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SOLVABILITY AND NUMERICAL APPROXIMATION
OF THE SHELL EQUATION DERIVED BY THE I'-CONVERGENCE



Abstract. A mixed boundary value problem for the Lamé equation in a thin layer Q" = C x [~h, h]
around a surface C with the Lipshitz boundary is investigated. The main goal is to find out what
happens when the thickness of the layer tends to zero, h — 0. To this end, we reformulate BVP into
an equivalent variational problem and prove that the energy functional has the I'-limit of the energy
functional on the mid-surface C. The corresponding BVP on C, considered as the I'-limit of the initial
BVP, is written in terms of Giinter’s tangential derivatives on C and represents a new form of the shell
equation. It is shown that the Neumann boundary condition from the initial BVP on the upper and
lower surfaces transforms into the right-hand side of the basic equation of the limit BVP. The finite
element method is established for the obtained BVP.
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1 Introduction

In the present paper, we study a mixed boundary value problem for the Lamé equation in a thin
layer Q" := C x [~h, h] of thickness 2h around a smooth mid-hypersurface C C R? written in terms
of Gilinter’s derivatives and the energy functional associated to it. We show that when thickness
of the layer tends to zero, h — 0, the corresponding energy functional, scaled properly, converges
in the I'-limit sense to some functional defined on mid-surface C of the layer, which corresponds
to the two-dimensional boundary value problem for associated Euler-Lagrange equation in terms of
Gilnter’s derivatives. The obtained equations together with boundary conditions can be considered
as a boundary value problem defined on a shell model. We employ Galerkin’s method to establish
numerical approximation for solutions of the obtained BVP.

The equations of three-dimensional linearized elasticity have been studied mostly in Cartesian
coordinates. The linear shell theory justified in the present paper is based on the natural curvilinear
coordinates, defined on the mid-surface C extended by the normal vector field of this surface, which
“follow the geometry” of the shell in a most natural way. Accordingly, the purpose of the present
preliminary section is to provide a thorough derivation and a mathematical treatment of the equations
of linearized three-dimensional elasticity in terms of special curvilinear coordinates.

Let C C R? be an open surface with the boundary I = dC in the Euclidean space R3, represented
by a single coordinate function 6 : w — C (the case of multiple coordinate function is similar and we
skip this case for the simplicity). Let v(x) = (v1(x), v2(x),v3(x)) T, x € C, be the normal vector field
on C and v(x) = (N (z), Na(x),N3(z)) " be its extension in the neighbourhood Ue of the surface C.
It is known that such extension is unique under the assumption that the extension, as the field on
the surface itself, is a gradient vector field 9; N, = OpN; for all j, k = 1,2,3 and is called the proper
extension (see [6] for details).

The 3-tuple of tangential vector fields to the surface g; := 010, g2 := 020 (the covariant basis)
together with the proper extension gz := N of normal vector field v from the surface C into the
neighborhood Q" depend only on the variable 2’ € C and constitute a basis in Q". That means

3
that an arbitrary vector field U = 3 Uje’ can also be represented with this basis in “curvilinear
j=1
coordinates”. Along with the covariant basis, the use is made of the contravariant basis g', g2
which is the bi-orthogonal system to the covariant basis (g;, g") = d;1, where §;; denotes Kroneker’s
symbol, j,k = 1,2 (see, e.g., [3,4]). In the classical geometry, the covariant {(g;,gx)}; k=12 and
contravariant {(g’,g")}; x—1 2 metric tensors together with the Christofell symbols I, = (g%, 0;8k)
are the main tools of the calculus. For example, the covariant derivatives on the surface C are defined

2
by vy)j; 1= 0jv; — k2—:1 T op.

Our calculus on the surface C is based on a different curvilinear system of coordinates than the
covariant and contravariant vector fields used usually by mathematicians and mechanists to derive the
shell equations (see, e.g., P. Ciarlet [3,4]). Moreover, the system of curvilinear coordinates introduced
below is linearly dependent but, surprisingly, many partial differential equations are written in this
system in a simple form, including Laplace-Beltramy and shell equations on a hypersurface (see [5].

From now on, if not stated otherwise, we stick to the following notation: the terms with repeated
indices are implicitly summed from 1 to 3 if indices are Greek (o, 3,7,...) and are summed from 1
to 4 if indices are Latin (4, k,l,...), as shown in the following examples:

3 3 4 4

— 2 . _ 2 I 2. 2

by = g @b, by = g b, «c;d; = E cjdj, ¢ = E 5
a=1 a=1 j=1

Jj=1

We consider a deformation of an isotropic layer domain Q" := C x (—h, h) of thickness 2h around
the mid-surface C which has the nonempty Lipschitz boundary dC. The deformation is governed by
the Lamé equation with the classical mixed boundary conditions, Dirichlet conditions on the lateral
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surface ' := AC x (—h, h) and Neumann conditions on the upper and lower surfaces I'* := C x {£h}:

LonU(z) =F(z), =€ Q":=Cx (=h,h),
Ut (t) = G(t), teTh :=aC x (—h,h), (1.1)
(T(x, V)U)F (1) = H(x,%h), (x,t) €T =C x {xh}.

