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Abstract. In this paper, we consider a coupled flexible structure system with distributed delay in
two equations. We first give the well-posedness of the system by using a semigroup method. Then,
by using the perturbed energy method and constructing some Lyapunov functionals, we obtain the
exponential decay result.
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1 Introduction
In this article, we study the well-posedness and exponential stability for coupled flexible structure
system with distributed delay in two equations
T2
ma(x)u — (p1(2)uy + 201 (2)Ugt) s + pous + /ul(s)ut(x,t —$)ds =0,
5 (L.1)

mo(2)vy — (p2(T)vy + 202(T) Vet )2 + pove + /,ug(s)vt(x,t —s)ds =0,

T1
where (z,t) € (0, L) x (0,400), with the following initial and boundary conditions:

u(+,0) = up(x), u(-,0)=wui(z), YV e]|0,L],
Lit)=0, Yt>0,

v(-,0) =vo(z), ve(-,0)=wv1(z), Yz €[0,L], (1.2)
v(0,t) =v(L,t) =0, V>0,
ut(x, —t) = fo(z,t), 0<t< 1o,
ve(x, —t) = go(z,t), 0<t <y,

where u(z,t),v(z,t) are the displacements of a particle at position « € (0, L) and time ¢ > 0. ug, vg are
initial data, and fy, go are the history function. The parameters m;(z), d;(x) and p;(z) (for i = 1,2)
are responsible for the non-uniform structure of the body, where m;(z) denotes mass per unit length
of the structure, d;(x) is a coefficient of internal material damping and p;(z) is a positive function
related to the stress acting on the body at a point . We recall the assumptions of the functions
m;(x),0;(x) and p;(x) in [1] such that

mi, 8, pi € WH(0, L), mi(x),d;(x),pi(x) >0, Yo €[0,L] for i=1,2.

The coefficients o, p( are positive constants, and w1, ug : [11;72] — R are the bounded functions,
where 71 and 75 are two real numbers satisfying 0 < 7 < 75. Here, we prove the well-posedness and
stability results for the problem on the under the assumption

o > / a2 ()] ds,
n (1.3)
iy > / l12(s)] ds.

T1

During the last few decades, the theory of stabilisation of flexible structural system has been a
topic of interest in view of vibration control of various structural elements. In [6], Gorain established
the uniform exponential stability of the problem

m(z)uy — (p(z)us + 25(m)um)z = f(z) on (0,L) x RT,

which describes the vibrations of an inhomogeneous flexible structure with an exterior disturbing
force f. Indeed, it is physically relevant to take into account thermal effects in flexible structures: in
2014, M. Siddhartha et al. [9] showed the exponential stability of the vibrations of a inhomogeneous
flexible structure with thermal effect governed by the Fourier law,

m(x)uy — (p(@)uy + 26(2) gt ), + K0, = f,
gt — QM + RUty = 0.
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It is known that the dynamic systems with delay terms have become a major research subject in
the differential equation since the 1970s of the last century (see, e.g., [2-4,7,8,11-15,18]). It may not
only destabilize a system which is asymptotically stable in the absence of delay, but may also lead
to the well-posedness (see [5,17] and the references therein). Therefore, the stability issue of systems
with delay is of great theoretical and practical importance. In [8], the authors consider a non-uniform
flexible structure system with time delay under Cattaneo’s law of heat condition

m(z)uy — (p(x)ug + 20(2)Uugt) s + Nbs + pug(x,t —179) =0, z € (0,L), t>0,
O + Kq + Nute = 0, HASS (0, L), t>0, (14)
TGt + Bq + kO, =0, x € (0,L), t>0,

with the boundary condition
u(0,t) =wu(L,t) =0, 0(0,t) =0(L,t)=0, t>0, (1.5)
and the initial condition
u(z,0) = up(x), u(z,0)=ui(z), 0(x,0)=0o(x), q(z,0) =qo(z), x€[0,L]. (1.6)

They proved that system (1.4)—(1.6) is well-posed, and the system is an exponential decay under a
small condition on time delay. M. S. Alves et al. (see [1]) considered system (1.4)—(1.6) without delay
term, and obtained an exponential stability result for one set of boundary conditions and at least a
polynomial for another set of boundary conditions.

