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Abstract. The objective of this paper is to develop a numerical method for solving a bidimensional
unilateral obstacle problem. This is based on the bicubic splines collocation method and the generali-
zed Newton method. In this paper, we obtain an approximate expression for solving a bidimensional
unilateral obstacle problem. We show that the approximate formula obtained by the bicubic splines
collocation method is effective. Next, we prove the convergence of the proposed method. The method is
applied to some test examples and the numerical results have been compared with the exact solutions.
The obtained results show the computational efficiency of the method. It can be concluded that
computational efficiency of the method is effective for the two-dimensional obstacle problem.
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1 Introduction

In this paper, we consider the following unilateral obstacle problem:

Find u € K such that /Vu-V(U—u)dx—!—/f(v—u)deO, Vv e K, (1.1)
Q Q

where 2 C R™ is a bounded open domain with n > 2, with a smooth boundary 92, f is an element
of L?(Q) and K = {v € H}(Q) | v > 1 a.e. in Q}. The main point here is that we are considering
an irregular obstacle function ¢ which is an element of H!(Q) with 1 < 0 on 9Q. It is well known
that problem (1.1) admits a unique solution u, and if Ay € L?(Q), then u is an element of H?((2)
(see [10,14]), and the solution u of problem (1.1) is an element of H?(£2) that can be characterized as
(see [10], for instance)

—Au+f>0 a.e. on €,
(—Au+ f)(lu—1) =0 a.e. on
u—1 >0 a.e. on £,
u=0 on Jf).

As a classical subject in the field of partial differential equations, the obstacle problem is aimed to
find a solution which is constrained by a given obstacle to some extent. It has numerous applications
in various fields including economics, engineering, biology, computer science, etc. There are several
numerical solution methods of the obstacle problem (see, e.g., [1,6,9-11,13,17,26]). Numerical solution
by penalty methods have been considered, e.g., in [9,24]. In this paper, we develop a numerical method
for solving a two-dimensional obstacle problem by using the generalized tension splines collocation
method and the generalized Newton method. First, problem (1.1) is approximated by a sequence
of nonlinear equation problems by using the penalty method given in [14,16]. Then we apply the
GB-spline collocation method to approximate the solution of a boundary value problem of second
order. The discret problem is formulated as to find the generalized tension splines coefficients of a
nonsmooth system ¢(Y) =Y, where ¢ : R™ — R™. In order to solve the nonsmooth equation, we
apply the generalized Newton method (see, e.g., [4,5,25]). We prove that the generalized tension splines
collocation method converges quadratically provided a property, coupling the penalty parameter € and
the discretization parameter h is satisfied.

Numerical methods to approximate the solution of boundary value problems have been considered
by several authors. We only mention the papers [3,15] and the references therein, which use the
bicubic spline collocation method for solving the boundary value problems.

The present paper is organized as follows. In Section 2, we present the penalty method to approx-
imate the obstacle problem by a sequence of second order boundary value problems, we also construct
a bicubic spline to approximate the solution of the boundary problem, and we present the general-
ized Newton method. In Section 3, we show the convergence of the generalized tension spline to the
solution of the boundary problem and provide an error estimate. Some numerical results are given in
Section 4 to validate our methodology. The study ends with conclusions and remarks in Section 5.

2 Bicubic spline collocation method

In this section, we construct a bicubic spline which approximates the solution w. of problem (2.1),

with Q being the interval I x J = (a,b)? C R?. We denote by || - || the Euclidean norm on R+ (n+1)

by || - |lec the uniform norm, by ® Kronecker product (tensor product) and by ® the biproduct of
matrices.

