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Abstract. In [58], we have revised an asymptotic model of a shell (Koiter, Sanchez—Palencia, Cia-
rlet, etc.), based on the the calculus of tangent Giinter’s derivatives, developed in the papers of
R. Duduchava, D. Mitrea and M. Mitrea [55,58,64]. As a result, the 2-dimensional shell equation
on a mid-surface .¥ was written in terms of Giinter’s derivatives, unit normal vector field and the
lamé constants. The principal part of the obtained equation coincides with the Lamé equation on the
Hypersurface . investigated in [55,58,64].

The present investigation is inspired by the paper of G. Friesecke, R.D. James and S. Miiller [77],
where a hierarchy of Plate Models are derived from nonlinear elasticity by I'-Convergence. The final
goal of the present investigation is to derive and investigate 2D shell equations in terms of Giinter’s
derivatives by I'-Convergence.

As a first step to the final goal, by T. Buchukuri, R. Duduchava and G. Tephnadze was studied
a mixed boundary value problem for the stationary heat transfer equation in a thin layer around
a surface ¢ with the boundary (see [16]). It was established what happens to the solution of the
boundary value problem when the thickness of the layer converges to zero. In particular, there was
shown that the I-limit of a mixed type Dirichlet—Neumann boundary value problem (BVP) for the
Laplace equation in the initial thin layer is a Dirichlet BVP for the Laplace—Beltrami equation on
the surface. The result was derived based on the variational reformulation of the problem using the
Gilinter’s tangent differential operators on a hypersurface and layers. The similar results were obtained
for the Lamé operator. This approach allows global representation of basic differential operators and of
corresponding boundary value problems in terms of the standard cartesian coordinates of the ambient
Euclidean space R™.
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Introduction

Modern interest in shell theories arising from the theory of thin films caused by the widespread use
of thin films in science and technology. Thin structures are encountered in engineering applications
more and more often, and there emerged numerous approaches proposed for modeling linearly elastic
flexural shells. Started by the Cosserats pioneering work (1909), Goldenveiser (1961), Naghdi (1963),
Vekua (1965), Novozhilov (1970), Koiter (1970) and many others have introduced and developed
various models of shells. The aforementioned works contributed essentially the development of the
shell theory. Ellipticity of the corresponding partial differential equations was not established initially
and was proved later by Roug’e (1969) for cylindrical shells, by Coutris (1973) for the shell model
proposed by Naghdi, by Gordeziani (1974) for the shell model proposed by Vekua, by Shoikhet (1974)
for the shell model proposed by Novozhilov, by Ciarlet and Miara (1992) for the model proposed by
Koiter (cf. [22-26,28,29,36] for survey and further references).

Inspired by the books and papers of Sanchez—Palencia [121,122], Miara and Sanchez-Palencia
[111], Ciarlet and Lods [26-28], Ciarlet, Lods and Miara [29] and exposed in details by Ciarlet in
[23,26,28,29]. in [58] we have developed the asymptotic analysis of a linearly elastic shell based on
the formal calculus of tangent Giinter’s derivatives, developed in the papers of R. Duduchava with
D. Mitrea and M. Mitrea [55,58,64]. The asymptotic analysis of a linearly elastic shell based on the
formal calculus of tangent Guinter’s derivatives, was developed in the papers of R. Duduchava with D.
Mitrea and M. Mitrea [55,58,64]. As a result, the 2-dimensional shell equation on a middle surface .
is derived written in terms of Gunter’s derivatives, unit normal vector field and the lamé constants.
It coincides with the Lamé equation on the Hypersurface . investigated in [55,58,64].

The present investigation is inspired by the paper of G. Friesecke, R. D. James and S. Miiller [77],
where a hierarchy of Plate Models are derived from nonlinear elasticity by I'-Convergence. The final
goal of the investigation is to derive 2D shell equations written in terms of Giinter’s derivatives by
I’-Convergence.

Let us consider an example: a surface . be given by a local immersion

O:w—. wcCR" (0.0.1)

which means that the derivatives {g; := 8k@}Z;11 are linearly independent, i.e., the Jacobi matrix
VO has the maximal rank n — 1. Thus {g,}7_, is a basis (or a covariant frame if the basis is
enriched with 0) in the space w(.#) of all tangent vector fields on .#. The system {g*}}'~] which is
biorthogonal, (g, g") = 6, forms the contravariant basis (the contravariant frame) in the same
space w(.#) of all tangent vector fields on .. Let v(2) = (v1(2),...,v;(2))" be the outer unit
normal vector (the Gaufl mapping) to .7 at 2= € .7 (see Section 1.6 for details). The Gram matrix
Go(2) = [9k(2))n—1xn-1, 9jk = (9;,9k), is then positive definite, responsible for the Riemann
metric on ¥ and is called the covariant metric tensor. Moreover, it has the inverse matrix
G (2) = [¢""(2)]n—1xn-1, ¢°F := (g7, g") (cf. (1.3.1), (0.0.2)), which is called the contravariant
metric tensor.
The Gram determinant

G((010(x),...,00_10)(z)) = det Gp(), 7€ w C R, (0.0.2)

is responsible for the volume element do of the surface, which is the vector product of the tangent
vectors

do :=|1O N N0p_10| =+/det G dr, dr=dry - -dr,_1. (0.0.3)
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The surface divergence and the surface gradient are defined in the intrinsic coordinates by the
equalities

n n—1
divy U= [detGy] * Y 0,{[det G207}, Vo f= Y (67°0;1)0k (0.0.4)
Jj=1 j,k=1

(see Section 1.1 and [130, Chapter 2, § 3]). Their composition is the Laplace—Beltrami operator

n—1
Ay fi=divy Vaf=[det Gy Y 0;{g’"[det G+]'0x f}, f e C*S), (0.0.5)
jk=1
which is self-adjoint
A}p = (Vy divy)* = (ley)*(Vy)* = Vy diVy = Ayf. (0.0.6)

The intrinsic parameters enable generalization to arbitrary manifolds, not necessarily immersed in the
Euclidean space R™.

We introduce a different curvilinear system of coordinates. It differs from the covariant and
contravariant metric tensors described above and used intensively by P. Ciarlet in [22,23] for the
derivation of shell equations. Moreover, the system of curvilinear coordinates introduced below is
linearly dependent but, surprisingly, many partial differential equations are expressed in this system
in a simple form (see [64]) including Laplace-Beltramy and shell equations on a hypersurface (see
below).

Our idea is to record these operators in Cartesian coordinates. To set the conditions for precise
formulations, let us consider the natural basis

el :=(1,0,...,0)7,...,e":=(0,...,0,1) " (0.0.7)
in the BEuclidean space R"™ ({e/}7_, is also called the Cartesian basis. Each point = (x1,...,2,)"
n .
in the Euclidean space R™ is represented in the Cartesian basis x = ) x;e’ in a unique way.

Jj=1
The operator (the matrix)

Ty R 5 w(S), 7mo(t)=1—-vt)w' (t) = [0 —v;(t)vt)] te s, (0.0.8)

nxn’

represents the canonical orthogonal projection 7%, = . onto the space of tangent vector fields to .
at the point ¢t € .7

(v, mov) = Zujvj - nyz/kvk =0 forall v=(vy,...,v,)" €R"
J J.k

It turns out that the surface gradient is nothing but the collection of the weakly tangent Giinter’s
derivatives (cf. [54,86,101])

Vo =9 :=(D1,.... %), D;:=0; —v;(2)d, =04, (0.0.9)
where J,, := ) v;0; denotes the normal derivative. The first-order differential operators
j=1
Dj =044, 1<j<n, (0.0.10)
are the directional derivatives along the vector fields d7 := me’, j=1,...,n.

Moreover, the surface divergence coincides with the operator

divy U =Y ;U for U= UJ0; € w() (0.0.11)

j=1 j=1
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and the Laplace-Beltrami operator coincides with (see also [109, pp. 2ff and p. 8])

Ay p:i= diVyVycp:Z.@jzgo, € C%(.7). (0.0.12)

J=1

Relatively simple form of recorded operators enables simplified treatment of corresponding bound-
ary value problems, which require proofs of Korn’s inequalities or similar.

Calculus of Gunter’s derivatives on a hypersurface, which is the main tool, together with the
I'-convergence, in the our investigation, allows representation of the most basic partial differential
operators (PDQ’s), as well as their associated boundary value problems, on a hypersurface € in
global form, in terms of the standard spatial coordinates in R™. Such BVPs arise in a variety of
situations and have many practical applications. See, for example, [87, §72] for the heat conduction
by surfaces, [7, §10] for the equations of surface flow, [22], [5] for the vacuum Einstein equations
describing gravitational fields, [131] for the Navier-Stokes equations on spherical domains, as well as
the references therein.

The Laplace—Beltrami operator (0.0.12) is the natural operator associated with the Euler-Lagrange
equations for a variational integral

lu] = —%/||@u||2d5. (0.0.13)
S

A similar approach, based on the principle that, at equilibrium, the displacement minimizes the
potential energy (Koiter’s model), leads to the following form of the Lamé operator . on . (cf. [64])
LU = pung divy VoU + A+ p) Ve dive U + e ¥ U (0.0.14)

(cf. (0.0.8) for the projection 7). Here U is an arbitrary (tangent) vector fields on ., A\, u € R are
the Lamé moduli, whereas

f%”yo,:—divcyl/:z —Z@jllj =Tr Wy, Wo= _[gjyk}

m (0.0.15)
j=1
Note that 5% = (n — 1)_1%”52 and # o represent, respectively, the mean curvature and the
Weingarten mapping of .. This identification ensures that the boundary-value problem
ZyU =0 in .%
7 S (0.0.16)
U’F:fG]HIS(&?), frv=f-vr=0 on I':=0Y,

where U = Y Ufd7 € w(.#) N H*+1/2(9.7) is the generalized displacement vector field, tangent to
j=1
the elastic hypersurface ., is well-posed, whenever 1 > 0, 2u+ X > 0, and 0 < s < 1. Here H® stands
for the usual L2-based Sobolev space, v is the normal vector to . and vr(t) is the unit tangent vector

to & at the boundary point ¢ € I' := 0. and outer normal vector to the boundary I' = 0.7.



Chapter 1

Auxiliary

In the present chapter, we have collected, for the readers convenience, some auxiliary information,
mostly from [21-23,25,64,77,129].

1.1 Auxiliary from the operator theory

The results exposed in the present section will be applied to complex-valued matrices, which are
identified with operators in the finite-dimensional space C™ of complex values n-vectors. Nevertheless,
we will formulate results in general setting of operators in a Hilbert space.
Throughout this section we assume that § is a Hilbert space with respect to some continuous
scalar product, a bilinear form (-, -): 9 x H — C, i.e.,
Au+ pw,v) = Xu,v) + m@(w,v),  (u, v+ pz) = Au,v) + p(u, 2),
‘(u,v)| < Clullgllvllg, Yu,w e $H, Vv, z €N,
(0, 0) = (¥,9), Vo, €.
Denote by Z($, $) or Z($)) the space of linear operators A : §§ — . Recall that the dual operator

(A%p, ) = (¢, A) maps continuously the same space A* : § — ) and A € Z(9) is self-adjoint
operator if

(Ap, ) = (9, AY), Vo, 0 € 9. (1.1.1)
A € . Z(9,9) is positive definite (or coercive) if the inequality
(Ap,p) = Clle | | (1.1.2)
holds for some constant C' > 0 and all ¢ € .
Lemma 1.1.1. Let A € Z(9). The inequality
42 15[l > Clle | 9] (1.1.3)

with some constant C > 0 holds if and only if the operator A is normally solvable (i.e., has the closed
image ImA = ImA) and injective, Ker A = {0}.

Proof. If inequality (1.1.3) holds, then Ap = 0, ¢ € ), implies ¢ = 0 and Ker A = {0}. Now let
1 = Agpj; — 1o (convergence in the norm). The inequality (1.1.3) implies the convergence ¢; — ¢q.
Due to continuity of A this implies Apg = 1y € ImA and the image ImA is closed.

Vice versa, let A be normally solvable and Ker A = {0}. Then ImA is a Hilbert space, subspace
of ) and the operator A : $ — ImA is bijective. Due to the Banach Inverse mapping theorem, A
is invertible: there exists B € Z(ImA) such that ABz = x and BAy = y for all z € ImA and all
y € $. Inserting in [|By[$| < C|[¢[ImA|| := ||1|H]| the equality ¢ = Ap, ¢ € H, we get (1.1.3). O
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Definition 1.1.1. For an operator A € Z($)) the closed set

2(A) = {(Ap,¢) - v €H}, (1.1.4)
where the overbar denotes closing of the set, is called the spectral set of A.

Lemma 1.1.2. If the spectral set ©(A) of an operator A € £ (9) is real-valued ¥(A) C R, then A
is self-adjoint.

Proof. We proceed as follows:
(Ag, ) = 1 {(Alp+ 9]0+ 9) —(Alp — vl — ¥)+i(Alp + i), o + i) ~i( Alp — 0], @ — iv) }
= @ e T D -l — o D) +i(Alp + Wlo + W)~ i(Alp — Wl — )}

= i {(w + b, Al +]) — (¢ — 1, Al — ) +i(p + i), Al + i)]) —i(p — i), Alp — m])}
= (0, AY), ¥ €9,

since (Au,u) = (Au,u) by the condition ¥(A) C R and (Au,u) = (u, Au) by the definition. O
Corollary 1.1.1. If an operator A € £($) is positive definite, it is self-adjoint and invertible.
Proof. If A is positive definite, its spectral set is real-valued and A is self-adjoint.
From (1.1.2) we get
2
[A¢ [ 9]¢ ] 9] = (Ap,») = Clle | 9|

and, further,

A [ ]l =Clle 9], ¢ e (1.1.5)

Due to Lemma 1.1.1, inequality (1.1.2) implies that A is normally solvable and has a trivial kernel
Ker A = {0}. Being self-adjoint A* = A, the operator has the trivial cokernel dim Coker A =
dimKer A = 0 (due to (1.1.2), Ap = 0 implies that ¢ = 0). Therefore, A is invertible. O

Let SO($) denote the set of orthogonal (unitary) operators: R € SO($) if and only if R* =
R 1. Note that SO($) is a group and the set R(SO($))) coincides with SO($)) for arbitrary R € SO($).

Let A € Z($) and A = RH4 be its left polar decomposition, where R € SO($)) is orthogonal
and H 4 is positive, self-adjoint (Hermitian) operator

(Hap, ) > Colloll?, Co>0, Hy =Ha, Vo€

Let us check that Ha = VA A. Indeed, if A = RHa, then A* = H4R* = HqR ! and VA*A =
\/HAR_lRHA = \/H2 = HA.

Similarly, for the right polar decomposition A = H, R’ we get H, = VA A™.

Note that if A is positive definite (or, at least, has a real-valued spectral set), then A is self-adjoint
A" = A and the polar decomposition is trivial Hy = H, =vVAA=A R=R'=1

The next Lemma 1.1.3 generalizes essentially the statement formulated in [77], §2.

Lemma 1.1.3. For A € Z(9) and R € SO(H) the norm has the following property:
IRAR| = |RA| = |AR| = [|A]]. (1.1.6)
Moreover, if A = RH a is the left polar decomposition of A € £($), then

dist (A, SO(H)) = dist (Ha,SO($)), (1.1.7a)
dist (A,SO(9)) = |[Ha — I|| if A is positive definite, (1.1.7b)
dist (A,SO(9)) < |[Ha —I|| otherwise. (1.1.7¢)
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Proof. To prove (1.1.6) we proceed as follows:

RA| = inf /(RA)RA®, 0) = inf +/(A*R*RAw, ) = inf \/(A* Ap, ) = ||A].
IRA|| ;gﬁ\/(( J'RAp, ) = inf y/( #:0) = inf /(A" A, 0) = | A]

By using the obtained equality and recalling that ||A|| = ||A*|| and R € SO($) implies R* € SO($),
we prove the following

|[AR[ = [[(AR)*|| = [R"A™[| = [[A].
Equalities (1.1.6) are proved and, due to them,

dist (A4,50(9)) = inf [RHA-V|= _inf [R*(RHs-V)|
= i IHa — R*V|| = dist (HA,S@(.Q)) < [[Ha = I,
VvV eso($H)

since I, R*V € SO(H) and the set {R*V : V € SO($)} coincides with the orthogonal group SO($)).
Equality (1.1.7a) and inequality (1.1.7c) are proved.
To prove equality (1.1.7b) we can assume A is non-negative, i.e., also self adjoint (see Lemma
1.1.2). Then, due to (1.1.7a), we can take A = H4. Then the spectral set of A is non-negative

0<m(A):= inf (Az,x).

llzll=1
It follows from the spectral theorem that

m(A) = Hlﬁlfl | Az]|. (1.1.8)

Moreover, it is well known that for every self-adjoint operator A the spectral radius coincides with
the norm:
|Al = sup [(Az,z)].

llzll=1

It is easy to see that

|A—I|| = sup [((A—I)z,z)|= sup [(Az,z)—1]

[lz||=1 |lz||=1
= max{ sup (Az,z) —1,1— inf (Ax x)}
l|lz||=1 ll]|=
=max{||A|| -1, 1 —m(A)}. (1.1.9)

For any R € SO($)), one has
A - R = hnd (A = R)z|| > Sup, (I(Az]| — [[Rx]]) = hnd (Az] - 1) = [|A]l - 1,

l4-Rj= suwp [[(A=Rjzl| > sup ([Rz—[Az])

‘ﬁ = x|l=
= S (1-[lAzll) =1 - inf f[Az]=1-m(A)
z||=1
(see (1.1.8)) and, therefore (cf. (1.1.9)),
[A =R > max {[|A[| = 1,1 —m(A)} = [[A - I]|. (1.1.10)
Now it follows from (1.1.10) that

dist (4,50(9) = inf [A-R|>[A-1|

and, together with (1.1.7¢) proved above, this proves (1.1.7b). O
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Let $ be a Hilbert space and consider a linear Variational problem

a(p,¥) = L(¥) VY €H, (1.1.11)
where ¢ € § is unknown and
a()) - HxH-R, L) :H—R (1.1.12)
are, respectively, a continuous bilinear form and a continuous linear form (a functional) on $.

Definition 1.1.2. We say Variational problem (1.1.11) is well-posed if, and only if, for all ¢ € §,
it has one and only one solution ¢ € $*, with continuous dependence ||¢|H*|| < M||4|$|| for some
constant M > 0.

Next, we expose the simple but very powerful Lax-Milgram Lemma with the elegant proof of these
authors (see [102]).

Lemma 1.1.4 (Lax-Milgram). Let the continuous bilinear form a(-,-) : $H x H — R in (1.1.11) be
coercive (cf. (1.1.2)).
Then Variational problem (1.1.11), is well posed: has a unique solution ¢ € B for all ¢ € B.
This unique solution of Variational problem (1.1.11) also is the unique solution to the following
Minimization problem: find ¢ € §) such that

min | Sab,9) — L(9) | = 3a(e¢) — L(e), (1.1.13)

i.e., which minimizes the functional

1
F(¥):= 5a(,¢) = L(¥). (1.1.14)
Proof. From coerciveness (1.1.2) and the continuity of the bilinear form in (1.1.11) follows

Clielsl* < alp, ¢) < Mllp]H]*;

hence the equality
o lle|9llo = lale, )], ¢ €9, (1.1.15)

defines an equivalent norm on $). Moreover, a(p, 1) defines an alternative scalar product on a Hilbert
space §). According the Riesz representation theorem for a given i € ) there exists one and only one
element ¢ € $ such that (1.1.11) holds. Thus, we have found the unique solution to linear equation
(1.1.11) with a prescribed ¢ € $.

Returning to the Minimization problem: a direct verification shows that

Flp+4) = Fg) + [alp, 1) — L)) + 3a(v, ). (1.1.16)

The obtained equality can be interpreted as the Taylor expansion of the functional F'(¢ + 1) (note
that F'(1)¢ = [alp, ) — L(¥)] and F"()(p,¢) = La(,1)). Then
a(p,) ~ L(¥) =0 for all ¢ €5
implies
Flo+¢) - F(p) = <ww *I\lﬂ\ﬁl\z Vi € 9

and, thus, ¢ € 9 is the minimizer of the functlonal F under the asserted condition a(p, ) — L(y)) = 0.
Conversely: Let ¢ € § be the minimizer of F' and ¢ € §) be arbitrary. The inequality (cf. (1.1.16))

0 < F(o+0¢) — F(e) = 0{a(p, ) — }+ a(p,) VOER

implies that a(yp,v) = L(1), since the first summand in the right-hand side of the equality dominates
for small 6 and the second is non-negative. Indeed, if a(p, ) # L(1) the difference F(p+60v¢) — F(p)
would become negative for certain small €, which is a contradiction. O
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In conclusion of the present section, we expose definitions an propositions about Fredholm oper-
ators. We drop the proofs since the results are well known and exposed, for example, in [83,89,130]
and also in many other books.

Further, we assume that 2%, and 255 are Banach spaces.

For a linear operator A : 9B; — B, by Ker A is denoted the kernel, i.e., the linear space of all
solutions of homogeneous equation Ay =0, ¢ € B;.

By S A := A, is denoted the image (the range) of A.

By Coker A := B3/3 A (or Coker Ap,_,m,) is denoted the dimension of the quotient space
Bo/I A in the algebraic sense, i.e., regardless of a topology.

Definition 1.1.3. An operator A € Z(B1,B2) is said to be Fredholm (or have the Fredholm
property, and we write A € F(B1,9B,), if A has finite-dimensional kernel and cokernel

dim Ker A < oo, dim Coker A < co.

We say A is normally solvable if the image & A is a closed subspace in Bs.
The index

Ind A =Indy, 5, A :=dim Ker A — dim Coker A = dim Ker A — dim Ker A* (1.1.17)

(see below Proposition 1.1.2) maps the set of Fredholm operators into the group of integers Ind :
y(%h %2) — 7.

Proposition 1.1.1. A linear operator A € £ (B1,B2) is normally solvable if and only if the equation
Ap = has a solution ¢ € By only for those 1p € By for which the following orthogonality condition
holds:

F(¢y)=0 for all solutions A*F =0,

i.e., dim Coker A = dim Ker A*.

Proposition 1.1.2. Let A € Z(*B1,B2) and dim Coker A < co. Operator A is normally solvable
if and only if dim Coker A < oo and, then, dim Coker A = dim Ker A*.
Moreover, Coker A can be identified (is isomorphic) with a linear space M 4 which is complemen-
tary to the image
SAP My =B, (1.1.18)

Proposition 1.1.3. If A € Z(B1,B2) is a Fredholm operator, then the adjoint operator A* €
Z(B5,B7) is Fredholm and

Ind A =dim Ker A — dim Ker A* = —Ind A". (1.1.19)

Proposition 1.1.4. Let A € B(B1,B3) be a Fredholm operator between Banach spaces. There
exists a small € > 0 such that a perturbation A + B + T by arbitrary operator B € £ (B1,B3)
with a small norm ||B|| < e and by arbitrary compact operator T € €(B1,B3) remains Fredholm
A+ B+T € .7 (B1,B2). Moreover, such a perturbation has a stable index

Ind(A+B+T)=1Ind A. (1.1.20)

Corollary 1.1.2. For a compact operator T € € (98) in a Banach space B, the sum with the identity
operator is Fredholm I +T € Z(B) and

Ind(I+T)=0. (1.1.21)

Proposition 1.1.5. A linear operator A € F(B1,Bs) is Fredholm if and only if there exists an
operator R € F(By,B1), called regularizer, such that

RA=I-T,, AR=1-T,, (1.1.22)

where I is the identity operator in the corresponding space and Ty € L (B1), To € L (B2) are compact
operators
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The set of linear operators £ (%8) is a Banach algebra with respect to the standard operator norm:
if A, B € Z(*8), then the compositions AB, BA also belong to .£Z(%5) and € (8) is an ideal in £ (B)
and [|AB|| < [|A[l[| B, [BA[l < [|A[|B]-

The subset of compact operators € (B) C Z(B) is an ideal in £ (B):

AT, TA€ €(B) forall Ae Z(B), TecE(B).

Therefore, the quotient £ (B)/% (B) represents a Banach algebra and is known as the Calkin alge-
bra. The norm in the Calkin algebra, the usual quotient norm

Al := it |A+T] (1.1.23)
€€ (B)

is called the essential norm of A.
Note that definition (1.1.23) of the essential norm extends, obviously, to more general setting of
all operators A € Z(B1,B2).

Corollary 1.1.3. A € Z(*B) is a Fredholm operator A € % (B) if and only if the coset (the quotient
class) [A] is invertible in the Calkin algebra £ (B)/% (B).

Proposition 1.1.6. Let B1, Bo and B3 be Banach spaces and A € F (B1,B2), B € F(Ba,Bs3) be
Fredholm operators. Then the composition BA € % (281,B3) is a Fredholm operator and

Ind BA=1Ind B+1Ind A. (1.1.24)

We will expose proofs of the next assertions, because they are not well known.
Let Coker Ay, o, denote a direct complement to the image & Am, o, , which is not unique in
general.

Theorem 1.1.1. Let
A € ﬁ(%h@l) N y(%QaQQ)a

where B, D1, B and Do are Banach spaces and the first embedding
B CBa, D1 COy (1.1.25)
holds, while the second embedding is dense. If the indices of A in both pairs of spaces coincide
Ind Ap, o, =Ind An,—0,, (1.1.26)
then the corresponding kernels and the cokernels coincide as well:

Ker A%IHQI = Ker Agzﬁgw

(1.1.27)
Coker Ay, o, = Coker Ay, o, .
Proof. Due to the first embedding in (1.1.25)
a1 < ag, where af :=dim Ker Ay, 9, . (1.1.28)

Since
dim Coker Ay, o, = dim Ker A*@ZH%Z

(see Proposition 1.1.2), the density of the second embedding in (1.1.25) yields ©3 C D7. Indeed, any
functional F' € D} is automatically included in D: we get |(F,u) < ||F|[||u|D2]| < C || F|||u|D1]| and,
therefore, F' € ©7.

On the other hand, any non-trivial functional F' € ©3, F' # 0, restricted to ©1, does not vanish
F‘Ql # 0. Otherwise, the dense embedding 1 C ®4 implies F' = 0. This completes the proof that
the embedding D% C ©7 holds.

Analogously to (1.1.28) we get

ﬂg < 61, where Bk := dim Coker A%kﬁgk . (1.1.29)
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From (1.1.28), (1.1.29) and (1.1.26), which can yet be written as follows
a1 — 1 =as — P,

we obtain
OZﬂl—ﬂgzal—azéo.

The latter relations show that «; = ao, $1 = B2. These equalities and embedding (1.1.25) entail
(1.1.27). O

Lemma 1.1.5. Let $) be a Hilbert space. If A € L ($,9*) is coercive, then A is an invertible operator.

Proof. Due to the coerciveness (see (1.1.2)), from Ap = 0, ¢ € 9, it follows ||¢|| = 0. Therefore,
Ker A = {0}.
Again, due to coerciveness (1.1.2), the convergence ¢, — 1, where

{wn = A@n}zcﬂ - %A7 '(/} € 57.)7 {1/]71 = A@n}zo:l C fJa
implies the convergence ¢,, — ¢ € ), since

”wn - '@[JkH = HA(Pn - ASOkH = C”Spn - (PkH

with some fixed constant C independent of A. Then, due to the continuity of A, we conclude that
¥ =limy, 00 Ap, = Ap € $ A and, therefore, § A is closed (i.e., A is normally solvable).
From the coerciveness inequality (1.1.2) we also get

(0, A% )| = (Ap,9) = Clo|

and, as above, conclude that Ker A* = {0}.
Due to the inverse mapping theorem A is invertible. O

Corollary 1.1.4. If $ is a Hilbert space, A € £ (9) is a linear, T € €(9) is a compact operator and
A+ T e L($) is coercive
[ (A+T)p,0) | = Allel? Ve esn,

then A is a Fredholm operator and Ind A = 0.

Proof. Due to Lemma 1.1.5, A 4+ T is invertible, while, due to Proposition 1.1.4, the difference A =
(A+T)— T is Fredholm and Ind A =Ind (A + T) = 0. O

Lemma 1.1.6. Let $ be a Hilbert space and A € £ ($). If the inequality

(Ap, )| = Cllgll” = I Te|* Vo enH (1.1.30)

holds for some constant C > 0 and a compact operator T € €(B,D), then A is a Fredholm operator.
Proof. From (1.1.30) it follows that

1
g N
el 7ei

Then, due to the compactness of T, from a bounded sequence {¢;}72; C Ker A we can always select a
convergent subsequence. That means Ker A C §) is a locally compact subspace and dim Ker A < oo
(only finite dimensional spaces are locally compact).

Since dim Ker A < oo, the linear closed set Ker A has a complemented space )y & Ker A = §
for some $Hy C H.

Assume that the operator A is not normally solvable. Then the operator A : £ — $ is not as
well because they have the same ranges A()9) = A()) =: I A. Then there exists a sequence (¢;)7°
in $o such that |l¢;|| = 1, ||Ap,|| = 0 as j — oo. Taking into account that T is compact, we can

ITe|l Vo € Ker A. (1.1.31)
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choose a subsequence which is transformed by T into a convergent sequence. For brevity, we assume
that this subsequence is again the same sequence {¢,}7°. By applying (1.1.30) we proceed as follows

Cllej — erll? < IT(p; — eu)lI” + [(Ale; — k), 05 — @)
< | Te; — Toel® + | Ap; — Avilllle; — ekl
< Te; — Toel® + (|Ag;]l + [ Aze ) (lle; — exll)- (1.1.32)

For sufficiently large j and & the right—hand side of (1.1.32) becomes arbitrarily small and the sequence
{¥j}32, converges in Ho: lim p; = ¢o € HHo. Obviously, Apg = lim Ap; = 0 and since @o €
j—oo j—oo

9o NKer A = {0}, we get @9 = 0. This contradicts the equality ||po| = lim [|¢;|| = 1 and the
j—oo

obtained contradiction proves that the operator A has the closed range & A.
Let us rewrite inequality (1.1.30) in the form

(g, A"0)| = Cllol? = [ Tel?, Yee9n. (1.1.33)
We already know that if the operator has the closed range A, inequality (1.1.33) implies
dim Coker A = dim Ker A™ < oo

and, thus, A is a Fredholm operator. O

1.2 Differentiation and implicit function theorem

In the present section, we expose implicit and inverse function theorems, which are applied later.

Let us recall some standard notation: N := {1,2,...}, Ny := {0,1,...}. For a natural number
n € N let R" and C™ denote the n-dimensional spaces of vectors x = (21,...,2,)' with real x; € R
and complex x; € C entries and standard metrics, based on the scalar product

<‘ray> = xlﬁ"‘ T +xn% for T,y € Cn7
(x,y) == 191 + -+ + Tpyn for x,y € R™.

N™ and Nj denote the sets of n-tuples multi-indices o = (a1, ..., @, ) with components from the
corresponding sets and we use the notation

¢4 o4 a‘alu(x) a . n

Let Q@ C R™ be an open domain. A continuous function ® : 2 — R™ is called differentiable at a
point z € Q with derivative D®(x) : R™ — R™ if D®(x) is a linear mapping (i.e., a matrix) and

(z+y) = () + DO(2)y + R(z,y), R(z,y)=0(lyl) as [y| =0 (1.2.2)

for small y € R™.
With respect to the standard bases in R™ and R™, the derivative D®(z) is the matrix of partial
derivatives
Dd(z) = ([0;01(2)]nxm) (1.2.3)

and transforms a column vector U = (u1,...,u,)" into the new column vector
n n T
Do)V = (D001 (x)uz, ., > 9 ®mlw)uy)
j=1 j=1

The matrix D® in (1.2.3) is called the Jacobi matrix. If n = m, the corresponding determinant
is called Jacobi determinant or Jacobian.
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® is differentiable whenever all the partial derivatives exist.
Let © C R™ be an open domain (2 can be non-compact, e.g., @ = R™). For r,m € Ny, by
C™(Q,R™) (or by C"(€)) it is denoted the set of r-times continuously differentiable mappings ® :

Q — R™ and C*°(Q,R™) := () C"(Q,R™).
r=1
The set of complex-valued mappings will be denoted by C" (2, C™) (or by C"(£2)).

