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NONLINEAR ATANGANA-BALEANU
FRACTIONAL DIFFERENTIAL EQUATIONS
INVOLVING THE MITTAG-LEFFLER INTEGRAL OPERATOR



Abstract. This paper intends to investigate the existence and uniqueness of solutions for some
nonlinear Atangana—Baleanu fractional differential equations involving the Mittag—Leffler integral
operator. By means of Schauder’s fixed point theorem and Banach’s fixed point theorem, the existence
and uniqueness results are obtained. A generalized fractional order free electron laser equation is given
as an application.
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1 Introduction

In the last decades, several significant results related to the qualitative properties of fractional dif-
ferential equations have been recorded because of their ability to model real-world problems in many
fields such as science, technology and engineering [11,12,19,21-23,26, 29].

Recently, the interest of many researchers interested in fractional calculus has gone to a new type of
fractional derivative with non-singular kernel introduced by Caputo and Fabrizio [10], this derivative
is based on the exponential kernel. Later, Atangana and Baleanu [7] developed another version
which used the generalized Mittag—Leffler function as non-local and non-singular kernel which appears
naturally in several physical problems and the field of science and engineering [3-6,8, 14,25, 30, 31].

On the other hand, the Mittag—Leffler function and its generalizations play a fundamental role in
fractional calculus and its applications such as modelling groundwater fractal flow, viscoelasticity and
probability theory [1,13].

In [24], Prabhakar studied a singular integral equation with a general Mittag—Leffler function in

the kernel, namely,
t

/ (t— ) B 5 ((t — 8)7)o(s) ds = g(t), t € [a,b],

a

where

= A 2k
E;5(2) = kZ r(ék)ia) = (0.00€C, Re(0) >0).
=0

The function E§,6(z) is the three-parameter Mittag—Leffler function and (A)j is the Pochhammer
symbol defined as
(W) = AMNA+1)---(A+Ek-1), keN,

1, k=0, X#0.

When A =1, ]E}, 5(2) coincides with the classical two-parameter Mittag-Leffler function

Sk

Eg,(;(Z) = m .

M8

=
Il

0

It is useful to mention that the three-parameter Mittag—Leffler function is closely connected with
the phenomenon of Havriliak-Negami relaxation [15].
In [17], Kilbas et al. investigated an integro-differential equation of the form

Dgey(t) = VB s e y(8) + F(1), a <t <, (1.1)
where IE:} s.v.a+ 15 the Mittag—Leffler integral operator defined by

t

]Eg,ﬁ,u;a"'y(t) = /(t - 5)671E;6(V(t - S)U)y(s) dS? (12)

a

where 0,9, v, A € C, Re(o) > 0, Re(d) > 0.

Obviously, Eg St 1S the Riemann—Liouville fractional integral operator of order §. Therefore,
operator (1.2) and its inverse can be considered as generalization of fractional integral and derivative
operators involving Eg 5(z) in their kernels.

In this paper, we consider the following nonlinear Atangana—Baleanu fractional differential equation
involving the Mittag—Lefller integral operator

{ABCDg+x(t) =E) 50 f(tz(t), a€(0,1], teo,1], 13)

x(0) = zp € R,
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where ABCD(‘)ﬁ denotes the Atangana—Baleanu fractional derivative of order « in Caputo sense,
0,0,v,A€ER, 0,0 >0and f:[0,1] x R — R is a given continuous function.

The importance of studying such equations like (1.1) and (1.3) is that they describe the unsaturated
behavior of the free electron laser [9,27,28], which is a kind of laser whose lasing medium counsists of

very-high-speed electrons moving freely through a magnetic structure.

2 Preliminaries

In [7], Atangana and Baleanu improved the Caputo—Fabrizio fractional derivative with non-singular
kernel to another one with non-local and non-singular kernel. We present the basic definitions of the
new fractional order derivatives.

Definition 2.1 (see [7]). Let h € H'(a,b), a < b, a € [0, 1], then the Atangana-Baleanu fractional
derivative in Caputo sense is given by

¢
B(e) (t—s)*
ABC na _ _ /
D, h(t) = 1_a/Ea[ i }h (s) ds, (2.1)
where B(a) denotes a normalization function such that B(0) = B(1) = 1 and E,, denotes the Mittag—
Leffler function defined by

(et

Ea(=t%) = ok +1)

NE

ES
I

0

However, when a = 0, they did not recover the original function, except when at the origin the
function vanishes. To avoid this issue, they proposed the following definition.