Here U(z) = (Uy(z), Ua(x),Us(z)) " is the displacement vector, Lqn is the Lamé differential operator
and ¥(x, V) is the traction operator

LopU=—p AU~ (A+ ) VdivU,
[‘Z(X, V)U],g = /\ug&YUﬂ, + ,ul/,yagUfY + ,LLaVUg, 6=1,23.

The BVP (1.1) we consider in the following weak classical setting:
UeHY(Q"), FeH '(Q"), GeHY>Th), H(-,+h) e H/2(C). (1.3)

For definitions of Bessel potential spaces H?, Hs see, e.g., [8].
Let us consider the following subspace of H'(Q"):

Q" Th) = {V cH'(QM): V() =0 forall te r’i}‘ (1.4)

Theorem 1.1. The BVP (1.1) in the weak classical setting (1.3) has a unique solution.

Proof. The Lamé operator Lqn is strictly positive on the subspace ﬂl(ﬂh, INOR
(Lan V., V) = M|[V|* ¥V e H'(Q"T),
and the proof follows easily from the Lax-Milgram Lemma (a similar proof see, e.g., in [7]). O

To find what happens with the BVP (1.1),(1.3) as h — 0, we first reformulate this BVP into the
equivalent variational problem: Find the vector U which minimizes the energy functional Eqn (U) (see
(3.4)) under the same constraints (1.3). It is proved that if the weak limits

lim F(x, hr) = F(x), lim — [H(x, +h) - H(x, —h)] = HO(x), F,HY € Ly(C),
h—0 h—0 2h

exist in Ly(Q") and Lg(C), respectively, then there exists the I-limit of the energy functional
}llirrb Eqn(U) = E(U) (cf. (4.2)), and the equivalent BVP on the surface C, using Einstein’s con-
—

vention, is written as follows:

s Acﬁa + 'DQDQUB — 27‘lcl/3'DaU5 — 'D,y(l/oél/gp,yﬁg)}
A

A+ 2u

Uy(t)=0 on I'=0C,

— —1 1
+ D,DsUs — 2’HcV(XD,3Uﬁ} =5 Fat HY onc, «=123 (L5

In (1.5), v := (v1,v2,v3)" is the unit normal vector filed on C, Hc is the mean curvature of C,

D, = 0y — Va0, @ = 1,2,3, are Giinter’s tangential derivatives on C (see Section 2) and U :=
(Uy(x,0),Usz(x,0),Us(x,0)) T, x € C, is the trace of the displacement vector field

U(x,t) = (Ur(x, 1), Us(x, 1), Us(x,8) T, (x,8) € Q" :=C x (=h, D),

on the mid-surface C (see Theorem 4.3).
The BVP (1.5) represents a new 2D shell equation in terms of Giinter’s tangential derivatives on
the mid-surface C.
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2 Auxiliaries

We commence with the definition of a new system of coordinates: the system of 4-vectors
d/:=e ~ NN, j=1,2,3, and d*:= N, (2.1)

where e! = (1,0,0)T, > = (0,1,0)7, e* = (0,0,1) is the Cartesian basis in R?; the first 3 vectors

d!, d?, d? are projections of the Cartesian vectors and are tangential to the surface C, while the last

one d* = N is orthogonal to it and, thus, to d', d2, d3. The system is linearly dependent, but full,
and any vector field U = U,e® in €, can be written in the following form:

U =U,e*=U)d’ =U" =Uy +UJN, (2.2)
Uy:=U- W, UN, U):=(N,U)=N,U,,

and the vector Ug := (U, U, U)T is chosen to be tangential to the surface (A, Ug) = 0.
Since the proper extension depends only on the surface variable N (x,t) = N (x) (see [6]), the
same is true for the entire basis d’(x,t) = d’(x), j = 1,2, 3,4.
Note that
Ny=WN,N)=1.

Although the system {d’ }?:1 is linearly dependent, the following holds.
In [2, Lemma 1], it is proved that representation (2.2) is unique, that is,

if U°=0U)d’ =0, then U} =Uj =Uj =U; =0.

Moreover, the scalar product and, consequently, the distance between two vectors in the Cartesian
and new coordinate systems coincide:

<U0,V0> = U]O‘/JO = UCYVOt = <U7V>7 ||U0 - VOH = ||U - V”

for arbitrary vectors U = (Uy,Us,Us) T, V = (V1, Vo, V3) T € R3.
Gilinter’s derivatives
Do := 0np — Vo 0pp, a=1,23, (2.3)

represent tangential differential operators on the surface C (orthogonal projections of the coordinate
derivatives 01, 02, 03) and have the extensions

Da‘p = 804‘)0 - Naa/\ﬂp

in the neighbourhood of the surface C. The system D, Ds, Ds is, obviously, linearly dependent, but
full: any tangential linear differential operator on the surface A(D) is written in the following form:

A(D) = aa(x)0s4 = an(x)Dy, provided aq(z)va(x)=0, x €C.