The subspace C5°(€2) consists of infinitely differentiable functions on Q with compact supports.
A composition of functions

F=U0®:Q-RF ®:Q— .#CcR™, &:.4 — R,

where ® is differentiable at a point x € Q and VU is differentiable at a point z = ®(x) € A, is
differentiable at a point x and the following chain rule holds:

D(¥ 0 ®)(z) = (DT)(D(x)) DB(z). (1.2.4)

Let us recall that 2 C R” is called a star-like domain with respect to the point o € Q if y €
implies g + t(y —xp) € Q for all 0 <t < 1.

The fundamental theorem of calculus, applied to ¢(t) = ®(x + ty) in a star-like domain with
respect to x € (2, gives the Lagrange formula

1
O(z+y)=d(x)+ /D<I>(z +ty)ydt = ®(x) + DO(z + toy)y (1.2.5)
0
for ® € C1(Q), all y € Q and some 0 < tg < 1.

Let us consider a function
d: QR deCk (1.2.6)

which maps a domain  C R™ to the same Euclidean space and ®(x¢) = yo. It is important to know
the conditions ensuring the existence of the inverse mapping

LV UCQ ®dy)=y yeV, (1.2.7)

and its smoothness properties, at least locally, in a neighborhood of some y. The next inverse function
theorem provides such conditions and, together with the implicit function theorem (cf. Theorem 1.2.2),
represents most fundamental results of multivariable analysis.

Theorem 1.2.1 (Inverse function theorem). Let Q be a domain in R™, k € N and ® € C*(Q,R").
Let the differential D®(z) be an invertible matriz at xg € Q and ®(xg) = yo € R™.

There exist neighborhoods U C Q of xg and V' C R™ of yo such that the mapping ® : U — V s
one-to-one and the inverse mapping ®~' : V. — U is C*-smooth (i.c., 7! is a C*-diffeomorphism).

Proof. Let
U(x) = (D®) (o))~ [@(x0 + 2) — o). (1.23)

Then, obviously,
U(0)=0 and (DY)(0)=1.

Thus, the case reduces to ®(0) =0, (D®)(0) = I, 0 € 2, which we suppose fulfilled. Then we have to
solve the equation ®(u) = v for small v. Due to formula (1.2.2), this can be written as an equation

u+ R(u) =v, R(0)=0, (DR)(0)=0, where R(u) = &(|u|), (1.2.9)
with the mapping R € C*~1(Q,R"). Solving (1.2.9) is equivalent to solving

Ty(u) =u, Ty(u) =v— R(u). (1.2.10)
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Thus, we look for a fixed point u = K(v) = ®~!(v) and show that (DK)(0) = I or, equivalently,
K(v) =v+ o(|v]). The latter implies that for all z close to the origin (small enough),

(DEK)(z) = (DU(K (z))) " (1.2.11)

and, taking further derivatives, by induction it follows that K € C*. To implement this idea we
consider a metric space

My :={ueQ:|ju—v] <},
where (cf. (1.2.2) and (1.2.9))

oty = sup |R(w)| = e(|lw|) = e(|v]). (1.2.12)

[w|<2]v]
Let us check that 9, is invariant under the mapping
T, : M, — M, (1.2.13)

provided that v is small enough. Indeed, since T, (u) — v = —R(u), we only need to check that
|R(u)| < o, for all u € M, provided that v is small enough. Indeed, if u € M, then, due to (1.2.12),
lu| < |v| + o, < 2|v| for v small enough and

|R(u)| < sup [R(w)| = .

lw|<2|v|

This completes the proof of the mapping property (1.2.13).
Due to the Lagrange formulae (1.2.5) and the property (DR)(0) = 0 (see (1.2.5), by taking v
sufficiently small, mapping (1.2.13) becomes a contraction

ITu(w) = T(w)| = [R(w) = R(w)] = [(DR)(u+ to(w — w))(u— w)] < rlu—wl, 0<r< 1.

Then, by virtue of the fixed point theorem, there exists a unique fixed point v = K(v) € M,
Moreover, from u € 9, we conclude that

K (@) = vl = [u—v| < o = o(|]).
This completes the proof. O

Theorem 1.2.2 (Implicit function theorem). Let Q C R™, & C R™ be domains andk =1,2,... . Let
U(z,y): Qx & — R™ be a C*-mapping, V(zo,y0) = 0 and the partial n x n Jacobi matriz D,V (z,y)
be invertible at (xo,y0) € 2 X &.

There exists a neighborhood Uy C Q of o and a C*-smooth mapping y = 1 (x), ¥ : Uy — & (called
the implicit function) such that ¥(z,¢(z)) = 0.

The function 1 (z) is unique: if there exists another continuous implicit function 1y : Ut — &, the
functions coincide 11 (x) = 1 (z) in the common neighborhood x € U N U of xy.

Proof. Consider the mapping ® : Q x & — R™ x R" defined by

O(z,y) = (2, ¥(z,y)). (1.2.14)
The corresponding differential (the Jacobi matrix)

I D,V
(DW/)@)(O Dy\I/>

is, obviously, invertible. Therefore, by virtue of the foregoing Theorem 1.2.1, there exists the inverse
function ®~1: VO x Uy — R™ x R™ and at the point (z,y0) acquires the form

(2, 90) = (2, ¥(2,10)).

The function ¥(z) = ¥ (x,yo) is the desired implicit function.
The uniqueness of the implicit function follows since, according to Theorem 1.2.1, there exists only
the unique inverse function to ®(x,y) = (z, U(x,y)). O

(1.2.15)
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1.3 Calculus of tangent differential operators

The content of the present section follows from [64, § 4] with a slight modification.
Throughout the present section we keep the convention similar to that in Introduction: Let . be

a hypersurface given by a collection of charts {(,©;)}1L,, where
M
0w =, =) wcR7Y j=1,..., M (1.3.1)
j=1
The corresponding differentials
D@j (p) := matr [81@j (p), ey 811—163' (p)] (132)

have the full rank
rank DO;(p) =n—-1, VpeQ, j=1,...,M,

i.e., all points of {) are regular for ©;.
The derivatives
g, =00;, k=1,...,n—1, (1.3.3)

are tangent vector fields on .%; and this system is a basis in the space of tangent vector fields w(.%);.
The symmetric Gram matrix

Gor(2) = [(gu(2), 9m (2], _1 1y = [(010;(2),0mO;(2))], ;> © €w; CR™H, (1.34)

defines the natural metric on the space of tangent vector fields w(.#;), which is inherited from the
ambient space R". Namely, for arbitrary tangent vectors

up(r) = ap19j(z) + -+ +a) 10,-10;(z) € w(F), af €R, k=1,2,
the inner product is defined by the bilinear first fundamental form
(ur,us) = (G way,az), ap = (a,lc,...,ozz_l)T, k=12 (1.3.5)

The system of tangent vectors {g,,}7_; to .7 (cf. (1.3.3)) is known as the covariant basis. There
exists the unique system {gk}z;ll, biorthogonal to it — the contravariant basis:

<gj’gk> =0k, 5, k=1,...,n—L

The contravariant basis is defined by the formula

1
k Ao NG g AVAGria A ANgn 1y k=1,...,n—1, (1.3.6)

9 = qac, N

where G (2°) is the Gram matrix (see (1.3.4)).

vr(t) is the outer normal vector field to the boundary I', which is tangent to . and v(2’) is the
outer unit normal vector field to ./, which has the most important role in the calculus of tangent
differential operators we are going to apply. The unit normal vector field to the surface ., also
known as the Gauf3 mapping, is defined by the vector product of the covariant basis

gi(Z) N NG, (2)
lgi(2) N ANgu_1(2)]

v(z) =+ . red (1.3.7)
The choice of sign in this formula determines the orientation of the hypersurface. In what follows, we
will choose the orientation corresponding to the plus sign in (1.3.7).

Next, we expose yet another definition of a hypersurface — an implicit one.
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T2

Figure 1.1.

Definition 1.3.1. Let £ > 1 and w C R™ be a compact domain. An implicit C*-smooth (an implicit
Lipschitz) hypersurface in R™ is defined as the set

S ={2 ew: Vy(x)=0}, (1.3.8)
where ¥ : w — R is a C*-mapping (or Lipschitz mapping) which is regular: V¥(2') # 0.

Note that that the definition of a hypersurface .# by charts in (1.3.1) and Definition 1.3.1 are
equivalent and by taking a single function ¥ o for the implicit definition of a hypersurface . we do
not restrict the generality (see, e.g., [55]).

It is well known that using implicit surface functions gradient (see (1.3.8)) we can write an alter-
native definition of the unit normal vector field on the surface (see (1.3.7)):

v(t) := lim (V¥.7)(z)

i @] tes. (1.3.9)

In applications it is necessary to extend the vector field v(¢) in a neighborhood of .#, preserving
some important features. Here is the precise definition of such extension.

Definition 1.3.2. Let . be a surface in R" with the unit normal vector field v. A vector field
N € CYy) in a neighborhood Q& of .7 will be referred to as a proper extension if ’/V’y =v,
it is unitary (|.#] = 1) in Q.o and if .4 satisfies the condition

0; M (x) = OpNj(z) forall 2 €y, jk=1,...,n. (1.3.10)

Such extension is needed, for example, to define correctly the normal derivative (the derivative
along normal vector fields, outer or inner). It turned out that the “naive” extension (cf. (1.3.9))

w(t) == m, z €Oy, (1.3.11)

is not proper. Indeed (see [66]), let n = 2 and . be the ellipse

{z = (21,20) €R?*: Wy(xy,22) =27 + 225 — 1 =0}.

Then
</1/(‘%) — (V\I/y)(l') _ ($1,2$2) :
BN
21‘2561 4$1.T2

B T
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Hence 0y A5(x) # 0241 (), unless £1 = 0 or x5 = 0.
For the proof of the next Proposition 1.3.1 and Corollary 1.3.1 on extension of the normal vector
field we refer to [66].

Proposition 1.3.1. Let .¥ C R™ be a hypersurface given by an implicit function

= {J eR"”: \I/y = 0}
Then the gradient VO o (x) of the function
Sy +tv(x)) =t +tw(x)e€Qy, (1.3.12)

defined in the parameterized neighborhood
Qv ={z=2+tw(z): 2, —-e<t<e}

represents a unique proper extension of the unit normal vector field on the surface

v(iz)= wlgriw/ Vo y(x), €7
Corollary 1.3.1. For any proper extension AN (z), x € Qo C R™, of the unit normal vector field v
to the surface ¥ C Q& the following equality holds:

Oy N(x)=0 forall z€Qo. (1.3.13)

In particular, for the derivatives
D=0k — MOy, k=1,...,n, (1.3.14)

which are extensions into the domain Q.o of Ginter’s derivatives Dy, = O — V10, on the surface %,
the following equalities are valid:

DNy = Ok Ny — MOy = Ok N, DiNV; = DN, forall jk=1,...,n. (1.3.15)
In the sequel, we dwell on a proper extension and apply the properties of .4 listed above.

Lemma 1.3.1 (see [64]). For an arbitrary unitary extension A (z) € CY(Qx), | A (z)| =1, of v(2),
in a neighborhood Q.o of .7, the following conditions are equivalent:

(i) a/w/i/|y =0, te, OyMj(x) >0 forx -2 €S and j=1,2,...,n;
(i1) [On5 = 054

The second fundamental form of . has the form

=0fork,j=1,2,....n

IHU(2),V(2)v(z):=0uV(z)-dfV(z)
= —-79)0uV(z)=w(z)uV(z)v(z), Yoes UV ecw(l¥) (1.3.16)
and the Weingarten matrix (or the Weingarten mapping)
W w(S) = w() (1.3.17)
is defined uniquely by the requirement that
WU, V)Y =1I(U,V) = (v,0yV) = —(0gv,V) = —(05v,V), YU,V € w(Y). (1.3.18)

In the last equality in (1.3.18) we have applied the following: for a tangent vector field V' € w(.¥)
there holds (v(2), V(%)) =0, 2 € ¥, and, by differentiating,

(Ouv(2),V(2)) + (v(2),0uV(2)) =0, 2 €7, j=1,. (1.3.19)
for all U = ZUd], V= ZVdJ, di =ngel, Of ._ZUQ
Jj=1 j=1 j=1
We can extend the Weingarten matrix #.o (x) from the surface . to a neighbourhood as follows:

Wy (x) = —-VAN () = —[0;M:(2)] T € Q. (1.3.20)

nxn’
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Lemma 1.3.2. The extended Weingarten matric #.o(x) in (1.3.20) has the following properties:
(i) #o(z) N (x) =0 forallz € Qy;

(ii) even if extension A (x) is not proper, the restriction to the hypersurface Wy|y coincides with
the Weingarten mapping of % and only depends on 7 (is independent of the choice of the
extension AN);

(iii) even if extension A (x) is not proper, Tr(”//y)’ = HY, where HY is the mean curvature of &';
(iv) #o(x)V (), x € S, is tangent to the level surface
Fo={yeR": Vy(y)=C:=Vy(z)} (1.3.21)
for arbitrary vector field V : & — R™.

Proof. First, Wy N = V| A|? = V1 =0 in Q., justifying (i). Assertions (ii) and (iii) follow from
Lemma 1.3.1.
Next, (iv) is proved as follows:

<JV()W5£V i%a%Vk——Xn:<6W%)w=0
k=

J,k=1 k=1

due to (1.3.13), proved above. O
We remind that

Go(2)=G(2) = [gjx(2)],,_n 1> 95k =195 9%);

is the positive definite Gram matrix, which is known as the covariant Riemannian metric tensor
and defines the metric on the surface . (cf. Section 1.5).

Let do = v/det G.»dx and ds = v/det Grdx’ stand for the volume elements on . and I' := 0.7,
respectively (x € R"~1 2’ € R"72; cf. Section 1.5).

Let .
P(V)u= Zajaju +bu, a;,be CHR™*™), (1.3.22)
j=1
be a first-order differential operator with real-valued (variable) matrix coefficients, acting on vector-
valued functions (u = (ug)j_,;) in R", and its principal symbol is given by the matrix-valued
function
)= a;&, &={&}, €R™ (1.3.23)
j=1

Definition 1.3.3. We say that P is a weakly tangent operator to the hypersurface ., with unit
normal v, provided that
o(P;v) =0 on the hypersurface .. (1.3.24)

Next, call P a strongly tangent operator to .% provided that the symbol vanishes,
o(P; 4) =0 in an open neighborhood of . in R" (1.3.25)

on a proper extension of the unit normal vector field .4 in some neighbourhood of the surface .7 (see
Definition 1.3.2.

Note that in a strongly tangent operator the coordinate derivatives 0; can be replaced by the
Giinter’s derivatives Z;:

P(V)u = Zajaju +bu = Z a; Pju+bu= P(P)u, a;,be CHR™™). (1.3.26)

j=1 j=1

The most important tangent differential operators to the hypersurface for us are:
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A. The weakly tangent Giinter derivatives (see (0.0.9))
@j = 8j —Vja,, :6j —ijykak, j: 1,...,77,.
k=1
B. The weakly tangent Stokes derivatives .#j, = v;0, — 140; (for details see Section 1.6 below).
Giinter and Stokes derivatives are tangent, since the corresponding vector fields are tangent

Dy i=0qs =d’ -V, Mj, =0, =MV,

n

d’=ngel =€ —viv=vA(VAe)= Z(éjk —vu)er, (1.3.27)
k=1
mji = vje, — vge;, (d7,v) =0, (my,v)=0, jk=1,...,n,

where 7 is the projection on the tangent space to the surface (see (0.0.8)). Therefore, Z; and .#
can be applied to functions which are defined only on the surface ..

The generating vector fields {d/}7_; {m;x}},_, cannot constitute frames, since they are linearly
dependent:

> vi(2)d?(2) =0, my; =0, (1.3.28)
j=1
but both systems {d’}?_; and {m;z}7,_, are full in the space of all tangent vector fields: any vector

field U € w(.¥) is represented as

n

U(z) = in(%)dj(%) = Z cin(2)myp(2). (1.3.29)
j=1

0<j<k<1
For example, the covariant vector fields g,(2) := 10k(2),...,9,,_1(2) := 0,_10k(2), 2 € S,
k=1,...,N, on ., which generate the derivatives 0; = Oq4s,, are represented as follows:

gi(2) =Y g (#)e™ = g'(#)d™ () (1.3.30)

m=1

and {e™}" _, is a Cartesian frame in R™. Indeed, by applying the derivative to ©) we get

n n
0= S 3 apan
m=1 m=1

since N N
Z gj'le™ —d™] = Z 97" vmv =(g;,v)v =0, j=1,...,n—1
m=1 m=1
An example of a hypersurface .7 is given in (0.0.1).

The system {8kX }Z;ll of derivatives is a basis in the tangent space w(#) of vectors. Consider
the following differential 1-form wy

n—1 n—1
wi(V)i=ZLyf =Y VFopf for feCY(¥), V=> VoXecI7. (1.3.31)
k=1 k=1

The form is correctly defined because the differential operator %y, is tangential and can be applied to
a function f defined on the surface . only.
Then, for a given f, there exists a vector field V.o f € J¥ such that

wr(V):= (Ve f,V) foral VeV (X), (1.3.32)
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which is, in classical differential geometry, the definition of surface Gradient of a function f € C!(.%)
and maps
Vg : C¥(S) = T (1.3.33)

The surface divergence
divy : ¥ () — C*(¥) (1.3.34)

of a smooth tangent vector field is, by the definition, the dual operator with the opposite sign
(dive V, f) = —(V,Vef), VVeI7, VfeCl(Y). (1.3.35)

These operators expressing in intrinsic parameters of the surface . (tangent vector fields, Metric
tensor etc.) are exposed in (0.0.4). In (0.0.5), it is exposed their composition-Laplace-Beltrami
operator, which is self-adjoint (see (0.0.6)). The intrinsic parameters enable generalization to arbitrary
manifolds, not necessarily immersed in the Euclidean space R™. Below we expose another concept —
represent these operators on hypersurfaces in coordinates of the ambient Euclidean space.

Theorem 1.3.1 ([64]). For any function ¢ € C*(#) we have

.
Vg = {9130, %%---,@n@} . (1.3.36)
Also, for a 1-smooth tangent vector field V. =3 Vie; € w(.%),
j=1
divy V=-V,V:i=> 2,V/, divi, =V. (1.3.37)
j=1

The Laplace—Beltrami operator A on . takes the form

Agytp=divy V)= -V (V) = Z L

=S = % S M2, Ve CA). (1.3.38)

i<k J.k=1

Proof. According to the definition of the surface gradient (1.3.32) we have V yp = chp| s Where
7V = ¢ — (v,V)v denotes, for arbitrary vector field V' on ¢S, the orthogonal projection onto the
tangent vector fields from 7.7 (see (0.0.8). It is easy to ascertain that indeed, by the definition in
(0.0.9), V. is the projection.

Now we consider the divergence operator div.y = V.o (cf. (1.3.34), (1.3.35)). Let a scalar function
¢ and a tangent vector field V € Z.% be both smooth and . has the boundary 0. # 0, the sent
supp ¢ and supp V have no intersection with 9.7. By applying duality, the proved formula (1.3.36)
and formula (1.3.56) for the dual (Z;)%,, we get

(div Vi), = —(V, V1), = f S Vi) Tyl ) dS(7)
 3=1
%Z Vo Vi(a)e(2)dS (o ]{an%w 2)dS(2)
o J=1 o I=1
(n—1) j@jfzu] W (2)p(2) dS(2)
=1

= Z (gjvja 90)5” .
=1
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We applied above that V is tangent: v(2) - V(2) = > vj(2)V7(2) = 0. Since the function ¢ is
j=1

arbitrary, (1.3.37) follows.
To prove (1.3.38), we apply (1.3.36), 1.3.56 and proceed as follows

n

Apo=divaVyo==Y (2)5P5p=> Zio—(n—1)HyY 1,950 => Do,

j=1 j=1

since v - 9 = Z v;P; =0 (cf. Lemma 1.3.3.v).

To prove the last equality (1.3.38) we insert ., = v; P — v P; (cf. Lemma 1.3.3.vi)) and proceed
as follows:

1 — 1 & 5
B} Z ‘/lj%c‘lp =3 Z [vi Dk — v ;)" ¢
J,k=1 J,k=1
n
Vi Devi Do — vi D Do + vk Div Do — v Div; Dip)
jik=1

75

w\»—‘

n
Z [V; Dv; D — Vi Dk D]
7,k=1

Z.@ w— Z I/jl/k.@k.@j<p+(.@ka vj jcp Z.@,fgo:Aygo.
k=1 J,k=1 k=1
We have again applied that Z _1v;2; =0 and, like (1.3.64),

Zz/j@kz/jap =12 + Z vi (D)o = Do+ = (@ku Yo = Dy (1.3.39)

j=1 j=1
fork=1,...,n. O
Corollary 1.3.2 (cf. [64]). Let .7 be a smooth closed hypersurface. The homogeneous equation
Agyth=0 (1.3.40)
has only a constant solution in the space W' (.%).

Proof. Due to (1.3.37), (1.3.38) and (1.3.40), we get

which gives V.1 = 0. But the trivial surface gradient means constant function ¢ = const (this is
easy to ascertain by analysing the definition of Giinter’s derivatives; see e.g. [56]). O

An important operator on forms is the exterior derivative. The derivative of a 0-form, i.e.,

of a scalar function
f:7 =R, feCH), (1.3.41)

is a 1-form and maps

df (w) : T — R. (1.3.42)

Thus, df (w) is a linear functional df (w) € T .7 over T,,.% for all w € .%: being a vector df (w) =
Df(w) = (01 f(w),...,0n_1f(w))T the differential assigns to a vector £ € w(.) the number

n—1
2)6 =Y 0;f(2)&, 0;f(x) = 0ua,f(x), =€ i, (1.3.43)

j=1
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where {dz; = 8j®k}?;11 is the covariant basis on . and Oy, : Q) — Y%, k=1,..., N, is the surface
immersion.

From (1.3.30) and the definition of the derivative 0;f(z) := 0., f(x) in (1.3.43) it follows that
(see for the differential matrix DOy,)

Oy = (31, ey 871—1)T = (adacla ) ad:xcnf1)T = (D@k)TVy,
Vo= (D1, Dn)" O Oga; =D (007) D, m=1,...,n—1.

m=1

(1.3.44)

Let .4 be a proper extension of the unit normal vector field v to . (cf. Definition 1.3.2). Then
each operator %; and ./, extends accordingly by setting

Dy = 0; — ND . My = N:Op — M0, 1< ok <. (1.3.45)

In the sequel, we make no distinction between the operator %; or .#;;, on . and the extended one in
R™ given by (1.3.45). Note that the extended operators %; and .}, become even strongly tangent.

For further reference, below we collect some of the most basic properties of this system of differential
operators.

Lemma 1.3.3. Let A" be a proper extension of the unit vector field of normal vectors v to /. The
following relations are valid for j,k=1,...,n:

(i) M5 =0, Mji, = —Mhy;;
(i) Op = 20 Njlljp + MOy = = 3 NeeMlj, + N0 ;
j=1 k=1

(i) 3 MpMe = — N AL, where () = —divy v(2) and Hyp() = (n— 1) A (2) is
k=1
the mean curvature at 2 € . (see (0.0.15));

(v) Dj = > NpMyj;
k=1

) Mijx = N; Dk — N Dj;

n
(vi) N D; =0;
j=1
m4+1
(vii) > o(r i k)N =2 > o(r,j, k)N, =0 form=2,...,n—1,
g k=m—1 {r.g,k}c{(m—1),m,(m+1)}

where o(r, j, k) is the permutation sign:

+1 if (j1,.--,Jk) is an even permutation of the strongly
ordered row (myq,...,mg), my < --- < mg,
o(J1y--5Jk) =<0  if j.=js for somer,s=1,...,k and r # s, (1.3.46)
=1 if (J1,-..,Jk) s an odd permutation of the strongly
ordered row (mq,...,mg), my < -+ < mg;

(viti) [Z5, D) = 3 (M) Ty + [ N0 N = Ny Ny
r=1

() 195, %] = 3 (M N5) P = Mi120.0)) = N[ D004

(X) 05 M = DjM = DSV
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Proof. The identities (i)—(ii) and (iv)—(vii) are simple consequences of the definitions. For the equality
(iii) we have

n n n 1
M Mg N = Mo Ne =Y (N;06 — MOy N = N div N — 3 O (|NN°) = —A;#,

k=1 k=1 k=1

as claimed.
To prove (viii) we calculate

DDy = (0j — N;0.4) (O — NO.x)
= 0;0, — (0;M)0y

- Z (05 M0) 0y + NN 020 + N N0 Ok ] + N (O Ni)O + N MOy
r=1

== " Ml054)0r + N (O M)Ow + Bk

r=1

== M(0;N) Dy + N; (0.4 M)y + Bi, (1.3.47)
r=1

since

" 1 <& 1
P ACI AN 3 > (0520 = 5 M(0;1)D. =0.
r=1 r=1

The operator

By = 0,0, — (9;M)0.0 —

T

[ M 0,05 + N N0, D] + N Ny
=1

is symmetric, Bj; = By;j, and the desired commutator identity in (viii) follows from (1.3.47).

The first commutator identity in (ix) utilizes the facts that 0 4.4 = 0 (cf. Lemma (1.3.10)) and
follows from the identity in (viii). The second commutator identity in (ix) applies the same identity
Oy N, = 0, the identity 94 = 0.4 (cf. (1.3.13)), and follows by a routine calculations.

The identities in (x) are already proved in (1.3.10) and (1.3.15). O

The next Lemma 1.3.4 provides an useful and interesting example of restriction of the differential
form to hypersurface and to its boundary.

Lemma 1.3.4. Let © : Q — . be a smooth orientable hypersurface in R™ and with a smooth
boundary 1" := 0., while do and ds designate the respective volume elements on . and on I'. Let

v(iz)= (n=),..., l/n(gf‘f))T be the (outer) unit normal vector to % at & € . compatible with a
chosen orintation and vr(s) = (Vi(s),...,vR(s)) T be the unit tangent vector to .7 at the boundary
point s € ', which is outward (unit) normal vector to the boundary .. Then

v;dS = Bl (1.3.48)
[vvf — Vkuf;] ds = 5jk{r, (1.3.49)
where
Bj = |dawyi A Nday A Ndag| = (1) ey A=~ Aday A Adan,
Bjk = |dei A -~ Aday A Adag A~ Adan| = (=17 Yoy A Adag A Adag A+ Ady,
and cEcTn denotes that the factor dzx., is dropped.

The next theorem generalizes Stokes’ formulae (see [130, § 2.2, Theorem 2.1] for the version on
compact Riemannian manifolds).
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Theorem 1.3.2. For any real-valued function ¢ € C*(.#) and any 1 < j < k < n, there hold

/=///jk<PdU = 7{ (vt — v ds, (1.3.50)
7 r

where vr(€) = (VE(€),..., V(&))" is the unit tangent vector to ./ at the boundary point £ € T := 0.7
and outward (unit) normal vector to the boundary I' = 0.7 .

Proof. With formula (1.3.48) at hand, the integrand in (1.3.50) can be represented as a total differential

(Mirp) do = (Orp)w;| , — (D50)wk |, = dlpwir]| -

Applying the well known Stokes’ formula

/dﬁ ::/Bds (1.3.51)
7 T

(see, e.g., [58]) and formula (1.3.49) we get

////jwdff: /d[sowjkﬂy :/ij|r: / [viv — v o ds
S

3% r r
and (1.3.50) is proved. O
The formal adjoint (in R™) to P is defined by

Pu=— Z @a?u +b"u.
J

If Q@ C R™ is a smooth, bounded domain, and if P is a first-order operator, weakly tangent to
09, then, applying (1.3.58) (cf. Section 1.6), P can be integrated by parts over €2 without boundary
terms, i.e.,

(Pu,v) = /(Pu,v} dx = /(u,P*v) dr =: (u, P*v),, (1.3.52)
Q Q

for all vector-valued sections of vector fields u,v € C1(€Q).
For a weakly tangent differential operator @ on a closed hypersurface . let Q%, denote the
“surface” adjoint:

Qo) 5 = f(stwl)) do = f(%@}ﬂ/f) do = (p,Q5Y) » (1.3.53)

7 S
for all vector-valued sections of vector fields ¢, % € C*(Q).

Corollary 1.3.3. The surface-adjoint operator P}, to the weakly tangent differential operator P in
(1.3.22) coincides with the formally adjoint one

Pyo=Po==-> 0a/p+b ¢ (1.3.54)
j=1

In particular, this is true for the Stokes’ derivatives and, moreover, Stokes’ derivatives are skew-
symmetric
(M) = My = —Mix = Myj, Vi k=1,...,n (1.3.55)

The adjoint operator to the operator Z; is

(Di)sp = Do = —Dio+v; Hyp, ¢ CHT), (1.3.56)
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where (n — 1)~ AL () = H o (2) is the mean curvature of the surface . (cf.
For any real-valued function ¢ € C*(), any 1 < j < k < n and for vr = (v
the same as in Theorem 1.3.2 the following integration by parts formula

[ (@000 - o) do = § v as (1.3.57)

7 r

0.0. 15))

(
L vB)T being the

holds. It is an analogue of the classical Gaufian integration by parts formula

/ 9,1 (w)gy) dy = f () f()g(r) do / F);9(y) dy, (13.58)
7 Q

which holds for arbitrary f, g € W(.7).
In particular, the following Gauf3 formulae for open surfaces is valid:

/ngoda = %V%@d5+/uj%;¢da. (1.3.59)
7 r 7

Proof. Let us first prove that .#j; is skew symmetric on the surface. Indeed, by applying Stokes’
formulae

]{(//fjkf)(T) do=0, jjk=1,...,n, feCY (), (1.3.60)
7

Fttorodo = §ttpvydo = §o(ttnw)do = - § ot do

% % 7 %
and this proves skew-symmetry of .#;,. On the other hand, the formal adjoint to .#j, = A} P — N, D,
is

we get

Mp = (N0 — M) p = =0j(Mp) + Ok (Ajp)
= M0jp — NiOhp + (0 M)p — (OhN5)p = —Mjnp
(cf. (1.3.10)), where ¢ € C'(Qy) is defined in a neighborhood of .. Thus, formal adjoint to .y,

coincides with the surface adjoint and (1.3.55) is proved completely.
Now let us prove (1.3.54). To this end, note that on .7,

Py = Z% o +bp = a;[2; +v;0]¢

J

.
—

n
:Z a;Zjp + by + o(P;v)0 Zaj ne
j=1
n
=Y aude, (1.3.61)

J,k=1

due to Lemma 1.3.3(iv) and since P is weakly tangent. Now the property postulated in (1.3.54) follows
from (1.3.61) and from (1.3.55):

n n

Pyo = Z (,///kj)}ajTl/kgo +b' o= Z (%kj)*ajykw +b"p=Prp.
J,k=1 j,k=1

With (1.3.54) and (1.3.10) we get
(2))50 = D5 = =050+ Y Ou(N;Nip)
k=1

= =050+ > _ [ M MOk + (MOpN;)p + N (OM) ) = = Do — N Hdp + (O N;)p, (1.3.62)
k=1
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where ¢ € C1(Q) is defined in a neighborhood of .# and

HY Z@k%, Hy(2 Z.@kvk ) for 7 €. (1.3.63)

k=1

Hence (1.3.56) follows, since (cf. (1.3.13)) O A4; = 0.
To prove (1.3.63) we apply

_ 1 2 _ 1 _
= 5 Val A L, — 3 Val=0 (13.64)

OxN|y= {Z%ajﬂ/k}k )

=1 =l =1 k=1

and proceed as follows:

Z.@kl/ = Z (8kljk — Vg Zl/jajl/k) 7%5p Z ?j = 7%';

= j=1

To prove formula (1.3.57), we apply Lemma 1.3.3(iv), (1.3.55), the equalities Y vZ =1, Y vpvf =

k=1 k=1
0 and proceed as follows:
7{ 10) wda_zjfuk k)Y do
B2 k=15
- Z f (M v do + Z f (i, — )t ds = f (75 0) do + f oy ds.
k=ly k=lp b r
And, finally, formula (1.3.59) follows from formulae (1.3.57) and (1.3.56), if we insert ¢(t) = 1 in
(1.3.57) and note that Z;1 = 0. O

Lemma 1.3.5. Let P be, as in (1.3.22), a first-order differential operator with C*-smooth coefficients.
P is weakly/strongly tangent if and only if the formally adjoint P* is so.
If P is weakly tangent to . and P is defined in a neighborhood of %, then

(Po)|, = P(e],) (1.3.65)
for every C'-function ¢ defined in a neighborhood of .. In particular,
el = 6l Ml = ulel). dk=1....n. (1.3.66)
Furthermore, (1.3.65) is valid for the adjoint operator P* and
[tPe.vido = [P0y do + §loPivrye ) s (13.67)
2 7 r

for any vector-valued functions @, € 7, where o(P;§) is the symbol of P (cf. (1.3.23)).