Definition 2.2 (see [7]). Let h € H'(a,b), a < b, « € [0,1], and it is not necessary differentiable,
then the Atangana—Baleanu fractional derivative in Riemann-Liouville sense is given by

t

B(a) d (t—s)™
ABR N«
Dy = B 4 [ 10 22
o h(t) 1_adt/ o=V s (2.2)

Equations (2.1) and (2.2) have a non-local kernel. Also in equation (2.1), when the function is
constant, we get zero. For more details and properties, see [7,10].

Definition 2.3 (see [7]). Let h € H'(a,b), a < b, « € [0,1], then the Atangana—Baleanu fractional
integral, associate to the new fractional derivative with non-local kernel is given by

t
1l -« «@

h(t) + Blo)l(a) /(t —8)* " h(s)ds,

a

ABIngh(t) =

where I'(-) denotes the well-known gamma function. The initial function is recovered when the
fractional order turns to zero. Also, when the order turns to 1, we have the classical integral.

To end this section, we collect some useful lemmas.

Lemma 2.4 (see [2]).
« 7 A+
IOJFJE;(S,V;OJr ((b) = Eg,éJroz,u;OJr (¢)7 E§,57V;0+E;’#’V;O+ (¢) = Eg:gi#’y;(fr (¢)a
IS 5,00+ (D)lle <EZ 51 (WDl (@)le -
Lemma 2.5 (see [2]). Suppose z > 0 is fized, 0,0, > 0.
(i) If0 < A < 1, then Egé(z) <E,s(2).
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(ii) If A > 1, then E} 5(2) > Eo,5(2).

Lemma 2.6 (see [18]). Assume that o,0,v,A € R, (0,6 > 0), then for a continuous function ¢ €
C([0,1]) and positive integer n, where 6 > n,

"
dtin Eg,&u;OJr (¢) = Eg,zifn,u;OJr (¢)

Lemma 2.7 (see [20]). Suppose o,6,v,\ € R, (0,6 >0, § > a > 0), then for a continuous function
o€ Clo.1)), A A
Dg+Ea,5,v;O+ (¢) = ]Ea',zsfoz,uqoJr (¢>

Lemma 2.8 (Ascoli-Arzela theorem). Let S = {s(t)} be a function family of continuous mappings
on a closed and bounded interval [a,b], s : [a,b] — X.

If S is uniformly bounded and equicontinuous, and for any t* € [a,b], the set {s(t*)} is relatively
compact, then there exists a uniformly convergent function sequence {s,(t)} (n=1,2,..., t € [a,b])

n S.

Lemma 2.9 (Schauder’s fixed point theorem). If U is a closed, bounded and convex subset of a
Banach space X and T : U — U is completely continuous, then T has a fized point in U.

3 The Existence and Uniqueness Results

Let C(]0, 1]) be the Banach space of all continuous functions from [0, 1] into R with the norm ||z||¢c =
max{|z(t)| : t € [0,1]}.

Definition 3.1 ([16, Theorem 3.1]). A function x € C([0, 1]) is said to be a solution of equation (1.3)
with x(0) = zo if x(¢) satisfies the integral equation

a(t) = xo +P ISy (B 5.0+ f (1, 2(1))). (3.1)
In view of Definition 2.3, together with Lemma 2.4, equation (3.1) can be reformulated as follows:

x(t) = Zo +AB g+ (1[4:275,1/;0+ f(t7 x(t)))
]_ _
=2 + Wj ED 500 f(t2(t)) + ﬁ 0 (B g0+ £ (1 2(2)))

l—a ., « A

= xo + M Eg’é"y;()‘*’f(t’ z(t)) + m B 5 4av0t f(t,x(t)). (3.2)

We introduce the following assumptions:
(A1) The function f : [0,1] x R — R is continuous.
(A2) There exists a constant Ly > 0 such that

|f(t,z) — f(t,y)] < L¢lx —y| for each ¢t €[0,1], and all z,y € R.

3.1 Existence result via Schauder’s fixed point theorem

Theorem 3.2. Assume that (Al) and (A2) are satisfied. Then the Atangana—Baleanu fractional
differential equation (1.3) has at least one solution on [0, 1].

Proof. We define the operator T : C([0,1]) — C([0,1]) by

(T)(t) = @0 + ;[—Of; E) 500 f (8 a(t)) + % E) sramor [(La(0), t€[0,1].  (33)

Note that the operator 7 is well-defined on C([0, 1]) due to (Al).
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Consider the set B, = {z € C([0,1]) : ||z|]lc < r}. Clearly, the set B, is closed, bounded and
convex. The proof is divided into several steps.