In particular,
Oy = Uado = UjD;.

The adjoint operator to D;, j = 1,2,3, is
Dip = —Djp+2v;Hep, ¢ € C'(C),

where

He(x) = %Daya(x) = %Da/\/a(x), xec, (2.4)

is the mean curvature of the surface C.
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Definition 2.1. For a function ¢ € W!(Q"), we define the extended gradient

-
Var ¢ = {D1p, Dap, D3, Dap} , Dap := Inep, (2.5)
and, for a vector field U = U,e* = U]de € WHQ"), we define the extended divergence

divor U :=D;U; + 2Ho Uy = =V, U, (2.6)

where V¢, denotes the formally adjoint operator to the gradient Vn, Hc is the mean curvature (cf.
(2.4)) and
DyUy = OnUj = (N,0n'U) = (D, V)5,

Caution: While defining the extended divergence in (2.6), we have to use only the representation
U=U deJ' (cf. (2.2)), because any other representation differs from the indicated one by the vector
¢ N, where ¢(x) is an arbitrary function. Then the extended divergences will differ by the summand

divgn (c(x)N(x)) = One(x) + 2¢(x)He(x).

Lemma 2.2. The classical gradient Vo := {01, 020,030} ", written in the full system of vectors
{d?}i_; in (2.1), coincides with the extended gradient Vi = Vn @ in (2.5).

The classical divergence div U := 0,U, of a vector field U := U,e®, written in the full system
(2.1), coincides with the extended divergence div U = divgr U° in (2.6).

The gradient and the negative divergence are the adjoint operators, V¢, = — divgn with respect to
the scalar product induced from the ambient Euclidean space R™.

In the domain Qy,, the classical Laplace operator

Agrp(x) := (divgr Van @)(z) = _(V?zh (Vmap))(x), T e Qh7
written in the full system (2.1), acquires the following form:
Agre =Dip+2HcDap, © € WHQ).
Proof see in [2, Lemma 2].
The Lamé operator
LU = —p AU — (A4 p) VdivU = —[ubapd} + (A + 1)9adp],, ;U
== [Cavﬁw&/aw]gnga CayBw = Mary0sw + 1(0ap0yw + bawdpy)

is formally the self-adjoint differential operator of the second order and, written in the full system
(2.1), acquires the form

£QhUO i AQh,UO — (A + M) VQh diVQh UO.
To reformulate the BVP (1.1) in curvilinear coordinates we introduce the traction operator (cf.
(1.2))
(@, 0)U = (Tap(w, ) Up)e™ = ({Avads + sl + dupit 0,}Us )€, U = (U1, Up,Uy)T = Uye®
and Gunter’s derivatives (see [2, (25)])
T(x,D)=e*® eﬂ{)\yoﬁg + prg0a + dap it 3,,}
= \d* @ (d° + vpd*)(Ds + v5Dy)
+ u(d? + vod*) ® (d° + vsd")Dy + u(d? + vpd*) @ d*(Dg + v5D,)
MD4 0 0 /ﬂ)l
0 /ﬂ?4 0 /~LD2

0 0 pDy 1D
)\Dl )\DQ )\Dg ()\ + 2M)D4

Let us recall some results related to the uniqueness of solutions to an arbitrary elliptic equation.
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Definition 2.3. Let 2 be an open subset with the Lipschitz boundary 02 # @ either on a Lipschitz
hypersurface C C R”, or in the Euclidean space R" 1.

We say that a class of functions U(Q2), defined in a domain  in R", has the strong unique
continuation property if every u € U(Q2) in this class which vanishes to infinite order at one point
must vanish identically.

If a surface C is C'°°-smooth, any elliptic operator on C has the strong unique continuation property
due to Holmgren’s theorem. But we can have more.

Lemma 2.4. Let C be a C%-smooth hypersurface in R™. The class of solutions to a second order
elliptic equation A(x,D)u = 0 with the Lipschitz continuous top order coefficients on a surface C has
the strong unique continuation property.

In particular, if the solution u(x) = 0 vanishes in any open subset of C, it vanishes identically on
entire C.

Proof see in [1, Lemma 1.7.2].

Lemma 2.5. Let C be a C?-smooth hypersurface in R™ with the Lipschitz boundary T' := 0C and
v C I' be an open part of the boundary I'. Let A(x,D) be a second order elliptic system with the
Lipschitz continuous top order matriz coefficients on a surface C.
The Cauchy problem
A(x,D)u=0 on C, ueHY(Q),
u(s) =0 forall s €7,
(Ovu)(s) =0 for all s €,

where V is a non-tangential vector to T', but tangent to C, has only a trivial solution u(x) = 0 on
entire C.

Proof see in [1, Lemma 1.7.3].