In [14], Nicaise and Pignotti considered the wave equation with linear frictional damping and
internal distributed delay

T2

U — Au+ prug + a(x) /Mg(S)Ut(t —s)ds =0

T1

in  x (0,00), with initial and mixed Dirichlet~Neumann boundary conditions and a as a function,
chosen in an appropriate space. They established exponential stability of the solution under the

assumption
T2

lall [ a(s)ds < .
T1
The authors also obtained the same result when the distributed delay acted on a part of the boundary.
Motivated by the above results, in the present work we consider system (1.1),(1.2), prove the
well-posedness and establish exponential stability results.
We now briefly sketch the outline of the paper. In Section 2, we state and prove the well-posedness

of system (1.1),(1.2) by using the semigroup method. In Section 3, we establish an exponential
stability by using the perturbed energy method and construct some Lyapunov functionals.

2 The well-posedness

In this section, we give a brief idea about the existence and uniqueness of solutions for (1.1),(1.2)
using the semigroup theory [16]. As in [14], we introduce the new variables

z1(x, p,t,8) = ug(x,t — ps), € (0,L), pe(0,1), s€(m,m), t>0,
zo(z, p,t,s) = vz, t —ps), x€(0,L), pe(0,1), se€ (r,m), t>0.

Then we have

szit(z, p,t,s) + zip(z, p,t,s) =0 in (0,L) x (0,1) x (0,00) x (11, 72) for i=1,2.
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Therefore, problem (1.1) takes the form
T
ma(z)uge — (P1(2)ug + 261(2)uzt)z + pour + /ul(S)z1 (z,1,t,8)ds =0,

T1

Szlt('rapvt7 S) + le(‘rv pat7 S) = 07

(2.1)
T2
mao(2)vy — (p2(2)ve + 202(x) Vet )2 + pove + /,ug(s)zz(x, 1,t,8)ds =0,
T1
SZQt(’JJ, pst, S) + ng(.’t, P, t, S) = 07
with the following initial and boundary conditions:
u(+,0) = ug(x), u(-,0)=uy(z), Va €0, L],
u(0,t) = u(L,t) =0, YVt >0,
v(+,0) = vo(x), ve(+,0) =v1(x), Vo €l0,L],
o(0,0) = (L, 1) =0, V120, 0
z1(x,0,t,8) = ug(z,t) on (0,L) x (0,00) x (11, 72), '
z9(x,0,t,8) = ve(x,t) on (0,L) x (0,00) x (11, 72),
Zl(x7p7075) = fO(xaps) on (O7L) X (07 1) (Tlv 2)5
22(337/)7075) = go(z,ps) on (OvL) X (07 1) (7_177—2)
Introducing the vector function U = (u,,21,v,,22)T, where ¢ = wu; and 1) = v;, system
(2.1),(2.2) can be written as
U'(t)+AU({t) =0, t>0, (2:3)
U(O) = UO = (UO,Ul,fO,’UQ,’Ul,gO)T, .

where the operator A is defined by

2
1 Mo 1 7
7m1(95) (p1(x)ug + 201(2)pz)e + (@) p+ (@) /ul(s) 1(z,1,t,8)ds
— 8712’1
AU = I p T
_m;(x) (p2(z)vy + 202(x)1)y) ml:?g:) P+ mzl(x)T/HQ(s)zg(x, 1,t,s)ds
8_122p

Next, we define the energy space as
H = H}(0,L) x L*(0,L) x L*((0, L) x (0,1) x (71,72))
x H3(0,L) x L*(0,L) x L*((0,L) x (0,1) x (71,72)),
equipped with the inner product

L T2

/p1 uxuxdx—F/ml <pdas—|—///s|u1 ) z1(z, p, $)Z1(x, p, 8) dsdp dx

0

+/p2(33)vzvzdw+/ o wz/)dx—i—///smg M z2(z, p, $)2a2(x, p, 8) dsdp dz.

0 0
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Then the domain of A is given by
UcH| uve H*0,L)NHy(0,L), @, € HY(0,L),
D(A) = 21, R1py 225 22p € L2((07 ) (07 1) X (7—177—2))7
z1(x,0,8) = p(x), 2z2(x,0,s) =(x)

Clearly, D(A) is dense in H.
The well-posedness of problem (2.3) is ensured by

Theorem 2.1. Assume that Uy € H and (1.3) holds, then problem (2.3) has a unique solution
U e CRT;H). Moreover, if Uy € D(A), then

UecCRT;DA)NCHRT;H).

