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Abstract. We present the connection between Hartley transform (HT) and a one-dimensional real-
ization by difference-differential operator of N = 1

2 -supersymmetric quantum mechanics elaborated
by S. Post, L. Vinet and A. Zhedanov. The key feature of our approach is that the Hartley transform
commutes with the supercharge and provides the overcomplete bases of the HT eigenvectors.

2010 Mathematics Subject Classification. 37K20, 81Q60.

Key words and phrases. Special functions, supersymmetry.

ÒÄÆÉÖÌÄ. ßÀÒÌÏÂÉÃÂÄÍÈ äÀÒÔËÉÓ ÂÀÒÃÀØÌÍÉÓ (HT) ÊÀÅÛÉÒÓ N = 1
2 ÓÖÐÄÒÓÉÌÄÔÒÉÖËÉ

ÊÅÀÍÔÖÒÉ ÌÄØÀÍÉÊÉÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒ-ÓáÅÀÏÁÉÀÍÉ ÏÐÄÒÀÔÏÒÉÓ ÄÒÈÂÀÍÆÏÌÉËÄÁÉÀÍ ÒÄÀËÉÆÀ-
ÝÉÀÓÈÀÍ, ÒÏÌÄËÉÝ ÛÄÌÖÛÀÅÄÁÖËÉÀ Ó. ÐÏÓÔÉÓ, Ë. ÅÉÍÄÔÉÓ ÃÀ À. ÑÄÃÀÍÏÅÉÓ ÌÉÄÒ. äÀÒÔËÉÓ
ÂÀÒÃÀØÌÍÀ ÊÏÌÖÔÉÒÄÁÓ ÓÖÐÄÒÌÖáÔÈÀÍ ÃÀ ßÀÒÌÏØÌÍÉÓ HT ÓÀÊÖÈÒÉÅÉ ÅÄØÔÏÒÄÁÉÓ ÆÄÓÒÖË
ÁÀÆÉÓÓ - ÓßÏÒÄÃ ÄÓ ÀÒÉÓ ÜÅÄÍÉ ÌÉÃÂÏÌÉÓ ÌÈÀÅÀÒÉ ÃÀÌÀáÀÓÉÀÈÄÁÄËÉ ÈÅÉÓÄÁÀ.
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1 Preliminaries
The Fourier transform of a suitable function f is defined by the formula

(Ff)(λ) = 1√
2π

∫
R

f(x)eiλt dx.

Recently, the one-dimensional harmonic oscillator has been approached by the Fourier transform
method (see [9,13,15,17]). Let us recall some remarks related to the Fourier transform and harmonic
oscillator. In one-dimension coordinates, the representation of the creation and annihilation operators
a†, a and the harmonic oscillator H are given by

a =
1√
2
(x+ ipx), a† =

1√
2
(x− ipx), H = −1

2
p2x +

1

2
x2, px = −i d

dx
. (1.1)

They satisfy
[a, a†] = 1, [H, a] = −a, [H, a†] = a†,

where [A,B] = AB −BA denotes the usual commutator of A and B.
The wave functions ψn(x) of the linear harmonic oscillator,

∞∫
−∞

ψn(x)ψm(x) dx = δnm, n,m = 0, 1, 2, . . . ,

are explicitly given as

ψn(x) =
(√

π n!2n
)− 1

2

e−x
2
2Hn(x),

where Hn(x) is the Hermite polynomial of degree n, which is orthogonal over the real line R with
respect to the weight function w(x) = e−x2 [14]. In quantum mechanics, the wave functions emerge
as eigenfunctions of the Hamiltonian H,

Hψn(x) =
(
n+

1

2

)
ψn(x), n = 0, 1, 2, . . . . (1.2)

The Fourier transform simply changes the basis from the coordinate basis x to the momentum basis
px and, consequently, commutes with the harmonic oscillator H. Namely, we have

FH = HF . (1.3)

Form (1.3) in the standard algebraic way expresses the fact that the Hamiltonian H and the Fourier
transform F have a common set of eigenfunctions ψn(x). More precisely, the wave functions ψn(x)
are eigenfunctions of the Fourier transform associated with the eigenvalues in, that is,

F(ψn)(x) = in ψn(x).

The one-dimensional harmonic oscillator was also studied by Schrödinger via Laplace transform when
discussing the radial eigenfunction of the hydrogen atom [19], and later, Englefield approached the
Schrödinger equation with Coulomb, oscillator, exponential, and Yamaguchi potentials [10].