3 Variational reformulation of the problem

To apply the method of I'-convergence, we have to reformulate the BVP (1.1) into an equivalent
variational problem for the energy functional. To this end, we have to consider the BVP with the
vanishing Dirichlet condition on the lateral surface:
LonUg(x) = Fo(z), € Q" :=C x (=h,h),
Uf(t)=0, t€Th :=09C x (—h,h),
(T(x,V)Uy) " (x,+h) = Ho(x,£h), x €C.

It is possible to rewrite the BVP (1.1) in the equivalent BVP (3.2). Indeed, consider the BVP

LoV (z) =0, 2€Q":=Cx (~h,h),
V*H(t) =G(t), teTh, (3.1)
(%, V)V)(x,+h) =0, (x,+h) €T =C x {h},

which has a unique solution V€ W' (") (see Theorem 1.1) and note that the difference Uy := U~V
of solutions to BVPs (1.1) and (3.1) is a solution to the BVP (3.2), where Fo(x) = F(x) — Lon V (&),
= Hy(x,+th) == H(x,+h) — (T((x,V)V)T(x,£h). Vice versa, a solution to the BVP (1.1) is
recovered as the sum of solutions U = Uy 4+ V of the BVPs (3.2) and (3.1).
Thus, in the BVP (1.1) we can assume, without restricting generality, that G = 0 and consider
the BVP
LonU(z) = F(x), =€ Q" :=C x (—h,h),
Ut(t)=0, teI :=aC x (~h,h), (3.2)
(T(x,V)U)"(x, £h) = H(x,+h), x €C.
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Theorem 3.1. Problem (3.2) with the constraints
U cHY(Q"TE), FeH '(Q"), H(.,+h) e H /?(C) (3.3)

is reformulated into the following equivalent variational problem: Under the same constraints (3.3),
look for a displacement vector-function U € HY(Q", T%), which is a stationary point of the following
functional:

1
Ean (U) = 5/ 105U - 95Ua + 103 Ua - 9,Up + 20, Us - 9, U, + 2F 5 - Up | do

Qh

/ (x,+h), U (x,+h)) — (H(x, —h), U (x, —h)>} do

C
1 h
5// 195U, - 95U + p93Us - 0, U + A0, U,, - 9, U, + 2F; - Ug
—h C
+% [(HL(, +R), U (x, +1)) = (H(x, =h), U* (x, ~h))]| | do dt, (3.4)

Proof see in [2, Theorem 2].

Remark 3.2. The integral on C in (3.4) is understood in the sense of duality between the spaces
HY2(C) and H~'/2(C) because H( -, +h) € H"'/2(Cy) and the condition U € H'(Q", T?) implies the
inclusion Ut (-, +h) € HY?(Cy).

Let us prove the following auxiliary lemma.

Lemma 3.3. Let > 0 and p+ A > 0. Then the quantity n(E) := 2u|E[> + A(Trace E)?
non-negative, n(E) = 0 for an arbitrary matriz E = [Eypglsxs.

Proof. We proceed as follows:

_2MZE§B+2:U’ZE M+>‘)ZEaQEBﬁ_ﬂZEaaEBB

a#p a,pB o8
2
=2u ) Ei5+ U"'/\)(ZE(XQ) +u[2ZEia -> EaaEﬁﬁ}
a#p a a a#p
= 2”2 Eag +(p+AN) (ZEM) +uZ(Eaa — Epp)? >0,
a#s a#pB
since >0, p+ A > 2“"’3)‘ > 0 (see (1.2)). O

4 Shell operator is non-negative

The main theorem of the present paper, Theorem 4.3, will be proved later. Here we recall the main
results about I-limit of the energy functional Eqn (U) in (3.4).

Next, we perform the scaling of the variable ¢ = hr, —1 < 7 < 1, in the modified kernel Q4(VU)
of the quadratic part of energy functional (3.4) and divide by h.

Lemma 4.1. The scaled and divided by h energy functional

£8,(T") = 1 0 (T") =  QYT") — FO(TY) (11)
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with the quadratic and linear parts

1

QYT = / / QU U (2, 7)) dor dr,

—-1C
h
T /h c/ (Fh. [<ﬁ<’“»+h>ﬁ°’+<x>+h>> — (B, =h), T (2, -h))] |

FO(x,7) := (F(x, hr), FQ(x, h7), F (2, hr), FO(x,h7)) |, F? = Ny Fa,
HY) (v, 7) == (HO(x, hr), HY(x, h7), HY(x, h7), H)(x,h7)) |, H) = NyH,,

is correctly defined on the space ]IT]Il(Ql,FlL) (see (1.4)) and is convex:
3, (0U" + (1 — 0)V") < %, (UM + (1 - )3, (V"), 0< 0 <1,

for arbitrary vector V"'(x,7) := (Vi(x, ht), Va(x, hr), V(x, h7), Va(x, h7)) T, VI € HY(QL,T}).
Moreover, if F(x,7) := F°(x, h7) are uniformly bounded in Lo(Q), i.e.,

sup [|F}[Lo(Q1)] < oo
h<hg

for some hg > 0, the energy functional has the following quadratic estimate: there exist positive
constants C1, Cy and Cs independent of the parameter h such that

o [ [@atpenn)? + (3 225N o - 0 < 0

. < 03{1 +/ |:(DO¢U]Q(X,hT))2 + (% Wﬂ da:}

Ql
for all UM € HY(Q!,T}).
Proof see in [2, Lemma 5].