Proof. The result follows from the Lumer—Phillips theorem provided we prove that A : D(A) — H is
a maximal monotone operator. First, we prove that A is monotone. For any U = (u, ¢, 21, v, 9, zg)T S
D(A), by using the inner product and integrating by parts, we obtain

L T2

L L
(AU, U)y :2/51(95)50920@34‘/90/Ml(s)zl(x,lats) defU‘i‘Mo/@le‘
0 0 0

T1
L 1

T2 L
[ [ [ hmeateps)zayops) dsdpda 2 [ sa(w)i o
T1 0

0 0

L T2 L L 1 T2
=+ /1/)/#2(5)22(55a 17t78) dsdx +:u6/77[}2 dx + /// \M2(5)|22($,,0, S)ZQp(xapa S) ds ddeC
0 T1 0 0 0 T1

Integrating by parts in p, we have

L 7 1

[ ] [ 1o 5120w p.5)dp ds o
0O m™ O

LTQ

//|,ul (z,1,5) — 2}(,0,s)] dsdx for i=1,2.

Using the fact that z1(z,0,s,t) = ¢ and 22(x,0, s,t) = 1, we obtain

L
(AU,U)H:2/ gozdx—i—/ /ul $)z1(z, 1,1, 8) dsd:z:—i—( 0—7/|u1 |d8>/4p2d$
0

L 1o L T2
+;//|u1( )|zl(x 1,s) dsdx+2/52( )wzder/ijJ/,ug( )zo(x,1,t,8) dsdx
0 m T1

@r/m mﬁ/wmw //m B 1,5) dsda. (2.4)

Now, using Young’s inequality, we can estimate

1 17‘2

L T2 T

1 1
/g@/,ul(s)zl(x,l,t,s) dsdx > —5/\u1(s)\ds/gp2 dx — 5/ |1 (s)|23(x,1,5) dsdx  (2.5)
0 T1 T1 0

0 71
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and

L T2 T2 1 1 7

1 1
/w/pg(s)zg(x,l,t,s) dsdr > —§/|,u2(s)|ds/z/}2da:— 5//|u2(5)|z§(33,1,s) dsdx. (2.6)
0 T1 T1 0 0 71

Substituting (2.5) and (2.6) in (2.4), and using (1.3), we obtain

T2

L
(AU, U) % >2/61 somder(uo—/lm |d8>/<ﬂ2d$
T1 0
+2/52( )¢2dx+<u0 /|u2 ds>/¢2dx>0
0

Hence, A is monotone. Next, we prove that the operator I + A is surjective, i.e., for any F =
(fl» f27 f3a f4v f57 fG)T € H? there exists U = (u7 ¥, 21,0, 'l/}a ZZ)T € D(A) satisfying

I+ AU =F, (2.7)
which is equivalent to
uU—¢= fla

T2

(ma () + po)p — (p1()us + 261(2)pa)s + /Ml(s)zl(x’ L,t,5)ds = mi(z) fa,

™1
sz1 + 21p = S8 f3, (2.8)
U= ’l/) = f4a

2

(ma(x) + po)¥ — (p2(2)va + 202(2)hz)s + /uz(S)Zz(% L t,s)ds = ma(z) fs,

T1

S22 + 22p = Sf6.

Suppose that we have found u and v. Then equations (2.8); and (2.8)4 yield

p=u— f17 (29)
Y =v— fy
It is clear that ¢ € H}(0,L) and v € H(0,L). Equations (2.8)3 and (2.8)s with (2.9), recalling
251(.13, 0,t, S) =¥, ZQ(Z’,O,t, 3) =1, yleld

p

2, pv) = ule)e ?* — fla)e ™ s [ fo(or0)e dr (2.10)

0

and ,
z9(z, p,8) = v(x)e " — fy(x )efszrse*pS/f@(x,T,s)e” dr. (2.11)

0

0 1) X (7’1,7’2)).
2, and inserting (2.9)2 and (2.11) into (2.8)s5, we get

Clearly, z1, 21,, 22, 22, € L*((0,L) x (0,
Inserting (2.9); and (2.10) into (2.