Proof. The first assertion follows, since o(P*;¢) = —o(P;€) " for each € € R™.

Due to the representation (1.3.26), it suffices to prove (1.3.65) only for the operator 2; = d7 - V,
where d7 = mgel = N A (AN A€P) is at least Cl-smooth vector field in a neighborhood Q.5 of
7, tangent to the surface . at surface points (cf. (1.3.27)). Thus, we have to justify the following
equality:

D¢l = (@ V)e| =d7-V(el,) = 2i(l,). (1.3.68)

The vector field d’(x) = d7(6, 2’) depends on the signed distance § = dist(z,.%) = +|z — 2|
continuously (§ > 0 for the outer domain and § < 0 for the inner one). Let %), i) be the integral

curve of the vector field d? and

Fhi )i Qs = Qu, Fhio  =Fh( ) S > (1.3.69)
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be the flow generated by this vector field £y in the neighborhood Q.o (cf. Section 1.3). Since the flow
depends continuously on the parameter 6, we get

d

) d
(706, 2) - 9)¢| = lim & 6(Fhio.0)| _ = 5 0(Fh)

& 6—0dt

and (1.3.68) is proved.
Next, we prove (1.3.67) by using formulae (1.3.26), (1.3.57) (integrating by parts) and get

[tPe.vydo - 3 J@evido+ [t 0o

t=0 =4 V()= (e ,)

2% =15 R
22/907@*—'— dU-l-/((p,bT dU+Z%VFJ(pw>
=1z k% J=1r
:/ {p, P*) d0+j§<0(P; vr)e, ) ds.
4 r
This completes the proof. O

Remark 1.3.1. By iteration, an identity similar in spirit to (1.3.67) holds for high order weakly
tangent differential operators (i.e., for polynomials of Giinter’s or Stokes’ derivatives; cf. Lemma
1.3.6).

In this connection, let us also point out that the strongly tangent operator, Stokes’ gradient
M :ZJV/\VyZJVAVZ{%23,—%13,%12}, e//fy’yzu/\Vy (1.3.70)

in R? acting on scalar functions on .7, is naturally identified with the skew-symmetric matrix whose
entries are Stokes’ derivatives in the sense that

3
1
VAVy =3 .Z My dx; A dry = Z My dxj A dey. (1.3.71)
J,k=1 1<<k<3
A further important example of the strongly tangent, first-order differential operator is
PU :=divU — (v,U)9,U =divy 15U, with Pfo=—Vo+ (0,0 + Hop)v. (1.3.72)

Indeed, o(Py;€) =& — (v,€) v and, obviously, o(P;v) = 0.
In the sequel, we use the following standard notation

=M ... 9%, acNy,

n

-1
//l;::,///fl~-u///ﬁm B8 e Ny, mz%, (1.3.73)
where
Vo =D,y Dn)", Mo = (M., My1)" (1.3.74)
and the selected Stokes’ derivatives .#1 = A1 2,..., My = Mn—1,, are non-vanishing, while the

remaining non-vanishing Stokes’ derivatives differ from the selected ones only by the sign. In contrast
to the case of the usual derivatives 0%, it really matters in which sequence we apply the derivatives @ja I

and ///kﬁ * in (1.3), because they have variable coefficients. In this connection, let us write precisely
what is meant under the dual operators:

(27)% = (D) - (71)™, a€Ng,

(1.3.75)

(A7)% i= (1)) (M), B e NG
Note that we use the same operators A4 = — M1 = — M 2,..., M), = — My, = —Mn_1, for the
adjoint operators to Stokes’ derivatives, because these operators are skew-symmetric (% )* = — 4 1,

(cf. (1.3.55)).
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Lemma 1.3.6. Let G(2) be a tangent differential operator of the form

G(2)= > 9.0)7F =Y fs).l, te. (1.3.76)
loal <k 1BI<k
Then
%<G(9)gﬁ,1/1> do = 7[(@, G*(2)¢) do, (1.3.77)
7 7
where
G (2)= > (Z0)* 90 W) = > ()Ll 5 (1)1 (1.3.78)
la|<k |BI<k

and 2* and A* are the adjoint operators (cf. (1.3.56) and (1.3.55)).
Remark 1.3.2. Note that the operators i.#;, j =1,...,m, with variable coeflicients

M
Az, My)u =" bi(@)(idl;)™b] (x)u, b; € [C°(F)VN (1.3.79)

J=1

and polynomials with constant self-adjoint N x N matrix coefficients
M —
B( Ay )u = Zaj(i///);nju, a;r =a; =const, Vj=1,...,M, Vm; € Ny, (1.3.80)
j=1

are all self-adjoint on the hypersurface

Ay (M) = A( M), By (M) =B(AM:).

1.4 Equation of elastic hypersurface

One way of understanding the genesis of the Laplace—Beltrami operator A on the surface . (see
(1.3.38)) is to consider the energy functional

Elu) == / |Vul|? do, u e C™(Z). (1.4.1)
S
Then any minimizer u of functional (1.4.1) should satisfy

d
=—& t
0 g [u + tv]

= / [(Vu, Vv) + (Vv, Vu)] do
7

t=0

:2Re/<Vu,Vv>da, ueC®(Y), Vve C§°(¥), (14.2)
7

which implies
Au=0 on .7. (1.4.3)

In other words, (1.4.3) is the Euler-Lagrange equation associated with the integral functional
(1.4.1).

Similarly, minimizers of the energy functional

s[U] ;:/[||dU\|2+||5U|\2} do, U € Aw(5), (1.4.4)
S
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where Afw(.7) is the space of differential ¢ forms on tangent space w(.#), are null-solutions to the
Hodge-Laplacian (cf. later (1.5.16)), while minimizers of the energy functional

U ::/||VU||2da7 U € w(Y), (1.4.5)

are null-solutions to the Bochner—Laplacian (cf. later (1.5.17)).

Our aim is to adopt a similar point of view in the case of anisotropic and isotropic (Lamé) system
of elasticity on .7.

Giinter’s derivatives {%;}"_; are tangent and represent a full system (cf. (1.3.27)—(1.3.29)). But
the derivative Z;V is not covariant and maps the tangent vectors to non-tangent ones %; : w(.%) /4
w(#). To improve this, we just eliminate the normal component of the vector by applying the
canonical orthogonal projection 7o onto w(.#) (cf. (0.0.8))

D7V =ny DV =DV — (v, 2;V)v = DV + (Oyv;)v, (1.4.6)

where . .
v =Y Voo =Y VP,

k=1 k=
and obtain an automorphisms of the space of tangent vector fields

27 w(S) = w(S). (1.4.7)

J

The starting point is to consider the total free (elastic) energy as integral of stored energy density

E(z, 27U (x))

:/E(y, 27U(y))do, 27U = [(27U)]]
S

U € w(.¥) (1.4.8)

nxn’

(cf. (1.4.6), (1.4.7)), ignoring at the moment the displacement boundary conditions (Koiter’s model).
As before, equilibria states correspond to minimizers of the above variational integral (see [115, § 5.2]).
First, we should identify the correct form of the stored energy density E(x, 2 U (z)). We shall restrict
attention to the case of linear elasticity. In this scenario, F = (& s, Def ) depends bi-linearly on the
stress tensor & = [&7%],,»,, and the deformation (strain) tensor

Defy = [Djilnxn, Dj(U) =5 [(ZLU); + (27 U], jk=1,...,n, (1.4.9)

l\DM—l

which, according to Hooke’s law, satisfy & = T Def & for some linear fourth-order tensor T. If the
medium is also homogeneous (i.e., the density and elastic parameters are position-independent), it
follows that E depends quadratically on the covariant derivative 27U, i.e.,

E(x,27U(z)) = (T27U(z), 27 U(x)) (1.4.10)

for a linear operator
T: M"*"(R) — M™*"™(R), (1.4.11)

where M™*"(R) stands for the vector space of all n x n matrices with real entries. Hereafter, we
organize M"*"(R) as a real Hilbert space with respect to the inner product

<A,B> = TI‘ AB—r Zam i VA= [aij]i,ja B= [bij]iJ S Mnxn(R), (1.4.12)

where BT denotes transposed matrix, and Tr is the usual trace operator for square matrices:

T gl] ,] 1 Zg”’ gzj] i,j=1-
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The linear operator (1.4.11) is a tensor of order 4, i.e., T = [¢;jie]ijie, and

TA= [Z%kwu} , for A= lakdne € M™"(R). (1.4.13)
k.t

T will be referred to in the sequel as the elasticity tensor. It is customary to assume that the
elasticity tensor (1.4.11) is self-adjoint

(TA,B) = (A, TB), A, B e M""(R). (1.4.14)
Condition (1.4.14), written in coordinate notation, is equivalent to the equality
Cijhe = Creijs Vi, 7,k L. (1.4.15)
Indeed, the equality
Tr((TA)B) = Y cijrearebiy = > creijarebi; = Tr(A(TB)")
4,3,k 0 1,4,k 0

holds, for arbitrary A = [age|ge and B = [bgs|xe, if and only if (1.4.15) holds: by inserting the delta
functions are = Oxe, bij = d;; we get equality (1.4.15).
It is also customary to impose a symmetry condition presented with two natural options:

T(AT) =TA and (TA)T =TA, VAeM™"(R). (1.4.16)
Then (1.4.16) amounts to the following symmetry in the indices of the elastic tensor:
Cijkt = Cijek and Cijkt = Cjike,s Vi,j, k,f. (1.4.17)

Remark 1.4.1. Conditions (1.4.14) and the first equality in (1.4.16) imply the second equality in
(1.4.16) as well as conditions (1.4.14) and the second equality in (1.4.16) imply the first equality in
(1.4.16). This is evident if we apply an equivalent formulation for corresponding tensors and matrices:
(1.4.15) and (1.4.17).

A linear operator T in the energy functional of anisotropic elasticity (1.4.10) satisfies the symmetry
conditions (1.4.14) and (1.4.16). Equivalently, the corresponding elasticity tensor T = [c;j] ikt has
symmetries (1.4.15), (1.4.17) and, therefore, might have only n + n?(n — 1)?/2 different entries.
Remark 1.4.2. It is rather natural to introduce the deformation tensor as the symmetrized co-
variant derivative (cf., e.g., [130, Volume I, Chapter 5, § 12])

(Defy U)(V, W) = % {<8VU, W)+ <8WU,V>} - {(85U,W> LU, V>}, (1.4.18)

YV, W € w(Y).

DN | =

It is also worth mentioning that the antisymmetric part of the covariant derivative 85
1
AUV, W) = (dU,V AW) = {(65U, W) — (05U, V>}, VYV, W € w(¥), (1.4.19)

is the exterior differential.

By inserting value (1.4.9) of deformation tensor Defs U and applying the symmetry properties
(1.4.17), we obtain

AT Def o U(x),Def o U(x)) = (T27U (x), 27 U(z)) = E(z, 27 U(x)) (1.4.20)

(cf. (1.4.10)), which means that the density of the elastic energy functional depends quadratically also
on the deformation tensor.

The density of the potential energy of an elastic medium should be strictly positive for the non-
vanishing deformation tensor Def s U # 0 . This leads to the following
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Lemma 1.4.1. There exists a constant Cy > 0 such that

(T¢,C) == D cijneCijCre = Co Y |Gijl* = Col¢[? (1.4.21)
1,4,k i,
for all symmetric and complez-valued (;; = (j; € C matrices (tensors of order 2) ¢ := [Cijlnxn-

Proof. The sum in the left-hand side of (1.4.21) is real (T(,{) = (T¢, () (easy to check applying
the symmetry properties (1.4.17) of the real-valued coefficients). Dividing equality in (1.4.21) by
IC]2 = 3" |¢im|? we find that it suffices to prove

lm

inf >~ eijreCiiCre = Co > 0. (1.4.22)
=t e
If otherwise Cy = 0, we select a sequence C;Z) = C,gg) €C,q=1,2,...,such that

. (@) ~(0) _ _
Jim D oG GE =0, K] =1.
,,k,4
Since the space of tensors [¢ ;Z)}nxn is finite-dimensional, there exists a convergent subsequence ¢ ,i‘ér) —
C,E(z) as r — 0o. Then we get an obvious contradiction
0) ~(0)

> Cijk@Ci(j)Clié) =0, (V] =1,

i,9,k,L
which proves that Cy > 0. O

Theorem 1.4.1. The total free (elastic) energy functional (cf. (1.4.8)) acquires the form

U] = /(’]I‘@yU(y), 27U (y))do = 4 /mr Defo U(y), Defs U(y))do, U € w(.#), (1.4.23)
% 2
and the Euler—Lagrange equation associated with the energy functional (1.4.23) for a linear anisotropic

elastic medium reads:

ZoU =Def, TDefs U, U € w(5). (1.4.24)
Here again T = [cijiel}spo—y s the elasticity tensor which is positive definite (cf. (1.4.22)) and has the
symmetry properties (1.4.17).

Proof. Representation (1.4.23) follows from (1.4.8) and (1.4.20).
The Euler-Lagrange equation (1.4.24) is derived from (1.4.23) as a similar equation (1.4.3) is
derived from (1.4.1):

EU| = 4/(']1‘ Defo U(y),Defy U(y)) do = 4/<Def} TDefsy U(y),U(y))do =0
2% 2%

if and only if U € w() is a solution of equation (1.4.24) due to the positive definiteness of the
elasticity tensor T (cf. (1.4.21)). O

Next, we will find the Euler-Lagrange equation associated with the energy functional (1.4.8) for a
linear isotropic elastic medium (Lamé equation), which is simpler. Such energy functional should be
invariant with respect to any rotation. For the elasticity tensor T, this results into the requirement
that

T(BAB™') = B(TA)B™!, VA, B € M™*"(R) and unitary B' = B~%. (1.4.25)
Examples of linear operators (1.4.11) satisfying (1.4.16) and (1.4.25) include
T=TA:=(TrA)] and TA:=A+ A", (1.4.26)

where I denotes the identity. The decisive step in the direction of identifying all such operators is the
observation that any other operator of the type is a linear combination of these two. Namely, we have
the following
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Lemma 1.4.2. Let a linear operator T in (1.4.11) be frame indifferent (cf. (1.4.25))
T(BAB') = B(TA)B" for all A€ M™ "™ and for B € SO(n)

and have the symmetry property: one of conditions in (1.4.16) holds.
Then T has the form

TA=A(TrA)T+pu(A+A"), AcM,,(R), (1.4.27)
where X\, u € R are some constants, and it has both symmetry properties from (1.4.16).

Proof. Let us first show that any linear operator (1.4.11) satisfying (1.4.16), (1.4.25) is represented
in form (1.4.27). By the previous discussion (cf. (1.4.26)), it suffices to prove that the space of linear
operators (1.4.11) satisfying (1.4.16), (1.4.25) has dimension two when A is fixed and A and p are
arbitrary parameters.

It suffices to show that

10 0
0 0 0

TD =aD + b(I — D), where D := (1.4.28)
0 0 0

for the identity matrix I and two numbers a,b € R. Indeed, consider the following types of unitary
matrices:

1 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0

Uik = g 1 0 ol Wir= ~1 0 0|’
0 0 0 1 0 0 0 0 1 0
0o 0 0 1) 0 0 0 1

where the only non-zero (equal 1), off-diagonal entries, are at (j, k) and (k, j). By multiplication U; ;A
exchanges j-th with k-th rows in A, while W, A, j < k, makes the same but changes the sign of j-th
row before shifting it to k-th row.

By applying the unitary operator Uy i, we get

TE =Y e*TU, DU, = e*Uy x(TD)U;

j=1 j=1
=> Ui [aD —b(I - D)|U;} = aE +b(I - E) (1.4.29)
j=1

for arbitrary diagonal matrix E = [§;,e*] = > ekULkDUl_’,i. Since for any A € M"*"™(R) we
j=1

have TA = $T(A + AT), thanks to (1.4.16), and since a self-adjoint matrix can be diagonalized

% (A+ AT) = UEU ™! with a suitable unitary matrix U, equality (1.4.29) holds for arbitrary A:

TA=TUEU ' =U(TE)U ' =U[aE + b(I — E)JU ! = aA +b(I — A).
and W,

To check (1.4.28) we again apply the unitary matrices U; 0o et

0,J0

A= TD7 A= [aij]

1<i,5<n’

and observe that D is invariant under conjugation by W, ;,, i.e., Wio,joDWiI,jo =D, aslong asip # 1

and jo # 1. Thus, by (1.4.25), the same is true for A = TD which, in turn, eventually implies that

Aigig = a/joj(n V2.07.7.0 7é 1. (1430)
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The next observation is that D is invariant under conjugation by the product U;,;, Wi, o, i-

UiojoWio,jo DWyl ; Uit ;. = D, this time for every 1 < # jo < n. Hence, by (1.4.25), the same hOldb
for A = TD, which ultimately implies that a;,;, = —a;,s, for every pair of indices 1 < iy # jo < n.
Consequently,

Qigjo = 0, for every 1 < i 7& Jo <M. (1431)

Under the current assumptions, that is (1.4.25), the first condition in (1.4.16), the desired conclu-
sion, that is, that TD has the two-parameter diagonal form indicated above, now readily follows from
(1.4.30) and (1.4.31).

Let us analyze the case where the linear operator T satisfies (1.4.25) along with the second condition
n (1.4.16). In this situation, let us consider the adjoint T* to the tensor T with respect to the inner
product (1.4.12), (TA, B) = (A, T*B). It can be easily checked that the adjoint T* satisfies (1.4.25) and
the first condition in (1.4.16), so the previous reasoning applies. Consequently, T* can be represented
in form (1.4.27), which is invariant under taking the adjoint. Hence T can be written in form (1.4.27),
too. In particular, (1.4.27) holds in this case as well.

Concerning the equivalence of the first and the second condition in (1.4.16), each of two conditions
in (1.4.16) along with the condition (1.4.25) imply that the linear operator (1.4.11) has form (1.4.27).
Then, in particular, T is self-adjoint. Since conditions in (1.4.16) are obtained by taking the adjoint,
they are equivalent and the proof is completed. O

Remark 1.4.3. A posteriori, conditions (1.4.16) and (1.4.25) imply that the linear operator (1.4.11)
has form (1.4.27) and, in particular, is self-adjoint, i.e., imply condition (1.4.14).

Remark 1.4.4. The above proof can be modified to hold in the case when (1.4.25) is (seemingly)
weakened to allow only orientation preserving unitary matrices U. All that needs to be done in the
latter case is to employ the invariance of D under conjugation by Ugye,Usyjo Wi .jo (With ko, o # 1)
in place of conjugation by (the inversion) U;,;, Wi, j, as in the original proof.

We are now ready to derive the Lamé equations of elasticity on a hypersurface.

Theorem 1.4.2. On a smooth, closed hypersurface . in R™, modeling a homogeneous, linear, iso-
tropic, elastic medium, the Lamé operator Ly is given by

Ly =—-AV.y divy +2uDefy,Defy = A divy divy +2u Def’y Defy . (1.4.32)
In particular, Ly is a formally self-adjoint differential operator of second order.

Proof. According to the discussion in the first part of this section, the elasticity tensor in the case of
linear, isotropic, elastic medium is given by (1.4.27), where A, p are the Lamé moduli. Applying the
following properties of the trace

Tr(A+ B) = Tr(A) + Tr(B), Tr(A")=Tr(4), Tr(AB) = Tr(A)Tr(B),
(A+ AT, A)=Tr[(A+AT)AT] = % Tr [A% 4 2447 + (AT)?)% = % Tr(A+ AT),
which are easy to verify directly, due to (1.4.10) the stored energy density is of the form
E(A) = (TA, A) = ATr(A)T 4+ u(A+ AT), A)
= ATr(A)(I, A) + p(A+ AT, A) = A (Tr A)? + g Tr (A+AT)?). (1.4.33)
Further, by inserting A := 2°U in (1.4.33) and recalling (1.3.37), we get
E(z,2”7U(x)) = A(divy U)*(z) + 2u{(Defs» U)(z), (DetsU)(x)), (1.4.34)

by (1.4.18) and since the trace

1(VoU) = Z@ hj =dive U (1.4.35)
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is the divergence and is independent of a basis {h;}}_;. Thus, we are led to the variational integral

EU| = / [/\ (divy U)? + 2u (Def» U, Def s U>] do, U € w(Y). (1.4.36)
7

To determine the associated Euler—Lagrange equation, for a smooth and compactly supported vector
field V € w() (N CL(#) we compute

d
ZEU )| = 2/ [\ divy Udivey V + 24 (Def, U, Def» V') do.
t=
8%
By applying the formulae divy, = —V.o (see (1.3.37)), we get

%é"[U—I—tV]‘ .= 2/((—)\ V. divy +2uDefyDef»)U, V) do = 2/($yU,V> do =0. (1.4.37)
t=

& 3
Since the vector field V' € w() (N CL(#) is arbitrary, from (1.4.37) it follows that the displacement
vector field U satisfies the equality £+ U = 0.

The fact that the operator L = X div’y, div.y +2u Def’y, Def» is formally self-adjoint is obvious
from its structure:

(Z+U, V), =N(divydive U, V), + pu(Defy, Defo U, V), = (U, L5 V) . O

1.5 The surface Lamé operator and related PDO’s

The present section deals mostly with the identification of the deformation tensor
1

Dety (U)(V, W) := 5

{<a€,’U, W)+ (95U, V>}, YU, V,W € w(), (1.5.1)

and the Lamé operator (1.4.32).

Theorem 1.5.1. For the deformation tensor and the Lamé operator on . the following identities
are valid:

Defy(U) := [D,,(U)] (1.5.2)

nxn’

[ ; 1 :
2ir(U) =5 [(Z7U) +(27V);] = 5 [2;Uk + DU + Ou (vjv)], Gk =1,...,n, (1.5.3)

9,,U) = % 22,U; + 0uvi] = 2;U; +viouvy,, j=1,....n, (1.5.4)

[Defo (U)]" = Defy(U) and Defy (U)v =0, (1.5.5)
Ly =punsViy Vo + A+ p) Vo Vi — u oWy

= ungAgy — AN+ p)Vodivy — u W . (1.5.6)

Proof. Given the local nature of the identities we seek to prove, it suffices to work locally, in a small
open subset & of ., where an orthonormal basis Ti,...,T,—1 to w(#) has been fixed. We extend
the basis by the outer unit normal vector field T}, := v so that {7} }1<,;<, becomes an orthonormal
basis for R™, at points in 0.

Since Def»(U) is a linear operator (see (1.5.1)), it is represented by an m x n matrix in the
fixed basis {T}}1<j<n and the first equality in (1.5.2) follows. The symmetry property of the matrix,
recorded as the first equality in (1.5.5), follows from (1.5.1), since interchange of vector fields V' and
W does not affect definition (1.5.1).

For a tangent field U to . with supp U C & and arbitrary V., W € R" we have

WU =07 U, (0JUW)=(07 yU,1sW)

T TV
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and, by the definition of the deformation tensor (cf. (1.5.1)), we obtain
(Def o (U)V, W) := Def o (U)(r5V,15W), YV, W € R". (1.5.7)

Equality (1.5.7) implies the second equality in (1.5.5). Applying (1.4.18) and (1.4.6), we eventually
obtain the second equality in (1.5.2):

D(U) =

1 1
5 (ZTU); + (2] U] = 5 [2U; + 23U + 0u (vjwi)]

= % [QkUj + 2;Uy + ZUT(er/k)I/j + ZUT(@N/]')VI@].
r=1

= r=1

Equality (1.5.4) is a particular case of (1.5.3).
We proceed with the proof of the last remaining equality (1.5.6). If V' is also a smooth vector
field, tangent to ., applying (1.5.2) we get

/ (Def, Def (U, V) dor — / (Def (U, Def (V) do
57

>~

5
/ [.@kUJ + @jUk + au(l/jl/k)] [.@kV] + @ij + av(l/jl/k)] do. (1.5.8)
7

:‘Z

n
Jk=1
Next, consider

> /(@jUk + DUNDVie + V) do =2 > /@;(%Uk + D U;) Vi do
Jk=1% Jk=1g

=2 Z /{_Vk‘@?U’C —Ve2;2:U; — *%ﬂ.ﬁg’yj(-@jUk)Vk — %;uj(@kUj)Vk} do
Jk=12%

_ _2/<AyU, Vido -2y /[Vk@j@kUj +%;uj(@kUj)Vk} do, (1.5.9)
7 Jk=1g
since > v;%; =0 on 7.
=1

J
To proceed in the second integrand in (1.5.9) we employ the commutator identity from Lemma

1.3.3.ix and recall that the fields U and V are tangent to write
Z /Vk.@j.@kUj do = Z / [Vk.@k.@jUj + Vk[.@j, .@k]Uj] do
k=13 k=13

= /<V§ﬂdiV5ﬁU, V> do + Z / [Vkl/j@kvl — Vka@le]@lUj ds
j,k,l:ly

I
N N— N &

<VydiVyU7 V> do + Z /Vk(@kyl)[@l(l/jUj) — (@ﬂ/j)Uj] do
j7k,l:1y

(VodivyU,Vydo - Y / (D) (0yv)U; Vi do
Jkl=1%

(VodiveU,V)do — /W;U,w do (1.5.10)
7
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n

on &, because Y v;U; = > vV =0 and, due to (1.3.19),
j=1 k=1

n

Z 8le alV] U Vk = Z (alUj)Uj(aij)Vk = <WyU,WyV) = <W;U, V)
7,lk=1 J,l,k=1

For the third integrand in (1.5.9) we use Lemma 1.3.1(i) and the fact that the field U is tangent:

Z /%yuj (DU Vi do

7, k= ly

a0y /Vk[@k(ijj)—(@kuj)Uj} daz/%gwyv, Vido. (15.11)
jk=12%

&
At this point we may, therefore, conclude that
Z /(@jUk + 2.U;) (D Vie + D V) do
k=12
= 2/<—AyU—vydiVyU+W;U—%;WyU, V) do. (1.5.12)

S

We now proceed to analyze the remaining terms in (1.5.8). More precisely, we still have to take
into account the terms containing either Oy (vjvy) or Oy (vjvy). We start with the identity

n

Z (@kU @V I/]I/k = Z I/k @kU @VV] + Z @Vuk [@k(l/] ) U, gkl/j]

J,k=1 7,k=1 7,k=1
=— Z (Dvin) (Do) = —(W2U,V), (1.5.13)
kj=1
valid at points on ., because Z v, =0, Z v;U; = 0 and Zyv; = Z;vy. There are four such terms

in (1.5.8), i.e., containing elther Pu (vvi) or @V(V] V). An inspection of the above calculation shows
that, on .%, they are all equal to —(#2U,V).
We still have to compute the last integrand in (1.5.8):

n

. G Dv(vim) = Y (U Devy)vi + Un(Devi)vs] V(D vi + Vil D) v )
Jk=1 Jok,ril=1

n

1 n
=2WZUV)+2 Y U Zm)Vine 5 @l(Z(yj)Q) —2W2U,V)
j=1

k,r,l=1

on .. At this point we combine all the above to get

/(DefyDefy( do =4 Z /ij V)do

4 j.k= 1y
= 2/<—AyU —VodiveU — A9 WU, V) do, (1.5.14)
S

since (W, V) = (oW, V) for a tangent vector field V' and an arbitrary vector field W. Also we
have applied that the vectors V »divU and # U are tangent. Thus,

4Deff,Defy = 210 Ay — 2V o divy —2H9W 5, (1.5.15)
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since the tangent vectors fields U, V are arbitrary.
The first identity in (1.5.6) now easily follows from (1.5.15) and (1.4.32). Then the remaining
identity in (1.5.6) follows from what we have just proved and from Theorem 1.3.1. O

Next, recall the definition of the Hodge-Laplacian acting on 1-forms, i.e.,
Ayp=—-d7d* —d%d”  ANw(S) = AMw(Y), (1.5.16)

where d is the exterior derivative operator on .7, and d’, is its formal adjoint. As explained in
Section 1.3, 1-forms on . are naturally identified with tangent fields to .#, so, from now on, we shall
think of Ay as mapping w(.¥) into itself.
As pointed out in Section 1.3, the Hodge-Laplacian (1.5.16) is related to the Bochner-Laplacian

on .

App = —(V7)'V7 (1.5.17)
via the Weitzenbock identity

Apr = Apgr + Rice. (1.5.18)

Our aim is to find alternative expressions for all these objects, starting with the Ricci curvature tensor.
The Ricci curvature Ricy on .7 is a (0, 2)-tensor defined as a contraction of Riemannian curvature
tensor R o:

n n
Ricy (U,V) =Y (Ry(h;,V)U,h;) => (Roy(V,hj)h;,U), YU,V € w(5), (1.5.19)
Jj=1 j=1
where hy, ..., h, is an orthonormal basis (of unit vectors) in w(.’). Thus, Ric & is a symmetric bilinear

form.

Theorem 1.5.2. For the Ricci tensor Ricy (cf. (1.5.19)) on .7 there holds
Ricy = —W 5 + AW . (1.5.20)

In particular, when n = 3, i.e., for a two-dimensional hypersurface .7 in R3, the above identity reduces
to
Ricy = —det #o = —H o, (1.5.21)

where Ky is the Gauf$ian curvature of the hypersurface & .