The fundamental purpose of the present work is to extended the integral approach of the harmonic
oscillator to the setting of supersymmetric quantum mechanics “SUSY QM”. Let us first recall some
mathematical aspects of the supersymmetric quantum mechanics. The “SUSY QM”, introduced by
Witten [23], may be generated by three operators Q−, Q+ and H satisfying

Q2
± = 0, [Q±,H] = 0, {Q−, Q+} = H,

with {A,B} = AB +BA denoting the anti-commutator of A and B.
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For a complete correspondence with the quantum mechanical oscillator problem, the supersym-
metric quantum mechanics models need an analogue of the Fourier transformation. In the present
work we fill this gap. Indeed, we propose the Hartley transform as an alternative of the Fourier
transform approach to the SUSY quantum mechanics.

Recall that the Hartley transform of a suitable function f(x) is defined by

(Hf)(λ) = 1√
π

∫
R

f(x) cas(λx) dx,

where the kernel of the integral, known as cas function, is defined as cas(x) = cos(x) − sin(x). The
relation between the Hartley transform and the Fourier transform is given by

(Hf)(λ) =
√
2
(
ℜ((Ff)(λ))−ℑ((Ff)(λ))

)
,

where ℜ and ℑ denote, respectively, the real and imaginary parts of the Fourier transform. Compared
to the Fourier transform, the Hartley transform has the advantages of transforming real functions
to real functions (as opposed to requiring complex numbers), also this transform has complementary
symmetry properties with respect to their real and imaginary axis and of being its own inverse.

The paper is organized as follows. In Section 2, we recall general properties of the supersymmetric
quantum mechanics with reflection. In Section 3, we give some details related to the Hartley transform
and difference-differential operator. Finally, in Section 4, we develop the connection between HT
and SUSY Quantum Mechanics and exploit it to obtain overcomplete bases for Hartley transform
eigenvectors.

2 The Hartley transform
Our first observation in this section is the following representation of the function cas(x) defined in
(2.2) by the power series:

cas(x) =
∞∑

n=0

(−1)(
n+1
2 )

n!
xn, (2.1)

where
(
n
2

)
is the binomial coefficient given by(

n

2

)
=
n(n− 1)

2
.

Theorem 2.1. For λ ∈ C, the function cas(λx) is the unique analytic solution of the problem{
(∂xR)u(x) = λu(x),

u(0) = 0.

Proof. From the well known identity for binomial coefficients(
n+ 1

2

)
=

(
n

1

)
+

(
n

2

)
= n+

(
n

2

)
,

we have

∂x cas(λx) = λ

∞∑
n=1

(−1)(
n+1
2 )

(n− 1)!
(λx)n−1 = λ

∞∑
n=0

(−1)(
n+2
2 )

n!
(λx)n = −λ cas(−λx).

Hence (∂xR)u(x) = λu(x).



The Hartley Transform Via SUSY Quantum Mechanics 35

Since
(−1)(

2n
2 ) = (−1)n, (−1)(

2n+1
2 ) = (−1)n,

the sum in (2.1) turns to be
cas(x) = cos(x)− sin(x). (2.2)

The Hartley transform pair for f in a suitable functions class is given by (see [4, 12])
(Hf)(λ) = 1√

π

∫
R

f(x) cas(λx) dx,

f(x) =
1√
π

∫
R

(Hf)(λ) cas(λx) dλ.

Accordingly,
H2 = I.

The function cas(x) satisfies the product formula

cas(x) cas(y) = 1

2
((1−R) cas)(x+ y) +

1

2
((1 +R) cas)(x− y).

This allows us to define the generalized translation operator related to the differential-difference op-
erator ∂R by

τyf(x) =
1

2
((1−R)f)(x+ y) +

1

2
((1 +R)f)(x− y),

and the convolution product by
f ∗ g(x) =

∫
R

f(y)τxg(y) dy.

The Hartley transform has the following properties:

H(τxf)(λ) = cas(λx)H(f)(λ), H(f ∗ g)(λ) = H(f)(λ)H(g)(λ).

3 SUSY QM with reflection
Let us first recall some mathematical aspects of the supersymmetric quantum mechanics. The “SUSY
QM” introduced by Witten [23] can be generated by three operators Q−, Q+ and H satisfying

Q2
± = 0, [Q±,H] = 0, {Q−, Q+} = H (3.1)

(with {A,B} = AB+BA denoting the anti-commutator of A and B) to facilitate the comparison with
the usual harmonic oscillator. The minimal version of N = 1 supersymmetric quantum mechanics is
achieved by taking the supercharges Q+ and (Q−) as product of the bosonic operator a (a†) defined
in (1.1) and the fermionic operator ψ (ψ†). Namely, we have

Q = aψ†, Q† = a†ψ,

where the matrix fermionic creation and annihilation operators are defined via

ψ = σ+ =

[
0 1
0 0

]
, ψ† = σ− =

[
0 0
1 0

]
.