8)
mu — (p1(z)us + 261(2)ps)s = g1,
120 — (p2(2)ve + 202(2)Ys)z = g2,
— Pz = 93,
— Yy = ga,

(2.12)
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where
T2 T2
m = mi(x) + po + /#1(5)673 ds, m2 =ma(x) + pg + //@(5)673 ds,
T1 T1
T2 1
g1 =mf1+mi(x)fa — /Sul(s)efs/f:s(ﬂfm s)e’ dr ds,
T1 0
To 1
g2 = N2 fs + ma(z) f5 — /Sﬂz(S)e_s/fes(ﬂ?,T,S)eTs dr ds,
T1 0

93 = fiz, 91 = faa-
The variational formulation corresponding to equation (2.12) takes the form
B((u,0)T, (@9)7) = G(@ )", (2.13)

where )
B:[Hj(0,L) x Hj(0,L)]” — R

is the bilinear form given by
L L
B((u,v)", (@,0)") =m /uﬂdx + /(pl(m) + 201 (2))ugty, dx
0 0

L L
+ 19 /vT)dx + /(pg(m) + 202(x))v, 0, dz,
0 0
and

G: [Hg(0,L) x Hy(0,L)] — R
is the linear form defined by

L L L L
G(ﬂfﬁ)T :/glﬂdx—i—/gg'ﬁdm—f—/251(x)ggﬂz dm+/252(x)g45m dx.
0 0 0 0

Now, we introduce the Hilbert space V = HJ (0, L) x Hg(0, L) equipped with the norm
1, )T = Nlull3 + [luallz + [[ol13 + lve 13-

It is clear that B(-, -) and G(-) are bounded. Furthermore, we can find that there exists a positive
constant « such that

L L
Bl(w )" (o)) =m [ do+ [(pr(a) +261(2))u do
0 0

L

L
b [ dot [ (a(o) + 22 do > af (w0
0 0

which implies that B(-, -) is coercive.
Consequently, applying the Lax—Milgram lemma, we obtain that (2.13) has a unique solution
(u,0)T e V.
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Then, by substituting u, v into (2.9), we get
¢, € Hy(0,L).
Next, it remains to show that
u,v € H*(0,L) N H(0, L).

Furthermore, if 7 = 0 € HZ (0, L), then (2.13) reduces to

L L L L
/ z) +261(2))ug) ﬁdmz/glﬂdx—/2(51(x)gg)xﬂdx—m/uﬁd$
0 0 0 0

for all u in H}(0, L), which implies
[(p1(z) + 251(95))%]1 =nmu— g1+ 2(01(x)gs). € L*(0,L).
Thus, by the L? theory for the linear elliptic equations, we obtain
u € H?*(0,L) N H}(0,L).

In a similar way, we have
v € H*(0,L)N Hy(0,L).

Finally, the application of the classical regularity theory for the linear elliptic equations guarantees
the existence of unique solution U € D(.A) which satisfies (2.7). Therefore, the operator A is maximal.
Hence, the result of Theorem 2.1 follows. O

3 Exponential stability

In this section, we prove the exponential decay for problem (2.1), (2.2). This will be achieved by using
the perturbed energy method. We define the energy functional E(t) as

E(t) = Ex(t) + Ea(t),

L L 1 7
1 1
El(t)zi/[ml( Jui + pi(x +§///s\u1 )23 (2, p, 2, t) ds dp de,
0 00 7 (3.1)
1 L L 1 T2
Es(t) = 5/ [ma(2)uf + pa(x)ul] do + = ///s\ug )23 (x, p, 2, t) ds dp de.
0

We have the following exponentially stable result.

Theorem 3.1. Let (u,us, 21,0, 04, 22) be a solution of (2.1),(2.2) and assume that (1.3) holds. Then
there exists positive constants \g, A1 such that the energy E(t) associated with problem (2.1),(2.2)
satisfies

E(t) < Xoe™ M, t > 0. (3.2)

To prove this result, we will state and prove some useful lemmas in advance.