Theorem 4.2. Let the weak limits

1
im — _ -l =" 1
}llu%F(X ht) = F(x), ilLlL% 5% [H(x,+h) —H(x,—h)] =HW(x), F,H" € Ly(C),

in La(Q") and Ly (C), respectively, exist. Then the T-limit of the energy functional EQ,L( Y emists:

T - lim 5zh (UM = &2(U /Q3 (U(x (4.2)
where
Q3(0) = g “D Tp + Dl —zuﬁyvpampaﬁw}
AT‘;M (DalUa)? + (F(x) +2HW (x),U(x)) (4.3)
and

T(x) = (U1(x),T2(x),Ts(x)) |, Talx) i=Ua(x,0), a=1,2,3.

Proof see in [2, Theorem 3].
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Theorem 4.3. Let F,HY ¢ Ly(C). The vector-function U € ﬁl(C) which minimizes the energy
functional EZ(U) in (4.2), (4.3) is a solution to the following boundary value problem:

(LeU)a = p [ACUQ +DsDTs — 2HevsDall 5 — DW@MDVUB)}
4\ = — 1 B
—— DD -2 WD = -F,+HWY a=1,2,3. (44
o [DaDsUs = 2HevaDpUs) = 5 Fa+ Hy on C,

Unt)=0 on T =0C,

Vice versa: on the solution U € H'(C) to the boundary value problem (4.4) under the condition
F,HW € 1L,(C), the energy functional E3(U) in (4.2), (4.3) attains the minimum.

Moreover, the operator L¢ in the left-hand side of the shell equation (4.4) is elliptic, positive definite
and has finite dimensional kernel consisting of the solutions to the following system of equations:

DalUp +DslUa — D [Vavy(DsU,) + vy (Dal,)] =0, o, =1,2,3. (4.5)
il

The boundary value problem (4.4) has a unique solution in the classical setting:
— S 1
U= (U17U27U3)T €H1(6)7 §F+H(1) E]LQ(C)

Proof. The first part of the theorem, that BVP (4.4) is the I'-limit of the BVP (3.2) (i.e., the solution
to the BVP (4.4) U € H!(C) minimizes the energy functional E2(U) in (4.2),(4.3)) is proved in [2,
Theorem 4].

Ellipticity of the operator L¢ in the left-hand side of the shell equation (4.4) is checked directly
and from the Lax—Milgram Lemma, it follows that it is the Fredholm operator in the setting L¢ :
H~(C) — H'(C) (see [7, Theorem 14]) for a similar proof). Therefore, L¢ has the finite dimensional
kernel.

Let us start with the energy functional and recall the quadratic part of the energy functional (see
(4.1) and formulae [2, (33)]):

h

W)= [ [@ivuim o (1)
—h C |

QY(F) = 2u|E|* + A(TraceE)?, E= - (F+F"),

l\D\»—t

where F = [F,5]3x3 and E = [E,glax3 are the 3 x 3 matrices and |E|? = Trace(E'E) = ) Eiﬁ
a,B
From Lemma 3.3 it follows that the kernel QY(F) is non-negative:
F)=2u> B2+ /H—/\(ZEM) + 1> (Baa — Egs)? 2 0. (4.7)
a#f a#B
Let us rewrite the kernel Q}(VU) of the quadratic part Q3(U) of the energy functional in (4.1),
(4.6), (4.7) by using the equalities

F =VU = [0aUplsx3, (DefU):= ((VU) + (VU)T) - [% (OaUs +85U°‘)}3x3

N =

and (2.3) as follows:

Qu(VU) =2 3 (Def U2 + (1 + ) (Za U, ) + 1> [0ala — 95U5)°

a#B a#p
—on Y [(Der)aﬂ + YaPala ; ”BD‘*UBT +(ut A)(ZDQUQ + D4U4)2
a#B [
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+ 1Y [DalUa — DsUs + vaDaly — v5D1Us)"

ey

D, D 2 2
—oy [(Der)aﬂ + YaPala ; i 4UB} +(u+ A)(ZDQUQ + D4U4)
a#B [
2

+ 1Y [Pala = DpUs + vaDalUs — v5DaUs)", (4.8)

a,f3

where
DaUﬁ + DﬁUa

2
Next, we perform the scaling of the variable t = h7, —1 < 7 < 1, in the modified kernel Q4(VU)

of the quadratic part of energy functional (4.8), divide by h and study the following kernel in the
scaled domain Q! =C x (1,1):

DefU)qp = , a,f=1,23.