Thus, ψ and ψ† obey the usual algebra of the fermionic creation and annihilation operators, namely,

{ψ†, ψ} = 1, {ψ†, ψ†} = {ψ,ψ} = 0.
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They also satisfy the commutation relation

[ψ†, ψ] = σ3 =

[
1 0
0 −1

]
.

The SUSY Hamiltonian can be rewritten in the form

H = QQ† +Q†Q = − d2

dx2
+

1

4
x2 − 1

2
[ψ,ψ†].

Note that if the supercharge Q in (3.1) is self-adjoint, i.e., Q† = Q. Then H = 2Q2, and the model is
said to be N = 1

2 supersymmetric.
In [18], the authors developed several realizations of N = 1

2 supersymmetric quantum mechanics in
one-dimension by taking the supercharge as the following Dunkl-type difference-differential operator:

Q =
1√
2
(∂xR+ UR+ V ),

where U(x) is even, V (x) is odd, and the operator R is the reflection operator which acts as Rf(x) =
f(−x). In this case, the SUSY Hamiltonian takes the form

Ĥ = Q2 = −1

2

d2

dx2
+

1

2
(U2 + V 2) +

1

2

dU

dx
− 1

2

dV

dx
R.

The wave functions for such systems have been obtained in [18], where it was shown that they define
orthogonal polynomials, expressed in terms of Hermite and Jacobi polynomials.

Consider the supercharge

Q =
1√
2
(∂xR+ x). (3.2)

Note that this supercharge corresponds to the case U(x) = 0 and V (x) = x in (3). Upon computing
Q2, we readily find that

Ĥ = Q2 = −1

2

d2

dx2
+

1

2
x2 − 1

2
R.

The spectrum of the supersymmetric Hamiltonian Ĥ is easily obtained by observing that

Ĥ = H − 1

2
R,

where

H = −1

2

d2

dx2
+

1

2
x2.

Since
Rψn(x) = (−1)nψn(x),

it follows from (1.2) that
Ĥψn = Enψn,

where

En = n+
1− (−1)n

2
, n = 0, 1, . . . .

Therefore, the spectrum will only consist of even numbers. Each level is degenerate, except for the
ground state, which is unique.
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4 Eigenfunctions of the Hartley transform
Now, we are interested in finding all eigenfunctions of the Hartley transform operator explicitly. Since
mutually commuting operators have the same set of eigenfunctions, one can solve this problem by
defining such a self-adjoint operator with a simple spectrum of distinct eigenvalues, which commutes
with the Hartley transform.

In what follows, the following lemma is needed.

Lemma 4.1. For α, β ∈ R such that α ̸= −β, the problem{
−u′(−x) + x(u(x)− u(−x)) + αu(−x) = βu(x),

u(0) = 1.
(4.1)

has a unique analytic solution given by

u(x) = 1F1


α2 − β2

4

1

2

;x2

+ (α− β)x 1F1


2 + α2 − β2

4

3

2

;x2

 .

where

1F1

(
a
b
; z

)
=

∞∑
n=0

(a)n
(b)n

zn

n!

is Kummer’s confluent hypergeometric function (see [14]).

Proof. Note that one can always write u as the superposition u = ue + uo of an even function ue and
of an odd function uo by the formulae

ue(x) =
u(x) + u(−x)

2
, uo(x) =

u(x)− u(−x)
2

.

Further, this decomposition is unique. This allows us to rewrite the eigenvalue equation (4.1) equiv-
alently as a system of two linear differential equations of first order:{

u′e = (α+ β)uo,

u′o − 2xuo = −(α− β)ue.
(4.2)

We can eliminate the function uo(x) from system (4.2) and obtain for ue(x) a second-order differential
equation

u′′e (x)− 2xu′e(x) = −(α2 − β2)ue(x). (4.3)
We choose t = x2 as a new variable and reduce equation (4.3) to

tv′′ +
(1
2
− t

)
v′ = −α

2 − β2

4
w,

so that the general solution of (4.3) can be written in the form

ue(x) = A 1F1


α2 − β2

4

1

2

;x2

+Bx 1F1


2 + α2 − β2

4

3

2

;x2

 ,

where A and B are constants depending on λ, α and β. Since the function ue(x) is even, we have

ue(x) = A 1F1


α2 − β2

4

1

2

;x2

 .
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From (4.2), for the function uo(x) we obtain

uo(x) = A
α− β

2
x 1F1

1 +
α2 − β2

4

3

2

;x2

 .