Lemma 3.2 (Poincaré-type Scheeffer’s inequality, [10]). Let h € H}(0,L). Then

L L2 L
/\h|2dx < p/|hz|2dx. (3.3)
0 0
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Lemma 3.3 (Mean value theorem, [1]). Let (u,us,v,v:) be a solution to system (1.1),(1.2) with
an initial datum in D(A). Then, for any t > 0, there exists a sequence of real numbers (depending on
t), denoted by (;,& € [0,L)(i =1,...,6), such that

L L

L L
/p1 (z)u dx = p1(¢1) / u? de, my (z)u? de = my((2) / u? d,
0

L

0 0

0

L ’ L L
mi(z)u? dz = m1(G) [ u?de, S1(x)u? de = 61(¢) | u?de,
j fou | ]
L L

0
L L

/51(:17)u§ dx :51(C5)/u32€ dx, /51(x)uit dr = 51((6)/uit dx,

0 0 0 0

L

/

L L

Lemma 3.4. Let (u,us, 21,0, 0¢,22) be a solution of (2.1),(2.2). Then the energy functional satisfies

E'(t) = E}(t) + E{(t) <0, YVt >0,
L T2 L
E(t) < —2/51(x)uitdx+ (/|,u1(s)|dsuo> /utzdx <0,
0 T1 0

L T2 L
Ey(t) < —2/62(x)vgtdx+ (/|u2(s)ds—u6) /vtzdx <0.
0 T1 0

Proof. Multiplying (2.1); and (2.1)3 by u; and v, respectively, and integrating over (0, L), using
integration by parts and the boundary conditions in (2.2), we get

L
1d
3 %/ [ma (2)uf + p1(z)ul] do
0
L L L T2
=— 2/51(x)u2t dx — ,uo/ut2 dx — /ut /ul(s)zl(m, 1,t,s) dsdx, (3.4)
0 0 0 1
1d r
3 @/ [ma(2)v] + po(2)v2] d
0
L L L T2
=— 2/(52(;6)1}% dx — g /vf dx — /Ut/MQ(S)ZQ(J], 1,t,s) dsdx. (3.5)
0 0 0 n

On the other hand, multiplying (2.1)2 and (2.1)4 by |u1(s)|z1 and |u2(s)|z2, respectively, and
integrating over (0,L) x (0,1) x (1, 72), and recalling z1(z,0,t,s) = us and z3(z,0,t,8) = v, we
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obtain

sl (s)|z2(, p, 5,1) ds dp da

N —
Sl
Tt~
o—__
j\,j

LT2

l\D\H

0

slu2(s)|25 (z, p, 5,1) ds dp dz

N | =
SIS
St~
o —__
J\g

e

L 1
1
= 5//\,ug V|22 (x,1,5,t) dsdx + = / /\,uQ )| ds da.

T1

0
A combination of (3.4) and (3.6) gives
L

L L T2
1(t) :—2/51(x)uitdx—,u()/ufda:—/ut/u1(s)zl(x,l,t,s) dsdx
0 T1

L 7o

0
Also, (3.5) and (3.7) give

L T2

L L
EL(t) :—2/52(x)v§t alac—,uf)/vt2 dx—/vt/ug(s)zg(x,l,t,s) ds dx
0 0

0 T1

L’Tz L

—*//‘/.tg V|23 (2,1, 8,t) dsdx + = /|u2 |ds/vt dx.

0 0

Now, using Young’s inequality, we obtain

//\,ul 22(x,1,5,t) dsdx + = /ut/\ul )| dsdzx,

L
—7//|u1 W22 (x,1,5,t) dsda + — /|u1 |ds/utdx
0

(3.8)

/ut/m s)z1(x, 1,t,8) dsdr < = /|u1 |ds/ut dx + = //|u1 V22 (x,1,8) dsdx, (3.10)
1 2 1 2
— | v ,ug(s)ZQ(x7 1,t,8) dsdx < 3 |u2(s)| ds [ v; dz+ 3 |,u2(s)\zz(x, 1,8) dsdx. (3.11)
0 1 1 0 0 7m

Substituting (3.10) into (3.8), (3.11) into (3.9), and using (1.3), we obtain (3.4), which completes

the proof.

O

Next, in order to construct a Lyapunov functional equivalent to the energy, we prove several
lemmas with the purpose of creating negative counterparts of the terms that appear in the energy.