Proof. The Riemannian curvature tensor R of . is given by
Ry (U, V)W = (05,07 |W = 0i; /W, U, V,W €w(s), (1.5.22)

where [U, V] := 0yY — 0y U is the usual commutator bracket. It is convenient to change this into a
(0,4)-tensor by setting

R, (U V,W,Z):= (Ry(UVIW,Z), UV ,W,Zcwl). (1.5.23)

Since R™ has zero curvature, it follows from Gauf’s Theorema Egregium that if X, Y, Z, W are
tangent vector fields to ., then

(Ry(U, VYW, Z) = (I14 (U, Z),11(V,W)) — (I1(V, Z), 115U, W)) (1.5.24)

(see, e.g., [130, Vol. II, p. 481]). By inserting the second fundamental form II»(U,V) = (OpV —
o V,v) = (0uV,v) (cf. (1.3.16)), we obtain

(R (U, VYW, Z) = (0uZ,v){(O0vW,v) — (OvZ,v)(0uW,v)
= (Z,0uv)(W ,0vv) — (Z,0yvv) (W, 0yv)
— (RyZ,U)(RyW,V) — (RyZ,V)(RyW,U). (1.5.25)
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For the second equality in (1.5.25) we have used the fact that U, V, W, and Z are tangent, so, in
particular, 9y (W ,v) =0, Oy (W, v) =0, 0y (W,v) =0, and Oy(W,v) =0 on .¥.
Next, recall from (1.5.19) the definition of the Ricci tensor, i.e.,

n—1
Ricy (U, V) =) (Ry(h;,V)U,h;),
1

J
where hy,...,h,—1 i, locally, an orthonormal basis in w(.¥), and U, V are arbitrary tangent vector
fields to .. If we set h,, := v and employ (1.5.25) together with #»v = 0, we obtain

n—1 n

S (R (T3, VIUTy) = 3 [(Ro T3, T;)(RoU, V) — (RT3, V)(RU.T;)]

j=1 j=1

— _#%R,U,V) <RyV Z L R,U)T >f ((WE+ AUV, (1.5.26)

which takes care of (1.5.20).
Finally, (1.5.21) is a consequence of what we have proved so far in Lemma 1.3.2(ii), and the
elementary identity A2 — (Tr A)A = —(det A)I, valid for any 2 x 2 matrix A. O

Lemma 1.5.1. Let H := {h;}7_,, |h;j| =1, be a basis in n-dimensional Banach space B. Consider
the hyperspace B, = {u € B : (u,v) = 0}, orthogonal to some vector v € B, |v| # 0. Consider the
system

hji=h;—vv, vi=wh), j=1,...,n, (1.5.27)
which is full in B, but linearly dependent, and thus cannot be a basis. Nevertheless, for a linear

operator A = [ajk]an : B — B with Av = 0 and AB, C B, (i.e., B, is invariant under A), we
have

~

A= [ajk]an - [ajk]an = A, (1528)
where A = [ajk]nxn is the matriz representations of A in the linearly dependent systems H =

{hi}i—y CBy.
Proof. Let us note that
n n
Zajkyk = Zaijk =0 forall j=1,...,n,
k=1 k=1

where the first equality is equivalent to Av = 0 and the second one to (v, A§) = 0 for all £ € B.
Applying the obtained equalities we find that

n n n n
Ahj = Ahj — l/jAl/ = E akjhk = E akjhk + E agj VRV = E akjhk,
k=1 k=1 k=1 k=1

which entails ax; = a;. 0
Theorem 1.5.3. The following identities are valid:
Apr =79 Ay + W2, (1.5.29)
AHL:T(yAy—i—QW;—%;Wy. (1530)

Proof. In order to identify the Bochner-Laplacian operator A gy, on ., we observe that, with tangent
field U fixed, if the matrix Defy (U) satisfies (Defo(U)V, W) = (07 , U, 75 W) for each V, W ¢
R™, then, much as in the proof of Theorem 1.3.1,

Dr(U) = (Defy (U)ek,e/) = (05U, ;) = BU; = > vivy Ti(Uy). (1.5.31)

r=1
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On account of this we can now write

/<(vy)*va, V) da:/<va,v5’v> do =Y /<V§U,Tk><v§V,Tk>da
S R j,k:ly
-y / (Def» (U)T;, Ti) (Det o (V)T Ty do = 3 / 0,4 (U)D,1(V) do
Jk=1% Jk=1g

=y / {@kUj@ij = iU DV =Y vim DU, BVi+ Y yry,@kUT@le} do
Jk=1% r=1 =1 ril=1
=> / [(_@;@kUj)Vj - ZUrvj(akur)(aWj)} do = /( ~AyU —~W2U,V)do. (1.5.32)

Jk=12 r=1 32

In the next-to-the-last equality, we have applied the following identity to the terms under the integral
sign in the fourth line above:

zn: v D W, = %(i vW,) - zn: W, v, = — i: W,0,v, on 7, (1.5.33)
r=1 r=1 r=1 r=1

which is valid for any tangent vector field W and any index s € {1,...,n}. In turn, identity (1.5.33)
can be seen from a direct computation (recall that 9,v, = 0 on .¥). Finally, to justify the last equality

in (1.5.32), it suffices to recall (1.3.38), (1.3.56) and the fact that Y v, % = 0.
k=1

The conclusion is that (1.5.29) holds. Finally, identity (1.5.29) in concert with (1.5.18) and (1.5.20)
implies (1.5.30). O

Recall now from [71, Note Added in Proof, pp. 161-162], [129] (cf. also the remark at the end of
this paper), and [130, Volume III], that the Navier—Stokes system for a velocity field U, tangent to
7, and a (scalar-valued) pressure function p on .# reads:

8—U—2Def}Defy(U)+8gU—Vyp:f in . x (0,00),

ot (1.5.34)

diveU =0 in 7.

If . is embedded in R™ and the Riemannian metric is inherited from R"”, a directional derivative
OJu along a tangent vector field U € w(¥) maps the space of tangent vector fields to the space of
possibly non-tangent vector fields

oy :w(Y) = w().

If composed with the projection
8[‘5;V =7me0uyV =0y V — (v,0uV)v (1.5.35)

(cf. (0.0.8)), it becomes an automorphism of the space of tangent vector fields. Such derivatives are
compatible with the Riemannian metric on .% and are torsion-free as well. Therefore, they represent
the natural Levi-Civita connection on ..

Theorem 1.5.4. The Navier—Stokes system (1.5.34) is equivalent to

U
3—+35U+WyAyU+%;WyU—vyp=f in .7 x (0,00),

ot (1.5.36)

dive U =0 in 7.

Proof. This is a direct consequence of (1.5.15) and (1.5.35). O
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1.6 Lions’ lemma and Korn’s inequalities

For 1 < p < oo, an integer m = 1,2,... and a closed C™*!-smooth hypersurface .#, by W;”(Y)
W () := Wg'(#) for p = 2) we denote the Sobolev spaces. The space W () is defined as the
dual to W3 (%), p := E5 , with respect to the sesquilinear form (¢, v) 5 (cf. (1.3.53)) on functions
¢, € C™(S) and extended by continuity to pairs ¢ € Wi(7) and ¢ € W, (7).
The embeddings W' () C L,() C W™ (%) are continuous, even compact, and
W () = {@“gp : pelLy(S) forall 2% =97 -5, |a| = m}.
If . is an open surface with the Lipschitz boundary I' = 0. # @, W?(Y ) denotes the space
of functions obtained by closing the space C§° () of smooth functions with compact support in the

norm of W'(.’), where . O .# is a closed surface which extends the surface .#. The notation
W7H() is used for the factor space W?(%/W?(y\ ); the space W'(7) can also be viewed as

the restriction of all functions gp’y, of the space W' (.7) to the subsurface . (cf. [133] and [67] for
details about these spaces).

The following generalizes essentially J. L. Lions’ Lemma (cf. [129], [4, Proposition 2.10], [23, § 1.7],
[110]).

Lemma 1.6.1. Let . be a 2-smooth closed hypersurface in R™. Then the inclusions ¢ € W;l(y),
Do € W () forall j=1,...,n imply p € Ly(7).

Moreover, the assertion holds for a hypersurface . with the Lipschitz boundary T :== 0. and the
spaces W, 1 (.7) and szl(f)

Proof. First, we assume that .# is a closed surface. The proof is based on the following facts from
[67,88,130], which we recall without proofs.

A. There exists a “lifting operator” (a Bessel potential operator) A(2, D), which maps isometri-
cally the spaces

AN (2, D) : W) = W), A(2,D): W) — Wi H(S) (1.6.1)
for arbitrary m = 0,£1,... and has the inverse A~!(2, D).

B. A7!(2, D) is a pseudodifferential operator of order —1 and the commutant
(2;,A""(2,D)] :== 2;A"*(2,D) — A" (2,D) 2, (1.6.2)
with the pseudodifferential operator &; has order —1, i.e., maps continuously the spaces

[2;, A" (2,D)] : W 1(7) = L,(~).

P

Let ¢ € W;l(f), Do € W, () for all j =1,...,n. Then, due to (1.6.1), ¥ := A Y (2,D)p €
L,() and, due to (1.6.2), Zj1) = [2;,A" (2, D)]p + A~ (2,D)P;0 € L,(#) forall j =1,...,n.
From the definition of the space W) (.#) it follows that ¢ € W}(#). Due to (1.6.2), we finally get
¢ =A(2,D)p € Ly(S).

If . has non-empty Lipschitz boundary I'" # &, there exist pseudodifferential operators

AZH (2, D) : W () — W),

X N o (1.6.3)

ATz, D): Wi (S) = Wi (o)
arranging isomorphisms between the indicated spaces and having the inverses A™! (2, D), Ail(%, D)
(cf. [67]).

Moreover, the pseudodifferential operators AI'(27, D) have order —1 and the commutants
(2;,A{"(2,D)] :== 2;A;" (2, D) — AL'(2,D)%; have order —1, i.e., map continuously the spaces
W, () = Lp(S).

By using the formulated assertions the proof is completed as in the case of a closed surface .. O
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The foregoing Lemma 1.6.1 has the following generalization for the Bessel potential spaces ]ﬁl;(ﬁ’ )
and H () (see [133] and [67] for details about these spaces).

Lemma 1.6.2. If . is closed, sufficiently smooth, 1 <p < oo, s€ R, m=1,2,... and
e H;—M(y)’ D% = glal ... 93n<p c H;—m(y) for all ‘al <m,

then ¢ € H (7).
Moreover, the assertion holds for a hypersurface . with the Lipschitz boundary I' := 0.7 and the
spaces H3(7) and H3 (7).

Proof. Assume first that . has no boundary. The proof is based, as in the foregoing case, on the
following facts from [88,130,133], which we recall without proofs.

A. There exists a “lifting operator” (the Bessel potential operator),
A («,D): HZ(%) — Hffr(ﬂ), r eR, (1.6.4)

which arranges isomorphism between the indicated spaces and having the inverse A~" (2", D).

B. A"(2, D) is a pseudodifferential operator of order —r and the commutant
(29 A (2,D)] == 2N (2,D) — A"(2,D)2° (1.6.5)

with the pseudodifferential operator 2% = 2" -+ - 22~ has order |a| + r — 1, i.e., maps continuously
the spaces H)(.7) — H) ™1 (), vy e R

Assume that m = 1. Then ¢ € H™'(.¥) and, due to (1.6.4), (1.6.5), it follows that ¢ :=
A (2, D)p € Lp(F), 250 = (25, A5, (2, D)o + A, (2,D)Zp € Lyp() for all j = 1,....n.
By the definition of the space W} (%) we conclude that 1) € W.(.#). Due to (1.6.2), we finally get
@ =A"%(2,D) e H}(.Y).

Now assume m = 2,3,... and the assertion is valid for m — 1. Then, due to the hypothesis,
Vi = Djp € By~ () for j = 1,...,n. Moreover, due to the same hypothesis,

DY = DY e Hy () forall [a]<m—1 andall j=1,...,n

Hence the induction hypothesis implies that 1; := Z;¢ € H5~'(.) for j = 1,...,n. Now from the
already considered case m = 1 it follows that ¢ € H ().
If . has non-empty Lipschitz boundary I" # @, there exist pseudodifferential operators

A" (2,D) :Hy(S) - H"(F), AL(2,D) H(Y) - H"(F) (1.6.6)

arranging isomorphisms between the indicated spaces and having the inverses AZ" (2, D), AL" (2, D)
(ct. [67]).

Moreover, the pseudodifferential operators A" (2, D) have order —r and the commutants
[2°,AL"(2,D)] := 2°A'(2,D) — AL"(2,D)2° have order |a| —r — 1, i.e., map continuously
the spaces H)(.") — Hy el (.,

By using the formulated assertions, the proof is completed, as in the case of closed surface. O

Theorem 1.6.1 (Korn’s I inequality “without boundary condition”). Let ¥ C R™ be a Lipshitz
hypersurface without boundary, Defs (U) := [D5(U)]nxn be the deformation tensor

1 1 =
@jk(U) = 5 [-@kUj + ngk + 6u(l/j1/k)] = 5 [@kUj + .@jUk + Z Um.@m(l/jl/k)}

m=1

(¢f (1.5.2)) and

[Def o (U) | Ly(#)|| := [ 3 o) |1Lp(y)|\P]1/p, U e W'(s), (1.6.7)
G k=1
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for1 <p<oo. Then

JU W < M [T | L] + et @) | Ly()] (16.8)
for some constant M > 0 or, equivalently, the mapping
U [l | LA + Dt @) | L) ] (1.6.9)
defines an equivalent norm on the space WL(.5).
Proof. Consider the space
W() = {U = (U1,...,U)T : U, @(U) € L,(.#) forall j,k = 1n} (1.6.10)

which is obtained by closing the space of smooth functions C1(.#) with respect to the norm (cf. (1.6.8)
and (1.6.9)):

[U[F)| = (UL + [Detr @)Ly ] (16,11

It is obviously sufficient to prove that the spaces W,(.#’) and W;(Y ) are identical, which means
that the norms in these spaces are equivalent.

The inclusion W) (%) C W;,(Y) is trivial, because the inclusion U € W} () (which means
Uj, 2:.U; € Lp(&) for all j,k=1,...,n) and the equalities (see (1.5.4))

n

1 1 .
j(U) = 5 [%U; + Z;Ux] + 5 > owm)Ur €Ly(#) jk=1,...,n (1.6.12)

r=1

imply that Dz (U) € L,(.) for all j,k =1,...,n and validate the inclusion W}(.%) C Wll,(y)
To prove the inverse inclusion W},(Y ) C W, () we assume U € W;,(Y ), apply the formulae for
the commutators [Z;, 2] from [64, Proposition 4.4.iv]

(9, 9], =

[Vj@kl/r — ngjz/r]@rUm c H;l(Y), L k=1,...,n

r=1

and find out that

~ ~ 1
@jUk S H;l(y), @k@ij = @j@km(U) + @kgjm(U) — @mgjk(U) — 5[93‘, @k]Um

3125, 2] U~ (%0, 2,]U; € B () forall jkm=1,..n,

because, by the assumption, U;, ©;,(U) € L,() for all j,k = 1,...,n. Due to Lemma 1.6.1 of
J. L. Lions this implies 2;U,, € () for all j,m = 1,...,n and the claimed inclusion U € W}(.%)
follows. O

Remark 1.6.1. The foregoing Theorem 1.6.1 is proved by P. Ciarlet in [23] for the case p = 2, for
curvilinear coordinates and covariant derivatives.
A remarkable consequence of Korn’s inequality (1.6.8) is that the space

W(.7) = {U:(Ul,...,Un)T: U;, 24U; € Ly(#) for all j,k:l,...,n}

and the space W;(&”) (cf. (1.6.10)) are isomorphic (i.e., can be identified), although only w < n?
linear combinations of the n? derivatives Z;Uy, j,k = 1,...,n, participate in the definition of the

space I?]Izlj (A).
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1.7 Killing’s vector fields and further Korn’s inequalities

Definition 1.7.1. Let . be a hypersurface in the Euclidean space R™. The space Z(.¥) of solutions
to the deformation equations

1, 5 1 -
Djr(U) i= 5 (27 U+ 2 U] = 3 [@kUj + Uk + > Umgm(yjyk)] =0, (1.7.1)

m=1
U=> Uid cw), jk=1,...,n,
j=1
is called the space of Killing’s vector fields.

Killing’s vector fields on a domain in the Euclidean space 2 C R™ are known as the rigid motions
and we start with this simplest class.
The space of rigid motions Z(f2) extends naturally to the entire R™ and consists of affine vector-
functions
V(z)=a+ Bz, PB=[bjrlnxn, a€R"” zcR", (1.7.2)

where the matrix £ is skew symmetric

0 b12 b1z e b2y bin-1)
—b12 0 ba1 s bignezy  bam—2)
B | =-A" (1.7.3)
—bi(n—2) —ban-3) —b3n-a) --- 0 bin—1)1
=bi(n-1) —ban-2) —b3n-3) -+ —Dbm-1) 0
with real-valued entries b;, € R. For n = 3,4,..., the space Z(R") is finite-dimensional and
dim Z(R") = n + 2 = 2t
Note that for n = 3 the vector field V € Z2(Q2), Q C R3, is the classical rigid displacement
0 —bs b
V(z)=a+PBr=a+bAx, b:=(b,bo,b3) €R3 z€Q, B:=|b3 0 —b|. (1.7.4)
—by by 0
Definition 1.7.2. We call a subset .# C R™ essentially m-dimensional and write essdim .Z = m
if there exist m + 1 points 20, 2°%,..., 2™ € .# such that the vectors {27 — %O};”zl are linearly
independent.

Note that any m-dimensional subset .# C R™ is essentially m-dimensional, because contains
m linearly independent vectors. Moreover, any collection of m 4+ 1 points in R™ is essentially m-
dimensional, provided that these points do not belong to any m — 1-dimensional hyperplane.

Lemma 1.7.1. The operator

Def(U) := [D,4(U)]

1 n )
wnr Din(U) = 5 (0T + 0, Ux], U = > Ujel, (1.7.5)
j=1
is the deformation tensor in Cartesian coordinates.
The linear space Z(R™) of rigid motions (of Killing’s vector fields) in R™ consists of vector fields
K = (Ky,...,K,)" which are solutions to the system

291 (K)(z) = OpKj(z) + 0;K(x) =0, x €. forall j,k=1,...,n. (1.7.6)
If a rigid motion vanishes on an essentially (n — 1)-dimensional subset K(27) = 0 for all 2 € A,

essdim.#Z = n — 1, or at infinity K(z) = (1) as || — oo, then K vanishes identically on R",
K(z) =0.
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Proof. By differentiating (1.7.6) and recalling that 0,0, K; = 0,01K;, we get
ajaka = 8j@km(K) + 8k©jm(K) — 8m©jk(K) =0 forall j,k,bm=1,2,...,n—1.

Therefore,
Kj(z) =a; +bjiz1+ -+ bjpzn, j=1,2,...,n,

or
K(z) =a+ Az with B = [bjr]nxn. (1.7.7)

From (1.7.6) we derive that & is a skew symmetric matrix (cf. (1.7.3)):
0jKi(z) = —0pK;(2) =0 = bj, = —byy, jk=1,2,....n = B=-B'.

The inclusion K € Z(R") is proved.
The inverse statement that any vector field K € Z(R™) (of the form (1.7.2)) is a solution of the
system (1.7.6), is easy to verify.

Let us prove the second assertion: for any linearly independent vectors x°

,..., 2" ! the condition
Kz") =0 = a+ %" =K(z") =0 (1.7.8)

implies ¢ = 0 and & = 0, i.e., K(z) = 0 for all x € R™. Indeed, if = 0, then, obviously, a = 0.
Accepting Z # 0, for rank of & we have the estimate 2 < rank B < n (if Z # 0, then, due to the
symmetry % = —2% ", there exists a non-degenerate minor of order at least 2). On the other hand,
from (1.7.8) it follows

Bk — 1% =0, Vk=1,...,n—1,

which contradicts the estimate 2 < rank 8 < n, since {z! —2°,..., 2"~ 1—2°} are linearly independent.
If a rigid motion K(z) in (1.7.7) vanishes at infinity K(z) = (1) as |z| — oo, then, obviously,
a =0, % =0 and, therefore, K(x) = 0 for all z € R™. O

Remark 1.7.1. For the deformation tensor in Cartesian coordinates Def(U) (cf. (1.7.5)) in a domain
Q C R™ Korn’s inequality
1 P p] /P
[T 1 w@)]| < MU L))" + | Def@) | Ly@)["] 7, 1<p <o, (1.7.9)

with some constant M > 0 is well known and is proved e.g. in [21] (cf. (1.6.7) for a similar norm).

In contrast to the rigid motions in R", Killing’s vector fields on hypersurfaces nobody can identify
explicitly so far. The next Theorem 1.7.1 underlines importance of Killing’s vector fields for the Lamé
equation on hypersurfaces. Later, we investigate properties of Killing’s vector fields to prepare tools
for investigations of boundary value problems for the Lamé equation.

Theorem 1.7.1. Let . be an £-smooth closed hypersurface in R™ and ¢ > 2. The Lamé operator
Lo for an isotropic hypersurface
Ly HT(S) - HH(S), (1.7.10)
fyUZ/MTydiVy VU + ()\“!‘M)vydiVyU-i-u%;WyU,
is self-adjoint L%, = L, elliptic, Fredholm and has the trivial index Ind L5 =0 for all 1 <p < 00
and all s € R, provided that |s| < L.

The kernel of the operator Ker Lo C Hy () is independent of the parameters p and s, coincides
with the space of Killing’s vector fields

Ker 5 = {U cw(Y): LyU =0} = 2(5), (1.7.11)

and is finite-dimensional dim Z(.) = dimKer £ < oc.
If .7 is C*°-smooth, then Killing’s vector fields are smooth as well, (%) C C*(7).
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L is non-negative on the space H'(.7) and positive definite on the orthogonal complement HY, (%)
to Z(.7) in HY(S):

(ZL#U,U) ., >0 forall UeH(7), (1.7.12)
(LU, U), > C||U |H(S)|? for all U e Hy(.7), C > 0. (1.7.13)

Moreover, the following Gaarding’s inequality
(Z7U,U), 2 CUHNS)|? ~ CollUH ()| (1.7.14)
holds for all U € H'(.%), with any —1 < r < £ and some positive constants Cy > 0, C; > 0.

Proof. (cf. [57, Theorem 3.5]). Let us check the ellipticity of .Z». The operator .Z» maps the tangent
spaces and the principal symbol is defined on the cotangent space. The cotangent space is orthogonal
to the normal vector and, therefore,

Lo, On=pléP(L—vv )+ A+ & n=pl¢Pn+ A+ &y, V&0 Lo

Thus, while considering the principal symbol £« (2, ), we can ignore the projection 7.s. With this
assumption, the principal symbol of £y reads as

Loy (2,6) = plé* + A+ p)ee’ for (2,6) e T(S). (1.7.15)

The matrix Lo (2, ) has eigenvalue (A + 2u)|€|? (the corresponding eigenvector is £) and eigenvalue
w|€|? with multiplicity n—1 (the corresponding eigenvectors 67 are orthogonal to &: ¢767 = (£,67) = 0,
j=1,...,n—1). Then

det Ly (2,€) = A+ 2) e [lel2]" " = " A +20) > 0 for (2,6 € T(), |¢] =1

and the ellipticity is proved.

The ellipticity of the differential operator Zs in (1.7.10) on a manifold without boundary .,
proved above, implies Fredholm property for all 1 < p < oo and all s € R. Indeed, £» has a
parametrix R (2, %), which is a pseudodifferential operator (?DO) with the symbol R (2,§) =
X(€)ZL, (2,€), where £, (2, €) is the inverse symbol of £ and y € C*(R") is a smooth function,
x(&) =1 for |£] > 2 and x(§) = 0 for || < 1. ¥DO Ry (2,2) is a bounded operator between the
spaces

Ry(2,9) : H3 () - H) () forall 1<p<oo, s€R,

because the symbol Ry (2,€) = .Z,"(2,€) belongs to the Hormander class S~2(.7,R")
7°0; Ror(2,6)| < Ca e >17!

for all multi-indices a, 8 € Z7 (cf. [88,126,130] for details).

The Fredholm property for the case p = 2 and s = 1 follows from Garding’s inequality (1.7.14) as
well (cf. [89, Thorem 5.3.10] and [110, Thorem 2.33]).

The Fredholm property implies that the kernel is finite-dimensional dim Ker £ (2, 2) < oc.

To prove that the index is trivial Ind Zo(2,2) = 0 for all 1 < p < o0, s € R, note that the
symbol Lo (2,&) is positive definite (cf. (1.7.15))

(Lo (2,6)m,m) = plePnl* + A+ (€ n,m) = wléPnl® + A+ 1) D (&my)?

j=1n
> plélPnl?, Vo es, VEneR™ (1.7.16)

Further, recall that the Bessel potential operator A%, (2, D) : H(5) — H3 () (cf. (1.6.1))
lifting the Bessel potential spaces, also has positive definite symbol

(A (2,8n,m) = ClEPIn? Vzes, VEneR” (1.7.17)
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(cf. [67]). Now consider the symbols Z,(2,&) = (1-7).Ly(2,£)+7A%L(2,€) and the corresponding
vDO
B(2,2)=(01-1)Zy(2,2)+ 700 (2,2) : Hy(S) = H2(S). (1.7.18)

Obviously, B, (2, 2) is a continuous (with respect to 0 < 7 < 1) homotopy connecting the operator
Bo(2,2) = L#(2,2) with Bi(2,2) = A% (2, 2). Since the symbol %, (2, ) is positive definite

(B (2,6)n,m) > 1 —1)p+7CYEP N VEneR”

(cf. (1.7.16) and (1.7.17)), it is elliptic and the operator B, (2, 2) is then Fredholm for all 0 < 7 < 1.
Then Ind L5 (2,2) = Ind Bo(2,%) = Ind Bi(2,2) = Ind A% (2,2) = 0, since the operator
A% (2, 9) is invertible.
From representation (1.4.32) it follows that the bilinear form (Z»U,U) . is non-negative
(Z+U,U), = N(divy dive U,U) , + 2u(Def'y Def» U, U)

= M| divy UlLo(2)|° + 24| Def s U[Lo(#)||* > 0 (1.7.19)

(cf. (1.7.12)) and vanishes (i.e., U € Ker .Z) if and only if
Def(y U= 0, diVy U. (1.7.20)

Thus, Ker .Z» C Ker Defy = Z(.7).
But the first equality in (1.7.20) follows from the second one. Indeed, if Defs U = 0, then, in
particular, ©,;(U) = 2;U; + %8UV]2» =0,j=1,...,n (cf. (1.5.4)), and

divy U =Y 2;U; = —% Y oy =0yl =0u1=0, YUEeR(Y), (1.7.21)

Jj=1 Jj=1

since |v(2)|> = 1. Thence, due to (1.7.20), Z() = Ker Z%. This accomplishes the proof of
(1.7.11).

Estimate (1.7.13) is a direct consequence of (1.7.12) and of (1.7.11): since the operator .Zy is
Fredholm, self-adjoint and Ker .Zy» = Z(.), then also Coker .Z» = Z() and, therefore, the
mapping

Ly : Hy(S) — HZ' ()
is one-to-one, i.e., is invertible. The established invertibility implies the claimed inequality (1.7.13).

A priori regularity property of solutions to partial differential equations (cf. [88,130]) states that the
ellipticity of Ly (2, ?) provides C*(.)-smoothness of any solution K to the homogeneous equation
ZLo(2,2)K = 0, provided the hypersurface .7 is C*-smooth. Due to the embeddings Hy, () C
H5 (), s <7, p < g, the kernel Ker £ (2, 7) is independent of the space H?(.#) provided that
the spaces are well defined, which is the case if |s| < ¢ (cf. [1,44,65,92] for similar assertions).

In particular, the Killing’s vector fields Z(.¥) = Ker L (2, 2) are smooth Z(.) C C>®(Y),
provided the hypersurface . is C*°-smooth.

Let {K j};n:l be an orthogonal basis (K, K}) , = 0, in the finite-dimensional space of Killing’s
vector fields Z(.). Let

TU(z) := i (K;,U), K(z), 2ecZ. (1.7.22)

J=1

Due to the proved part, { K };7121 C C(.#) and the operator T is smoothing T : H™"(.%) — H" (%)
(is infinitely smoothing if £ = co). Then the operator

Ly +T : H(S) - H ()
is invertible and non-negative

(Zy +T)U,U),, = (LU, U), + i (K;,U)% >0

j=1
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(cf. (1.7.12)). This implies that £ + T is positive definite

(Zy +T)UU), > G ||[UHY(S)|

and we write
(Z+U,U), =((%»+T)U,U), - (TU,U),, > ClHU\Hl(Y)W - (TU,U),,
> Col|ufE' ()" - CoU [ ()],
which proves (1.7.14). O

Corollary 1.7.1. Let ¥ C R™ be a Lipshitz hypersurface without boundary, Def o (U) := [D 1 (U)]nxn
be the deformation tensor (see (1.4.9)). The norm |Def o (U) | Lo(.7)|| is defined by (1.6.7).
Then the following Korn’s inequality

|Defs (U) | Lo(2)|| 2 ¢|U | H' ()|, YU € Hy (), (1.7.23)

holds for some constant ¢ > 0 or, equivalently, the mapping U — ||Defs (U) | Lo(7)]| is an equivalent
norm on the orthogonal complement H%(&”) to the space of Killing’s vector fields.

Proof. Due to Korn’s inequality (1.6.8) for p = 2
U | Lo()[” > 2| U | B ()| = [Defr(U) | Lo()]*]

the mapping Defy : H, (#) — Lo(-#) is Fredholm and has index 0. Inequality (1.7.23) follows, since
the mapping is injective (has an empty kernel). O

Let us recall some results related to the uniqueness of solutions to arbitrary elliptic equation.

Definition 1.7.3. Let Q be an open subset with the Lipschitz boundary 02 # & either on a Lipschitz
hypersurface .# C R™ or in the Euclidean space R™ 1.

A class of functions % () defined in a domain © in R™ is said to have the strong unique
continuation property if every u € %(Q) in this class, which vanishes to infinite order at one
point, must vanish identically.

If a surface . is C*°-smooth, any elliptic operator on . has the strong unique continuation
property due to Holmgren’s theorem. But we can have more.

Lemma 1.7.2. Let ¥ be a W2 -smooth hypersurface in R™. The class of solutions to a second order
elliptic equation A(2, 2)u = 0 with Lipschitz continuous top order coefficients on a surface % has
the strong unique continuation property.

In particular, if the solution uw(2) = 0 vanishes in any open subset of 7, it vanishes identically
on entire ..

Proof. The result was proved in [8] for a domain 2 C R™ by the method of “Carleman estimates” (also
see [88, Volume 3, Theorem 17.2.6]). Another proof, involving monotonicity of the frequency function,
was discovered by N. Garofalo and F. Lin (see [78,79]). A differential equation A(2, Z)u(2) = 0
with Lipschitz continuous top order coefficients on a W2 -smooth surface . is locally equivalent
to a differential equation with Lipschitz continuous top order coefficients on a domain Q C R?~1.
Therefore, a solution u(2°) has the strong unique continuation property locally (on each coordinate

chart) on .7.
Since . is covered by a finite number of local coordinate charts which intersect on open neigh-
borhoods, a solution u(#) has the strong unique continuation property globally on .. O

Remark 1.7.2. If the top order coefficients of a second order elliptic equation A(2, Z)u = 0 in
open subsets 2 C R™, n > 3, are merely Holder continuous, with exponent less than 1, examples
due to A. Plis [116] and K. Miller [112] show that a solution w(z) does not have the strong unique
continuation property.
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Lemma 1.7.3. Let ¢ be a W2_-smooth hypersurface in R™ with the Lipschitz boundary T := € and
~v C T be an open part of the boundary T'. Let A2, D) be a second order elliptic system with Lipschitz
continuous top order matrix coefficients on a surface 7.
The Cauchy problem
A2, 2)u=0 on ¢, ueHY(Q),
u(s) =0 for all s € ~, (1.7.24)
(Ovu)(s) =0 forall s €n,

where the vector field V' is non-tangent to T', but tangent to ., has only a trivial solution u(2) =0
on entire <.

