodies are common in industry and in everyday life and play an
important role in structural and mechanical systems, especially, the so-called piezoelectric materials,
which consider the interaction of mechanical and electrical properties. Contact processes involve com-
plicated surface phenomena and are modeled with highly nonlinear initial boundary value problems.
Taking into account various conditions associated with more and more complex behavior laws lead to
introducing new and nonstandard models, expressed by the aid of evolution variational inequalities.
An early attempt to study contact problems within the framework of variational inequalities is due to
Duvaut and Lions [5], to find the state of mathematical, mechanical, and numerical art (see [22,26]).
Several authors have studied unilateral frictional contact problems involving the Signorini state with
or without adhesion (see, e.g., the references in [7,9, 18,26, 28]), as well as the models of viscoelastic
adhesive materials and piezoelectric effect models (see [6,12,13,15,20]).

In this paper, we study a mathematical model that describes a problem of frictional and adhesive
contact between a supposed long-memory electro-elastic body and a foundation. Recall that a friction-
less contact problem with short memory has been studied in [25]. In the present work, we assume that
the contact is modeled with a unilateral constraint and the law of non-local friction with adhesion.
The bonding field evolution is described by a first-order differential equation. As in [10,11], we use it
as an internal surface variable with values between zero and one to describe the fractional density of
active bonds. We refer the reader to the extensive bibliography on the subject in [4,17,22,25].

The present paper aims to extend the results established in the study of a unilateral and frictional
contact problem with adhesion. Novelty is the introduction of a non-local friction law in unilateral
adhesive contact problem for an elastic body with long memory. We contribute to the solution of
this problem by proposing a variational formulation for this model, then, we prove that under the
assumption of the smallness of the coefficient of the friction and suitable regularity assumptions on
the data, the problem admits a unique weak solution where we specify its regularity. The proof of this
result requires proving several technical lemmas by arguments on variational inequalities, monotone
operators, differential equations, and Banach’s fixed-point theorem.

The paper is organized as follows. In Section 2, we state the mechanical model; we list the as-
sumption on the problem data; we present some notations and give a variational formulation. Finally,
in Section 3, under the assumption of the smallness of the coefficient of friction, we state and prove
our main existence and uniqueness result.

2 Problem statement and variational formulation

First, we explain some notations used in this paper. We denote by S; the space of second order
symmetric tensors on R%(d = 2,3), while ‘-’ and || - || represent the inner product and the Euclidean
norm on Sy and R%, respectively. Thus, for every u,v € R, u-v = uv;, ||v]| = (v~v)% and for every o,
T €Sy, 0-T=0yTij, |7l = (7-7)2. Here and below, the indices i and j run between 1 and d and the
summation convention over repeated indices is adopted. We also use the usual notation for the normal
components and the tangential parts of vectors and tensors, respectively, given by v, = v - v = v;y;,
Vv =0V —V,V, 0, =0V -vand o, =ov —o,V.

We consider the following physical setting. An electro-elastic body occupies a bounded domain
Q c R? (d = 2,3) with the Lipschitz boundary 92 = I'. The boundary I is partitioned into three
disjoint measurable parts I'1, I's, I'3 on the one hand, and on two disjoint measurable parts I', and Ty,
on the other hand, such that meas(I'y) > 0, meas(I';) > 0 and I's C I';. Let 7' > 0 and let [0, 7] denote
the time interval of interest. We assume the body is clamped on I'; and therefore the displacement
field vanishes there. A volume forces of density ¢q act in Q2 and surface tractions of density @2 act on
T'5. The body is submitted to electrical constraints for which we assume the electric potential is zero
on I'y, the body is subjected to an electric charge of density gy act on 2 and a surface electric charge
of density qo act on I'y. On I's, the body is in unilateral contact with adhesion following the nonlocal
friction law with an insulator obstacle, the so-called foundation.

Thus, the formulation of the mechanical problem is written as follows.
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Problem (P). Find a displacement field u : Q x [0,T] — R%, a stress field o : Q x [0,T] = Sq, an
electric potential ¢ : Q x [0,T] — R, an electric displacement field D : Q x [0,T] — R? and a bonding
field B : T3 x [0,T] = R such that for allt € [0,T],

—~
DN
—_

~—

o(t) = )+ [ F(t—s)e(u(s)) ds — EXE(p(t)),
o [

D(t) = Ee(u(t)) + CE(p(t)),

(2.2)
Divo(t) + ¢o(t) =0 in Q, (2.3)
div D(t) + qo(t) =0 in €, (2.4)
u(t) =0 on Iy, (2.5)
ov(t) = pa(t) on Ta, (2.6)
U(8) 0, (1) — B R (£) <0, u(D)(ou(t) — B R(w() =0 onTs,  (27)
B(t) = =[B) (v R (1)) + 7+l Br (ur (1) [|*) — €] 4 on T, (2.8)
o) =0 on Ty, (2.9)
Du(t) = ga2(t) on Ty, (2.10)
B(0) =By onTs, (2.11)
o+ (8) + 12 B2(0) B s ()] < il R (),
o (8) 4+ 70 82() Br ()] < | Rer, ()] =, =
on I's. (2.12)
o (t) + v+ B2(t) )|l = plRow (u(t))| = IX =0 such that

o-(t )+%52( )Br(ur(t)) = —Aur(t)