By using the penalty method (see [14, p. 110], [16]), an approximate solution u. of problem (1.1)

can be characterized as the following boundary value problem (see [14, p. 107], [16]):

{Aus = max(—Av + f,0)0(ue — ) — f in Q,
(2.1)
u: =0 on 012,
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where 6. is a sequence of Lipschitz functions which tend to the function 6 defined by

1, t<0,
b.()=41-L, o<t<e, (2.2)
0, s
If we put
Je(,y, ue(z,y)) = max(—A(z,y) + f(z,y),0)0:
with

65 = GE(UE(CCay) - d)(I,y)) - f(x7y)a
then problem (2.1) becomes

(2.3)

—Aue = Jo (-, ue) on €,
ue(a,y) = ue(z,b) =0, =,y € (a,b).

It is easy to see that J. is a nonlinear continuous function on u.; and for any two functions u. and
ve, Je satisfies the following Lipschitz condition:

|J5(x,y,u5(x,y)) — Je(x,y,vg(a:,y))’ < Le|ue(z,y) — ve(x,y)| a.e. on (z,y) € Q, (2.4)
where
Le= 2= A0+ fllo = 7 max |~ Ad(a,) + Flz,0)l
Now, let
sz{a:x_3=~-~:mo<x1 <--~<xn+1:-~-:xn+3:b},
Hy:{a:y_gz...:y0<y1 <"'<yn+1:"':yn+3:b}

be the subdivisions of the intervals I and J, respectively, with x; = a + ¢h and y; = a + jh, where
0<i,j <nandh=(b—a)/n. The partition II,, = II, ® IL, subdivides 2 into smaller rectangles in
the plane:

T = {(x7y): i S < Tig1, Y5 S Y S Yjrts iaj=—37~-~,n—1}~

Denote by
Sy, TLay) = S5 (1,11,) ® S§*°(J, 1)

a bicubic spline with respect to the partition I, with S{*¢(I,I1,) (resp. S§*(J,11,)), the space of
piecewise polynomials of degree 3 over the subdivision II, (resp. II,) and of class C? everywhere on I
(resp. J).

Moreover, let {B®5, B®,,...,B%_} (resp. {B";,...,BY_,}) be a B-spline basis of S{“*(I,11,)
(resp. S§“b(J,11,)). By applying the tensor product method (see [19]), we obtain the following bicubic
spline interpolation.

Proposition 2.1 (see [19]). Let u, be a solution of problem (2.3). Then there exists a unique bicubic
spline interpolant S. € Sy (Q, ) of ue which satisfies

Se(Tiz:Ty) :ue(T‘z 7—9)’ i’j :0""7n+2’

J v
where
Ti+ X1
x x ® ? - x x
7—O = JJO, Ti = 2 ] 1 S 7 S n) Tn-l,-l = xn—la Tn+2 = 'T’ru
y _ y _ YitYi—1 ; v o _ y o _
o =Y, T; = , 1<j<n, Tnt+1 = Yn—15 Tpyo = Yn.

J 2
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If we put
n—1
Se(z,y) = Z Cp.q.e By () BY (),
P,q=—3

then by using the boundary conditions of problem (2.3) we obtain
c_3,4e=95:(a,y) =u:(a,y) =0, ¢q=-3,...,n—1,

and
Cpmn—1,e = S:(2,0) = us(x,0) =0, p=-3,...,n—1.

Hence

n—2
Se(w,y) = Z cp,q,st;(x)Bg(y)'
Pq=—2

Furthermore, for any u. € H*(Q), where H*(Q) = {u € L?(Q);0%u € L%*(Q),|a| < 4} is the Sobolev
space (see [8]), we have

—AS (7)) = Je(r 1 ue) + O(1), d,j=1,...,n+1. (2.5)

The bicubic spline collocation method, presented in this paper, constructs numerically a bicubic spline

~ n—1

Se = > ¢pqeByBY which satisfies equation (2.3) at the points (77,7/), 4,j = 0,...,n+ 2. It is
P,q=—3

easy to see that

C-3,e =Cpn-1, =0 for pg=-3,....n—-1
and the coefficients ¢, 4., p,q¢ = —2,...,n — 2, satisfy the following nonlinear system with (n + 1)?

equations:

n—2 n—2
> G ABI(T)BY(rY) = —J(r, 7Y, Y GpaeBi(r)BY(7Y)) for i, j=1,...,n+1. (2.6)