Proof. With a local diffeomorphism the Cauchy problem (1.7.24) is transformed into a similar problem
on a domain Q@ C R" ! with the Cauchy data vanishing on some open subset of the boundary
v CI':=0Q.

Let us, for simplicity, use the same notation v C I' = 992, V for a non-tangent vector field to
7, the function w and the differential operator A(z, %) for the transformed Cauchy problem in the
transformed domain 2. Moreover, we will suppose that v is a part of the hypersurface ;1 = 0
(otherwise we can transform the domain  again). We also use new variables t = z; and z :=
(z2,...,2n—1). Then (0,2) € v, while (¢,2) € Q for all small 0 < ¢ < ¢ and some = € .

Thus, the natural basis element e! (cf. (0.0.7)) is orthogonal to  and, therefore, e! = ¢1(z)V (z)+
co(z)g(z) for some unit tangent vector g(z) to «y for some scalar functions ¢ (), co(z) and all z € Q.
Then, due to the third line in (1.7.24),

(0ru)(0,2) = Oeiu(0, z) = c1(z)Ovu(0, z) + ca(x)dgu(0, ) =0,

since any derivative along tangent vector to 7 vanishes dqu(0, ) = 0 due to the second line in (1.7.24).
The second order equation A(t,z; Z) can be written in the form

A(t,z, D)u = A(t, ;€M) 0%u + A1 (t,z; D)Oyu + Ao (t,z; D)u, D := —id,,

where A(t,z;e!) is the (invertible) matrix function, A;(t,z; D) and As(¢,x; D) are differential oper-
ators of orders 1 and 2, respectively, compiled of derivatives 0., z € . Therefore, if A?(t,x; D) =
A~Y(t,z;e')A(t,z; D), j = 1,2, the Cauchy problem (1.7.24) transforms into

Q?u(t,x) + A(t, x; D)Owu(t, x) + AY(t,x; D)u(t,z) =0 on (¢,z) € Q,
u(0,2) =0 for all z €, (1.7.25)
(Oyu)(0,2) =0 for all x € V',

where €. := (0,¢) x ' C Q, v € H(.) and v := {(0,2) : = € Q'}.
Now let us recall the inequality (see [113, § 4.3, Theorem 4.3, § 6.14], [123, § 4-7, Lemma 4-21)):
there is a constant C' which depends only on ¢ and A(¢,z; D) and such that the inequality

/ef)‘t|v(t,x)|2 dtdr < C’/ef)‘t|(A(t,x;D)v)(t,z)|2 dt dx (1.7.26)

€ Qe

holds for A(t,z; D)v € La(Qe), v € C°°(Q); moreover, v(t,x) should vanish near ¢t = ¢ and should
have vanishing Cauchy data v(0,2) = (0;v)(0,2) = 0 for all x € V.

Let p € C?(0,¢) be a cut-off function: p(t) = 1 for 0 < t < /2 and p(t) = 0 for 3/4 < t < e.
Then v := pu € H'(Q.) and, since A(¢,z; D)u = 0 on Q., we get

A(t,a; D)(pu) = pA(t, x; D)u + (97 p)u + (9pp)Oyu + (3pp)AS (¢, 25 D)u
= (02p)u + (0:p)Osu + (s p) AL (t, z; D).

We have asserted u € H'(€2.), p € C?, and this implies (0Zp)u € La2(Qe), (0ip)0u € La(Q:). Note
that d;p(t) vanishes for 0 < t < /2. Therefore, (9;p)A{(t, z; D)u vanishes in a neighborhood of the
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boundary v C T. Due to a priori regularity result (cf. [105, Chapter 2, § 3.2, § 3.3]), a solution to an
elliptic equation in (1.7.25) has additional regularity u € H?(Q2) for arbitrary QY properly imbedded
into .. This implies (9;p)AY(¢, z; D)u € L2(£2) and we conclude

A(t,z; D)(pu) € La(£2.). (1.7.27)
Introducing v = pu into inequality (1.7.26) we get

e/4

/ / =M p(tyult, 22 dt do
Q0
3e/4

< /e”‘t\p(t)u(t,:v)|2 dtdz < C/ / e M(A(t, z; D)) p(t)u(t, z)|* dt dz.

Qe Q e/2
This implies, for A > 0,
/4
/ / p(t)u(t,)* dt de < e/ / |(A(t, 2 D)) plt)ult, )| dt de < Cre /4,
Q0 A,

where, due to (1.7.24), C; > 0 is a finite constant. By sending A — oo, we get the desired result
u(t,z) = 0 for all 0 < ¢t < /4 and all z € . Since u(z) vanishes in a subset of the domain 2
bordering «, due to Lemma 1.7.2 the solution vanishes on entire Q (on entire %). O

Due to our specific interest (see the next Lemma 1.7.4) and many applications, for example, to
control theory, the following boundary unique continuation property is of special interest.

Definition 1.7.4. Let .¥ be a Lipschitz hypersurface in R” and € C . be an open subsurface with
the Lipschitz boundary I' = 0% .

We say that a class of functions % (2) has the strong unique continuation property from
the boundary if a vector-function U € % () which vanishes on an open subset of the boundary
~ C T, vanishes on the entire .

Lemma 1.7.4. Let .¥ be a W2 -smooth hypersurface in R™ and € C . be an open W2 -smooth
subsurface.

The set of Killing’s vector fields (%) on the open surface € has the strong unique continuation
property from the boundary.

Proof. Let v CT := 0%, mesy >0 and U(s) =0 for all s € vy C ' := 9%. Then (cf. (1.3.22))

(Z;U0)(5) + (2U7)(8) = = Y Up,(8) P (v (8)(s)) = 0,
m=1

Ud(s)=0, Vse, jk=1,...,n.

(1.7.28)

Among tangent vector fields generating Gunter’s derivatives {d(s) 7y only n — 1 are linearly
independent. One of vectors might collapse at a point d7(s) = 0 if the corresponding basis vector e’
is orthogonal to the surface at s € ., while others might be tangent to the subsurface I', except at
least one, say d™(s), which is non-tangent to . Then from (1.7.28) it follows

2(2,U2)(s) = 0 and implies (2;U2)(s) =0 forall s €y andall j=1,...,n. (1.7.29)

Indeed, the vector d7, 1 < j < n — 1, is a linear combination d’(s) = c;1(s)d"(s) + c2(s)77(s) of the
non-tangent vector d”(s) and of the projection 77(s) := m,d7(s) of d?(s) to the subsurface v at the
point 5 € 7. Since U? vanishes identically on ~, the derivative (0,,U2)(s) = 0 vanishes as well and
(1.7.29) follows:

(2;Un)(s) = c1(5)(9a»Up)(s) + c2(5) (0 Up)(5) = c1(s)(ZulUy)(s) =0, Vs € 7.
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Equalities (1.7.28) and (1.7.29) imply
(2nU})(s) = —(2;U)(s) =0, Vsey, Vi=1,...,n. (1.7.30)
Thus, we have the following Cauchy problem
Lg(2, 2)U(2) =0 on €,

Uis)=0 for all s € ~, (1.7.31)
(2,U)(s) = (04nU)(s) =0 for all s €,

where d” is a vector field non-tangent to I'. Due to Lemma 41.7.3, U(2) =0 for all 2 € ¥. O

Before we draw some consequences from the proved unique continuation property, we should make
some comments. The finite dimensionality of the linear space Z (%) when the surface ¢ is 2-smooth,
was proved in the papers [29,80].

The foregoing Lemma 1.7.4 generalizes essentially the “infinitesimal rigid displacement lemma”
(see [23, Theorem 2.7-2]). The following conditions are imposed:

(i) € C & is C3-smooth, elliptic in R3, i.e

2
dIgFP<c Z lojr(2)E€F|, Va7, V()T e R, (1.7.32)

k=1 k,j=1

where bj,(2°) : . — R are the covariant components of the curvature tensor of .#’; the equivalent
condition is that the Gauflian curvature is positive on the entire surface .# or that the principal
curvatures of the surface . have the same sign everywhere on .%.

(ii) Killing’s vector field U vanishes on the entire boundary 0.7, i.e.,
Ro(€)={Ue%#: U|,, =0}=/{0}. (1.7.33)
A similar assertion is proved by V. Lods and C. Mardare in [107], but for C%!-smooth hypersurface
with the Lipschitz boundary 0. and when Killing’s vector field expires on the entire boundary 0.7 .

An earlier version of the “infinitesimal rigid displacement lemma” is due to I. Vekua [134], who proved
it using the theory of “generalized analytic functions”.

Corollary 1.7.2 (Korn’s I inequality “with boundary condition”). Let 4 C R™ be a C*-smooth
hypersurface with the Lipschitz boundary T := 0€ # & and £ > 2, |s| < €. Then

|U | H3(%)|| < M||Defe(U) | H3™(%)||, YU € H3(%),
for some constant M > 0. In other words, the mapping
U — ||Defe(U) | H3 (%)) (1.7.34)
is an equivalent norm on the space HT]I;(‘K)

Proof. If the claimed inequality (1.7.34) is false, there exists a sequence U’ € ]ﬁl;(‘f), ji=12,...
such that

U7 |H(6)|| =1, Vi=1,2,..., lim ||Defe(U?) | H; ' (%)| =0.
j—o0

Due to the compact embedding fﬂ;(%) C HE(%) C H3~ (%), a convergent subsequence U u, ...
in H¥ (%) can be selected. Let U’ = klim U’*. Then
hade el

|Def (U°) | HEH(%)|| = Jim. |Defe (U7*) | HE(€)|| = 0

and U is a Killing’s vector field. Since U (z) =0on I, due to Lemma 1.7.4, U’z)=0forallz € €,
which contradicts to ||U? | H3 ()] = klim U7 | Hy(¢)] = 1. O
—00
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Let us check the following equalities for a later use:

Va:U = [2;U7] + (N, U W, (1.7.35)

n+1lxn+1
where

n+1 n
U:i=> UWd™=> Une™, Ul = Z NiiUpy Drgr =0y, d"TH =4

Wae is the extended Weingarten matrix

WQE = [‘@j%]n+1xn+1 (1736)

and its last column and last row are 0, because Z; 47,11 = Zpi1 N = D1 Mny1 =0forj=1,...,n
In fact (see (2.2.12) for some further details of calculation),

VoU = [0;Uk], = > 0iUrel @e

J,ky=1

3

=Y 2+ Now] [+ M U)] [ + NN @ [d° + NN

= > (ZUNE @[d" + NN ]+ Y D[ Ml U)|d @ [d" + Nt ]

g.k=1 Jk=1

+ Y APONUNN @A+ MN]+ Y NP (N U)N @ N

J,k=1 j,k=1

= > (7,U))d @d" + Z N DU d @ d™ T
k=1 7,k=1

+ Z (N UNDy M) @ [dF + NV ] + Z NEDjN UV @ d" T
J k=1 J,k=1

+3 (2 UDYd @ dF + Z (MDA UL+ Do UL )" @ d™
k=1 k=1

= > (7,U)d @d" + Z (MUR) — UL 2 M) d @ d" !
k=

7,k=1 7,k=1

H(AU) D (25M) d]®d’“+2@ (N U @d™ !

k=1 J=1

+) (P U @ d* + (D1 UL, )d™ T @ d

= > (U @d" - > UAZ;M)d @ d"H + U) > (2,M)d @d*

jk=1 k=1 k=1

n—+1
= [25Uk] i1y nany + (AU Wae — Z U2 M) & d"F
7,k=1

= (23U ity iy T4 U = [(#0U%)i05n1] 1)y

since

%2 — '/‘G@J Z d] ,

n
J,k=1 7j=1 j=1

n
I
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0_ 1y 2_lopi_0 =
;,/VkUk—O, ;mgjm_QQJ;% =52]1=0, j=12...n+1l

Let 2 C R" be domain with a smooth boundary M = 00, My C M be a subsurface of non-zero
measure and W (Q, .#,) denote a subspace of functions ¢ € W(Q,.#,) which is the closure of the
set C°(Q, o) of smooth functions ¢(z) which have vanishing traces on .4, i.e., o™ (2) = 0 for all

2 € My. The space W' (R, .#,) inherits the standard norm from W' ():

I T @)= llo | W' @)1 = [l | Lo(@)] + 3 [l | Lo@)]]]

Since the space Wl (Q, #,) does not contain constants, it is easy to prove the following

Lemma 1.7.5. The formula

r/p (1.7.37)

lo | W@t = | 3 1950 | Lu(@)]
j=1

defines an equivalent norm in the space WI(Q,J//O).

If ¢ is sufficiently small, the boundary .. := 05, is represented as the union of three C'-smooth
surfaces M. = Mo pUM UMy, where M. p = OC x[—¢,¢e] is the lateral surface, 4.y = €' x{+¢}
is the upper surface and /7y = € x {—¢} is the lower surface of the boundary .#. of the layer
domain ..

The next Lemma 1.7.6 is proved for a later use in Section 3.

Lemma 1.7.6. Let Ay := v X [—¢,¢], where v C T := 9€ is a subset of the boundary of the surface
€ of non-trivial measure. If g € Lo(§2.), for the linear functional
E.(u) = /g(x)u(x) de, ue W (Q.,.#4), (1.7.38)
Qe
we have the following estimate
Ee(u) < CllgL2(Q) || [[ZeulLa ()| (1.7.39)
with a constant C' > 0 independent of u € W' (Qe, Ap).

Proof. To prove (1.7.39) we recall that u € Wl (Qe, ) vanishes on the lateral subsurface 27 € 4y C
Mp = 0€ x (—¢,¢).

Let ; be the “parallel” surface to the mid-surface € on a distance |¢| and for negative ¢t < 0 the
surface €; is “below” ¥, while for positive t > 0 is “above” ¥ with respect to the direction of the
normal vector field v(2), 2 € €. Note that €. = ///Di. Taking u(2,t), 2 € €, —e <t < ¢, from a

dense subset of the space W' (Qe, Ay) we can assume that u(-,t) € Wi (€;) for all fixed —e <t < e.
Since u(2,t) vanishes on the part of the boundary .#, N 9%, the Sobolev semi-norm

3 1/2
u(-.t) | W@, = | Zeul- 1) | La()]| = [Z/ %u(mt)ﬁda}

j:l%ot

turns into the norm and is equivalent to the standard Sobolev norm

3 1/2
(-, 8) | W' ()| = U (e, )P do + 3 / Dyl )2 da]
&, i=lg,
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for all t € [—¢, €], which means
Mllu(-,t) | WHE| < [Ju(-,8) [WHE)||, < [Jul-,8) [ WHE)
for some constant 0 < M < 1, independent of ¢t and u. From this equivalence we get the estimate

1— M?
M2

u(-. 1) | La(%)|* < |Zeul - 1) | Lo(6)|. (1.7.40)

By integrating the obtained inequality with respect to the variable ¢ we get the final estimate

V1= M2 —~
| | La(Q6)]] < — | Zou| La(Q0)|, Vu e WH(Qe, ). (1.7.41)

The estimate in (1.7.39) follows with the help of the Cauchy inequality and inequality (1.7.41):

VIZI?

[s@u@)ds < g La@a)][u | L0 < L o | La@)] |2eu | 2@

QE

Remark 1.7.3. Let us underline that in estimate (1.7.39) we only need the surface derivatives %1, %

and Z5. If we would have g € W=1(€),), then we should assume u € Wi (Q:). These spaces are dual
and, therefore, if the integral in the functional E. in (1.7.38) is understood as the duality, the functional
E. is bounded, but then we have the estimate

E-(u) < Cllg | La(Q) || [|Zau | La(Q0)||, Za. = (21, Do, 3, Z4) " (1.7.42)

Note that all derivatives %1, Z», Z5 and the transversal 9, = 0, = %4 (the normal to the surface €)
derivative appear in the latter inequality.

1.8 Geometric rigidity

The basic rigidity result relevant to passage to the thin plate limit is the following statement.

Proposition 1.8.1 (see [77]). Let 2 be a bounded Lipschitz domain in R™, n > 2 and 1 < p < oo.

There exists a constant C(Q) with the following property: for each U € WY(2) there is an associated
rotation Ry € SO(n) := SO(R™) such that

VU = Ry | L,(Q)]| < C(Q)]| dist(VU,SO(n)) | L, (Q)]]. (1.8.1)

The result is sharp in the sense that neither the norm on the right-hand side nor the power with
which it appears can be improved.

By considering the special case when the right-hand side in (1.8.1) is zero, Proposition 1.8.1 reduces
to the following

Corollary 1.8.1 (Liouville theorem). Let Q be a bounded Lipschitz domain in R™, n > 2. IfU is a
WL(Q) map which satisfies the partial differential equation

VU(z) =V(z) a.e in Q, V eSO(n), (1.8.2)
then it is affine U(z) = Rx + ¢, R € SO(n), ¢ = const or, equivalently, VU = R € SO(n).

Proof. In the setting of Sobolev maps, this was first proved by Reshetnyak [118]. A short modern
proof belongs to G. Friesecke, R. D. James and S. Miiller [77] and consists of three observations.
First, for n x n matrix A = [a;i]nxn let cof A denote the matrix of cofactors of A4, i.e.,

cof A = [(=1)7"" det Ay ] (1.8.3)

nxn’
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where Ajj, is the (n — 1) x (n — 1)-matrix obtained from A by deleting the j-th row and the k-th
column (so called (j,k)-minor). It is well known that

div cof VU = 0 for all U € W(Q). (1.8.4)

Note first that if equality (1.8.4) is proved for U € C%(Q), it can be extended to arbitrary U €
WL(Q).

We have to prove
n

C; ::Z@f(cofVU)ki:O, i=1,...,n. (1.8.5)
k=1

Note that C; can be formally written as

01 o On
oo ol gl
C; = det ) ) ) . ; (1.8.6)
o1 v,(le 827)7(21 . 8nv521

where v = (Uy,...,U;i_1,Uis1,...,U,). Bquality (1.8.5) follows from the following assertion: for
any u = (ulv LERE un—l) € C2(Rn71)7

O O e On
81u1 azul cee anul
. - 07 (1.8.7)
O1Uup—1 OoUp—1 ... Oplin_1

which can be easily proved by induction, expanding the determinant with respect to the last row.

Second, (1.8.2) implies that U is harmonic and, in particular, smooth. To prove this, recall that
if A € GL(n) is an invertible matrix, then A=! = det A(cof A)". In particular, for B € SO(n), which
means B~! = BT, det B = 1, we get cof B = B. Then from the asserted inclusion VU € SO(n) we
get V(U)(z) = cof VU(z) and, by taking the divergence, we obtain

AU =divVU = divcof VU (z) = 0.

Third, the second gradient squared of any harmonic map can be expressed pointwise via derivatives
of the inner products,

1
3 (IVU]? = n) = (VU,AVU) + |V?U|? = |V?U|*; (1.8.8)

but |[VU|? — n = 0 when U satisfies (1.8.2). O

An estimate in terms of € + /&, where ¢ := || dist(VU,SO(n)) || L,(Q)||, is much easier to prove,
but it is insufficient for the application to plate theory, where one needs to sum the estimate over
many small cubes of size h.

Corollary 1.8.2 (see [118]). If U; — U in WY(Q) and dist(VU;,SO(n)) — 0 in measure, then
VU; — R in Ly(Q) for some constant rotation matriz R € SO(n)).



Chapter 2

['-convergence of heat transfer
equation

In the present chapter, we investigate a mixed boundary value problem for the stationary heat transfer
equation in a thin layer around a surface € with the boundary. The main objective is to trace what
happens in I'-limit when the thickness of the layer converges to zero. The limit Dirichlet BVP for
the Laplace—Beltrami equation on the surface is described explicitly and we show how the Neumann
boundary conditions in the initial BVP transform in the I'-limit. For this, we apply the variational
formulation and the calculus of Giinter’s tangent differential operators on a hypersurface and layers,
which allow global representation of basic differential operators and of corresponding boundary value
problems in terms of the standard Euclidean coordinates of the ambient space R".
The exposition follows mostly the paper of T. Buchukuri, R. Duduchava and G. Tephnadze [16].

2.1 Introduction

The main objective of the present chapter is to demonstrate what happens with a boundary value
problem for the Laplace equation in a thin layer Q° around a surface € in R?® when the thickness of
the layer € diminishes to zero: ¢ — 0. We impose the Neumann boundary conditions on the upper
and lower faces of the layer ¥’ x {£e} and the Dirichlet boundary conditions on the lateral surface
0€ x (—¢,¢).

The limit of the associated functionals is understood in the sense of I'-convergence and the main
tool is the representation of differential operators with the help of Giinter’s derivatives — the system

3

of tangent derivatives on the surface 2, Z,, Z5 and the normal derivative 2, = 0, := ) v;0;, where

j=1
v = (v1,v2,v3) " is the unit normal vector field on the mid-surface %.

We consider heat conduction by an “isotropic” medium, governed by the Laplace equations, with
the classical mixed Dirichlet—-Neumann boundary conditions on the boundary in the layer domain
OF := @ x (—¢,¢) of thickness 2¢, where ¥ C .7 is a smooth subsurface of a closed hypersurface
& with smooth nonempty boundary 0%. In particular, we confine ourselves with zero Dirichlet and
non-zero Neumann data (see Remark 2.4.1 for the case of non-zero Dirichlet data):

Ag:T(x,t) = f(2,t), (2,t) €€ x (—¢,¢),
TH(2,t) =0, (2,t) €€ x (—¢,¢), (2.1.1)
(OT)* (2, %) = gE(2), 2 €.
In the investigation we apply the fact that the Laplace operator Ag: = 8% + 02 + 93 is represented as
the sum of the Laplace—Beltrami operator on the mid-surface, the square of the transversal derivative

and the lower order term _ B _ _
Aq-T = AT + 02T + 256,:0,T, (2.1.2)

56
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where 24 = 0;. The Laplace-Beltrami operator A defined in (0.0.12) and the mean curvature
3
Hop(2)= > DpN:(2) of the surface are extended properly from % (see the forthcoming Lemma 2.2.2).
k=1
Introducing the function G(,t) which has the same Dirichlet and Neumann traces as T on the

0% x (—e,¢e) and on € x {£e}, respectively,

(t-+ )% (#) — - (6= )%z (2), (213)

we can reduce problem (2.1.1) to the following boundary value problem with respect to unknown
function T'=T — G:

Gt = §

€

Ag-T(7,t) = F(a,t), (,t)€C x (—¢,¢), (2.1.4)
TH(2,t) =0, (2,t) € 0€ x (—¢,¢), (2.1.5)
(0T (2,+e) =0, 2 €F, (2.1.6)

where

F(z,t):= f(2,t) - 4—16 ((t +e)2Agqt(2) - (t - E)QAcgq;(gK))
N %ﬁ_%) (t+e)gd (2) — (t—e)gz (2)) — % (@ (2) — - (2)), (2,8) €E x (—5,6). (2.1.7)

The BVP (2.1.4)—(2.1.6) is reformulated as the minimization problem for the functional which, after
scaling (stretching the variable ¢t = e7 and dividing the entire functional by ¢), has the form

E.(T.) ://[% (@%Ts)z(%ﬁ)—i—%((LTE)Q(%J)—I—Fg(%,T)Ts(.%,T)} dodr,  (2.1.8)

1w
Fur,) = F(z,et) = f(7.et) = 2 ((t+ 1) Agaf (2) = St = )*Agaz (=)
- % ((t+ Va2 () = (t = ez () = 21*5 (@ (2) — ¢z (), (2.1.9)

To(2,7) :=T(2,e7), T. € H{(Q',0% x (—1,1)),
F. e HY(QY), ¢F e HX(¥), (2.,t) € € x (—¢,¢).
(For the definition of H(Q, ¢ x (—1,1)), see (2.4.9).)
Let
P(E) = {T cHYQY) : T(2,7) =Te(2), Ty e H(S), 7€ [-1, 1}}. (2.1.10)

The main result of the present investigation is the following statement.
Theorem 2.1.1. Let
fe(2,t) = f(a,et) — fO2) in La(QY),
e—0
¢F € HX(%) be uniformly bounded (with respect to ¢) in H2(€), and

. + 1 -

g%qg —glg(l)qs =qo, qo € Lo(%),
1
(gt —aq j
5o — ) —p o in La(9).

Then the functional in (2.1.8) I'-converges to the functional

/ {<@<gT<g(%), @%T(g(%»

EO(T)={% _ (2.1.11)
+2(f%(2) — HPqo(2) — QI(%))T‘K<%)} do if T € 2(¢);

+o0 if T ¢ P%).
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The following Dirichlet boundary value problem for Laplace—Beltrami equation on the mid-surface €

AT (2) = fO(2) — Hq(2) —qu(2), 2 €F,
TH(2)=0, 2 € 0%, (2.1.12)
Te Hl(cg)a f07QO7(J1 S LQ(%)u

is an equivalent reformulation of the minimization problem with the energy functional (2.1.11).

Remark 2.1.1. The BVP (2.1.12) is the “I-limit” of the initial BVP (2.1.1) in the following sense:
the corresponding functional (2.1.11) is the I-limit of functional (2.1.8), corresponding to the BVP
(2.1.4)~(2.1.6).

It is remarkable to note that the weak derivative ¢° of the Neumann condition from the initial
BVP (2.1.1) migrated into the right-hand side of the limit equation.

Note as well that the -limit 7% (2°) of a solution T'(2",e7), T € H'(€2.), to the BVP (2.1.4)—(2.1.6)
has better smoothness Ty € H! (%) than expected.

I'-limits of boundary value problems in thin structures, reformulated as a minimization problem
for the associated energy functional, were studied by many authors (see, e.g., [13,76,77,134] and the
references therein). But mostly the Lamé equations for elastic plates 4" C R? and the zero boundary
conditions were treated (the Laplace equation for a plate is studied in [13]). In the papers [76,134],
the case of shells is treated, but with a different technique. Our approach is based on the calculus of
Giinter’s derivatives, which we find more appropriate for such problems.

These results are useful in numerical and engineering applications (cf. [6,9,20,32,34,128]) and the
results exposed here allow to treat cases of special surfaces in greater detail.

The layout of the chapter is as follows. In Section 2.2, we identify the most important partial
differential operators on hypersurfaces such as gradient, divergence, Laplace-Beltrami operator. In
Section 2.3, we consider the energy functional (2.3.3) and the associated Euler-Lagrange equation
(2.3.4). In Sections 2.4 and 2.5, the aforementioned approach is applied and main theorems of the
present chapter, including Theorem 2.1.1, are proved.

2.2 Laplace operator in curvilinear coordinates

We will keep the notation of Chapter 1: O, w, . and €. We consider a layer domain
OF = {%t ER": 2, =2 +tw(2) =0()+tw(O()), r€w, —c<t< g} = Ex(—ee), (22.1)

where v(2) = v(O(y)) for 2 = O(y) € .7 is the outer unit normal vector field (see (1.3.7) and
(1.3.9)). The surface ¢ is a mid-surface for the layer domain.

We will also use the notation v(y) := v(O(y)) for brevity, unless this leads to a confusion. The
coordinate t will be referred to as the transverse variable.

Without going into details, let us only remark that if the hypersurface . is C?-smooth and 1/¢ is
more than the maximum of modules of all principal curvatures of the surface . (i.e., of all eigenvalues
A2,y [An—1(2)], An(2) = 0 of the Weingarten matrix #o (%), 2 € /), then the mapping

6% : W' i=w X (—e,6) = QF, W CRY

O%(y,t) := O(y) + tr(y), (y,t) € w*, (2.2.2)

is a diffeomorphism.

We will also suppose that 4" is a proper extension of the outer unit normal vector field v into the
layer neighborhood €2¢ (cf. Definition 1.3.2).

The n-tuple g, := 610,...,9,,_1 := On—10,g,, = A4, where ./ is the proper extension of v in

n .
the neighborhood ¢, is a basis in Q¢, and an arbitrary vector field U = > U ]Qeﬁ on )f is represented
j=1

with this basis in “curvilinear coordinates”.
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Let us consider the system of (n + 1)-vectors
d’=el — NN, j=1,....,n, and d"T! =N, (2.2.3)

where e, ..., e" is the Cartesian basis in R™ (cf. (0.0.7)); the first n vectors d!,...,d™ are tangent to
the surface %, while the last one d™+! = _# is orthogonal to all d *,...,d™. This system is, obviously,
linearly dependent, but full and any vector field U € #/(Q°) is written in the following form:

n ] n+1 ]
U=> Ujel => Uld’. (2.2.4)
j=1 j=1
Since the system {d’ "fll is linearly dependent
n . .
> Md!) =0, (N, d)=0, j=1,...,n, (2.2.5)

Jj=1

representation (2.2.4) is not unique. To fix the unique representation in (2.2.4) we will keep the
following convention:

Up =Uj = (N U, j=1,...n, Uy = (N, U)=> Uk (2.2.6)

J
j=1

Convention (2.2.6) is natural, because if the vector U(2) is tangent to ¢ for 2~ € €, then UJ(2) :=
Uj(z) for j=1,...,nand UY,,(2) = 0.

Lemma 2.2.1. Representation (2.2.4) is unique, provided that conditions (2.2.6) hold:

4
IfU°=>"Ujd’ =0, then U =U) =U3§ =UJ =0. (2.2.7)
j=1

The scalar product and, consequently, the distance between two vectors does not change:
U, vYh = ZUOVO ZUV V), U=V = |U-V| (2.2.8)

for arbitrary vectors U = (Uy,Us, U3, Uy) ",V = (Vi, Vo, V5, Vy) T € R3.

4
Proof. fU° = 3 U]de =0, then Uy = (U, #) = 0, since .4 is orthogonal to vectors d'd?,d?3.
j=1
On the other hand, using UJQ =U; — S(A,U), j = 1,2,3, and the obtained equality Us = 0 (cf.
(2.2.6)), we get

3 3
0=(U"e") =) UNd!, ") => U5 — (N, e")] = %ZUO =UP, k=1,2,3,

and U = U9 =UJ =UQ = 0.
Let us prove the first equality in (2.2.8):
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U, vo = ZUOVO Z — NAN U (V) — AN V) + (N UNAN V)

= j=1

-y U3V = (4 VYUt = (N OV + (A UNA VINE] = S0V = (U, V)
j=1

Jj=1

and the equality is proved.
The second equality in (2.2.8) is a simple consequence of the first one, since

U - Vv = \/<U0 -VO9U' -V =\ /U-V,U-V)=|U-V]| O

Note for later use that due to equalities (2.2.5) and convention (2.2.6) we get

i
M:

Z [U70; + (A, U).A;0)]
j=1 1
n+1

UL (0j — M504 ) + (N, U)Dy = ZUOQ + UL 1 Drg1 = ZU;@J»:%

J

INGER

Il
_

J

Definition 2.2.1. For a function ¢ € H'(Q¢) the extended gradient is

n+1
Ve p = {91% ey Dnip, 9n+190}T = Z(gﬂp)dj, D19 := 0y p, (2.2.9)

=1

n+1 .
and for a smooth vector field U = Y- UPd’ € #/(Q°) (see (2.2.4), (2.2.6)) the extended divergence is

j=1
n+1
divo-U =Y ;U + A2(N U) = —V§.U, (2.2.10)
j=1
since
n n+1 n
%5 2287% Z@J%(x):z:@7y7(%):%‘é)(‘%)v e, 2 =ngyz,
j=1 j=1 j=

and 2 (2') differs from the mean curvature . (2) (see (1.3.63)) by the constant multiplier /2 (2°) =
(n— 1) (2).