We now describe the equations and conditions involved in our model above.
First, equations (2.1) and (2.2) present an elastic constitutive law with long memory in which
u is the displacement field, D = (D,...,Dy) is the electric displacement field, o = (o;;) is the

stress tensor, €(u) denote the linearised deformation tensor defined by e(u) = (g;;(u)), €i;(u) =
(8 u; + 0; u]) B is an operator of elasticity, F is the tensor of relaxation, & = (e;;) is the third
order piezoelectric operator, £* = (e};;,) is its transpose. E(p) = —V is the electric field, where

Vi = (0;) and C = (C;;) is a positive definite symmetric tensor, called the electric permittivity.
More details on the constitutive equations of forms (2.1) and (2.2) can be found in [1] and [2]. Next,
(2.3) is the equation of motion describing the evolution of the displacement u where Divo = (9;0;;)
and (2.4) is the equation describing the evolution of the electric displacement D. Conditions (2.5) and
(2.6) are the displacement and traction boundary conditions, whereas (2.7) are the Signorini contact
conditions with adhesion, with zero gap, in which ~, denotes an adhesion coefficient which may be
dependent on x € I's. R, and R, are the truncation operators defined by

L if s<L, s 1f|8|§L7
R,(s)=<—s if —L<s<0, R.(s)= 15 1| > L,
0 if s>1L, |s]

where L > 0 is the characteristic length of the bond.

The differential equation (2.8) describes the evolution of the bonding field 8. Here, 7, v, and ¢,
are positive coeflicients of adhesion, where [r];+ = max{0,7}. In (2.9), we assume that the potential
vanishes on T',, and we express the fact that the electric charge density ¢ is imposed on T', by (2.10).
Finally, (2.11) is the initial condition and (2.12) represent Coulomb’s law of dry friction with adhesion,
where p denotes the coefficient of friction.

Now, to obtain a variational formulation of Problem (P), we will use the spaces

H=1*)" Q={r=(r); mj = € L*(V},
H, = {u:(uz) u; € HY(Q), i=1,d}, Q= {UEQ DIVO'EH}
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H, Q, Hi, Hy are the real Hilbert spaces endowed with the respective inner products

(w,V)g = | wvide, {(o,7)g= [ 0iTi;dx,
/ /
(u, V)i, = (u,vyg + (e(u),e(v))q, (o,7a,) = (0,7)g + (Dive,Divr)y.

We denote respectively the norms associated with || - |la, || - o, || - |&y and || - ||&,-
Recall that the following Green’s formula holds:

(0,e(v))g + (Dive,v)g = /01/ -vda, Vv € H; (2.13)
r

where da is the measure surface element.
The displacement fields will be sought in the space V. .={v € Hy;: yv =0 a.e. on I';}.
Since meas(I';) > 0, the Korn inequality holds, i.e., there exists a constant Cy > 0 such that

lle()llo = Collvl|a,, YveV,

and V is a Hilbert space with the inner product (u,v)y = (e(u),e(v))q and the associated norm
I .

For v € Hy, we use the same symbol v for its trace on I'. Given the Sobolev trace theorem, there
is a constant Cq > 0 such that

||'U||(L2(1"3))d < CQ”U”V, YveV. (214)

We use the set of admissible displacements fields given by U,q = {v € V' : v, <0 a.e. on I's}.
For the electric displacement field, we need the following two Hilbert spaces:

W={ypeH": y=0aeonl,}, W,={D=(D;): D; € L*(Q), divD € L*(Q)}
endowed, respectively, with the inner products
W, 0w = (V,Vo)u, (D, E)wa = (D, E)g + (divD,div E)r2q),

and we denote the norms associated with || - ||y and || - ||w,-

Since meas(T',) > 0, the Friedrichs—Poincaré inequality holds and we have a constant Cr > 0 such
that

IVYllw > CrllYll gy, Vv e W.