QVer T (3, 7)) = 3 Qu(VU(, hr))
— % > l:'DaUg(X,hT) + DpUq (%, h7) +
aFp

Vo OUg(x, h7) L UL (x,h7)]?
h or h or

1 OUy(x, h7)\2
+(M+>\)<ZDQUO¢(2€,}ZT)+E%>
Vo OUq(x,h7) vz OUg(x, ht

_ Va v )
+u§[DaUa(A’,hr) DgUs(x, hr) + - o - o ., (4.9)

where
T

U (x,7) := (UL (x, h7), U (x, h7), U (2, h7), UL (2, h7)) , UL = NoU,.

For this, let us rewrite QY in (4.9) in the form

QY (Vo UM, 7)) = g > {DaUﬂ(x, h7) + DsUq (%, h7) + No&p +N5§ar

a#B
2 2
(N (D Palia(w,hr) + &) + 1Y [Dallalt, hr) = DaUp(, hr) + Naka — N
« a,B
2
= B Z [DQUB(X, hT) + 'DBUQ(X, hT) +Na€ﬁ “V‘Nﬁga}
2 a#pB
2
+ (4 N (DivU(x, hr) + &) + 1y [DQUQ(X, ht) — DUs (2, h7) + Naba — Nﬁgﬁ] . (4.10)
a,p
where the variables
ga = ga(XJ”-) = % Wa a = 17273a §4 :/\/'(xgoz

depend on h and we find minimum of the kernel Q$(Vqn ﬁ(x, 7)) with respect to the variables &1, &2, &3.
It was shown in [2] that by Q(Vo.U"(x, 7)) the I-limit is attained on the following values of the
variables:

€y = Div U, (4.11)

A
DsUs :_A—i—Q,u
A

fa = 7N’y(,Do¢U’y) - mNQD’L’U U, o = 1,273, (412)

_/\—|—2,u
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where we remind that Div U = D,U,. From (4.11), (4.12) and (4.10) we find the I-limit Q3(U) (the
same as in [2], but written in a different form):

Q3(0) = min (Ve TU")

£1,62,83
U 7 77 = 2A
=3 Z [DaUﬁ +DplUqo — Z [Vavy(DsU) + vgvy (DU )] — N o vavgDiv U}
a#p o
_ N2
Div U — Di )
+(M+/\)( w U )\+2N v U
+ ’UJZ [Daﬁa - Dﬁﬁﬁ - Z [VQVV(DO(UV) — V@V,Y(IDBﬁ,Y)]
o, ~
- v2Div U + LzﬂDivﬁr
At2p A42p "
1Y = —_— — . 2)\ - 2
) Z [DaUﬁ + Dl = Z [Vav (DpU) + v51a Doy — A+ 2u vavgDiv U]

+ W [Div TP + u az [DuT — DsTs - ; o (PaT) = vy (DT)]] - (413)

From (4.13) it follows that Q3(U) is a nonnegative quadratic form Q3(U) > 0 for all U € H!(C,T),
I':=0cC. O

5 Shell operator is positive definite

If Q3(U) = 0, from (4.13) we get

DivU =0,
DolUo —DpUp — Y [Vary(Dals,) — vry (DsU,)] =0, a#B=1,2,3
g (5.1)
DoUp + DslUa — > [Vary(DsUs) + vy (Dal,)] =0, a#B=1,2,3

By taking the sum with respect to § in the second equality in (5.1), we get

= ZVOLV’Y(DQU’Y)7 o = 1,2,3.

Note that the obtained equality implies both, the first and the second equalities from (5.1). Moreover,

it coincides with the third equality in (5.1) if we allow there @« = 8 = 1,2,3. Thus, equation (4.5)

implies all three equalities in (5.1) and describes the kernel Ker L¢ of the shell equation L¢ in (4.4).
Now we rewrite the obtained equation in the following form:

DU, ZVO‘VV D, U,) =v,D (ZV,Y ) — Zua(’l)o(yy)ﬁ7
Y
= 1o(DoUy) — ZVQ(DQVW)UV, Uy = Zuﬁv, a=1,2,3. (5.2)
Y Y

Similarly to (5.2), from equality (4.5) (see the third equality in (5.1) we derive

’DQUB + 'Dgﬁa = VJDQU;; + IJB'DQU4 — Z [Va('DgI/W) + Vg('Dal/W)] UW a,f=1,2,3. (5.3)
vy

Besides the equalities (4.5), (5.2), (5.3) we have the following equality
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3 [[Doﬁﬁ +Da0.)7 — 2 ugl/A,DaUBDaUV}
o, Y