P,q=—2 p,g=—2

Since
AB(m")BY (1)) = By (7)) ABY(1}) + By (7] )AB, (7)),

relations (2.5) and (2.6) can be written in the matrix form, respectively, as follows:

Q(Ah O] Bh)cs = 7Fs - Esa

2(An © Bh)és = 7F5€,

(2.7)

where

1
AhGBh = 5(Ah®Bh+Bh®Ah)a
T
Ce = [(c-2,4c)—2<g<n—2, -+ (Cn-2,9.c)—2<g<n 2]
~ - - T
C. = [(C—Z,q,s)—2§q§n—27 s (Cn—Q,q,s)—2§q§n—2}

)

7

for any integer ¢ such that 1 <i <n+1,

T
F. = [JE(Tf,T{’,uE(TﬁT{’)),...,JE(Tf,Tg+1,u€(Tf,Tg+1))} ,

- ~ T
Fz = [JE(Tf,Tf,S’E(Tf,Tf’)),...,JE(TﬁTgH,S’E(Tf,TﬁH))} ,

€
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and Ea is a vector, where each component is of order O(1). It is well known that A, = ,712 A and
By, = B, where A and B are the matrices independent of h given as follows:

r—15 1 1 0 0 b
4 4 2
3 -3 -1 1
i 1 2 3 0© 0
0 1 -1 -1 1 0 0
2 2 2 2
A= 1 1
— —1 1
0 0 53 3 5 3 0
1 -1 -3 3
1 1 —15
0 O 5 1 T
-5 3
0 0 1 — —
L 2 2 J
(57 25 1 ]
% o6 48 0
3 45 23 1
9% 06 48 a3 0
1 23 45 3
" ® ® 9% 96 0
B =
1 23 45 3
0 0o — = = = 9
48 48 96 96
1 25 57
0 O % 9% 9%
0 0 1 1
L 6 12 4 |

Then relation (2.7) becomes

(A© B)C. =~ WF. ~ B,

_ 1 (2.8)
(A® B)C. = -5 h?Fg
with E. being a vector, where each of its components is of order O(h?).
As the matrices A and B are invertible (see [18]), then A ® B is invertible (see [12]) and
(AoB)'=A1teoB™" (2.9)

Proposition 2.2. Assume that the penalty parameter € and the discretization parameter h satisfy the
following relation:

R =AY + fllool|A™H © B™ oo < 2. (2.10)

Then there exists a unique bicubic spline which approximates the exact solution u. of problem (2.3).
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Proof. From relation (2.8), we have
C.= LwatoBF
== "5 © .-
Let o : RO+ Rn4+D(n+1) he o function defined by
Lo, —1

To prove the existence of bicubic spline collocation, it suffices to prove that ¢ admits a unique fixed
point. Indeed, let ¥; and Y5 be two vectors of R+ Then we have

1 _ _
le(¥1) — ()l < 5 W A™ 0 B™ oo Fyy — Frs llco- (2.11)

n—2
Using relation (2.4) and the fact that ) BjBY <1, we get
Pg=—2

JE(Tf,ij,Syl(Tf,TJy)) — Je(Tf,Tf,Sy2(Tf,Tf))’

< L€|SY1(7_2'I37_]?'J) - SYQ(TiZ?ij)‘ < LEHYl - Y2||007
where L. = 1 || = At + f|o. Then we obtain
1Fy, = Fyalloo < Lel|Y1 — Y2 oo

From relation (2.11), we conclude that

1 _ _
le(1) —o(Y2)]l < Le 5 WA O B ao|Y1 = Ya oo
Thus we have
(Y1) — (Y2)[| < k[[Y1 — Y2 oo,
with k = 3 h%|A='©B~!||, by relation (2.10). Hence the function ¢ admits a unique fixed point. [

In order to calculate the coefficients of the generalized tension spline collocation given by the
nonsmooth system

CE = SD(CE)7
we propose the generalized Newton method defined by
CUHD = O — (Inga = Vi) H (W = p(C)),

where I, 1)(n+1) is the unit matrix of order (n +1)(n 4+ 1) and Vj is the generalized Jacobian of the
function C. — ¢(C.) (see, e.g., [4,5,25]).