Moreover, if D € W, is sufficiently regular, the following Green’s formula holds:

(D, V) gt + (div D, o)) 120y = /Dz/ pda, Vb EW. (2.15)
Iy

We will also need the space QQ of fourth order tensors defined by
Qoo = {A = (Aijrn); Aijkn = Ajikn = Agnij € LOO(Q)}-
(D is a Banach space with the norm defined by

||A||Qoo = ng%l,%ﬁgd ||~AijthL°€(Q)~

Let T' > 0. For every real Hilbert space X, we use the usual notation for the spaces LP(0,T; X),
k € [0,00] and Wh*(0,T;X). Recall that the norm of the space W1>°(0,T;X) is defined by
llullwroe0,m;x) = |l oo (0,75x) + ||l o< (0,75 x), Where % denotes the first derivative of u with respect
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to time. We also use the space of continuous functions C([0,T]; X) with the norm ||z|c(0,77;x) =
max [l2(t)]1x-

te[0,T)

Finally, we introduce the space of bonding field denoted as B by

B— {5: [0,7] — L*(T3); 0 < B(t) < 1, YVt € [0,T], a.e. on rg}.

For the study of Problem (P) we adopt the following assumptions on the data.
The operator B and the tensors F, C, £ and £* satisfy the following hypotheses:

(a)
(b)

—
ET

==
SIS

AA
Lze

B:OQx85; — Sd,
B € Qs and there exists a constant Mg > 0 such that

I1B(x,&1) — B(z,&2)|| < Mg||&1 — &, V&1,& € Sq, ae. in Q, (2.16)
There exists a constant mp > 0 such that BE- & = mg| €|, VE€ Sy ae. in Q,

The function = — B(z,£) is measurable on  a.e £ € Sy;
F e C([0,T]; Quo); (2.17)
C: QxR — RY,
C(z,E) = (cij(x)E;), VE = (E;;) € R? ae. inQ, ¢ =cj; € L®(Q),
There exists a constant m¢ > 0 such that
cij(x)E;E; = me||E||? VE€ Sy ae. in Q;
yE 1 QA x Sg — R,
E(x, &) = (esjk(2)&i5), YE=(&;) € Sq a.e. in 0, (2.19)
eijk = €ik; € L=(Q);

(2.18)

Eo-v=0-E%, Yo €8y, VveRL (2.20)

*

where the components of the tensor £* are given by €iik = Ckij-
In addition, we assume that adhesion coefficients satisfy

The initial data [y satisfy

Yrs Vv €a € L(T3), €4 € LQ(Fg)7 Yy Yy €a = 0 ae. x €13, (2.21)
and the following regularity on g and gg:
o € C((0,T]; H), @2 € C((0,T]; L*('2)?), (2.22)
0 € C((0,T); H), g2 € C([0,T); L*(Ts)?). (2.23)
To reflect that the foundation is isolated, we assume
q(t) =0 on T3, Vtel0,T]. (2.24)
Bo € L*(I's), 0<fy <1 a.e. onls. (2.25)

The friction coefficient pu is such that

we€ L>®(T3), p(z) >0 a. e onls. (2.26)

Finally, R is linear and continuous mapping, where

R:H 3(T) — L*(T3). (2.27)

By the representation theorem of Riesz—Fréchet, for all t € [0,T], we define f(¢t) € V and ¢(t) € W as

follows:

(00 = [ olt) vdot [ oa®)-vda, Vo,
Q

I

<q<t),w>v=/qo(t>-wdm+/q2<t)-wda, Vi e W,

Q 1Y
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which imply that f € C([0,T); H) and q € C([0,T]; W). Next, we consider Vy, the subset of regularity
defined by Vy = {v € Hy : Divo(v) € H}. Let us denote by juq : L>®(I's) x Vo x V — R and
Jer : Vo x V. — R, respectively, the functionals given by

Jua(Bo,v) = / (= B Ry ()0 + 7o B Ry (1r) - 07 da,

s

Jpr(u,v) = / wl Ry ()| [vr | da, ¥ (u,0) € Vo x V.
I's

If (v, ) is a solution of Problem (Py) stated below, then o(t) = o(u(t), ¢(t)) € Q a.e. t € [0,T] and
therefore

Jpe(u(t), v) = / u| R, (u(t))| o] da, ¥v € V.

'3

Using the Green’s formula (2.13) and (2.15), we prove that if u, 0, ¢ and D are regular and satisfy
equations and conditions (2.1)—(2.12), then

(o(t),e(u(t))q + Jaa(B(t), u(t), v) + jer(u(t), v) = Jpr(u(t), u(t)) = (f(t),v —u@))v,  (2.28)
VveV,tel0,T],
(D), VY)u + (q(t), ¥)w =0, Vipe W. (2.29)

Taking o(t) in (2.28) by the expression given by (2.1), and D(t) by the expression given by (2.2) , we
derive the following variational formulation of Problem (P).