Lemma 3.5. Let (u,uy, 21, v, v, 22) be a solution of (2.1),(2.2). Then the functions

L

L(t) = /61(x)ufc dz+/Lm1(:1:)utud:c,

L

0
Fi(t) = /Lég(x)vg der/mg(x)vtv dx
0

0
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satisfy, for all e1,e9 > 0 and &), e} > 0, the estimates

L L
LZ;LQ L2€2
I{(t) < - (pl((l) - 7T20 &1 — 2 )/Uidl’+ (m1 CQ 461 /u dx
0 0
L T2
Mo 9
+— |1 (9)]21(x, 1, 8,t) ds duz, (3.12)
452
0 71
L L

L2 /2 LQE/ 1
Fi(t) < - (pz(ﬁl) - WZO €1~ 722) /Ui dr + (mz(ﬁz) 1

—l——,) v? dx
e 51

0 0
L T2

!/
+%//|M2(S)Izg(w,1,s,t) ds du. (3.13)
“2 0 71

Proof. By differentiating I (t) with respect to ¢, using (2.1); and integrating by parts, we obtain

L

L L L
—/pl(x)ui dx—,uo/utudx— /u/ul(s)zl(x,l,sj) dsdx—l—/ml(x)uf dx.
0 0 0 ™ 0
By using Young’s inequality, Lemma 3.2 and (1.3)1, for 1,62 > 0 we get
L 122 L . L
I
—,uo/utudx < W2061/ui dz + 4—51/1& dz, (3.14)
0 0
L T2 L L T2
f/u/ul(s)zl(x,l,s,t) ,uo //Wl )23 (2,1, 5,t) ds da. (3.15)
0 T1

0

T1
Consequently, using Lemma 3.3, (3.14) and (3.15), we establish (3.12).
Similarly, we prove (3.13).

Lemma 3.6. Let (u,uq, z1,v, v, 22) be a solution of (2.1),(2.2). Then the functions

T2

/ se™|un (5)]22 (2, py 5. 1) ds dpda,

T1

[ s P a(s) e p.5,1) dsdpda,

T1

1
0

1 72
0

satisfy, for some positive constants ny and no, the estimates

1

o/

T2 L

[ @)z e 1 s,0) dsdo o [ o da. (3.16)
T1 0

1
o/
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L T2 L
—ng//mg(s)\zg(:ﬂ,l,s,t) dsdx—i—,u{)/fvf dz. (3.17)
0 71 0

Proof. By differentiating Io(t) with respect to ¢ and using equation (2.1)2, we obtain

T2

L1
_ —2/// TP pa ()21 (x, py 8, 0)21,(2, p, s, t) dsdp da
00

T1

T2 T2

L 1 L 1
d
(Tp/// | (s)|25 (2, p, 5, t) dsdp dx — ///se 111 (3) |22 (2 o5, 1) dis dp e
0 0 0 0

T1 T1

L T2 L 1 T2
//|,u1 H(x,1,8,t) — 23 (2,0, t)]dsdx—///se |y (s)|21(z, p, 5,t) ds dp da.
0 0 T1

Using the fact that z1(x,0,s,t) = u; and e™* < e %" < 1, for all 0 < p < 1, we obtain

L 7o
Ii(t) < —//e_s|u1(s)|zf(a:,17s,t) dsdx

0 71
L 1 T2
/|p1 |d5/ut dx — ///se*SP|u1(s)|zf(x,p,s,t) dsdpdzx.
0 T

Since —e™* is an increasing function, we have —e™* < —e™™ for all s € |1y, T3].
Finally, setting n; = e~ ™ and recalling (1.3);, we obtain (3.16).
Similarly, we prove (3.17). O

Next, we define a Lyapunov functional L and show that it is equivalent to the energy functional E.
Lemma 3.7. Let N, N1, Ny > 0 and a functional be defined by
L(t) .= NE(t) + I, (t) + N112(t) + Fi(t) + NaFa(t). (3.18)
For two positive constants c¢1 and cs, we have
aEt) < L(t) < cE(t), Vt>0. (3.19)

Proof. Let
,C(t) = Il(t) + Nllg(t) + Fl(t) + NQFQ(t)