3 Convergence of the method

Theorem 3.1. If we assume that the penalty parameter € and the discretization parameter h satisfy
the relation

Rl =AY + fllool|A™H @ B |o <ce. (3.1)

then the bicubic spline §5 converges to the solution u.. Moreover, the error estimate ||ue — §€||OO s of
order O(h?).
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Proof. From (2.8) and (2.9), we have
~ 1 B B B B
CE—CE:_§h4A '"OB NF.-Fs)- A" 0B E..
Since E. is of order O(h?), there exists a constant K; such that ||E.||o < k1h?. Hence, we get

~ 1
[C: = Celloo < = P2|A™ @ B Yool Fx — F5 ||oo + K1||A™ @ B7Y|| oo h?. (3.2)
2 Ce

On the other hand, we have

J J LAV J

Jo (787w (7F 7)) — Je (77, 7 5(7},73)))

< Lglug(rf,rjy) — SE(T;E,T]Z-}H < Lglug(rf,rf) — Sa(Ti‘"”,T;-’)’ + LE‘SE(T;E,TJZ/) — SE(Tf,Ty)’.

Since S; is the bicubic spline interpolation of u., there exists a constant K5 such that

||'LL5 - Se”oo S K2h2~ (33)
Using the fact that
n—2
|Ss - Ss| S ||Cs - CsHoo BwBy S ||C5 - Cf-:”ooa (34)
pPT4q
P,q=—2

we obtain B
|F. — F55| < L |C: — Celoo + L.K5h.

By using relation (3.2) and assumption (3.1), it is easy to see that
sPPAT O B |w

Le 3 h?|[A71 © B~
< WA © B7Y|oo (Ko Loh? + 2K7Y). (3.5)

(KL h? 4 2Ky)

Hcs - 6'5”00 < 1—

Thus B B
lue = Sclloo < lltte — Selloo + [1Se — Sc|loo-

Therefore, from relations (3.3), (3.4) and (3.5), we deduce that ||us — S: ||« is of order O(h2). Hence,
the proof is complete. O

Remark 3.1. Theorem 3.1 provides a relation coupling the penalty parameter € and the discretization
parameter h, which guarantees the quadratic convergence of the bicubic spline collocation S. to the
solution u. of the penalty problem.

We have the interesting properties.

Theorem 3.2 ([14, p. 110], [16]). Let u denote the solution of the variational inequality problem (1.1)
and u, € > 0, denote the solution of the penalty problem (2.1) with 6. defined by relation (2.2). Then
{uc} s a nondecreasing sequence and

u(r,y) < ue(w,y) <ulz,y) +e, (v,y) €, for e>0.

Theorem 3.3. Suppose that u(x,y) is the solution of (1.1) and up.(x,y) is the approzimate solution
by our presented method. Then we have

w(z,y) — wbe(,y)||loo < €+ kR?, (z,y) €Q, for >0,

where k is a finite constant. Therefore, for sufficiently small € and h, the solution of presented scheme
(2.8) converges to the solution of the variational inequality problem (1.1) in the discrete Loo-norm and
the rates of convergence are O(e + h?).
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4 Numerical examples

In this section, we give the numerical experiments in order to validate the theoretical results presented
in this paper. We report numerical results for solving a two-dimensional obstacle problem by using the
bicubic spline method to approximate the solution of the penalty problem (2.3), and the generalized
Newton method [23] to determine the coefficients of the bicubic spline collocation.

As a numerical experiment, the example by Bartels and Carstensen [2] with Q = (—1.5,1.5)% is
considered, however, with an additional mass term. For the obstacle ¥» = 0 and volume force f = 2,
the exact solution is

,’,2

1
) — = i =z, > 1
w(z,y) = 5 n(r) 5 if r=lz|2>1,

0 otherwise.