Problem (Py). Find a displacement field u € C([0,T]; V), an electric potential ¢ € C([0,T]; W) and

a bonding field 3 € WH°([0,T]; L*(T'3)) N B such that u(t) € Uyq N Vo for all t € [0,T] and
(B=Cult),eo — u(t) o + / Ft - s)e(uls)) ds e(v—u(t»)Q
H(EVe(t),e(v —ult)) , + JaalBt), u(t), v — u(t))

Higr(ut),v) = jpr(u(t),u(t)) = (f(t),0 —u(t))v, Vo €U, t€[0,T],  (2.30)

(CV<P(t)7V1/J)H (55( ( )7V¢)H - ( (t)a'l/})Wv VpeW, te [OvT]v (231)

B(t) = *[5(15)((%31/%(15))2 + 92| R (ur (D)%) = €a o telnT], (2.32)

B(0) = Bo. (2.33)

3 Existence and uniqueness
Our main existence and uniqueness result that we state and prove is the following

Theorem 3.1. Assume that assumptions (2.16)—(2.27) hold. Then there exists a constant pg > 0
such that if ||pl| oo (ry) < po, then Problem (Py) has a unique solution (u, @, ().

We carry out the proof of Theorem 3.1 in several steps. We define intermediate problems and prove
their unique solvability, and then we construct a contraction mapping whose unique fixed point is the
solution of Problem (Py ). First, we consider the closed subset Z = {6 € C([0,T]; L*(T'3))NB; 6(0) =
Bo}, where the Banach space C([0,T7]; L*(T'3)) is endowed with the norm

101 = Hfax] [e_ktH‘9||L2(I‘3)]» k> 0.

For a given 8 € Z, we consider the following auxiliary problem.
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Problem (P‘é) Find a displacement field ug € C([0,T]; V) and an electric potential ¢z € C([0,T]; W)
such that ug(t) € Ugqg NV for all t € [0, 7] and

(Beus(t). (0 = us(t) o + / F = s)e(up(s) ds. (0 5 (0)

Q

+(EVp(t), <v—uﬁ< ) + Jad(B(1), ug(t), v — us(t))
+ipr(up(t), >—yfr(uﬂ(> (>>z< (t),v —us(t))v, Yv €U, t€[0,T], (3.1)
(CV@s(t), V) — (Ec(us(t), V) ; = (a(t),d)w, Yo € W, t€[0,T]. (3.2)

We have the following result.
Theorem 3.2. Problem (P‘é) has a unique solution (ug,pg) € C([0,T];V x W).

We consider the product Hilbert space X =V x W with the inner product defined by

(z,y) = ((u,9), (v,9)) = (u,v) + (&, ¥), z,y € X,

and the associated norm || - ||x. In the sequel, let X1 = Uyg x W.
To prove Theorem 3.2 for all n € C([0,T]; Q) and ¢ € [0,T], we consider the following problem.

Problem (P)). Find x5, € C([0,T]; X) such that z,(t) € X, for all ¢ € [0,T] and

(Be(upn (1), e(v—upy(1)) o +(E"Vopn(t), e(v—upy(t)) o+ (CVesy(t), Vi) ;= (Ee(ugy (1), Vi)

+ (1), e(v = ugy (1))@ + Jad (B(E), upy (t), v — wgy () + jrr(upy(t),v) = jr(upy(t), ugy(t))
> (f(t),v—ugy(t))v + (¢(t), V)w, Yv € Uga, Yo € W, t€[0,T]. (3.3)

Since Riesz’s representation theorem implies that there exists an element f,(t) € X defined for all
z = (u,¢) by
(fn(t),z) = (f(£), w)v + (q(t), L)w — (n(t),e(v))q,

we introduce the operator Ag : [0,T] x X — X defined as
(Ap(t)z, X) = (Be(u),(v))q + (£"Vip,2(v))q
+ (CVe, Vi) g — (Ee(u), V) + jaa(B(t),u,v), for all z = (u,p), y=(v,9) € X

denoted by X =X x X, we introduce }fr : X — R defined by

Jgr(y,x) = jpe(u,v) forall @ = (u,0), y=(0,9) € X
Then Problem (P,) is equivalent to
Problem (P?2). Find g, : [0,7] — X, such that

(A2 (t),y — (1)) + Jpr (Y a9 (1) = Jpr(@an(t), 2y (1)
> <fn(t)ay*1'ﬁn(t)>v Vye X, te [O,T}. (3'4)

Remark. The two precedent Problems (P)) and (P2) are equivalent in the way that if g, =
(ug, ppy) € C([0,T]; X) is a solution of one of the problems, it is also a solution of the other problem.