Step 1. T is continuous.
Let x,, be a sequence such that x,, —  in B, . Then for each ¢t € [0, 1], we have

|(Tea)(t) = (Ta)(0)] = ];@;‘ (B3 5.0+ (2 (8) = B3 5+ (1 (1))

«

+ W (Egﬁ-l—a,z/;o-%— f(t7 I’n(t)) — Eé,é—i—a,y;o*'f(t? Q?(t))) ’

1 «

E 5.0+ (f (twn (1)) = f (1, x(t)))‘-yﬁ

< (—) 2 50+ (1 >||+ﬁu1€og+wo+ DINIFC@a(-) = £ 2Dl
= (13(701) ‘75+1(‘ V) + ( ) §6+a+1("/|))”f("mn('))_f("x('))HC’

ED g (F (b 2n(8) = £t 2(0))

which implies that

(%

HTLUTL_T‘THCS (1Bz7a)E§,5+l(‘y|) B( ) EU 5+a+1 V|)) ||f( : 711?”( : ))_f( : >‘T( : ))HC

By (A1), the continuity of the function f implies that 7 is continuous.
Step 2. T maps bounded sets into bounded sets in B,..

Indeed, it is enough to show that for any r > 0, there exists a positive constant ¢ such that
for each € By, one has |Tz||c < ¢. For t € [0,1], z € B, and in view of (Al), we define
My = supy s)ep0,1)x B, IIf (¢, 2)|| and, consequently, we have

(Ta)0)] = [0+ Frog b saeo S (6. 2(0) + Gy b srensio F(0:2(0)
< ool + S5 N su0r DI+ 5 1B (D]
(1— )My aMy

< |@o| + WEU sVl + Blo) E) 5tari(V]) =

Hence, ||Tz||c < ¢. This implies that 7(B,) C B;.

Step 3. T maps bounded sets into equicontinuous sets of B,..
Let t1,to € [0,1] with ¢; < t5 and for any © € B,., we have

B(a)

\(Tx><t2>—<m<t1)|s\ 2 (B F(t2n() = B 00,500
B()

B a) ( o,0+a,v;0t f(t2> (t2) - Ec/,\',6+a,u;0+f(t1’x<tl))‘
to

/ 5 1IE s(w(ta —35)7)f(s,2(s)ds
0

11—«

\ N

B(«)

/ t —s)° 1E375(V(t1 —35)7)f(s,x(s)ds

+B?a)] / (12 — )B4, (s — 8)7) (s, 2(s) ds
0
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- / (ty — 5B o, (vl — 5)°) (5, 2(s) ds
_l-a, ia I
" Bla) ' Bla)™”
where
L= ] / (b2 — ) UED 5 (v(t2 — )7) (s, 2(s) ds — / (tr — )" 'ED (vt — 5)°) (5, 2(s) ds
0 0
and

L= ‘ / PR L (0t — 8)°) (5, 2(s) ds

t1

= [t = s (vt 97 (sl |

0
For I;, we have

to

hs[/(tz SRR (s — 8)7) — B2 5 (w(ts — )7)]| | (s, 2(s)) ds
0

ty

+ / [(t — 51 — (t1 — 5P~ E 5 (v(ts — )71 £ (5, 2(5)) | ds
0

+ / (b2 — 5) B 5 (v(ts — )7)I| (5. 2(s))|| ds

t1

1
<Mf|:/t255 1|E v(ta —s)7) — Eg,é(’/(tlf*s)gﬂds
0

+ [ [tz =) = (t = 8)° T EG 5 (vt — 5)7) ds

o O~ _

+ ’(152—3)‘S — (t1 — 8)°~ 1|]E v(t; —s)° )ds]

F i 12, & . . N
<M —5)° 7 ds E) s(v(tao —s)?) —EZ s(v(ty —s)7)| ds
< f[(o/w? o as) (0/’”’5( (1= 917) ~ EX5(v(03 — 917" ds)

+ 2(/1 [(ta —5)°7! = (t1 — s)‘*—l\st)l/g(/l ) 5(v(t1 — 5)7)° ds>1/2}
0 0

Similarly, I can be estimated as

IQ<MfK/| 5)F+o- 1| d) (/]EUMQ (ta — 8)7) — Eaém( (tl—s)”)|2ds>1/2



8 Mohamed |. Abbas

+2</1|(t2—s)6+a—1 — (t —s)“a_lfds)lm(/l|E§’5+a(u(t1 —s)")|2ds)1/2}
0 0

Hence, we get

(Ta)(e2) -~ (Toien)] < S0 {(0/1|<t2 - as)

1

’ </ (B3 5 (v(t2 = 8)7) = Eg 5t = 5)°)[° d5> N

0

! ) B 12 , 7 . 1/2
+2(0/|<t2s>5 SRR (O/|E§,5<u<tls> Ias) |
S et

“( / a0~ %)~ B0t = ) as)

, 12 , L , 1/2
—|—2</| g)ota-t (t1—5)5+°‘_1‘ ds) (/’E;Ha(u(tl—s)”ﬂ ds) }
0

As a result, we immediately find that the right-hand side of the above inequality tends to zero as
to — t1. Therefore, T(B,) is an equicontinuous set. It is also uniformly bounded.