As a stopping criteria for the generalized Newton iterations, we have considered that the absolute
value of the difference between the input coefficients and the output coefficients is less than 107°.

Exac:f solution.

Figure 1. Exact and Approximate solution.

Table 1 shows, for different values of the discretization parameter h, the error between the bicubic
spline collocation S. and the true solution u. We note that the convergence of the solution S. to
the function v depends on the discretization parameter h and the penalty parameter €. Theorem 3.1
implies that for a fixed h, this convergence is guaranteed only if there exists €, > 0 such that € > ¢,.
Some experimental values of €5, are given in Table 1.
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Theorem 3.3 implies that we have the error estimate between the exact solution and the discrete
penalty solution given by |lu(z, y) — upe(, y)||oo < €+kh2. The obtained results show the convergence
of the discrete penalty solution to the solution of the original obstacle problem as the parameters h
and e get smaller provided they satisfy relation (3.1). Moreover, the numerical error estimates behave
like € + kh? which confirms what we were expecting.

Table 1. Numerical results

€ 102 1073 5x 1074 2x 1074 =¢p
For h = 0.05

= S2|los 5x 1073  10.61 x 107* 10.12x 107*  9.84 x 1074
For h = 0.02

= S2||oe 4.7x107%  721x107*  234x107%*  2.03x107?
For h = 0.01

Ju—S)loe  4.63x107%* 7.03x1075 3.15x107¢  1.84x 1076

5 Concluding remarks

In this paper, we have considered an approximation of a bidimensional unilateral obstacle problem
by a sequence of penalty problems, which are nonsmooth equation problems, presented in [14, 16].
Then we have developed a numerical method for solving each nonsmooth equation, based on a bicubic
collocation spline method and the generalized Newton method. We have shown the convergence of the
method provided that the penalty and discret parameters satisfy relation (3.1). Moreover, we have
provided an error estimate of order O(h?) with respect to the norm || - ||o. The obtained numerical
results show the convergence of the approximate penalty solutions to the exact one and confirm the
error estimates provided in this paper.

References

[1] R. P. Agarwal and C. S. Ryoo, Numerical verifications of solutions for obstacle problems. Topics
in numerical analysis, 9-19, Comput. Suppl., 15, Springer, Vienna, 2001.

[2] S. Bartels and C. Carstensen, Averaging techniques yield reliable a posteriori finite element error
control for obstacle problems. Numer. Math. 99 (2004), no. 2, 225-249.

[3] H. N. Caglar, S. H. Caglar and E. H. Twizell, The numerical solution of fifth-order boundary
value problems with sixth-degree B-spline functions. Appl. Math. Lett. 12 (1999), no. 5, 25-30.

[4] X. Chen, A verification method for solutions of nonsmooth equations. Computing 58 (1997),
no. 3, 281-294.

[5] X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for nondifferentiable
operator equations. SIAM J. Numer. Anal. 38 (2000), no. 4, 1200-1216.

[6] Z. Chen and R. H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle
problems. Numer. Math. 84 (2000), no. 4, 527-548.

[7] F. H. Clarke, Optimization and Nonsmooth Analysis. Second edition. Classics in Applied Mathe-
matics, 5. Society for Industrial and Applied Mathematics (STAM), Philadelphia, PA, 1990.

[8] P. Flajolet, M. Ismail and E. Lutwak, Spline Functions on Triangulations. Encyclopedia of Mathe-
matics and Its Applications, vol. 110, Cambridge University Press, Cambridge, UK, 2007.

[9] R. Glowinski, Yu. A. Kuznetsov and T.-W. Pan, A penalty /Newton/conjugate gradient method
for the solution of obstacle problems. C. R. Math. Acad. Sci. Paris 336 (2003), no. 5, 435-440.