We now have the following

Lemma 3.1. There exists a constant po > 0 such that if ||l Lo (ry) < po, Problem (P?) has a unique
solution xg, € C([0,T]; X).
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We prove Lemma 3.1 by steps. The functional j,4 is linear over the third term and therefore
jad(ﬁauv _U) = _jad(ﬂ7uav)' (35)
Using the properties of truncation operators, we deduce that there exists ¢ > 0 such that
jad(ﬂ17u17u2 - ul) +jad(ﬂ2, Uz, Uy — U’Q) < C/ |Bl - 52| ||’Z,L1 - u2||V ds. (36)
s

Taking 6 = 1 = B2 in the last inequality, we obtain

Jad(Bs s u2 — ur) + Jaa(B, uz, ur —uz) < 0. (3.7)
Choosing u; = v and ug = 0 in (3.7) and using (3.5) and the equality R, (0) = R(0) = 0, we obtain
jad(ﬂvvvv) 2 0 (38)

Similar computations based on the properties of R, and R, show that there exists a constant ¢ > 0
such that
Jad(B;u1,v) = Jad (B, u2,v)| < cllur — uallv||v]|v. (3.9)
For t € [0,T] and for all 1 = (u1,¢1) and x2 = (uz, ¢2), using (3.4), we have
(Ag(t)zr — Ag(t)wa, 21 — m2) = (Be(ur) — Be(ug), e(ur) — s(ug))Q
+ (E*Vpr — Vg, e(ur) — 5(“2))Q + (CVp1 = CVy, Vo — Vi),
— (Ee(w) — Ee(uz), Vior — V@z)H + Jad(B,u1,u2) — jaal(B, uz, ur),
and, by (2.20), we have
(€*V<p1 —E*Vpa,e(ur) — a(ug))Q = (Ea(ul) — Ee(uz), V1 — V(pg)H.
Then, by (3.8), (2.16)(c) and (2.18)(c) we deduce
(Ag(t)rr — Ap(t)wa, 1 — 22) > (Be(ur) — Be(uz), e(ur) — e(uz2))
+ (CVp1 = CV @2, Vipr = Vo) > m|lur — us||F + mellor — @2l
Then the operator Ag(t) is strongly monotone, and for C,, = min(mg, m¢) it satisfies
(Ag(t)zy — Ag(t)xo, 21 — 2) > Chp |21 — zo|%, Va,ye X. (3.10)
For y = (v,v), using (2.14), (2.16)(b), (2.18) and (3.9), we get

(Ap(t)rr — Ap(t)za,y) < C(Hul —uzllv ([vllv + 19llw) + ller = @2llw ([vllv + ||¢HW)>,
thus, Ag(t) is a Lipschitz continuous operator and there exists a constant Ly > 0 such that
IAs()a1 — As(B)all < Lollar — aallx, Vay € X

Next, let the non-empty subset L2 (T'3) be defined by

L3(T3) = {g€ L*(T'3); g > Oae. onls}.
For each g € L2 (I'3), we define the functional h(g, -) : X — R by

o) = [ nglerllda, ¥y =(w.g) € X,

I3

and introduce an intermediate problem as follows.

Problem (P}/). Find xg, : [0,7] — X; such that

<Aﬂ(t>xb’ng(t)>y - x,@ng(t» +h(g,y) — h(g,2png(t) = (f,y — 2pye(t))v, Yy € X. (3.11)
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Lemma 3.2. Problem (P{) has a unique solution.

Proof. The functional h(g, -) is convex and lower semi-continuous, Ag is Lipschitz continuous and
strongly monotone, we deduce that Problem (P{) has a unique solution (see [13]). O

Now, to prove Lemma 3.1, for each ¢ € [0,7] we define on L? (I's) the map ¥, : g — Uy(g) =
|Ro, (u,, (t))]. Then we show the following

Bng

Lemma 3.3. There exists a constant jiy > 0 such that if ||ul|per,) < p1, the mapping ¥ has a
unique fized point g*, and xg,4- is a unique solution to Problem (P,?)

Proof. For ¢ = 1,2, define the following

Problem (P2

gi)- Find Tgng = (ug, ., ) € X1 such that

<Aﬁ(t)xﬁ779iay> + h(giay) - h(giaxﬁngi) = (fvy - xﬁngi)\/a Vy eV.

Take y = 23,4, in inequality (3.11) written for g = g1, then take y = 23,4, in (3.11) written for
g = g2, by adding the resulting inequalities, we get

<A5(t)(xﬂng1 — ZBngs)s Thng, — xﬂng2> < h(91, Tpng,) — P91, Tpng,) + 192, Tang,) — h(g2, Tang, )-
Then using (2.14) and (3.10), we have
ConllTpng, (t) = Tpng, D13 < Callgr — g2l L2(ry) /u(luﬂnglf(t)\ — |upngar (t)]) da. (3.12)
s

Using (2.27), it follows that there exists a constant ¢y such that

19(01) — W(92) 2203y < 0[]0 1, () = 000ty D] (313)
Moreover, using (2.16), we prove that there is a constant ¢; > 0 such that

o0 (g, (8 = 00 (g, O] -3y < CllT0, () = T, D) x- (3.14)