= [[pam n DBUQ]Q} — 23 (DuT0)? =2 Y (Davs)(Davy) T 5T,
a,f « a,Byy

+2) (Davp)(DalUa)Us =2 (Davy)(DalUa)U, =0, (5.4)

o, o,y

which follows from (4.3) if we apply the first equality from (5.1) and recall that Q3(U) = 0.
If Uy(s) =0, a = 1,2,3, equalities (5.2)—(5.4) simplify:
Do (5)Ua(5) = va(5)DalUa(s),
DoUps(s) + DpUn(s) = va(5)DUs(s) + v5(5)DalUs(s), a,B=1,2,3,
[P.T

(5.5)
4(s) + Dﬁﬁa(s)ﬂ =23 (DTa(s)), s € C.

a,p

We can see that not only the first equality in (5.5) is the consequence of the second one (by taking
a = B), but also the third equality follows from the second one if we take into account that > v2 = 1

and > v4D, = 0.

e

By inserting the first equality from (5.5) into the second one we get

Dolp(s) + DyUals) = - ;8 DsTps(s) + Zzg DoTals), a,8=1,2,3,
If we succeed in proving that
D Us(s) =0, s€C, a=1,23, (5.6)
then from (5.5) and (5.6) will follow
D, Us(s) + DgUqs(s) =0, s€0C, o,f=1,2,3. (5.7)
The latter implies that
D,Up(s) =0 Va,=1,2,3, Vs € 0C. (5.8)

Indeed (cf. [1, Lemma 1.7.4]), among directing tangential vector fields {d*(s)}3_, generating Giin-

ter’s derivatives Dy = dgr, k = 1,2,3, only 2 are linearly independent (one of these vectors might even
collapse at a point d*(s) = 0 if the corresponding basis vector e* is orthogonal to the surface at s € C).
One of these vectors might be tangential to the boundary curve 9C and, at least one, say d3(s), is non-
tangential to OC. The vector d® for o = 1,2, 3, is a linear combination d(s) = ¢ (s)d3(s) +c2(s)7%(s)
of the non-tangential vector d3(s) and of the projection 7%(s) := mocd®(s) of the vector d*(s) to the
boundary curve OC at the point s € dC. Then

(DaUs)(s) = c1(5)(0asUs)(s) + c2(5) (97 Us)(s) = c1(s)(D3Us)(s) (5.9)

for all s € v and all @ = 1,2, 3, since (DgsUs)(s) = (D3Us)(s)Us, Us vanishes identically on 9C and
the derivative (0,;UY)(s) = 0 vanishes, as well.

On the other hand, from (5.7) for 8 = a = 3 follows 2D3Us(s) = 0 and, together with (5.9), gives
(Do Us)(s) =0 for all s € v, § = 1,2,3. Then, due to (5.7), (D3U,)(s) = (DaUs)(s) = 0 and, due to
(5.7), (DaUy)(s) =0 for all s € v, a« = 1,2,3. Applying again the above arguments, exposed for Us,
we prove equalities (5.8).
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6 Numerical approximation of the shell equation

Consider the boundary value problem (4.4)

(Lcﬁ)a = M[Acﬁa + Dﬂ'DaUﬂ — 2chﬁDaﬁﬂ — D,Y(VQVBD—YUB)]
NN

A+ 2u
Uy(t)=0 on T'=0C, a=1,2,3,

_ — 1
['Da’DBUg — Q'HCua'DgUg] = 5 Ga on C7

where Gy = Fy + 2HS € [Ly(C)], a = 1,2,3.
In [2, Theorem 4], it is proved that if U € [H!(C)]? is a solution of BVP (4.4) and V € [H!(C)]?,
then

o I . A\ .
/ {2p [PsUaDsVa + PalsDsVa — vavsDyUpDy Ve + ﬁ DﬁUﬁpava} do
C

= /(éa,7a> do. (6.1)

C

Therefore, the BVP (4.4) can be reformulated in the following way.
Find a vector U € [H'(C)]? satisfying equation (6.1) for any V € [H'(C)]3:

(Capyc(@)DpUa, DeVy) = (Ga, Va) ¥V € [H(C)]?, (6.2)

where
4\
2 s

= A+ 2‘u ap + 21”’(50“/55C + 6(14“(5@\/ - VQV’Y(SBC)

Capye ()

and (-, -) denotes an inner product

(f,9) = /<f, g) do.

c

Due to (4.13), the sesquilinear form
a(U,V) = (capy¢DpUa, DcV5)
is bounded and coercive in H(C),
2 2
M||U |HYC)|” = a(U,U) = M||U |H'(C)||” VU € [Hy(C))?

for some M > 0, M; > 0. Therefore, by the Lax—Milgram Theorem problem (6.2) possesses a unique
solution.
Now, let us consider the discrete counterpart of the problem.
Let X}, be a family of finite-dimensional subspaces approximating [H*(C)]?, i.e., such that UXh
h
is dense in [H*(C)]3.
Consider equation (6.2) in the finite-dimensional space X},

a(Uh, Vh) = §(Vh) YV e Xh, (6.3)
where g(V3,) = —(G, Vi)c.