Lemma 2.2.2. The classical gradient Vi := {01, ...,0,0} " written in the full system of vectors
{d? "ﬂl in (2.2.3) coincides with the extended gradient V- ¢ in (2.2.9).

Similarly, the classical divergence div U := Y 0;U; of a vector field U := Y U,el written in the
i=1

j=1 i=
full system (2.2.3) coincides with the extended divergence div U = divge U in (2.2.10).

The extended gradient and the negative extended divergence are dual: 2¢. = — divgs and divg. =
—Vae.

The Laplace-Beltrami operator Aqe = divg: Voe ¢ = =D (Va=p) on Q°F written in the full
system (2.2.3) acquires the form

n n+1
Aocp = Do+ 0%+ HQ0wp = Dio+ H)Dnsrp, o€ HQ). (2.2.11)
j=1 j=1
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Proof. A similar lemma is proved in [57, Lemma 4.3], but the definition of divergence divq- is different
there. Therefore, we expose the full proof below.
The fact that the gradients coincide follows from the choice of the full system (2.2.3):

n

Vo = {010, 0np} | = > @50)€

j=1
n n+1
= Z Dip+ N Dns19)e =D (2;0)d7 + (Dpsr o)V =Y (Zj0)d? = Ve, (2.2.12)
Jj=1 j=1 j=1
since
n n
=d’ + NN, D5 =D+ Ny, Zﬂ/@] =0, Z ie)e = (7 (2.2.13)
j=1 j=1 j=1
By applying (2.2.6) and (2.2.13) we proceed as follows:
divU = ZaU Z@U +ZJV8WU 29 N (N U] +ZW U;)
j=1 j=1
n n n+1
=3 QU+ (D MNN U) + DoiaUnyy = Y DU + A2 (N, U) = dive- U, (2.2.14)
j=1 j=1 j=1
The proved equality and the classical equality V* = —div ensure the both claimed equalities

D = —divge and dive = —Vge:
(Va:0,U) = (Vp,U) = —(p,div U) = —(p,divg: U).

Formula (2.2.11) for the Laplace-Beltrami operator is a direct consequence of equalities (2.2.12),
(2.2.14) and definitions. Indeed, the first n components of the gradient

n

Vo =Voarp =Y (259)d7 + (Dnsrp) N
j=1

have the property (Z;¢)° = Z;0 — (N, Vae @) N; = D because (see the third formula in (2.2.13))
(N Naep) = > N;Pjp =0, and we can write
j=1

n+1 n+1
Ap =div Vo =dive: Zocp = Y Dio+ HNN No) =D Dio+ HpDnirp = Bo=p. O
Jj=1 j=1

2.3 Convex energies

Let again Q° be a layer domain of width 2e in the direction transversal to the mid-surface € (cf
Section 2.2).
Any minimizer u of the energy functional

&% (u) = /(VU,VU) dy, u € HY(QF), (2.3.1)
(93
should satisfy

= % &° (u+ tv)

_ / [(Vu, Vo) + (Vo, Vu)] d

Qe

t=0

= 2Re/<Vu,Vv> dy = —2Re/<diVVu, v)ydy = —2Re/<Au,v> dy

Qe Qe Qe
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for arbitrary v € H(9), which implies
Au=0 on Q°. (2.3.2)

In other words, (2.3.2) is the Euler-Lagrange equation associated with the energy functional (2.3.1).
Similarly, a minimizer of the energy functional

&o(u) = /<V<5U,V<gu> do, uwe€ HY (%), (2.3.3)
3
on the hypersurface € should satisfy the following Laplace—Beltrami equation

Agu:=divgVeu=0 on %. (2.3.4)

To treat the dimension reduction problem for the Laplace equation (see [13] for a similar consideration
in case of a flat 3D body), we assume, without restricting generality, that Q! (i.e., for e = 1) is still a
layer domain. Otherwise, we can first change the variable 27, = g2, 0 < Z, < 1, where 0 < g9 < 1
is such that °° is still a layer domain.

Next, we introduce a new coordinate system (cf. (2.2.6))

T = Z Tme" = Z Zmd™ +tdn+17
m=l m=1 . (2.3.5)
X i=ap — M(AN,x), k=1,....n, t =241 :=(x, N)= Z TN
m=1

and define the scalar product of elements as follows (cf. similar in (2.2.8)):

n+1 n+1 n+1
(7, 2) = g o, for &= E Zpd™, ¥ = E Vmd™.
j=1 m=1 m=1

Then (cf. (2.2.8))
n+1 n

<%7@> :Z%j@j :Z(l'j _%<'/V7x>)(yj _%<'/Vay>) —l—(/ﬁxﬂ/,y) :ij?j = (x,y>

Jj=1

In particular,
n+1

2l = 25 =Y la* = ||z (2.3.6)
Jj=1 j=1

Due to Lemma 2.2.2, the classical gradient in the energy functional (2.3.1) can be replaced by the
extended gradient

&% (u) == /(%zsu(y),@mu(y))dy = // [|Zgu(2,t)]* + |0u( 2, 1)*] dodt, (2.3.7)
Qe —& €
where P 1= (21,...,%,)" is the surface gradient and u € H'(Q?) is arbitrary, since Z,;1 = 0y =

0. Here € is the mid-surface of the layer domain Q¢ = ¥ x (—¢,¢) and do is the surface measure
on %.

Due to representation (2.3.7) and the new coordinate system (2.3.5), we can apply the scaling
with respect to the variable ¢ and study the scaled energy. The approach is based on I'-convergence
(see [13,77]) and can be applied to a general energy functional which is convex and has square growth.
The problem we have in mind is the following: Do these energies defined on thin n-dimensional domains
QF converge (and in which sense) to an energy defend on the (n—1)-dimensional Hypersurface € (the
mid-surface of QF ) when the domain Q° is “squeezed” infinitely in the transversal direction to € ?

In the next two sections, we apply the results developed in the present chapter to boundary value
problems for the heat conduction by a hypersurface. In particular, we show that if the thickness of
the layer domain Q¢, with the mid-surface &, tends to zero, the sequence of functionals in variational
formulation of the linear heat conduction equation I'-converges to the functional corresponding to
some explicit boundary value problem for the Laplace-Beltrami equation on the mid-surface % .
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2.4 Variational reformulation of heat transfer problems

Let Q be a bounded Lipschitz domain in R? with the piecewise smooth boundary 9Q = €p U €y,
where ¥p and % are open non-intersecting surfaces, ¥p N ¥y = @, and their common boundary is
a smooth arc. Denote by v = (v, v, v3) 7 the unit normal on %, external with respect to €2.

We consider the general steady-state, linear heat transfer problem for a medium occupying do-
main . We assume that on the part €p of the boundary 9 the temperature g is prescribed, while
on the part @y of 0N it is prescribed the heat flux q.

We look for a temperature distribution 7'(x) in 2, which satisfies the linear heat conduction
equation

div(« (2)VT)(z) = f(x), z€Q, (2.4.1)

and the boundary conditions
T*(y) = g(y) on ¢p, (2.4.2)
—(v(y), 7+ (Y)(VT)*(y)) = qly) on Cw, (2.4.3)

where o7 is the thermal conductivity, f is the heat source, g is the distribution of temperature and ¢
is the heat flux. All these quantities are supposed to be known.
We assume that <7 (x) is a bounded measurable and positive definite 3 x 3 matrix-function (cf. the
similar condition (1.4.37))
(o (@)€.6) > Cle|2, zeQ, € eR

The following inequality is an obvious consequence of the positive definiteness of o7:
(#/U,U) > CO|U[Ly(Q)|

for all 3-vectors U = (Uy,Usz,Us)T € Ly(f2). Further, we assume that the traces o/ *(y) at the
boundary ¥ exist. Then .2/ T has the same properties as <7 on {2, namely, it is a bounded, measurable
positive definite matrix function.

We impose the following natural constraints on the solution 7" and on the prescribed data f, g, ¢:

T eH'(Q), feH YQ), gecH*(%p), qeH V3 (%y). (2.4.4)

The existence of the traces (v(y), o *(y)(VT)*) € H~/?(%), which is not ensured by the trace
theorem, follows from the Green formula

/(div o (x)VT)(x)(x) dx

Q

- / (), o+ () (V) () W () do — / ((@)VT (), Vih(a)) do  (2.4.5)

€ Q

by the duality between the spaces HY/2(%) and H~'/2(%), due to the fact that T is a solution to
equation (2.4.1). For this, we rewrite (2.4.5) in the form

/ (), o+ () (VT)H () 96 (y) do = / f@)p(@) do + / (o (@) VT (z), V() da
Q

€ Q

and note that 1) € H'(Q) is arbitrary and, therefore, = € H'/?(%) is arbitrary, too.
First, we reduce the BVP (2.4.1)-(2.4.3) to the equivalent BVP with vanishing Dirichlet data.

Remark 2.4.1. Let us assume that the subsurface €p is smooth and g € H*(4p), s > % There
exists a domain Q' with a smooth boundary %’ := 9€)' with the properties: Q C Q' and ¥p C %".
Let ¢° € H*(¢”) be such extension of g which maintains the space.
The Dirichlet BVP
div(+(2)VG)(z) =0, z €,

Gt(y) =¢°(y) on %' (2.4.6)
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has a unique solution
1 -1
G(z) = W(5 I+ WO) ), ze, GeHFVQ),

where W is the double layer potential for the operator div o/ (x)V and Wy is its direct value (a singular
integral operator) on the surface ¢’, I : H*(¢”’) — H*(%¢”) is a unit operator. Then the BVP

div(e/ (z)VTy)(x) = f(x), = €Q,
T, (y) =0 on %p, (2.4.7)
q

is an equivalent reformulation of the BVP (2.4.1)—(2.4.3), now with vanishing Dirichlet traces. The
solutions and Neumann data are related as follows:

To(z) :=T(x) — G(z), €9,

w() =)~ (2w (31+W) o) W), zee. (2.4.8)

Note that if we require higher smoothness for the Neumann data ¢ € H"(¢x), r > —1/2, and take
g € H"*Y(6p) (ie., s = r+ 1 in (2.4.6)), the Neumann data in the BVP (2.4.7) inherits the same
smoothness go € H" (G ).

Let Q C R™ be a domain with a Lipshitz boundary .# := 0Q and .#, C 02 be a subsurface of
the boundary surface which has the non-zero measure. By H!(Q, .#) we denote a subspace of H!(2)
of those functions which have vanishing traces on the part of the boundary

HY(Q, ) = {p e HY(Q) : ¢F(y) =0, Yy 4). (2.4.9)
This space inherits the standard norm from H?'(£2):

2 211/2
lo 1B @) = o | L@ + 3 lJoge | La(@)]*]

Consider the functional

1

®(T) = / [5 <JZ%(33)VT($),VT($)> + f(:v)T(m)} dx + / q(y)T™ (y) do, (2.4.10)
Q EN

where f and ¢ satisfy conditions (2.4.4) and T' € H'(Q) has vanishing traces on €p, i.c., T € H (€, 6p)
(see (2.4.9)).

_ The second summand in the integral on € is understood in the sense of duality between the spaces
H~1(Q) and H'(Q). Concerning the integral on €y: it is understood in the sense of duality between
the spaces HY2(%y) and H-Y/2(€y), since ¢ € H /2(€y) and the conditions T € H(Q,%p),
supp T+ C €y imply the inclusion T+ € HY/2(%y).

Theorem 2.4.1. Problem (2.4.1)~(2.4.3) with vanishing Dirichlet condition T (y) = g(y) = 0 for all
y € €p is reformulated into the following equivalent variational problem: let f and q satisfy conditions
(2.4.4) and look for a temperature distribution T € H*(Q,¢p) (see (2.4.9)) which is a stationary point
of functional (2.4.10).

Proof. Let T(z) be a stationary point of functional (2.4.10). Consider the variation

0d = C% (I)(T + €V)|s:0 = / {<«Qf($)VT($), VV(x)) + f(gc)V(gp)} dx + /q(y)v+(y) do. (2.4'11)
Q “n
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The trial function V' € H!(Q) is such that T + €V satisfies the boundary conditions. Then from the
equalities T (y) + V1 (y) = 0 = Tt (y) on €p it follows that T (y) = VT (y) = 0 on €p, i.e., T and
V have the traces vanishing on the part €p of the boundary 9.

It is clear that for those V' for which the functional ®(T + ¢V') has a stationary point, we have
0® = 0. By applying the Gaufl theorem to the first summand under the integral on Q in (2.4.11), we
obtain the associated Euler-Lagrange equation

/ [— dive/(2)VT(z) + [(2)]V(2) do + / (w(y), (W) (VT)* () )V () do
Q €D

+ [ [ow) + ) o @ )]V ) do =0, 2412)

EN

Since the trial function V' vanishes on ép (see (2.4.9)), the integral on ép in (2.4.12) vanishes.
Now, taking arbitrary function V' € C§°(€2) (vanishing in the vicinity of the boundary €), all sum-
mands in (2.4.12) except the first one vanish and we obtain

[ - divar@vre + @) v =o,

Q

which is equivalent to the basic differential equation in (2.4.1).
Therefore, it follows from (2.4.12) that

/[ )+ (v(y), 7 (y )(VT)+(y)>}V+(y)da=0, (2.4.13)

EN

where the trace VT of a trial function in (2.4.13) is arbitrary. Thus we derive the boundary condition
(2.4.3).

Vice versa: Let T be a solution to the mixed problem (2.4.1)—(2.4.3) with vanishing Dirichlet traces
T*(y) = g(y) = 0 on €. Taking the scalar product of the basic equation in (2.4.1) with the solution
T, applying the Green formulae and the boundary conditions (2.4.2) with g = 0, we get the following
equality:

0= [ [~ divar (0)VT(e) + f@) 7o) o = [ [@VT(@) + S@)] VT (@) do

Q Q
+ [ e OET )T W = [ [F@FT@) + @] V@) s [ )T ) do
EpUECN Q ENn
Therefore, T' is a stationary point of the functional ® in (2.4.10). O

If 6p = €, 6n = @, problem (2.4.1)—(2.4.3) reduces to the problem with a Dirichlet boundary
condition

Tt (y)=0 on ¥,

and the corresponding functional ® in variational formulation (see (2.4.10)) takes the form
1
=5 [ (@1, 91@) + f@1 ()] da.
Q

If p = @, €n = €, from (2.4.1)—(2.4.3) we get the problem with Neumann boundary condition

—( (v (y), (VI)(y)) = q(y) on €,
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and the corresponding functional in variational formulation (see (2.4.10)) takes the form

1

on(T) =3 / ((2)VT (@), VT(@)) + f(@)T(x)] do + / 4(y)T* (y) do.

Q €

We conclude this section with some auxiliary results on Lebesgue points of integrable functions
which is important in the next section.
Let B(z) be a ball in the Euclidean space B C R™ centered at x. The derivative of the integral at

z is defined to be )
lim / dy, 2.4.14

where |B(z)| denotes the volume (i.e., the Lebesgue measure) of B(z), and B(x) — = means that the
diameter of B(z) tends to 0. Note that
1 1

1
]u%w/‘ﬂmdyfu> ‘wmw/Lﬂwf@ﬂdﬂélB@Mt/.ﬂwf@gdy (24.15)

B(x) B(zx) B(z)

The points x for which the right-hand side tends to zero are called the Lebesgue points of f.

Theorem 2.4.2 (Lebesgue Differentiation Theorem, Lebesgue (1910)). For an integrable function
f € Li(Q) the derivative of integral (2.4.14) exists and is equal to f(x) at almost every point x € Q.
Moreover, almost every point x € Q is a Lebesque point of f (see (2.4.15)).

Corollary 2.4.1. If g € Ly(2), f € La(Q x (—=1,1)), then
t+e

i o [ (00 £C.Dadr = (91,5 ) (2416

e—0 2¢

for almost all t € (—1,1).

Proof. Tt is clear that g- f € L1 (Q x (=1, 1)) and for the function h(t) := (g(-), f(-,t)), the inclusion
h € L1((—1,1)) is true. Thence we can apply Theorem 2.4.2 to the function h(¢) and get (2.4.16). O

2.5 Heat transfer in thin Layers
Let € be a C%-smooth orientable surface in R? given by a single chart (immersion)
0:w—%C, wcR?

and let v(2), 2 € €, be the unit normal vector field on ¢ with the fixed orientation. The chart
is supposed to be single just for convenience, and the multi-chart case can be considered similarly.
Denote by Q° the layer domain, i.e., the set of all points in R? in the distance less than ¢ from %.
Then for sufficiently small £ the map © : € x (—e,g) — Q°F,

O(z,t) =2 +tv(z) =0(x) +tv(d(z)), € w,

is C''-homeomorphism and ©(% x {0}) = .
As noted above, we can extend unit normal vector field to the entire 2° properly by assuming

viz+tv(e))=v(z), 2€¥, —<<t<e.

If € is sufficiently small, the boundary .#° := 9QFf is represented as the union of three C*-
smooth surfaces .#° = Mep U M U ///:N, where A, p = 0 x [—¢,¢] is the lateral surface,
///:N = ¢ x {+e} is the upper surface and .#Z_ = ¢ x {—¢} is the lower surface of the boundary
A of layer domain Q°.
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In the present section, we will consider the heat conduction problem by an “isotropic” medium
governed by the BVP (cf. (2.1.2) for Age)

Ag-T(2,t) = f(2.1), (2.,t) €€ x (—¢,¢),
TH(2,t) =0, (2,t) € 0F x (—¢,¢), (2.5.1)
(O (2, +e) = ¢F(2), 2 €F.

The case of an “anisotropic” medium will be treated in a forthcoming publication.
We impose the following constraints

T e HY(Q), ¢F e HX(¥), feLo(QY),

0 is the Lebesgue point for the function f( / |f(2,t)|]? do (25.2)

(see (2.4.15) and note that || f | Li(—1, D < |If | L2(2Y)]]?). The latter constraint implies that £(0)
exists and, due to Theorem 2.4.2,

tim £ /f i]/f(aem? dor dt = J(0).

—c ¢

The formulated BVP (2.5.1) governs a heat transfer in the body Q° when there are thermal
sources or sinks in Q°. The temperature on the lateral surface 3¢ x (—¢,¢) is zero, the heat fluxes
are fixed on the upper and lower surfaces €+ := € x {#¢). It is well known that the boundary value
problem (2.5.1), as well as its equivalent problem (2.1.4)—(2.1.6), has a unique solution T' € H*(Q*)
(respectively, Ty € H!(Q°); see, e.g., [70]).

The energy functional associated with problem (2.5.1) reads (cf. Theorem 2.4.1):

// (24T (2, 7) + (a T (7, T))+F(x,T)TE(gg,T)] do dr, (2.5.3)
—e %

F(o1) = (2,0 = 12 (04 2P Mg (2) = (1= 2 Az ()

0
~ 2 (1 + )t (7) — (1 — )z ()
5 (@)~ a2 (2), (7.0) €€ x (5,0, (2.5.4)
More generally, we consider the non-linear functional
E (T) = / [ (Vae T (x), T(2)) + Fe(z)T ()] d, (2.5.5)
0e

where J#(VqeT, T) is strictly convex and has quadratic estimate. In the case of functional (2.5.3),
1 1 5 1 9 1 9
%(VQET7 T) = 5 <.@QET, .@QET> = § (@QST) = 5 (@(ng) (%77) + ? (87—T5> (%,T), (256)

and it is clear that the kernel is strictly convex because the quadratic function F(x) = 22 is strictly
convex: [0z1 + (1 — 0)xa)? < 022 + (1 — )23 for all 21,22 € R, 11 # 22, 0 < 6 < 1. The kernel has a
trivial quadratic estimate, since it is a quadratic function.

A nice proof of the next Lemma 1.7.5 is exposed in [2, Example 3.6].

Lemma 2.5.1. Let Q2 be a domain in R™ with the Lipshitz boundary # := 0Q and My C M be a
subsurface of non-zero measure. Then the inequality

I | La@)]| < O 7 | La(© [zuamu @] (25,7

holds for all functions ¢ € H! (Q, #y) and the constant C' is independent of .
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Now we perform the scaling of the variable t = e7, —1 < 7 < 1, and study the following functionals
in the scaled domain Q! =% x (—1,1):

EE(TE):/l/[%(%gTe,i@Tg,TE) +FETE] do dr, (2.5.8)
-1 %

where D¢ = (D1, D2, D5), P4 = 0. The functionals E.(T;) are related to the original functional E(T")
by the equality

E (T:) = éE(T), where T.(2,t) =T (21, Z2, X3,¢t), (2.5.9)
Fo(#,t) = F(,et) = f(7,6t) = < ((t+ 1) Aegf () = 7 (t = 1)*Acqz (2))
0
~ 2 (14 1) () - (- Dz ()
- 2% (@ (2) =z (2)), (2,1) €€ x (—¢,e). (2.5.10)

Lemma 2.5.2. Let F. be uniformly bounded in Ly(Q1):

sup || F.|Lo(QY)] < oo. (2.5.11)

e<eq

Then the energy functional E<(T) in (2.5.8) is correctly defined on the space H'(Q!,0% x (—1,1)), is
strictly convexr and has the following quadratic estimate:

E.(0T, + (1 —0)Ty) < 0F.(Ty) + (1 — 0)E-(Ty), 0<0 < 1,

1
oy / %(.@ng, Z 8T, T) do dt — Cy < E.(T)
o : (2.5.12)

1 ~
< Cy [1+/%(@<gT768tT,T) dadt}, VT, T, T € H'(Q',0F x (—1,1))
Ql

for some positive constants Cy, Cy and C3 not depending on €.

Proof. Let us decompose the functional E.(T) in (2.5.8) into the sum of non-linear and linear parts
E(T) = E(T) + EX(T),

EMN(T) = / %(%T,é@m T) dz,
o (2.5.13)

By the conditions imposed on % in (2.5.5), the first (non-linear) functional Eél)(T) is strictly
convex and has a quadratic estimate:

C?/ (@(@”ij P'Ts) + 5% |8tTj|2) dx — C9 < EQ(T)
fol! J

1
<0y {H/(@ﬂj,%nwg|atTj|2) da:} (2.5.14)

Q1 I
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On the other hand, E§2)(T ) is linear and, therefore, strictly convex (see the first inequality in
(2.5.12)). Thus, we only have to prove the two-sided quadratic estimate in (2.5.12) for the linear

functional E'%) (T'). Due to Lemma 2.5.1 and equality (2.2.12), we can write

\EQ(T)| < ‘/Fs(x)T(x)dx < || Fe | Lo (@Y [|T | Lo (Y
Ql

1 1
< M|VT | Lo(2Y)] < M(5 +n||vVT | ]Lg(Ql)H2) < M(6 + 0|2 T | L2(91)||2). (2.5.15)

Choosing n =1 in (2.5.15) and taking into account (2.5.14) we get the right inequality in the second
line of (2.5.12), whereas taking 7 sufficiently small we obtain

E.(T) > |[EX(T)| - [ED(T)| = C1||Za:T | La(2°)|” - Co. O
Let F; = F.,,0 <¢e; <1, lim ¢; = 0 and F, be uniformly bounded (see (2.5.11)). Further, let
j—o0
T; =T, € HY(QY, 0% x (—1,1)), 5 =1,2,..., be the sequence of functions with “finite energy”:

sup B, (T}) < +oo. (2.5.16)
j
Then from (2.5.14)—(2.5.15) we get

CY | Zen T L2 () |2

1 1
= / (5 (76T, 76T)) + 55 @Tj\?) do = CYE.,(T}) — C’?/Fj(%,t)fj(%,t) do dt
Ql / Qt

<Y1+ |15 | La(@M)] |75 1 La@)]]) < C3 (14 |20 Ty | La(99)[) ", (25.17)

since, due to Lemma 2.5.1,

175 | La(2Y)]| < Col|Zar T; | La(22Y)]]. (2.5.18)
Consequently,
1 1 1/2
sup H-@QlTj | ]Lg(Ql)H = sup (/ (5 (24T, P¢T;) + 22 |6tTj|2) d;v) < 4o00. (2.5.19)
J i\ €5

From (2.5.17)—(2.5.19) it follows

1
sup/ |T;|? dz < oo, sup/ |24 T; > dz < 0o, sup — /|8tTj|2dm < 00. (2.5.20)
i i ;g

Note that if T are the scaled solutions to problem (2.1.1), then from the Euler-Lagrange equation
associated with the functional (see (2.4.12)) it follows that E. (7;) = 0 and, therefore, conditions
(2.5.20) are satisfied.

Due to (2.5.20), the sequence {T;}52, is uniformly bounded in H(Q!,0% x (—1,1)) and a weakly

converging subsequence (say {7}}32, itself) to a function 7" in H'(Q!,0% x (—1,1)) can be extracted.
The functional

H(T) = / |0:T|* dx
Ql

is convex and continuous in H' (Q!, 8% x (—1,1)); then it is weakly lower semi-continuous and 8,7 = 0
a.e., since

/|a,5T|2 dr = H(T) < liminf H(T}) = lim inf/ 10,151 dz =0
J J

Qt Qt



70 Tengiz Buchukuri, Roland Duduchava

(see the last inequality in (2.5.20)). Hence T'(2,t) is independent of ¢, i.e.,

T(z,t)=T(%), €%, -1<t<1. (2.5.21)
Let the following conditions are fulfilled
fe(#,t) = f(2,et) — fO2) in Lo(QY), (2.5.22)
E—r
qF € H%(¥) are uniformly bounded (with respect to €) in H?(%'), and
. + _ . - _ .
Eh_r}r(l) q = Eh_% gz =qo in Ly(%F) (2.5.23)
and )
~ (0 — i
5 (@ —42) 3 in Lo(). (2.5.24)
From (2.5.22)—(2.5.24) it follows, in particular, that
Fj(2,t) = F(2,0) in Ly(Q"). (2.5.25)
Set
1 (2)
EO(T) EW(T)+ EEN(T) for T € 2(%), (2.5.26)
+o0, for T & 2(¥),
where Z(%) is defined in (2.1.10), and
1
EO(T) = 5/<(.@91T)(x,t),(@QlT)(x,t» dadt:/<(.@<gT<g)(%),(%chg)(%»da, (2.5.27)
o %
E®(T) = /F(‘%,O)T(%,t) do dt = 2/ (f2(2) — H2q0(2) — q1(2)) T (2) do. (2.5.28)
Qt €

Let us check that the sequence E.; I'-converges to E©) in ﬂl(QE, 0% x (—1,1)). Indeed, we have
E.,(Ty) = EEN(Ty) + E&(T)),
where
EV(Ty) = / (% (DT, D6T)) + 218? |atTj|2) dx, E®)(T;) = /FjTj da.
Q! Q!

The functional EM(T) is convex and continuous and so it is weakly lower semicontinuous in
H(Qf, 0% x (—1,1)), therefore,

lim inf EX(T;) > liminf B (T}) > EO(T).
VA J
The sequence Eg?)(Tj) converges to E)(T), since Fj(2,t) — F(2,0) and T; — T in Ly(Q').

Consequently,
liminf . (T;) > EO(T).
J

This proves liminf inequality for the sequence E;.
Note that

E(Q)(T)://F(%,O)T(%,t) dtda:Q/F(%,O)T%(%)dcr.
€ —1 €

To show that the lower bound is reached, i.e., to build a recovery sequence T}, we fix Ty € H!(¢) and
set T(2,t) = Te(2), 2 € €, t € (—1,1). Define recovery sequence as Tj(z,t) = T(z,t) = Ty ().
Then 6tTj = &gT =0 and

lim E. (T;) = lim EX(T) + lim E®(T) = EM(T) + E®(T) = EO(T).
j—oo j—o0o J j—oo 7Y

We have proved the following result.
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Theorem 2.5.1. If conditions (2.5.22)—~(2.5.24) are fulfilled, then the functional in (2.5.8) T'-converges
to the functional E©)(T) defined in (2.1.11) as e — 0.

Now we are able to prove the main Theorem 2.1.1 formulated in the introduction.

Proof of Theorem 2.1.1. The first part of the theorem, i.e., I'-convergence of functional (2.1.11) to
functional E(®) defined by (2.1.11), is proved in Theorem 2.5.1.

The concluding assertion that the BVP (2.1.12) is an equivalent reformulation of the minimization
problem with the energy functional (2.1.11) is explained in Theorem 2.4.1. O



Chapter 3

Shell equations in terms of
Giinter’s derivatives, derived by the
I'-convergence

In the present chapter, we expose results on mixed boundary value problems for the Lamé equation in
a thin layer Q° = ¢ x (—¢,¢) around a surface ¢ with the Lipshitz boundary (cf. (2.2.1)). The main
objective is to find out what happens in I'-limit when the thickness of the layer converges to zero.
The limit BVP for the Lamé equation on the surface is derived in explicit form in terms of Giinter’s
derivatives (see (0.0.9)) and it is shown how the Neumann boundary condition in the initial BVP on
the upper and lower surfaces wanders into the right-hand side of the equation in the I'-limit. For
this, we apply the variational formulation and the calculus of Giinter’s tangent differential operators
on a hypersurface and layers, which allow global representation of basic differential operators and of
corresponding boundary value problems in terms of the curvilinear coordinates on the surface % .

3.1 Introduction

Let ¥ C R? be an open surface with the boundary I' = 9% in the Euclidean space R3, represented by
a single coordinate function
0:w— %€, (3.1.1)

where w is open simple connected domain in R? with Lipschitz boundary dw. Let ¢ : ./ — w be the
inverse mapping
(: > w, Oo(=1d:¥ > (ol=1d:w—w (3.1.2)

(the case of multiple coordinate function is similar and we skip this case for simplicity).

Denote by v(2) = (v1(2),v2(2),v3(2))", 2 € €, the normal vector field on ¢ and let A (x) =
(M (), Ms(x), H(x))T be its extension in the neighbourhood Uy of the surface €. It is well known
that such an extension is unique under some natural constraints (see [66] for details).

The equations of three-dimensional linearized elasticity have been extensively studied, but mostly
in Cartesian coordinates. The linear shell theories justified in this Chapter from three-dimensional
elasticity require, however, that these equations are recorded rather in terms of curvilinear coordinates
that “follow the geometry” of the shell in a most natural way. Accordingly, the purpose of this
preliminary section is to provide a thorough derivation and a mathematical treatment of the equations
of linearized three dimensional elasticity in terms of special curvilinear coordinates.

The 3-tuple of tangent vector fields to the surface g, := 010, g, := 320 (the covariant metric
tensor) and the proper extension g5 := .4 of normal vector field v from the surface € into the neigh-
borhood Q" depends only on the variable 2’ € € and constitutes a basis in Q”. That means that an

3
arbitrary vector field U = ) Uje’ can also be represented with this basis in “curvilinear coordinates”.
j=1

72
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Along with the covariant metric tensor it is used the contravariant metric tensor g7, ...,g" ! which
is a bi-orthogonal system to the system of covariant metric tensors (g, g") = 8k, where 6, denotes
the Kroneker’s symbol, 7,k = 1,2 (see, e.g., [22,23]). For example, using the Christofells symbols

2
i (i : ot — k
Iy o= (g',0jgy), covariant derivatives are defined v;; := 0;v; — kz_:l L'k

Consider the problem of deformation of an isotropic layer domain Q" := & x (—h, h) of thickness
2h around the mid-surface ¥ which has the nonempty Lipschitz boundary d%. The deformation is
governed by the Lamé equation, with the classical mixed boundary conditions, the Dirichlet conditions
on the lateral surface I'?* := 9% x (—h, h) and the Neumann conditions on the upper and lower surfaces
't =% x {+h}:

LU (z) = F(z), € Q" :=%€ x (=h,h),
Ut (t)=G(t), telh =3¢ x (—h,h), (3.1.3)
(T2, VIU) () =H (2, %h), (2,t) eTF =% x {£h}.