Hence, taking into account (2.14) and combining (3.12), (3.13) and (3.14), after some calculus we find

coc1Cq
W (g1) — ¥(g2)ll2(rs) < = 1l o vy 191 — 921l 22(1s) -

Let py = Cog”éﬁ , then we deduce that if ||/JHLOC(1"3) < p1, ¥ is a contraction and, so, it admits a
unique fixed point denoted by g*.
Keeping in mind that there is a unique element xg,,~ satisfying the inequality

<Aﬁ(t)xﬁng*vy - $6n9*> +h(¥(g9"),y) — h(¥(g"), mﬁng*) = (f,y— xﬁng*)v» Vye X,

and ho W = j, we prove that xs,(t) = T,y is a unique solution of Problem (P?). We shall now see
that zg, € C([0,T]; X). Indeed, let t1, t2 € [0,T], take y = x3,(t2) in (3.3) written for ¢ = ¢; and
take y = xg,(t1) in the same inequality written for ¢ = ¢,. Using (2.16), (2.27) and the properties of
R, and R, we prove that there exists a constant ¢ > 0 such that

2y (t) — sy (t2)llx < c(IB(t1) = B(t2)llL2qry) + 1F (1) = f(t2)lla + lIn(t1) — n(t2)llQ)-

Then, as f € C([0,T]; H), n € C([0,T);Q) and 8 € C([0,T]; L?(I'3)), we immediately conclude that
zgy € C([0,T]; X). We also have that ug, (t) € U.aNVy, Vt € [0,T]. Indeed, for each ¢t € [0, T], denote
o(ug, (t) = Be(u,, (t)) —E*E(p,, (t)) +n(t) and using Green’s formula with the regularity ¢o(t) € H,
we get divo(uy,, (t))) € H and then ug,(t) € Vo. O
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Now, we define the operator F g : C([0,T]; Q) — C([0,T7; Q) by

:/F(t—s)E(Ugn(s))ds, VneC0,T;Q), te|0,T].

We have the following
Lemma 3.4. The operator F g has a unique fized point ng.

Proof. Let n1,m € C([0,T]; Q). By a standard computation based on (2.17) and (3.3), we prove that
there exists a constant ¢ > 0 such that

1Fsm(t) = Fame(t)lle < Cz/llm(t) —m(t)llqds, Vte[0,T].

By iteration, for any positive integer n we deduce the estimate

nrrn

n n Co
||Fﬁ771 - F;3772||C([0,T];Q) = ]

[l *Uz\\c([O,T];Q)'

As lir_~r_1 g = 0, it follows that for a positive integer n sufficiently large, F 5 is a contraction on
n—-+oo °

n!
the space C([0,T]; Q). Then, by using the Banach fixed point theorem, Fj has a unique fixed point
ng € C([0,T7; Q) which is also a unique fixed point of F g, i.e.,

Fﬁnﬁ(t) = nﬂ(t)7 Vi e [OvT]‘ O

Next, we denote ug = ug, and g = g, and deduce that the couple (ug,pg) is a solution of
Problem (Pg) The uniqueness follows from the fixed point of the operator f, which completes the
proof of Theorem 3.2.

In the following step, we use ug, the solution obtained by Theorem 3.2, to state the following
Cauchy problem.

Problem (P,4). Find a bonding field 05 : [0,T] — L*>°(T's) such that

B (t) = ~[0500) (4 Burts ()7 + 32 1B e O)IP) — ] w1 0,71, (315)

03(0) = Bo. (3.16)

Lemma 3.5. Problem (Pnq) has a unique solution 0 which satisfies 05 € W1°°([0,T]; L>=(I'2)) N Z.
Proof. Consider the mapping F : [0,T] x L?(I'3) — L?(I'3) defined by

Folt,0) = = [6((w Ruugy (£)* + 7| B (s (5)]%) — eal.

For all t € [0,T] and 6 € L?(I'3), it follows from the properties of the truncation operators R, and R,
that Fz is Lipschitz continuous uniformly in time with respect to 3. Moreover, for any 6§ € L?*(T'3),
the mapping t — Fp(t,0) belongs to L>°(0,T; L*>(I'3)). Using now a version of the Cauchy-Lipschitz
theorem (see [15]), we obtain a unique function 85 € W'>°(0,T; L?(I'3)) satisfying (3.15) and (3.16).
We note that the restriction 0 < 6 < 1 is implicitly included in the variational Problem Py and,
therefore, from the definition of the sets B and Z, we find that g € Z, which concludes the proof of
lemma. O

Consider the mapping ® : Z — Z defined by ®3 = 3.
The third step consists in the following result.