We have the general solution of (4.5)

u(x) = A 1F1


α2 − β2

4

1

2

;x2

+A(α− β)x 1F1

1− α2 − β2

4

3

2

;x2

 .

From the initial condition in (4.1), we get A = 1.

The following theorem states that the Hartley transform commutes with the supercharge Q defined
in (3.2).

Theorem 4.2. We have
HQ = QH.

Proof. Using integration by parts, we can show that the Hartley transform satisfies the following
intertwining relations:

HR = RH, H∂xR = xH, Hx = ∂xRH.

The two last intertwining relations provide the proof of the theorem.

The ground state wave function ψ0(x) is given by ψ0(x) = e−x
2
2 and satisfies Qψ0 = 0. Let us

now carry out the gauge transformation of Q with the ground state ψ0. Let

Q̃ = ψ−1
0 Qψ0. (4.4)

It is not difficult to see that
Q̃ =

1√
2

d

dx
R+

1√
2
x(1−R).

From Theorem 4.2, we see that the eigenfunctions of the Hartley transform can be obtained by
finding the eigenvalues of the supercharge Q. So, in this way, one reduces the problem of funding
the eigenfunctions of the Hartley transform into one of solving the following difference-differential
equation

−u′(−x) + x(u(x)− u(−x)) =
√
2λu(x). (4.5)

From Lemma (4.1), the general solution of (4.5) is given by

u(x) = A

 1F1

−λ
2

2

1

2

;x2

−
√
2λx 1F1

1− λ2

2

3

2

;x2


 . (4.6)

It can be is easily seen that polynomial solutions are possible only if λ = ±
√
2n , n = 0, 1, 2, . . . .

If λ = ±
√
2n , then the first term in (4.6) is a polynomial of degree 2n and the second term is a

polynomial of degree 2n− 1.
Let us by ψ̂±,n(x) denote the eigenfunction of Q corresponding to the eigenvalue λn = ±

√
2n .

Then we have the following explicit expressions:

ψ̂±n(x) = κ±n e
−x

2
2


1F1

−n
1

2

;x2

± 2
√
nx 1F1

1− n

3

2

;x2

 .
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The normalized constants κ±n are also chosen so that
∞∫

−∞

|ψ̂±n| ds = 1.

A simple computation shows that κ−1
n = κ−1

−n = π
1
4 2n+

1
2 (2n!)−

1
2n!, n = 0, 1, 2, . . . . We denote by

Ĥn(x), n ∈ Z, the orthogonal polynomial extracts that form the orthogonal function ψ̂±n(x). That is,

ψ̂n(x) = κne
−x

2
2 Ĥn(x).

Using the well known explicit expressions of Hermite polynomials in terms of the Confluent hyperge-
ometric series

H2n(x) = (−1)n
(2n)!

n!
1F1

−n
1

2

;x2

 ,

H2n+1(x) = (−1)n
(2n+ 1)!

n!
2x 1F1

−n
3

2

;x2

 ,

we obtain
Ĥ±n(x) =

(−1)nn!

(2n)!

(
H2n(x)∓ 2

√
nH2n−1(x)

)
, n = 0, 1, 2, . . . .

They satisfy the orthogonality relations∫
R

Ĥn(x)Ĥm(x)e−x2

dx =
√
π 22|n|+1 (|n|!)2

(2|n|)!
δnm, n,m ∈ Z.

The system {ψ̂±n(x)}n∈Z is an orthonormal set in L2(R, dx) and it is complete by the same argument
which was used to prove that the classical Hermite functions form a complete orthogonal set in
L2(R, dx). Further, the operator Q with domain D(Q) = S(R) (S(R) is the Schwartz space) is
essentially self-adjoint; the spectrum of its closure is discrete and, by (4.4), we easily obtain that

Qψ̂±n(x) = ±
√
2n ψ̂±n(x), n = 0, 1, 2, . . . .

Theorem 4.3. For n ∈ Z, we have
∞∫

−∞

cas(xy)Ĥn(x)e
−x

2
2 dx = (−1)nĤn(x)e

−x
2
2 .
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