Here U(z) = (Uy (), U2(x),Us(x)) T is the displacement vector, Zon is the Lamé differential operator
and (%(2,V) is the traction operator

ZonU = —p AU — (A + p) VdivU,

[T(2,V)U]; = Avjo U + pvpdjUp + po, U, §=1,2,3. (3:14)
We consider the BVP (3.1.3) in the following weak classical setting:
UeH'(Q"), FeH Y(Q"), GeH:(I}), H(-,+h) e H:(%). (3.1.5)
For definitions of Bessel potential spaces H?, ﬁ:]ls, see, e.g., [133].
Let us consider the following subspace of H!(Q2"):
H'(Q"Th) = {V e H'(Q"): V*(1)=0 forall teT}}. (3.1.6)
Theorem 3.1.1. The BVP (3.1.3) in the weak classical setting (3.1.5) has a unique solution.
Proof. Since the Lamé operator Zn is strictly positive on the subspace H!(Q", ),
(L V, V)= M|V|?, YV e HY(Q",T}), (3.1.7)
the proof easily follows from the Lax—Milgram Lemma (see, e.g., [70] for similar proofs). O

3.2 Lamé operator in curvilinear coordinates

In the present section, we use the notation from Section 2.2 and will represent Lamé and traction
operators in curvilinear coordinate system introduced in Section 2.2.

Lemma 3.2.1. A matriz-operator A = [Aj;|3xs written in curvilinear coordinates (2.2.3)-(2.2.6)
acquires the form

Ajq A Az (Aq,.,v)
Agy Ao Ass <A2 . ,V>

A= ’ 3.2.1
Az Aszy Assz (As,.,v) |’ ( )

(A. 1,v) (A .q,v) (A 3 v) (Av,v)
= (Aj}]_,Aj)Q,ALg)T, A.)j = (Al)j,AQ’j,Ag’j)T, j = 1,2,3.

Js -
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Proof. Indeed, take the vector-function U = (Uy, Uz, Us) and proceed as follows:

3 3
AU = Z Aijkej = Z Ajk(UIS +VkU£)(dj —‘rl/jd4)
G k=1 j k=1

3 3 3 3
= Z Aij]?dj + Z Ajkl{legd4+ Z Ajkl/kadj + Z AjijVkU2d4

k=1 k=1 k=1 =1
Apy A Az (Aq,.,v)] [U?

_ Ay Ay Ay (As, vy | |UY
Az Az Aszs (A3 .,v)| |UY

<A-,17V> <A~,25V> <A,73’l/> <AV7V> Ué(l]
and (3.2.1) is proved. O

The Lamé operator

LU = —pAU — A+ p) VdivU = — 6107 + (A + 1)9;0k] 5, U

3
= {— Z CijkeajazLXsU, Cijke = A0ijOre + (000 + 0iedjr)  (3.2.2)
k=1

is formally self-adjoint differential operator of the second order and, written in the full system (2.2.3),
acquires the form

LU = = AU — (A + p) Vr divn U, (3.2.3)

To reformulate the BVP (3.1.3) in curvilinear coordinates we also need to represent the traction
operator (cf. (3.1.4))

3
T, 0)U = Y (Tjn(z,0)Us)e’

§.k=1
3 4 3
-y ({ijak + 105 + O au}Uk>eJ, U=(U.Us,Up) =3 Upe*
k=1 j=1
in Gilinter’s derivatives:

3

‘I(EK, .@) = Z el® ek{/\l/jak + ,ul/kaj + (Skj/,L 8,/}
me 3 3
=AY _d* @ (d" + vd")( Dk + D) + p Y _(d* + vd?) @ (d + vid) 2
k=1 k=1
5 /L@4 0 0 M@l
+ u;(dj tud) o d (@t = | 0 M;4 Zgz . (3.2.4)

AND1 ANDy A\D3 (/\-1-2#)94

since

3 3 3
0y = Yy, Zujejzuzd4, Zl/kdk:O, Zugzl.
j=1 k=1 k=1

3.3 Convex energies

In the present section, we expose some results about convex energies and energy functionals from [77]
and endow it with description of similar results in curvilinear coordinates introduced in Section 2.2.
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Let an elastic body occupy a thin domain " (see (2.2.1)) in a reference configuration and let a
three-dimensional vector U : Q" — R3 represent the deformation of the body subject to the action of
internal and external forces. We assume that U is sufficiently smooth mapping, U € H?(%'), and the
elastic energy of the deformation is represented by a non-linear functional

EM(U) = /W(VU(x))dx = /W([ajUk]gxg) da. (3.3.1)

The non-linear stored energy function W : M3*3 — R has a single energy well at the group of

orthogonal matrices
SO3) = {AeM>3: ATA=AAT =1}.

The stored energy function W is subJect to the following constraints:
1. WeoM*®), WeC? in a neighbourhood of SO(3);
2. W is frame-indifferent: W (F) =W (RF), VF € M**3, VR € SO(3); (3.3.2)
3. W(F)> Cdist*(F,S0(3)), W(F) =0 if F € SO(3).

The condition W € C(M3*3) in (3.3.2) can be weakened to include energy functions W which become

~+00 outside an open neighbourhood of SO(3), such as the following model functional for isotropic
materials which goes back to St. Venant and Kirchhoff:

u’ﬁ I‘ (Tr (\h I)) . det F >0,

+00 otherwise.

W(F

Let us rewrite the functional of non-linear elastic energy of a deformation &) (U) in (3.3.1) in
curvilinear coordinates (2.2.3)—(2.2.6):

&M (U0 = Wo(ZenU° (2, 1)) do dt, (3.3.3)
1]
Wo(ZerU° (@' 1) i= W ([(9; + M) 2D)(UR, 8) + Ml US (1)) ).

Lemma 3.3.1. The non-linear stored energy function Wy : M**4 — R has a single energy well at the
set of matrices A(4), which consists of matrices of the form

a1 a2 ai3 (v,a1,.)
A as as a3 (v,a2.)| _ VAV, (3.3.4)
asi as2 a33 < as, . >
(via.1) (v,a.q2) (v,a.3) <AV V)
a; . = (aj,haj,%aj,g)—r, a. ;= (al,j,a2,j;a37j)T7 ] = 172733

where A = [a;;]3x3 € SO(3) is an orthogonal matriz and Ao, V are given by the formulae

a1 a2 a3 O 1 0 0 1y
_ |azn ax azs 0 1001 0 w
Ao = as1 asz asz O’ V= 0 0 1 v (3.3.5)
0 0 0 0 00 0 1
The matriz 'V is invertible and the inverse is

1 0 0 —U1
1101 0 -1
V T 0 0 1 —U3
0 0 O 1



76 Tengiz Buchukuri, Roland Duduchava

The stored energy function Wy is subject to the following constraints:

1. Wy € C*(M***) in a neighbourhood of A(4);
2. Wo(RiVH(VHTIGVHVT)TIRy) = W(GR), VG € M**®, YRy, Ry € A(4); (3.3.6)
3. Wo(G) > Cdist* (G, A(4)), Wo(G) =0 if G € A(4).

Proof. From Lemma 3.2.1 we know that a matrix function A = [a;;]3x3 in curvilinear coordinates

(2.2.3)-(2.2.6) acquires form (3.2.1). Since the functions a;; and components of the normal vector
field v, vo, v3 commute, we can represent the matrix Ag as follows:

ail a2 a3 <V7¢11, )
A — a21 a22 a23 <V7a2,->
0=
asi a32 a33 <V, as, . >
(v,a.1) (v,a.q) (v,a.3) (Av,v)
1 0 0 0 a11 Q12 a3 0 1 0 0 141
_0 1 0 0 a1 Q22 a230 010V2_T
0 0 1 0 azp az2 ass 0 0 0 1 V3 =V AOV’
1 vy vy 0 0 0 0 1 0 0 0 1

where Ag and the invertible matrix V with its inverse V! are defined above. Therefore, the algebra
of orthogonal matrices SO(3) in curvilinear coordinates transforms into the set A(4) and the energy
integral cféh) has a single energy well on A(4).

Properties (3.3.6) of the energy function Wy(G) follow from (3.3.2) with the help of representation
(3.3.4) and the last part of Lemma 2.2.1 (see (2.2.8)) asserting that the distance is invariant under
the change of Euclidean coordinates to the curvilinear ones. O

Remark 3.3.1. From representation (3.3.4) it follows that if an initial matrix-function A = [a;x]3x3
is skew symmetric

0 a2 @13

A- |7z 0 az) _AT,
—a13 —azz3 0
0 0 0

it maintains the skew symmetry in curvilinear coordinates (2.2.3)—(2.2.6):
AT =VTAWV) T =vT A (V)T =-VvTAV =-A.
But if the initial matrix A = [a;x]3x3 is orthogonal A € SO(3), which implies the equalities
3

Zakjajm = Ogma, k,m=1,2,3,

j=1
in curvilinear coordinates (2.2.3)—(2.2.6), it looses the orthogonality: AT =V (A%)TVv=v"(A%) 1V
is not the inverse to A (moreover, A is not invertible at all).
3.4 Variational reformulation of the problem

To apply the method of I'-convergence, we have to reformulate the BVP (3.1.3) in an equivalent
variational problem for the energy functional. For this, note that it is sufficient to consider the BVP
with wanishing Dirichlet condition on the lateral surface:

LU (z) = F(z), € Q" :=% x (=h,h),
Ut(t)=0, teI':=0¢ x (—h,h), (3.4.1)
(T(2,V)U) (2,+h) = H(2,+h), 2 €F.
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Indeed, consider the BVP
LoV (z) =0, € Q" :=% x (—h,h),
Vi) =G, teTh, (3.4.2)
(T((2, V)V) (2, £h) =0, (2,%h) e IF =€ x {£h},

which has a unique solution V'€ W!(Q") (see Theorem 3.1.1), and note that the difference U — V of
solutions to BVPs (3.1.3) and (3.4.2) satisfies the BVP (3.4.1). Thus, solution to the BVP (3.1.3) is
recovered as the sum of solutions U + V' of the BVPs (3.4.1) and (3.4.2).

Theorem 3.4.1. Problem (3.4.1) with the constraints
UcH' (Q"T), FeH ("), H(-,+h) c H (%) (3.4.3)

is reformulated into the following equivalent variational problem: under the same constraints (3.4.3),

look for a displacement vector-function U € H! (Q" TR, which is a stationary point of the following
functional:

o (U) ::%/ [V U@)P + (+ p){ dives U()} +2(F(2), U ()] de
Qh

+/ [<H(g,+h),U+(x, +h)) — (H(2,—h), U™ (=, fh)>} do
€

h
;//{MVQ;L (@) + A+ p){ divgs U(z) } +2(F(z),U(x))
“h

1
+ o {(H(%,+h),U+(%,+h)> —(H(2,-h),U" (=, h)>H do dt. (3.4.4)
Remark 3.4.1. The integral on € in (3.4. 4) 1s understood in the sense of duality between the spaces
Hz (%) and H™2 (%) because H(-,+h) € H™2(%y) and the condition U € H'(Q", ') implies the

inclusion U™ (-, +h) € H2 (Ey).

Proof of Theorem 3.4.1. Let U be a solution to the mixed problem (3.4.1). By taking the scalar

product of the first equation ZonU(x) = F(z) in (3.4.1) with a function V' € ]ITHI(Qh,F}LL) and
applying the Green formulae we get the following equality:

/<F(m),V(m)>dm=/<$QhU(x),V(x)>dx

Qh Qh,

S / [ (VarU(x), Vo V(2)) + (A + p){ divgs U(z), divgs V(x)>] dz

/( (v, VYUt (y), VI (y)) do

Fh

+ [ (w90 )V () = (50,90 @), V(1) do
€

By inserting the boundary conditions from (3.4.1) we derive that the solution U to the BVP (3.4.1)
solves the following variational problem for arbitrary trial function V' € H(Q", T'4):

/ [M<VQhU(m), VarV(z)) + (A4 p){ divgs U(z),divgn V(x)>} dx
Qh

7/<F(x),V(x)>dw+/ [(H(%,+h),v+(%,+h)>7<H(3r,fh),V+(5{,fh)>} do. (3.4.5)
Qh ¢
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Next, note that the quadratic form (i.e., when V' = U) in the left-hand side of equality (3.4.5)
is positive definite in the space H! (Q"Th) and, therefore, defines an equivalent norm in the Hilbert
space ﬂl(ﬂh, I'"). On the other hand, the functional in the right-hand side with a fixed U is bounded
in the same space H(Q", T'). Therefore, by the Riesz theorem on functionals in the Hilbert spaces,
there exists a unique function U € H!(Q",T") which defines the functional in (3.4.5).

Now let U € H!(Q", I'?) be a solution to the variational problem (3.4.5) and V € H! QP Th) is
arbitrary. A direct verification shows that

1
50, (U + V) = 60,(U) + [/ (U, V) = (V)] 4 5 /(V, V), (3.4.6)
where &/ (U, V) is a bilinear form and .% (V) is a functional

(U, V) :/[MWWU( ), Ve V(@) + (A + ) divegs U(z), dives V@;))} dz,
Qh

FW) =~ [(F@. V() ds (3.4.7)

and the equality
&a, (U) = %d(U7U) - Z(U) (3.4.8)
holds. Then, due to (3.4.5)—(3.4.6),
AU, V)= F(V)=0 for all V eH (Q"T})

implies

1
&, U+V)—6q,U) = 542%(V,V) >

| Q

|V | HYQY|°, vV e HY(Q"T?)

and, thus, U € H*(Q", I'*) is the minimizer of the functional &y, (U) in this case.
Conversely: Let U € H'(Q",T?) be the minimizer of &y, (V) and V' € H!(Q", T%) be arbitrary.
The inequality (cf. (3.4.6))

2
0< o, (U+eV) = &, (U) =e{a/(U,V) - )}+%W(V,V), Ve e R,

implies that &7/ (U,V) = #(V). Indeed, the first summand in the right-hand side of the equality
dominates for small € (positive and negative) and the second is non-negative. If we assume the
contrary o/ (U, V') # .7 (V), the difference &g, (U +60V') — &g, (U) would become negative for certain
small £, which is a contradiction. O

By using representations (2.2.9) and (2.2.10) of extended gradien and extended divergence, we
rewrite the energy functional in the following form:

o (U //[ {2_: (Pal (1)) + (‘wf;f’“)2+2<p0(%,t),U0(%,t)>}

0 2
(At p) {Z@ U° (« W+2%%(%)Uf(%,t)}

+ E{(HO(%,Jrh),UO’*(%,aLh)) — <H0(%,h),UO’+(%,h)>H do dt, (3.4.9)

U= (U003, U3 U7, Za= o w= (1), €%, 1€ (-hh).
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Next, we perform the scaling of the variable t = hr, —1 < 7 < 1, divide by h the scaled energy
functional and study the following functionals in the scaled domain Q! = % x (—1,1):

1
ES(UY) = %@@Qh(U?L) - %//Q4(V%UO(%,hT),hflaTUO(gg,m))dadT,
-1 €
4 0
10U (2, hT)\2
0 —1 0 . O J ’
Qs(VoU(2,h7),h " 0,U" (2, h7)) : Z{ VeUj (2 L hT))? + <ET }

=1 (3.4.10)
FOck ] dive 8 ) 200U ) 1 PR
+2<F0(%,h7),U0(%,h7)>

o [(HO 40,00 (o, 40) = (O (2, =), U (7,1,
where

0= U0, U9,U9,U9) = (O UN)T, T = (U, U3UT, Ul(#,7) = U, h7),
F .= (F,F),F), F))", F):=F; —v;F), F):= @, F),

and V¢, divy are the surface gradient and divergence:

3
Vo = (210, %20.7350) ", divg V=Y DoVa.

a=1

Lemma 3.4.1. The energy functional &3, (UY) in (3.4.11) is correctly defined on the space H'(Q,T1)
(see (3.1.6)) and is convex

EL.(OUY + (1 — 0)Vy) < 085, (UY) + (1 — )%, (Vy), 0<0< 1. (3.4.11)
Moreover, if F) (2, 7) := F°(2°,ht) are uniformly bounded in Ly(Q1),

sup || F9|La(QY)] < oo. (3.4.12)
h<hgo

for some hg > 0, the energy functional has the following quadratic estimate: there exist positive
constants C1,Cy and Cs independent of the parameter h such that

! 10U (2, hr)

cl/ <Z {(VgUJQ(%,hT))Q + (ﬁ 387)2}) dx — Cy < 4. (UY)

Jo\ia
<Cs {1 +/ (Z {(chUjQ(%,hT))Q + (% W)QD dx} (3.4.13)

(918 Jj=1

for all UY € HL(Q!,T1).

Proof. Let us decompose the energy functional into the sum of quadratic and linear functionals

S (UR) = &5 UR) + 630 (U, (3.4.14)
e (Up) = ;/1/ {ué{(vw (. h) + (3 WJQ(;’}”))?}

€
~ 0 2
+ A+ w{ diveg U’ (o, hr) + 2565 (2)UY (2, hr) + % W} } do dr,
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/j/{ 2(F%(2,h7),U" (2, h1))

{<HO(%,—|—h),UO’+(%,+h)> — (H(2,—h), U (=, —h))H do dr .

w\»—*

+

S =

The convexity of the linear part &2, (UY) is trivially obvious. The convexity of the quadratic part
é??h (UY) is also rather trivial to prove if based on the well-known inequality

[6a + (1 — 0)b]” = 6%a% +20(1 — 6)ab + (1 — )%
<0%a® +0(1 — 0)(a® +b?) + (1 — 0)%? = 0a® + (1 — 0)b°.

Thus, inequality (3.4.11) is proved.
Inequality (3.4.13) is trivial for the quadratic part éof?h(U%) of the energy functional (even with

C5 = 0) and since the quadratic part dominates the linear one &%, (Uj) < C4ES (UY), the proof for

Qh

89,.(UN) = &5.(UN) + &5.(U}) follows from the proved one for &5, (UY). O
Theorem 3.4.2. Let the weak limits
1
lim FO(2,ht) = F'(2), lim — [H°(2,+h) — H(2,~h)] = HY(2), (3.4.15)
h—0 h—0 2h

FO HWO ¢ Ly(%),

exist, respectively, in Lo(Q") and Lo(%). Then the T-limit of the energy functional &3, (UY) exists:

}{igbggh(Ug) = &3(U"%) ::/Qg(UO(%))da, (3.4.16)
where
3
Qs(U gz:: VgUO
BAYE iy, D A 2F () + HVO(2), U° 3.4.17
2A+2M{w<g (2) + A (2 }+< )+ (2),U°(2)) (3.4.17)
and

U°(2) i= (U(2),U(2), U9 (), U (2)), T () := (UX(2),U9(2),UL(2))T,
UN2):=U(2,0)=Uj(2) —vij(2)U(2), j=1,23,

US(2) = (W(2),U(2)), U(2) = (Ui(2,0), Us(2,0), Us(,0)) ", (3.4.18)
F'=(F).F).F,F))T, F)(«):=F(2,0= Fy(.0) — vy () F(). j=1.2.3,

Ff(‘%) = (V(‘%)7F( ))7 ( ) ( ) (Fl(%’0)>F2(‘%’O)aF3(‘%7O))T'

Proof. To check the I'-convergence (3.4.16), first we prove the estimate

E(UY) = E.(UY) / Qs(U° (2 (3.4.19)
For this, we rewrite the quadratic form

4
Qu(U°(2,hr), k' QU (2, hr)) = %Z {02, h7))? + ()}
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+ # { divg ﬁo(%, ht) + 25 (2)UY (2, hr) + C4(h)}2 + (F°(2,h7),U°(2,h7))

1

+ o |:<H0’+(%),Uo’+(.§?f,+h)> _ <HO’_(%)»UO7+(5&’,—h)>i|

and have to find the infimum with respect to 4 variables depending on h:

1 8UJQ(3{, h)

¢j(h) =3~ ==, j=1234 (3.4.20)

From the extremum conditions

0Q4(U°(2,hr),h ' 0,U° (2, hr))

:ucj(h):()7 j:172737

dc;(h)
3@4(U°(%7h;)c,4fzh)13tU°(%,hT)) — ea(h) (3.4.21)
+ (A +m{ dive U’ (o, hr) + Hog(2)U (2, hr) + ea(h)} =0
we find that
c1(h) = c2(h) = cs(h) =0,
ca(h) = — ;L‘; {dive O° (o, h7) + 200 ()US (2, h7) }.

By introducing the obtained values into the quadratic form we get a new quadratic form @@é’h (Ui?L)
which is minimum of &3, (U 9) and, therefore, estimates this from below.
Thus, estimate (3.4.19) is proved.
To accomplish the proof of the I'-convergence (3.4.16) it remains to build a recovery sequence
UO(%a hkt) = (U?(%v hkt)v Ug(‘%7 hkt)v Ug(‘%v hkt)7 Ug(%7 hkt))T
= U°() = (UY(#).UY(#,),US(#),U§(#)) "

along which the quadratic form reaches its minimum

Jim EG (U (2, hyt)) = E2(U° (2)). (3.4.22)

The minimizing sequence U®( 2, hyt) should satisfy conditions (3.4.21) and, therefore (cf. (3.4.20)),

i 8UO(%, hkT)

—0, j=1,2
hk 67_ 07 j 3 737

1 8U2(5K hiT) At p

— ’ = - v U° 2 0 4.2
= T { v U°(o, hyr) + 20 (2)U3 (2, har) }, (3.4.23)
lim U (2, h,m) = U2 (z), m=1,2,3,4. (3.4.24)
hk—>0

From (3.4.12) we derive that the first 3 components of the vector-function U°(2, hj,7) is indepen-
dent of the transversal variable to the surface, of 7 € (=1, 1), i.e.,

U(2,hpr) =U(2) for j=1,2,3, (3.4.25)
as well as its surface divergence

dive U (2, hir) = DU (2) + DU(2) + DU () = dive U (2).
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Solution U (%, hi,7) to the Cauchy problem (3.4.23)—(3.4.24) for the first order differential equation
depends on the surface variable 2° as a parameter:

~0
dive U (2) , _ _ .
0 _ Ve L) —A@heT _ A(z)heT770
U (2, heT) 2 op (2) (e +e U)(2) if () # 0, (3.4.26)
Ud(2,hx7) = B(x)hyr + U(2) if Hp(2) =0, (3.4.27)
where o
2N+ 2u) it (2) (A +2p)dive U (2)
Alw) = X+ 4p » Bla)= X+ 4p '

Note that if A(z) — 0, then the limit of (3.4.26) coincides to (3.4.27), so U (2, hxT) is smooth
with respect to 2.
Inserting equalities (3.4.25) and (3.4.26) into the quadratic form gghk(U?Lk) (see (3.4.9)) and

sending hj — 0 we prove that the limit in (3.4.16) is attained. O

Corollary 3.4.1. The boundary value problem

~0 + U . ~0,
pAGT () 4y {v% dive U (2) + Vi [%cg(%)Ug(%)]}
_ 0 (1,0 -
i F°()+H ( ) . on €, (3.4.28)
MA+2M%%(%)(‘11V‘KU (#) + Hg(2)US (%)) = —(F) + Hy ") on €,
U’t)=0 on T' = 9%

corresponds to the energy functional &(U°) in (3.4.16) and, therefore, can be considered as the T'-limit
of the BVP (3.4.1).

Proof. Let UY minimizes functional &2. To determine the associated Euler-Lagrange equation, for
an arbitrary V' € H}(Q", T?), we should solve the variational equation

d
0 0 _ 0 0 _
= 4 30 44y )’t_o /dt Qs(U°(2) +tV (%))’tzoda 0.
€

Calculating integrand and applying Stokes’ theorem we obtain

3
/ (Q,uz VU - VeV,

j=1
2p(A + )
A+ 24

2

{dive U0 + A UL} divee VO + V) + (FO + HOO, V°>) do

/Z {2MA U + A(A +:) 9;[divUY + #,U] — 2[FO + HV] }Vjo do

2
+/{W [divU? + AU + 2[F9 + HED ]}jﬁgm do = 0. (3.4.29)
1L

Taking V) = 0 and an arbitrary V° in (3.4.29) we obtain the first equation of (3.4.28), while taking
V0 =0 and an arbitrary V) = 0 we obtain the second equation. O

Remark 3.4.2. The boundary value problem for shell (3.4.28) is written in the new coordinate system
(2.2.3)-(2.2.6) and first three components of the displacement vector

U%(#) = (U7 (2), U3 (2), U (2), US (2))
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correspond to the displacements in the direction tangent to the mid-surface % vectors dt.d* d?

(projections of the coordinate vectors e!, e2, e® on the surface ¢), while the fourth one gives the

displacement in the direction of the normal vector field d* = v.
Note that components of the tangential part of the displacement vector

T
U’(2) = (U} (2),U3(2), U (), U}(2))
are linearly dependent:

v (22U (2) +va(2) U (2) +v3(2)US(2) =0 for all 2 € F.

3.5 Shell operator is non-negative

Main theorem of the present paper, Theorem 3.5.2, will be proved later. Here we recall main results
about I'-limit of the energy functional &g (U) in (1.4.4).

Next, we perform the scaling of the variable ¢ = hr, —1 < 7 < 1, in the modified kernel Q4(VU)
of the quadratic part of energy functional (1.4.4) and divide by h.

Lemma 3.5.1. The scaled and divided by h energy functional
~ 1 ~ 1 ~ ~
&9, (U") = - En (T = 5 T - FOT) (3.5.1)

with the quadratic and linear parts

1

200" = //QZ(VQJ}}Z(%J)) do dr

-1%
/h/{ F,.U%) ]11 [(ﬁ(%,+h),I}O’+(%,+h)>—<ﬁ0(%,—h),ﬁO’Jr(%,—h))H do dr,
—h €

Fo(2,r) = (F{’(%,hr),Fg(ﬁz,hT),F§(3{,hT),Ff(£(7hT)>T7 FY = A, Fy,
H,(7,7) = (H?(%,hT),HS(%,hT%HQ(%,hT)7H2(.9f,h7‘))T, HY = N H,,
is correctly defined on the space IFHl(Ql,FlL) (see (3.5.1)) and is convex
£, (00" + (1- o) V") <& (T" + (1-0)&.(V"), 0<b<1, (3.5.2)

~h ~h ~
for arbitrary vectog V (2,7):= (Vi(2,h7),Va(2,h7), V(2 ,h7),Va(2,hr))T, V' € HY(QL,TL).
Moreover, if F),(2,7) := F° (2, ht) is uniformly bounded in Lo(QV),

sup HFZ | Lao(QY)| < o0 (3.5.3)
h<hg

for some hg > 0, the energy functional has the following quadratic estimate: there exist positive
constants C1, Co and C3 independent of the parameter h such that

01/ [(@an(%,hr))z + (llfwf(')(;i’]mﬂ dx — Cy < @@gh(ﬁh)

<03{1+/ [(@an(%7hT))2+ (% W)Q] dx} (3.5.4)

ol

(o)}

~h ~
for allU € H'(QYTL).
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Proof see in [14, Lemma 3.1].

Theorem 3.5.1. Let the weak limits

lim F(2,h7) = F(2), lim L [H(2,+h) — H(2,~h)] = HY (2), F,HY € Ly(¢) (3.5.5)
h—0 h—0 2h

iy
exist, respectively, in Lo(Q") and Ly (€). Then the I-limit of the energy functional £3, (U ") exists

I - lim &9 (U") = EX(T) = /%(ﬁ(g)) do, (3.5.6)
€
where
Qu(0) = & [ [2.T5 + 250a)" - 2051, 20 3247
fj‘;ﬂ (ZaUa)% + (F(2) +2HY (2),TU(2)) (3.5.7)
and

U(2) = (U1(2),0s(2),Ts(2)) ", Tal(2):=Ua(2,0), a=1,2,3.
Proof see in [14, Theorem 3.2].

Theorem 3.5.2. Let F, HWY ¢ Ly(%). The vector-function U € HY(€) which minimizes the energy
functional £2(U) in (3.5.6)~(3.5.7) is a solution to the following boundary value problem:

(fcgﬁ)a = ,U/LA%OUOC + gggaﬁﬁ - QL%%Vg@aUg - QW(VQVBQVUQ)}

AAp = — 1
— O =_F HD 3.5.8
B +)\ 2 [@a@ﬁUg %gl/a@/jUB] 5 fa + i1, on €, ( )
Uun(t)=0 on I' = 0%,
a=1,23.

Vice versa: on the solution U € H(%) to the boundary value problem (3.5.8) under the condition
F,HY € 1Ly(%), the energy functional &2(T) in (3.5.6)~(3.5.7) attains the minimum.

Moreover, the operator ZL¢ in the left-hand side of the shell equation (3.5.8) is elliptic, positive
definite and has finite-dimensional kernel, which consists of the solutions to the following system of
equations:

DoUs + D5Ua — Y _ [vary(25U4) + v514(ZalU,)] =0, o, =1,2,3. (3.5.9)
¥

The boundary value problem (3.5.8) has a unique solution in the classical setting:
— B — 1
U:= (U,,U,,Us3)" € HY(%), SF+ HY € Ly (%). (3.5.10)

Proof. The first part of the theorem that BVP (3.5.8) is the I'-limit of the BVP (1.4.1) (i.e., the
solution to the BVP (3.5.8) U € H'(%) minimizes the energy functional &(U) in (3.5.6)(3.5.7)) is
proved in [14, Theorem 3.3].

Ellipticity of the operator % in the left-hand side of the shell equation (3.5.8) is checked directly
and it is Fredholm operator in the setting % : H=(%¢) — H(%). This follows from the Lax—Milgram
Lemma (see [70, Theorem 14] for a similar proof). Therefore, % has the finite-dimensional kernel.

Let us start with the energy functional and recall the quadratic part of the energy functional (see
(3.5.1) and formulae [14, (2.7)]):

h
20U) = //QZ(VU(%,t)) dodt, Q}(F)=2u|E|*+ \(Trace E)?, E =
—h €

! (F+FT"), (35.11)

N
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where F = [Fop]3x3 and E = [Eaglsxs are 3 x 3 matrix and |E|*> = Trace(ETE) => Ezﬁ. From
B

Lemma 3.5.1 it follows that the kernel Q{(F) is non-negative:

QUF) =213 B2+ (n+ )\)(ZEW)Q + 103 (Baa — Egs) = 0. (3.5.12)
by a -y

Let us rewrite the kernel QJ(VU) of the quadratic part 29(U) of the energy functional in (1.4.4),
(3.5.11), (3.5.12) by using the equalities

F = VU = [0.Uslsxs, (DefU) = % (VU) + (VU)T) = [% (0aUs + aﬁUa)]

3x3

and (5.4.5) as follows:

Qu(VU) =2u Y (DefU)25 + (1 + A)(Z@aUa>2 + 1Y [0aUa - 93U5]° (3.5.13)
a#B a a#fB
—ony {(_@er)ag 4 YaPiUa ; ”ﬁ%Uﬁ]z +(u+ A)(Z Dol + @4U4)2
atB a
+ 13 [Fala = D3Us + vaPula — VB.%Uﬂr
a#f
—ony [(ger)aﬁ 4 YaP1Ua ; ”B%Uﬁr +(u+ A)(Z Dol + @4U4)2
a#B a
+ 1Y [Fala = D5Us + vaPiUa — VB.%UBF, (3.5.14)
where v
(PefU)yp := w, o, =1,2,3.