Lemma 3.6. There exists a unique element 8* € Z such that ®5* = 3*.
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Proof. Indeed, let f3;, i = 1,2, be two elements of Z. Denote by ug,, ¢g,, 03, the functions obtained
in Theorem 3.2 and Lemma 3.5 and denote 65, = ;. It follows from (3.15) that

t
0:(t) = fo - / [B:(5) (0 Rutap(9)* + 32l| R (g (D)) = ] s
0
and there exists a constant ¢ > 0 such that

ds
L2(T3)

161(6) — Ba(t)z2cr < ¢ / [81(5) R (s, (5))2 — () B, (5))7]

/ 516N DI = 5o(6) 1Rt 51

LZ(Fg

Using the properties of the operators R, and R., we get

10:(8) — 0(1) | ey < ( [ 1)~ saMaaieny s + [ s () —Uﬁz(S)Lz(rs)ddS> (3.17)
0 0

for some constant ¢z > 0. O

Now, to continue the proof, we need to prove the following
Lemma 3.7. There exists a constant p > 0 such that if ||p|| e (ry) < p2, we have
[ug, () = ug, (W)l L2(r)2 < cllBr(t) = Ba(B)l|L2(rs), VE € [0,T].
Proof. Let t € [0;T]. We take ¢ = ¢ — ¢g(t) in (3.2) and by adding with (3.1) we get

(Beuslt): (0 = us(®) o + / Fit = s)2(u(s)) dsy (o~ () )

Q
+(E"Vp(t),e(v — U,B(t)))Q +Jad(B(1), up(t), v — up(t)) + (CVps(t), Vib = Vips(t))
— (Eelup(t), Vo = Vs (1)) y + dpr(us(t),v) = jr(ua(t), us(t))
> (f(t),?] - U’B(t))V + (Q(t)ﬂ/J - (pﬁ(t))Wa Vv e Uad7 V’(/J € Wa te [O’T] (318)

Taking v=ug, (t) and ¢ =g, in (3.18) satisfied by (ug, (), ¥, ), and then taking v=wug, (t) and Y=g,
in the same inequality satisfied by (ug, (¢), ¢3,), by adding the resulting inequalities and using (2.20),
we obtain

(B2, (1))~ B, (1)), s, () (s (1)) + (€05, (1)=-CVi5, (1), Vi, (1) =V (1))

< F(t—s ug, (t)) —e(up,(t))) ds,e(ug, (t)) — e(up, (t

_</< ) (e, (1)) — ey (1)) ds, (g (1)) 8(5()))@

+ Jaa(Br(t), up, (t),up, (t) — up, (£)) + jfr(ug, (), ug, () + jaa(Ba(t), up, (t), ug, (t) — up,(t))
g (s (8), s, (8)) — e g (8), s, (1)) — m(% (1), us (1)):

Using (2.16)(c) and (2.18)(c), we deduce

1
m|ug, (t) —ug, (D[} +melles (£) — p2(t)llw

< ( / F(t— 5)(e(ug, () — eug, ())) ds, (g, (1) — (ug, <t>>)

Q

+ Jad (61 (t)a Up, (t)v Up, (t) —Up, (t)) + jfT'(uBI (t)7 U, (t)) + Jad (/82 (t)7 U, (t) uﬂl uﬂ’z )
+ jfT(ufJ)z (t)’ Uy (t)> - jfT (uﬁl (t)7 Up, (t)) JfT (uﬂz (t) Ug, (t))
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thus

msllus, (1) — usy (1) < ( / Flt— s)( Uﬁl())6(“52(5)))d5,5(uﬁ2(t))6(“51(75)))

Q

+ Jad (B1(t), up, (1), up, (t) — up, (t) + jad (B2(t), up, (1), up, () — up, (t))
+ jfT’ (U’ﬁl (t)a UB,y (t)) - jfr(uﬁl (t)v Up, (t)) + jfT (u52 (t)v Up, (t)) - jfT’ (U‘ﬁz (t)a UB,y (t)) (319)

Hence, we have

(] 7t o (1) ) . s ) s, ()

< ( / 17— )l lus, (5) —u@2<s>||vds)||uﬂl<t> s @)l

< ( / g, () — s (5 )||vd5>||uﬁl(t) s (0l

for some positive constant c4. Using Young’s inequality, we find that

Q

( [ = 5) (s (5) = s () s, s () — <l (t)))
0

< / () = a9 d5) + 2 s 0 usa O (320

Using (3.6) and Young’s inequality, we deduce that there exists a positive constant c5 such that

. . m
Jad(B1, w1, uz = ur) + Jaa(Ba, ug, w1 — ug) < ¢5)|B1(t) = Ba(t)|72ry) + TB [up, (t) —ug, ()7 (3.21)

Moreover, we have

jfT(uBI (t>7u52 (t)) - jf”‘(uﬁl (t)vuﬂl (t)) +jfr(U62 (t)7u31 (t)) - jfT(U‘ﬁQ (t>7u52 (t))
< /MR|UV(UBM(t)) — oy (ug,, ()] lug, (t) — us, (1) da.