Consequently, from Steps 1—3 together with the Ascoli-Arzela theorem (Lemma 2.8), we show that
the operator T is completely continuous. Hence, by Schauder’s fixed point theorem (Lemma 2.9), we
conclude that the operator 7 has at least one fixed point which is a solution of the Atangana—Baleanu
fractional differential equation (1.3) on [0,1]. The proof is completed. O

1/2

3.2 Uniqueness result via the Banach fixed point theorem

Theorem 3.3. If the assumptions (Al) and (A2) hold, then the Atangana—Baleanu fractional differ-
ential equation (1.3) has a unique solution on [0, 1], provided that

A= (G5 Ban (V) + 5o Ehsran () Ly < L (3.9

Proof. Consider the operator 7 defined in (3.3). In what follows, we show that the operator T is
a contraction. Repeating the same procedure as in Step 2 of the proof of Theorem 3.2, we obtain
T(B,) C B,.

Now, for z,y € C(]0,1]) and for each ¢ € [0, 1], by using (A2), we have

T2)0) = (T)0] = [ (B Ss2(0) ~ B g 10300

+ % (E()‘T’(;Jra’u;oJrf(t,ﬂf(t)) - Eg,éJra,V;O*f(t’y(t))) ‘

11—«

< B(Oé) |]Eg,§,u;0+ (f(t,iﬂ(t)) - f(t7y(t)))| + % Eg,5+a,u;0+ (f(t,l‘(t)) _ f(t,y(t)))|

)
<()

B} suwor O+ ey 1B svaor (I Lol =yl
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l—a_ a \
= Bl(a) Bl(n) - .
< (B(a) Ea,6+1(|VD + Blo) Ecr,6+a+1(|y‘))LfH$ ylle

Hence,
1Tz = Tyllc < Allz —yllc.

If condition (3.4) is satisfied, then, as a consequence of the Banach fixed point theorem, we conclude
that the operator 7 has a unique fixed point. Thus, the Atangana—Baleanu fractional differential
equation (1.3) has a unique solution. The proof is completed. O

4 An application

In this section, we consider the following generalized fractional order free electron laser equation as
an application of the Atangana—Baleanu fractional differential equation (1.3).

Example 4.1.

ABC 3 2 |z (¢)]
D? =E? 1
o0 =B oo o v ent+ e €0 (41)

z(0) = 0.

Here, t is a dimensionless time ranging from 0 to 1 and z(t) is a complex-field amplitude which is
assumed dimensionless and satisfies the initial condition x(0) = 0.

Set o = %, c=1,§= %, v=2 A= % and f(t,x) = 750(1+e”f)(1+1) . Since
T Y
t — f(t = _
£t @) = f(tw)l 50(1+et)(1+x) 50(1+et)(1+y)

|z —y|
<
T 50(14+et)(14+2)(1+y) — 50(1+et

2~y < — ||z — y]
) yilOO Yilc

we get the assumption (A2) with Ly = 35 .

Moreover, using Lemma 2.5 and the fact that I'(k +2) < T'(k + 2), the condition (3.4) gives

_ 1—a_y o 2
A= (mEa,éﬂﬂV\) + mEo,6+a+1(|V‘)>Lf
1

_ 1 2 1 2 1_2 1_.2
_ 2 5 2 5 —_ _ 5 _ &5
100 (B(%) By (2D + B( )E17%+%+1(|2|)> 100 (2 Erg(2)+3 Elﬂ(lz”)

IA

0
S R L 1o 2k 1 /1 2 o= 2
100(2;F(1§+2)+2]§F(1f+2)):1()()(2;_0(k+1)!+22(k+1)!)
_ 1 1e2-1 1e2—-1 _62—1
_ﬁ<§ 25 T3 3 )_ 200

= 0.03194528049 < 1.

Therefore, all the assumptions of Theorem 3.3 are satisfied. Hence, the Atangana—Baleanu fractional
differential equation (4.1) has a unique solution on [0, 1].

Finally, according to formula (3.2), we can obtain a unique solution x(t), which is the complex-
field amplitude of the generalized fractional order free electron laser equation (4.1), from the following
Volterra integral equation:

! (s [er o als)
x(t)_W[/(t_s> ErL Q2 S))1+$(S)dS+O/E1,1(2(t 5))1+x(s)d87
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where Lo .
2 > 2 (£)k (t—s)
Ef,(2(t—s)) = °
L3 I;O L'k + %) k!
and Lo i
— 2" (t—s)
E,(2(t—s)) = i
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