Theorem 6.1. Equation (6.3) has the unique solution Uy, € X}, for all h > 0. This solution converges
in [H(C)]? to the solution U of (6.2) as h — 0.
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Proof. Immediately follows from the coercivity of sesquilinear form a:

c1 ||Un | [JHP(C)PH2 < a(Uy, Up) = |[F(U)| < e2||Un | [HY(C)]?|| for all h. (6.4)

Let Uy be the unique solution of the homogeneous equation
a(Uh,wh) =0 for all 1ﬁh € Xy,

Then (6.4) implies |Uy, | [H!(C)]?|| = 0 and, consequently, U, = 0. Therefore, equation (6.3) has a
unique solution. From (6.4) it also follows that

o | @) < 2 0w | [ @]

Hence, the sequence {||Uy | [H*(C)]?||} is bounded and we can extract a subsequence {Up, } which

converges weakly to some U € H!(C).
Let us take an arbitrary V € [H!(C)]® and for each h > 0 choose Vj, € X}, such that V,, — V in

[H'(C)]3. Then from (6.3) we have
a(U, V) =g(V) YV € [H(C)]>.

Hence, U solves (6.2). Note that since (6.2) is uniquely solvable, each subsequence {Uj, } converges
weakly to the same solution U and, consequently, the whole sequence {U,} also converges weakly
to U.
Now, let us prove that it converges in the space [H*(C)]3.
Indeed, due to (6.4), we have

cail|lUn = U||? < |a(Uy — U, U, = U)| < |a(Un, U, —U) — a(U, U, — U)]
= c1|g(Un) — a(Up,U) = g(Un = U)| — 1|g(U) — a(U,U)| = 0,

which completes the proof. O
We can choose spaces X}, in different ways.
In particular, consider a case where w = U, in the above parametrization is a square part of R2:

w={(z1,22): 0< 21 <1, 0<m <1}, ((w)=C.

Allocate N? nodes P;; = (i/(N +1), j/(N+1)),4,7=1,...,N, on w.

Let ag, k=1,..., N, be piecewise linear functions defined on the segment [0, 1] as follows:
k—1
) k-1 Okg :Ulg Nt
(N+1)( - erl)’ N:—l <TS NI
0, Zlifj—ll <z <1,
j=k,...,N.

Denote by 5, 4,5 = 1,..., N, the functions

pij(x1, v2) = ai(z1)ay(z2), i, =1,...N,

(1, T2) € w.

Evidently, ¢;; are continuous functions, which take their maximal value goij(Pij) = 1 at the point P;;

and vanish outside the set

wij:wﬂ{(xl,xg): 0< ‘xl_N—i-l

| <L0<em- iy

<1},

+11~
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Consequently, they belong to H'(w) and are linearly independent.

Denote by Xn the linear span of the functions @;; = ¢;; 09, 4,5 = 1,..
N? dimensional space contained in H*(C).

Let % = (61k, 02k, 03k)Pij € [XN]?, k=1,2,3,i,5=1,...,N.

Consider equation (6.3) in the space [Xy]°

.,N. The space Xy is

a(U, V) =g(V) VV € [Xy]*. (6.5)
We sought for the solution U € [Xy]? of equation (6.5) in the form

3 N
U=3 > oA
m=11,j=

>(m)

1) )

where Clgj are unknown coefficients. Substituting U into (6.5) and replacing V' successively by @

m=1,2,34,j=1,...,N, we get the equivalent system of 3N? linear algebraic equations
Z Z AmCi =gl n=1,2,3, kl=1,...,N, (6.6)
m=14,5=1
where (m.n) _ m) ~(n) (n) _ (n)
Az]kl = a(%] > Pt )» I = 9(501@1 )

The matrix A = AEmkrlL)) is Gram’s matrix defined by the positive semidefinite bilinear form a attached

to basis vectors <pgj ), =1,2,3,4,5=1,..., N, of [Xy]3. Therefore, it is a nonsingular matrix and
equation (6.6) has a unique solution

- ~(m) (n)
)
E , zﬁzn 1;n Ikt -
1,5,k 1=

To calculate explicitly Az("zl ") and g,(;;) we note that
.5 (y) = %@ﬂu+wmﬁk>

= Z Oppij (I(y)) (arﬂp(y) + Vrl/lalﬁp(y)) (0m1,0m2; 0m3)
=1

= Z Bpij (9(Y))Drp(y) (G, Smas Sm3),s

A(mn)—a( B G

ijkl @” y PRl ) = (qustérmfstnpq(ﬂijvDs@kl)
Z / Cqmsn (1)) (Batij (9(1))) (O r1(9(y))) Dg¥a(y) Dss(y)l o’ ()] dy,
o.B 1Wz]mwkl
(n) _ )y 9 (n) 9 / d
Ir = —(9: Py e = 9(0()) e (OW))lo" (y)| dy,

wijNwgi

where |o/(y)] is a surface element of C

0’ (y)| = 1019(y) x D29(y)|.
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