T3
Keeping in mind (3.14) and using (2.14), we get
jfT(ul‘h (t)7 UBs, (t)> - jf”‘(uﬁl (t)7 Up, (t)) + jfr(uﬁ2 (t)v Ug, (t)) - jfT(u»32 (t)7 UBs, (t)>
< e1Cllpll o= g llup, () = ug, )7 (3.22)
We now combine inequalities (3.19), (3.20), (3.21) and (3.22) to deduce

m||ug, (t) —ug, ()]}
< csllBr = Boll3aqry) + 2 IIU/al( ) = ug, (W15 + L Callpll e 0y g, (1) — ug, (DT

2
mg
o / 5, ()= a9y d) -+ 72 s, ()~ us O}
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Hence, we have
mg
(%52 = crCallulam ) s, () = s, (DI
t
2 4 2
< c5[1B1(t) = Ba(O)L2(ry) + lup, (5) — s, ()l ds.
ma

0

Fur(her, if
||“H[ r < MZ — m b}
( ) QC]CQ ’

we deduce that there exists a constant cg > 0 such that

lug, (£) — us, (D)5 < Cs<51(t) = Bl Z2 ) +/Hu51(5) —up, ()17, d5>-
0

Hence, using Cornwall’s argument, it follows that there exists a constant cg > 0 such that

lug, (t) = ug, W)} < coll B1(t) = Ba(®)F2ryy, VEEO,T]. (3.23)

Now, to end the proof of Lemma 3.6 we use (3.17) and (3.23) to obtain

t
[@51(t) = @Ba(t)L2(rs) < 09/||B1(S) = Ba(8)ll L2 (ry) ds, Yt €[0T,
0

where ¢; > 0. We have

t
e @B (t) — @B (t) || 2 (ry) < 0967“/6“6%5”51(5) — Ba(s)l|2(rs) ds,
0

then
t
1851 (t) — ®Ba(t) ||k < coe™ |81 (t) — BQ(t)IIk/eks ds, Vte€[0,T].
0
So, we deduce that

[@1(t) = ®B2(1) [k < %Hﬂl(t) — B2(t)l[k, Vit e€[0,T], (3.24)

where c¢19 > 0. Inequality (3.24) shows that for k > ¢19, ® is a contraction on Z. Then ® has a unique
fixed point which satisfies (3.15) and (3.16). O

Thus, we have all the ingredients to prove Theorem 3.1.

Ezistence. Consider 8*, the fixed point of the operator @, and z* = (u*, ¢*), the solution of Prob-

*

lem (P‘[; ), L.e., u* = ug« and ©* = pp-.
By (3.1), (3.2), (3.15) and (3.16), we conclude that the triple (u*,¢*, *) is a solution to Prob-
lem (Py).

Uniqueness. The uniqueness arises from the uniqueness of the fixed point of the operator ®, which
completes the proof of Theorem 3.1.

Indeed, let (u,p,B) be a solution of Problem (Py), it follows from (3.1) and (3.2) that u is a
solution of Problem (Pg) and, by Theorem 3.2, this problem has a unique solution (ug, pg), where
ug = u and pg = .
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Taking u = ug and ¢ = @g in Problem (Py), we deduce that § is a solution of Problem (Pgq).
From the result of Lemma 3.5, Problem (P,4) has a unique solution 8*, so we find * = 3, and then
we conclude that (u*, ¢*, 8*) is a unique solution to Problem (Py).

Let now o* and D* be the functions defined by (2.1) and (2.2), respectively, which correspond to
(u*, ©*). Then it results from (2.16)—(2.20) that oc* € C([0,T];Q) and D* € C([0,T]; H). Using also
a standard argument, it follows from (2.30) and (2.31) that

Divo*(t) + ¢o(t) =0 in Q,
div D*(t) + qo(t) = 0 in Q.

Therefore, using (2.22) and (2.23), we deduce that Divo*(u*(t), ¢*(t)) € H for each t € [0,7T] and
div D* € C([0,T]; L?(2)), which implies that o* € C([0,T]; Q1) and D* € C([0,T]; W,). The triple
(u*, p*, f*) which satisfies (2.30)—(2.33) is called a weak solution of Problem (P). We conclude
that under stated assumptions, Problem (P) has a unique weak solution (u*,¢*, 8%, o*, D*) with
the regularity u* € C([0,T]; V), ¢* € C([0,T}; W), B* € WL>°((0,T; L*(T'3))) N B, o* € C([0,T); Q1)
and D* € C([0,T]; W,,).
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