AB

icubic Splines Method for Solving a Two-Dimensional Obstacle Problem 53

[10]

[11]

[12]

R. Glowinski, J.-L. Lions and R. Trémoliéres, Numerical Analysis of Variational Inequalities.
Translated from the French. Studies in Mathematics and its Applications, 8. North-Holland Pub-
lishing Co., Amsterdam-New York, 1981.

H. C. Huang, W. Han and J. S. Zhou, The regularization method for an obstacle problem. Numer.
Math. 69 (1994), no. 2, 155-166.

A. Hussein and K. Chen, On efficient methods for detecting Hopf bifurcation with applications to
power system instability prediction. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), no. 5,
1247-1262.

X. Jiang and R. H. Nochetto, Effect of numerical integration for elliptic obstacle problems. Numer.
Math. 67 (1994), no. 4, 501-512.

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Ap-
plications. Pure and Applied Mathematics, 88. Academic Press, Inc. [Harcourt Brace Jovanovich,
Publishers|, New York-London, 1980.

A. Lamnii, H. Mraoui, D. Sbibih, A. Tijini and A. Zidna,Sextic spline collocation methods for
nonlinear fifth-order boundary value problems. Int. J. Comput. Math. 88 (2011), no. 10, 2072
2088.

H. Lewy and G. Stampacchia, On the regularity of the solution of a variational inequality. Comm.
Pure Appl. Math. 22 (1969), 153-188.

E. B. Mermri and W. Han, Numerical approximation of a unilateral obstacle problem. J. Optim.
Theory Appl. 153 (2012), no. 1, 177-194.

E. B. Mermri, A. Serghini, A. El Hajaji and K. Hilal, A cubic spline method for solving a
unilateral obstacle problem. American Journal of Computational Mathematics 2 (2012), no. 3,
Article 1D:23193, 6 pp.

G. Nirnberger, Approzimation by Spline Functions. Springer-Verlag, Berlin, 1989.

J.-S. Pang and L. Q. Qi, Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3
(1993), no. 3, 443-465.

R. R. Phelps, Convezr Functions, Monotone Operators and Differentiability. Second edition. Lec-
ture Notes in Mathematics, 1364. Springer-Verlag, Berlin, 1993.

L. Q. Qi, Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper.
Res. 18 (1993), no. 1, 227-244.

L. Q. Qi and J. Sun, A nonsmooth version of Newton’s method. Math. Programming 58 (1993),
no. 3, Ser. A, 353-367.

R. Scholz, Numerical solution of the obstacle problem by the penalty method. Computing 32
(1984), no. 4, 297-306.

M. J. Smietariski, A generalized Jacobian based Newton method for semismooth block-triangular
system of equations. J. Comput. Appl. Math. 205 (2007), no. 1, 305-313.

Q. Zou, A. Veeser, R. Kornhuber and C. Gréser, Hierarchical error estimates for the energy
functional in obstacle problems. Numer. Math. 117 (2011), no. 4, 653-677.

(Received 04.06.2020)

Authors’ addresses:

Ab

Ab

delmajid El Hajaji
LESJEP Laboratory, FSJESJ, University Chouaib Doukkali, El jadida, Morocco.
E-mail: a_elhajaji@yahoo.fr

delhafid Serghini
ANAA research team, ESTO, LANO Laboratoty, FSO, University Mohammed First, 60050 Oujda,

Morocco.

E-mail: a.serghini@ump.ma



54 A. El hajaji, A. Serghini, S. Melliani, E. B. Mermri, K. Hilal

Said Melliani
LAMSC Laboratory, FST, University of Sultan Moulay Slimane, Beni-Mellal, Morocco
E-mail: saidmelliani@gmail.com

El Bekkaye Mermri
Department of Math and Computer Science, F'S, University Mohammed Premier, Oujda, Morocco.
E-mail: mermri@hotmail.com

Khalid Hilal
LAMSC Laboratory, FST, University of Sultan Moulay Slimane, Beni-Mellal, Morocco.
E-mail: hilal.khalid@yahoo.fr