Then

L

/ u dr + = /m1 utdx—|— /m1 uda:

0

+N1///s|,u1 )22 (x, p, 5, 1) dsdpdx+/5g )2 dr + = / o(z)v} da

L 1

1
—|—§/m( ) dl’-‘er///S“,LQ V23 (x, p,s,t) dsdpdr < ' Ei(t) + " Fay(t) < coE(t),
0 0 0 71
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where ¢p = max{c, "}, with

L*m(C3) n 201(¢s)
™pi(¢)  pi(G)

Consequently, |L(t) — NE(t)| < coE(t), which yields
(N = o) E(t) < L(t) < (N + o) E({).

7 L2m2(£3) + 252(55)

= 2Ns.
t w2pa(&1) p2(&1) LR

C/:1+ +2N1a

Choosing N large enough, we obtain estimate (3.19). O
Now, we prove the main result of this section.

Proof of Theorem 3.1. Differentiating (3.18) and recalling (3.4), (3.12), (3.13), (3.16) and (3.17), we
obtain

'(t)s[(]2|u1<s>dsuo) + (ma(G) + 42 + Nawo] / 3 da
1 0

L

L
L2 2 L2
—[p1(C1)— 5051——262}/7126&3—2]\7/611‘112 dx
T ™

0
L1T2 LTQ

—nlNl///s|u1 V23 (x, p, 5, 1) dsdpdm— nlNl—— //|u1 22 (2,1, 5,t) dsdx
L
[ oias =) + (e + ) + i) [ 2
T1 0

L
L2 2 L2
- [pz(fl) - /;O el — Fsé] /vfc dx — 2N/52(x)v§t dx
0 0

™
L 1 T2 , L T2
fn2N2///s|u2(s)|z§(x,p,s,t) dsdpdx — [nQN *f?(i} //|u2(s)|z§(x,1,s,t) dsdzx.
2
0 0 7 0 7

Using Lemma 3.2 and Lemma 3.3, we get

L L
L? 1 L? L2ud
Ll(t) < - |:’YIN - F (ml(Cz) + E ,UO ] /’LL zdit - |:p1 Cl) 2 81 - 52:| /u dx
0 0

L T2
—nlNl///sml )22(x, p,s,t) dsdpda — [nlNl - — //|u1 22(x,1,5,t) dsdx

0 0 7 0 71

L? 1 i L2 r
u ug
|:"}/2N - — (m2(§2) 45’1 0 NQ] /uir dxr — [pg (&) - 3 — € } /
0 0
L T2
*TlQNQ///SLUQ V|22 (xz, p,s,t) dsdpdx — |:TL2N - — //|u2 )|22(2,1,5,t) dsdx, (3.20)
00mn 0

where

2/ f
n=20(60) - 5 (/ml(s)ws—uo) >0,

T1
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2/ 7
2= 260(60) ~ 5 ( [l ds = ) > .

At this point, we need to choose our constants very carefully.
2 2
First, we choose €2 < 77zp1(¢1) and & < F=p2(&1) so that
L? p1(¢1) L p2(&1)

/
p1(C1) — 32> T, p2(&1) — 552>

Next, we choose N7 and Ny large enough so that

/

Fo .

Tlllef?o >0, TLQNQ*H
2 2

Then, we choose €1 and ¢ small enough satisfying

pi(G) L p2(&)  LPug

5 = €1 >0, > 2 g1 > 0.
Finally, we choose N large enough so that
L? 1 L2
N - — ( —) ——— N1 >0,
Y1 7'(‘2 m1(<2) + 461 772 1>

12 1\ L2
N-= ( —) )
V2 = ma(&2) + i — N2>

By (3.1), we deduce that there exists a positive constant ¢z such that (3.20) becomes

L'(t) < —c3E(t), Vt>0. (3.21)
The combination of (3.19) and (3.21) gives

L'(t) < =X\ L(t), ¥Vt >0, (3.22)

where A\; = 2. Then a simple integration of (3.22) over (0,t) yields

2

a1 E(t) < L(t) < L(0)e™ !, Vit >0. (3.23)

Finally, combining (3.19) and (3.23), we obtain (3.2) with A\g = 62151(0), which completes the

proof. O
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