Next, we perform the scaling of the variable ¢ = hr, —1 < 7 < 1, in the modified kernel Q4(VU)
of the quadratic part of energy functional (3.5.13), divide by h and study the following kernel in the
scaled domain Q' =¥ x (1,1):

QT (2,7)) = %@1 (VU (o, hr))

2
= g Z |:@aUﬁ(e%ah7_) + ZUa(2,h7) + %1 0Us(, h) +28 8Ua(%’h7)]

oy’ or h or
10U (2, hr)\2
+(u+A)(Za:%Ua(x,hT)+haT )
Vo OUg(2,hT)  vg OUg(2, h1)12
—I—,uaz/;[@aUa(%,hT)—%gUﬂ(%,hr)—f— e e e ICERE)
where
U (#,7) = (U2, h7), U2, hr), U (2, hr), UL (2, h7)) |, U = AU (3.5.16)

For this, let us rewrite QY in (3.5.15) in the form
~h 2
QA (VarT" (2,7) = £ 3 [2uUs(,h7) + DaUal, h7) + Hakis + Nt
a#p

+(u+ )\)(Z DU (2, h7) + ,54)2 +ud [QQUQ(%, ht) — DaUs( 2, hr) + Moo — %gﬁr
«@ a,B
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L 2 . 2
> | ZaUs(2,h7) + DsUal, 17) + Hakis + Ao+ (u+ N(ZivU (2, h7) + €4)
a#fB

2
+ 13 [Pala(@,h7) = DaUp(,h7) + Habe = Nipts] , (35.17)
a,p

where the variables

10Uy (2, h)

ga = ga(%, hT) = E T, o = 1,2,3, 54 = J‘/Qéga (3518)

depend on h, and we will find minimum of the kernel QJ(VqrU (2, 7)) with respect to the variables

~h
&1, &, &3. It was shown in [14] that by Q}(VonU (2,7)) the I-limit is attained on the following
values of the variables:

A
- — = — 1 . .].
S I P A wE v ’ (3:5.19)
A , B
goz = *:/Ky(@aU-y) — m :/Va@lv U, o = 1,2,3, (3520)

where we remind 2ivU = Z,U,. From (3.5.19), (3.5.21) and (3.5.17) we find the I-limit Q3(U) (the
same as in [14], but written in a different form):

Q3(0) = min QY(VarT")
i o _ - 2)
=53 (2T + 200 = 3 [varn(250) + v (2a05)] - 150 o

a#p ¥

Vo Vg Div U}

_\2
+ (u+ ) )
+ MZ [@aUa — 95Up — Z [Z/QVW(@OCUW) — Z/BVV(@,QUW)]
o, Y
— V2 9ivU + L V2@ivﬁr
A+2u A+2u P
_ _ _ _ 2 _ 1?2
> {.@aUﬁ + DgUa = Y [Vars(PT5) + v, 2T, | - ﬁ Vv Div U]
a#f Y
4p® (4 N)
T Ot 202 A+ 2u)2 [9 T
2
+ NZ [%Ua - 95Up — Z [Vary (DU ) — yﬁuv(%Uw)]} : (3.5.21)
o, R

From (3.5.21) it follows that Q3(U) is a nonnegative quadratic form Q3(U) > 0 for all U €
H(%,T), I := d%. =

3.6 Shell operator is positive definite
If Q3(U) = 0, from (3.5.21) we get
2ivU =0,

DUy — ggﬁg — Z [VOLV.Y(@QU.Y) - VBV,Y(QBU,Y)} =0, a#p=1,2,3,
~ (3.6.1)

DuTp+ D500 — Y [uauw(%m) + VM(%UW)} —0, a£8=123.

~
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Taking the sum over 3 in the second equality in (3.6.1), we get

Ua =Y Vay(ZaU,), a=1,2,3. (3.6.2)

Note that the obtained equality implies both, the first and the second equalities from (3.6.1). Moreover,
it coincides with the third equality in (3.6.1) if we allow there o = 8 = 1,2,3. Thus, equation (3.5.9)
implies all three equalities in (3.6.1) and describes the kernel Ker %% of the shell equation % in
(3.5.8).

Now we rewrite the obtained equation in the following form:

Dol ZI/QI/.YQU ) = va? (ZW 2) =D valZar )T,
Y

=vo(ZaUy4) — Zl/a(@al/,y)ﬁ,y, Uy = ZV,YU,W a=1,2,3. (3.6.3)
¥ ¥

Similarly to (3.6.3), from equality (3.5.9) (see the third equality in (3.6.1)) we derive

DaUp + DU = vaP5Us + v3DaUs = Y _ [va(Dsvy) + v5(Zary)| Uy, 0,8 =1,2,3.  (3.6.4)

Y

To equalities (3.5.9), (3.6.3), (3.6.4) we add the following:

S [[2T5+ 250a)" = 2" vars 2T 24T

a,p vy
=3[ [2.T5 + 250 }—22 (202> =23 (Davs) (DU U,
a,B By
+2) (Zavp)(ZaUa)Us = 2> (Zavy)(ZalUa)U~, =0, (3.6.5)

a,B oy

which follows from (3.5.7) if we apply the first equality from (3.6.1) and recall that QYU) =0.
IfUs(s) =0, a = 1,2,3, equalities (3.6.3)—(3.6.5) simplify:

Da(5)Ua(5) = va(s)ZaUa(s),

.@aﬁg( ) + .@BU (5) = Uy (5)@5?4(5) + Vg( .@aU4(5), a,8=1,2,3,

S [12.T5(6) + 20 0)]] = 23 (2Ta(s))2, 5 € 0.
a,fB «

(3.6.6)

We can see that not only the first equality in (3.6.6) is the consequence of the second one (by taking
a = f3), but also the third equality follows from the second one if we take into account that Y v2 =1

and Y v,%, = 0.
By inserting the first equality from (3.6.6) into the second one we get

Do s(s) + DaUa(s) = Z ‘;8 D5Us(s) + ZZ Ez; DoTa(s), a,f=1,2,3.

If we succeed to prove that
D,Uu(5) =0, s €0¢, a=1,2,3, (3.6.7)
from (3.6.6) and (3.6.7) follow

DaUp(s) + P3Un(5) =0, 5s€ 0%, a,f=1,2,3. (3.6.8)
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The latter implies that -
2,Up(5) =0, Va,8=1,2,3, Vs € I¥. (3.6.9)

Indeed, among directing tangent vector fields {d*(s)}3_, generating Giinter’s derivatives 7, = 9,
k = 1,2,3, only two are linearly independent (one of these vectors might even collapse at a point
d*(s) = 0 if the corresponding basis vector e* is orthogonal to the surface at s € ). One of these
vectors might be tangent to the boundary curve 9% and, at least one, say d° (s), is non-tangential
to d€. The vector d* for a = 1,2,3 is a linear combination d*(s) = ci(s)d>(s) + ca(s)7(s) of
the non-tangential vector d*(s) and of the projection 7%(s) := maed®(s) of the vector d*(s) to the
boundary curve 9% at the point s € 9¢. Then

(ZaUs)(s) = c1(5)(042Us)(s) + 2(8)(9roUs)(s) = c1(s)(Z3Us)(s) (3.6.10)

for all s € v and all & = 1,2,3, because (Z43Us)(s) = (Z3Us)(s)Us, Us vanishes identically on 0%
and the derivative (9,;UY)(s) = 0 vanishes, as well.

On the other hand, from (3.6.8) for 8 = o = 3 it follows 223U5(s) = 0 and, together with (3.6.10),
this gives (Z,U3)(s) = 0 for all s € v, 8 = 1,2,3. Then, due to (3.6.8), (Z3U,)(s) = (Z.Us)(s) =0
and, due to (3.6.8), (Z,U.)(s) = 0 for all s € v, « = 1,2,3. Applying again the above arguments
exposed for Us, we prove equalities (3.6.9).

3.7 Numerical approximation of the shell equation
Consider the boundary value problem (3.5.8)

(%600 = 1| AcTa + DsPaT s — 20505 7aU 5 — P(vavs 7,0 )]

AN _ e
+ﬁ [.%%Ua - 2%@@%%} =3 Gay o0 %, (3.7.1)
Ua(t) =0, on T'— 0%,
a=1,2,3,

where Go = F,, + 2H" € Lo(¥)], @ =1,2,3.
In [14, Theorem 5.1], it is proved that if U € [H!(%)]? is a solution of the BVP (3.7.1) and
V € [HY(%))3, then

o L o 4 o
/ {m (2576 25V o+ 2uT 5 D5V o~ vars 2,02,V o] + %‘;u @BUﬁ%V@} do
€

= /@Q,V@ do. (3.7.2)

¢
Therefore, the BVP ~(3.7.1) can be reformulated in the following way.
Find a vector U € [H!(%)]? satisfying equation (3.7) for any V € [H'(%)]?
(Capre(1)DsUa, DcVy) = (Ga, Vi), YV € [H'(F)), (3.7.3)
where

Capye () 0ap + 21(0ar0p¢ + OacOpy — Val0pc)

:)\+2u

and (-, -) denotes an inner product

(f,9) = /<f, g)do.

€

Due to (3.5.21), the sesquilinear form
a(U,V) = (CaﬁWC‘@»BUOH .@va) (3.7.4)
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is bounded and coercive in H} (%)
1 2 1 2 1 3
Mi||U |HY(E)||” > a(U,U) > M||U |H'(¥)||", VU € [Hy(¥))?, (3.7.5)

for some M > 0, M; > 0. Therefore, by Lax—Milgram theorem, problem (3.7.3) possesses a unique
solution.
Now, let us consider the discrete counterpart of the problem.
Let X}, be a family of finite-dimensional subspaces approximating [H*(%)]3, i.e., such that |J X},
h

is dense in [H*(%)]3.
Consider equation (3.7.3) in the finite-dimensional space X},

a(U;“ Vh) = §(Vh)7 VV e Xy, (3.7.6)
where g(Vi,) = —(G, Vi) -

Theorem 3.7.1. Equation (3.7.6) has a unique solution U, € Xp for all h > 0. This solution
converges in [H'(€)]® to the solution U of (3.7.3) as h — 0.

Proof. Immediately follows from the coercivity of sesquilinear form af(,-)
9 ~
a||Un | HY(E)P|]” < a(Un, Un) = | f(Un)| < c2||Un | [H(%))?|| for all h. (3.7.7)
Let Uy, be a unique solution of the homogeneous equation
a(Uh,wh) =0 for all ¢h € Xy, (3.7.8)

Then (3.7.7) implies ||Uy, | [H'(%)]3|| = 0 and, consequently, Uy, = 0. Therefore, equation (3.7.6) has
a unique solution. From (3.7.7) it also follows that

o | B @RI < 2 [0 | @)

Hence, the sequence {||Uy, | [H!(%)]3||} is bounded and we can extract a subsequence {Up, } which
converges weakly to some U € H(%).

Let us take an arbitrary V € [H!(%)]® and for each h > 0 choose Vj, € X}, such that V;, — V in
[H(%)]3. Then from (3.7.6) we have

a(U, V) =g(V), ¥V € H (%)
Hence, U solves (3.7.3). Note that since (3.7.3) is uniquely solvable, each subsequence {U}, } converges
weakly to the same solution U and, consequently, the whole sequence {Uy, } also converges weakly to U.

Now let us prove that it converges in the space [H!(%)]3.
Indeed, due to (3.7.7) we have

al|Un = Ull? < |a(Uy = U, Uy = U)| < |a(Up, Up = U) — a(U, Uy = U)|
= c1|g(Un) — a(Up,U) = g(Un = U)| = 1|g(U) — a(U,U)| =0,

which completes the proof. O

We can choose spaces X}, in different ways.
In particular, consider a case, when w in parametrization (3.1.1) is a square part of R?

w:{(xl,xg): 0<x <1, O<x2<1}, Hw)=7F.

Allocate N? nodes P;; = (ﬁ , ﬁ), ,j=1,...,N, on w.
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Let ag, k=1,..., N, be piecewise linear functions defined on segment [0, 1] as follows:
k-1
<r< —
0, O_x_N+1,
k-1 k—1 k
N 1( _ ) <
WU ) v St S o
ag(x) = (3.7.9)
(NJrl)(ﬂ,x) ko _ o ktlL
N+1 T N+1 “N+1’
k+1
0 <1
’ N+1<x—

Denote by ¢ij;, 4,5 = 1,..., N, the functions
ij(x1, T2) = as(x1)ej(z2), 4,5=1,...,N, (21, 22) € w. (3.7.10)

Evidently, ¢;; are continuous functions, which take their maximal value ¢;; (Pij) = 1 at point P;; and
vanish outside the set

‘ <1, 0< ‘a@ - % < 1}, (3.7.11)

wij:wﬁ{(xl,xg): Og‘xl— 1l S

N+1

consequently, they belong to H!(w) and are linearly independent.
Denote by X the linear span of the functions @;; = ¢;50¢, 4,5 = 1,...,N. The space Xy is
N2-dimensional space contained into H* ().

Let @5 = (811, 0ar, 05)Bij € [XnI?, k=1,2,3; i, =1,...,N.
C0n51der equation (3.7.6) in the space [Xy]?,

a(U,V)=g(V), VV € [Xn]. (3.7.12)
We are looking for a solution U € [Xy]? of equation (3.7.12) in the form

3

N
v=>" 3 oimgn, (3.7.13)

m=11,j=1

where C’( ™) are unknown coefficients. Substituting U in (3.7.12) and replacing V successively by cp( ™)

=1,2, 3 i,5=1,...,N, we get the equivalent system of 3N? linear algebraic equations
3
> Z ATICI = g n=1,2,3, kl=1,...,N, (3.7.14)
m=11,j=1
where
A =a@.80)). g’ =@, (8.7.15)

The matrix A = A"™™) is Gram’s matrix defined by the positive semidefinite bilinear form a(-,-)

(ijkl)
attached on basis vectors @g;n), m=1,2,3,i,j =1,...,N, of [Xy]?, therefore, it is a nonsingular

matrix and equation (3.7.14) has a unique solution
N
U= Y (AGE e (3.7.16)
ik, =1
To calculate explicitly A1 kl ) and g,(;ll) note that
%@?%ﬁz@@?&>+w@¢?w>

= Z ap‘Plj 8 Cp( ) + Verale(y))((smla Om2, 5m3)
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2
Z b5 (CW) ZrCo () (1 Oz, Oims) (3.7.17)
gr]:;ln) (@Ejm)» QDSZL)) (qust(;rm(stn@q@ija @s@kl)
Z / Camsn (%) (Bapij (@) (080w () Dyla(9(2)) Ds(s(9(2)) |0’ ()| dz, (3.7.18)
a,p 1w GNWkr
o =054 )e = - / 9(0(@) 347 ((@))lo’ (@)] da, (3.7.19)
Wi MWkl
where |0’(z)| is a surface element of €

|0’ ()] = |019(x) x Oad)(z)].



Chapter 4

Mellin convolution equations in the
Bessel potential spaces

In the present chapter, we expose investigations of Mellin convolution equations in the Bessel potential
spaces published in the papers [37,59]. Such equations are important while investigating boundary
value problems (BVPs) for elliptic equations on surfaces and domains with Lipschitz boundary and
will be applied in the next chapter to the investigations of BVPs for the Laplace-Beltrami and Lamé
equations on surfaces.

4.1 Introduction

It is well-known that various boundary value problems for PDE in planar domains with angular points
on the boundary, e.g., Lamé systems in elasticity (cracks in elastic media, reinforced plates), Maxwell’s
system and Helmholtz equation in electromagnetic scattering, Cauchy—Riemann systems, Carleman—
Vekua systems in generalized analytic function theory, etc., can be studied with the help of the Mellin
convolution equations of the form

aplt) = eop() + 2 [EDL 4 [ (B L = s (4.1.1)
0 0
with the kernel J¢ satisfying the condition
o0
/tﬁ’1|%(t)|dt <00, 0<pB<1, (4.1.2)

0

which makes it a bounded operator in the weighted Lebesgue space L,(R™,¢7), provided 1 < p < o0,

“1<y<p—1, 8= (1+7)/p (cf. [47)).
In particular, integral equations with fixed singularities in the kernel

CO(t)@(t)+C;(;)/f(_T)t i+S C’““Sf;tkr/(TW(T) dr = f(t), 0<t<1, (4.1.3)
0 0

T+ )kt
k= 0

where 0 < r < k, are of type (4.1.1) after localization, i.e., after “freezing” the coefficients.

The Fredholm theory and the unique solvability of equations (4.1.1) in the weighted Lebesgue
spaces were accomplished in [47]. This investigation was based on the following observation: if 1 <
p<oo, —1<y<p—1,5:=(14+%)/p, the following mutually invertible exponential transformations

Zﬁ : LP<R+7{Y) - LP<R+)’ Z[%P(é.) = eiﬂ&p(eig)v 5 eR:= (—OO, OO):

Zﬂ_l : ]L;D(R) — H“P(R+7t’y)7 Z/;ldj(t) = tiﬁw(* In t)7 t e R+ = (0’ OO), (414)

92
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transform equation (4.1.1) from the weighted Lebesgue space f,p € L,(RT,t7) into the Fourier
convolution equation W&Bw =g, Y =Zgyp, g = Zgf € Ly(R) of the form

C1

+ %(e_‘"’:)}

— 671

WS, 0(0) = cov(o) + [ Hila—p)pw)dy, Hile) = [

Note that the symbol of the operator ngﬁ, viz. the Fourier transform of the kernel

(&) == co + / e 1 () da = co — icy cot w(B — i) + / WA (e=)dx, € €R, (4.1.5)

is a piecewise continuous function. Let us recall that the theory of Fourier convolution operators with
discontinuous symbols is well developed, cf. [42,43,45,46,132]. This allows one to investigate various
properties of operators (4.1.1), (4.1.3). In particular, Fredholm criteria, index formula and conditions
of unique solvability of equations (4.1.1) and (4.1.3) have been established in [47].

Similar integral operators with fixed singularities in kernel arise in the theory of singular integral
equations with the complex conjugation

a(t)p(t) + @/ P(7) g+ %/ P = p), ter,

T T—1
r r

and in more general R-linear equations

alt)e(t) + 00700 + 22 [ D D) [ 2O gy,

if the contour I' possesses corner points. Note that a complete theory of such equations is presented
in [62,63].
Let t1,...,t, € I be the corner points of a piecewise-smooth contour I', and let L, (T, p) denote

n
the weighted L,-space with a power weight p(t) := [] |t — t;|7%. Assume that the parameters p and
j=1

Bj := (14 ~,)/p satisfy the conditions
l<p<oo, 0<B;<1, j=1,...,n

If the coefficients of the above equations are piecewise-continuous matrix functions, one can construct
a function ﬁf’g(t,f), tel, £eR, B:=(B1,...,0n), called the symbol of the equation (of the related

operator). It is possible to express various properties of the equation in terms of 427’5;:
o The equation is Fredholm in L, (T, p) if and only if its symbol is elliptic., i.e., if and only if

inf o=(t 0;
(t,g)lngRl 5( 75)' > ’

» Toan elliptic symbol #/3(¢, {) there corresponds an integer valued index ind Mg(t, €), the winding
number, which coincides with the Fredholm index of the corresponding operator modulo a
constant multiplier.

For more detailed survey of the theory and various applications to the problems of elasticity we
refer the reader to [42,43,45,47-51,124].
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Similar approach to boundary integral equations on curves with corner points based on Mellin
transformation has been exploited by M. Costabel and E. Stephan [31,33].

However, one of the main problems in boundary integral equations for elliptic partial differential
equations is the absence of appropriate results for Mellin convolution operators in the Bessel potential
spaces, cf. [48,50,51] and recent publications on nano-photonics [10,11,85]. Such results are needed
to obtain an equivalent reformulation of boundary value problems into boundary integral equations
in the Bessel potential spaces. Nevertheless, numerous works on Mellin convolution equations seem
to pay almost no attention to the mentioned problem.

The first arising problem is the boundedness results for Mellin convolution operators in the Bessel
potential spaces. The conditions on kernels known so far are very restrictive. The following bound-
edness result for the Mellin convolution operator can be proved.

Proposition 4.1.1. Let 1 <p < oo and let m =1,2,... be an integer. If a function S satisfies the

condition
oo

1
/t%‘m‘l\%(tﬂdt+/t%‘1|%(t)|dt < o0, (4.1.6)
0

1

then the Mellin convolution operator (see (4.1.1))
A =9, Hy(RT)— Hy(RT)

with the symbol (see (4.1.5))

o0

2 jp(€) = co+c1 cothﬂ(% + f) + /tl/p_ifji/(t) % , EER, (4.1.7)
0
is bounded for any 0 < s < m.
Note that the condition .
Kg:= /tﬁ’1|<}f(t)\dt < 00 (4.1.8)
0

ensures that the operator
MY L, (RY,#7) — L,(RT,¢7)

is bounded, while the norm of the Mellin convolution

T t dr
oo = (7) — 4.1.
as (1) /%/ —)e(n) — (4.1.9)
0
admits the estimate |9 || < Kp.
The above-formulated result has very restricted application. For example, the operators
sina [ to(T)
Nyp(t) =
(1) T /t2+7'2—2tTcosa
0
sin «v T;(T)
N*o(t) = J d —nr<a<m, 4.1.10
a?(t) s /t2+7'2—2t7'cosoz m ( )
0

B i/ [T cosa — t]e(T)
o) 24712 —2tTcosa
R+
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which we encounter in boundary integral equations for elliptic boundary value problems (see [15]), as

well as the operators
o0

[ re(r)
Ny io(2) :m/ﬁ'—l—wd’r’ k=0,...,m,

represented in (4.1.3), do not satisfy conditions (4.1.6). In particular, N, satisfies condition (4.1.6)
only for m = 1 and N, only for m = k. Although, as we will see below in Theorem 4.3.1, all
operators N, N, and N, are bounded in the Bessel potential spaces in setting (5.6.2) for all
seR.

Here we introduce admissible kernels, which are meromorphic functions on the complex plane C
vanishing at infinity

4 [e%S)
d; d;
%t:zg J E — i =0,1,... 4.1.11
7=0 Jj=l+1

oy ER, O < ap:=arge <2m, k=L4+1,04+2,....

J (t) have poles at co,c1,... € C\ {0} and complex coefficients d; € C. The Mellin convolution
operator

1 Donflgo(T)
K" p(t) i=— | ————=d 4.1.12
rolt) =+ [ T ar (1112)
0
with the kernel )
%m(t) :W, 0<argc<27r

(see (4.1.1)) turns out to be bounded in the Bessel potential spaces (see Theorem 4.3.1).

In order to study Mellin convolution operators in the Bessel potential spaces, we use the “lifting”
procedure, performed with the help of the Bessel potential operators A% and A®"™", which transform
the initial operator 92 into the lifted operator A°~"9MIAT* acting already on a Lebesgue L,, spaces.
However, the lifted operator is neither Mellin nor Fourier convolution and to describe its properties,
one has to study the commutants of the Bessel potential operators and Mellin convolutions with
meromorphic kernels. It turns out that the Bessel potentials alter after commutation with Mellin con-
volutions and the result depends essentially on poles of the meromorphic kernels. These results allow
us to show that the lifted operator A*"9, A7 ® belongs to the Banach algebra of operators generated
by Mellin and Fourier convolution operators with discontinuous symbols. Since such algebras have
been studied before [52], one can derive various information (Fredholm properties, index, the unique
solvability) about the initial Mellin convolution equation M%p = g in the Bessel potential spaces in
the settings ¢ € fPV]I;(R“‘), g e ]ﬁlg_’"(R"’) and in the settings ¢ € IF]I;(R*‘), g € Hi"(RT).

The results of the present work are already applied in [70] to the investigation of some boundary
value problems studied before by Lax—Milgram Lemma in [10,11]. Note that the present approach is
more flexible and provides better tools for analyzing the solvability of the boundary value problems
and the asymptotic behavior of their solutions.

It is worth noting that the obtained results can also be used to study Schrédinger operator on
combinatorial and quantum graphs. Such a problem recently has attracted a lot of attention, since the
operator mentioned above possesses interesting properties and has various applications, in particular,
in nano-structures (see [98,99] and the references therein). Another area for application of the present
results are Mellin pseudodifferential operators on graphs. This problem has been studied in [117], but
only in the periodic case. Moreover, some of the results can be applied in the study of stability of
approximation methods for Mellin convolution equations in the Bessel potential spaces.

The present chapter is organized as follows. In Section 4.2, we observe Mellin and Fourier con-
volution operators with discontinuous symbols acting on Lebesgue spaces. Most of these results are
well known and we recall them for convenience. In Section 4.3, we define Mellin convolutions with
admissible meromorphic kernels and prove their boundedness in the Bessel potential spaces. In Sec-
tion 4.4, we present local principle of I. Gohbrg and N. Krupnik — a key toolkit for the investigation.
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In Section 4.5, we recall results of R. Duduchava on Banach algebra of operators generated by Mellin
and Fourier (Winer-Hopf) operators, which play key role in the investigation. We enhance results on
Banach algebra generated by Mellin and Fourier convolution operators by adding explicit definition
of the symbol of a Hankel operator, which belong to this algebra. In Section 4.6, it is proved the
key result on commutants of the Mellin convolution operator (with admissible meromorphic kernel)
and a Bessel potential operators. In Section 4.7, the exposed results are applied to find the Fredholm
criteria and the index of Mellin convolution operators with admissible meromorphic kernels in the
Bessel potential spaces.

4.2 Mellin convolution and the Bessel potential operators

Let N be a positive integer. If there arises no confusion, we write 2 for both scalar and matrix N x N
algebras with entries from 2(. Similarly, the same notation % is used for the set of N-dimensional
vectors with entries from B. It will be usually clear from the context what kind of space or algebra
is considered.

The integral operator (4.1.1) is called Mellin convolution. More generally, if a € Lo (R) is an
essentially bounded measurable N x N matrix function, the Mellin convolution operator M2 is de-
fined by

Mplt) =ty atlap(t) = 5 [ @) [(2) o) T o e s,
—00 0

where S(R™) is the Schwartz space of fast decaying functions on R*, whereas .#3 and .# 5 I are the
Mellin transform and its inverse, i.e.,

oo

- B—1i& @
M) = [P0 T g R
0
M700) = 5 [ 1P e, teRY,

— 0o

o0

The function a(€) is usually referred to as a symbol of the Mellin operator Y. Further, if the
corresponding Mellin convolution operator MY is bounded on the weighted Lebesgue space L, (RT,¢7)
of N-vector functions endowed with the norm

n 1/p
o 1@ )= | [eleopa)
0

then the symbol a(§) is called a Mellin L, , multiplier.
The transformations

Z5 :LP(R+7{Y) - H—‘P(R)a Zﬁ@(f) = 67ﬁt90(675)3 g € R?
Z;' : Ly(R) = Ly(RY,17), Z5'¢(t) =t Pp(=Int), te€RY,
arrange an isometrical isomorphism between the corresponding IL,,-spaces. Moreover, the relations
My = Flyg, Myt =75 F ", M) = Miladly=27;"F 'aFls =75 'W)Zg,

1 4.2.1
—1<7<p—17ﬁ:=%,0<5<1, (42.1)

where . and % ! are the Fourier transform and its inverse,

(oo}

Fo(©)i= [ oy, F )= [ e ue e a ek,

— 00
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show a close connection between Mellin M2 and Fourier
Woo = F'aFy, ¢ eS(R),

convolution operators, as well as between the corresponding transforms. Here S(R) denotes the
Schwartz class of infinitely smooth functions, decaying fast at infinity.

An N x N matrix function a(€), & € R, is called a Fourier L,-multiplier if the operator W2 :
L,(R) = L,(R) is bounded. The set of all L,-multipliers is denoted by 9, (R).

From (4.2.1) immediately follows the following

Proposition 4.2.1 (see [47]). Let 1 < p < oo. The class of Mellin LL,, .,-multipliers coincides with
the Banach algebra M, (R) of Fourier L,-multipliers for arbitrary —1 <y < p—1 and is independent
of the parameter .

Thus, a Mellin convolution operator MY in (4.2.1) is bounded in the weighted Lebesgue space
L,(R*,t7) if and only if a € M, (R).

It is known (see, e.g., [47]) that the Banach algebra 9,(R) contains the algebra V1(R) of all
functions with bounded variation provided that

1+
gi=—-1

, I<p<oo, —1<y<p—1. (4.2.2)
As it was already mentioned, the primary aim of the present chapter is to study Mellin convolution
operators MY acting in the Bessel potential spaces,

MY S (RY) — HE(RY). (4.2.3)

The symbols of these operators are N x N matrix functions a € szg(ﬁ), continuous on the real
axis R with the only one possible jump at infinity. We commence with the definition of the Besseel
potential spaces and Bessel potentials, arranging isometrical isomorphisms between these spaces and
enabling the lifting procedure, writing a Fredholm equivalent operator (equation) in the Lebesgue
space L, (RT) for the operator MY in (4.2.3).

For s € R and 1 < p < oo, the Bessel potential space, known also as a fractional Sobolev space, is
the subspace of the Schwartz space S'(R) of distributions having the finite norm

® 1/p
lo | HZR)|| = [/ |ﬂ1(1+€|2)S/2(35<p)(t)|pdt} < co.

For an integer parameter s = m = 1,2,..., the space HZ(R) coincides with the usual Sobolev space
endowed with an equivalent norm

o= (£ ] 1

If s <0, one gets the space of distributions. Moreover, H*° (R) is the dual to the space H;(RJF),
provided p’ := p%l, 1 < p < oo. Note that H(R) is a Hilbert space with the inner product

(1) = / (F)OFDO + ) de, o.0) € B (R).

R

By rx we denote the operator restricting functions or distributions defined on R to the subset 3 C R.
Thus H? (R*) = r, (H;(R)), and the norm in H5(R") is defined by

I 1 Hp @] = inf |[ef | H ®)]],
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where £f stands for any extension of f to a distribution in H3(R).

Further, we denote by H(R*) the (closed) subspace of H(R) which consists of all distributions
supported in the closure of R.

Notice that H(R*) is always continuously embedded in H5(R*), and if s € (% -1, %), these two
spaces coincide. Moreover, H?(R*) may be viewed as the quotient-space H? (R*) := H(R) /ﬁ;(R‘),
R~ := (—00,0).

Let a € Lo 10¢(R) be a locally bounded m x m matrix function. The Fourier convolution operator
(FCO) with the symbol a is defined by

wW? =7 1a7.

If the operator
0. s—
W, : H(R) — H;™"(R)

is bounded, we say that a is an L,-multiplier of order r and use “L,-multiplier” if the order is 0. The
set of all IL,-multipliers of order r (of order 0) is denoted by M, (R) (by M, (R), respectively).

For an Lj-multiplier of order r, a € M (R), the Fourier convolution operator (FCO) on the
semi-axis R is defined by the equality

W, =r W2 Hy(RT) — H"(RY) (4.2.4)
and the Hankel operator by the equality
H, =r VWO H(RY) — H(RT), Vi(t) == y(—t), (4.2.5)

where 7y := rg+ @ HP(R) — H5(RT) is the restriction operator to the semi-axes R*. Note that the
generalized Hormander’s kernel of a FCO W, depends on the difference of arguments ¢ (t — 7), while
the Hormander’s kernel of a Hankel operator ry VWY depends of the sum of the arguments 7 (t + 7).

We did not use in the definition of the class of multipliers 90 (R) the parameter s € R. This is
due to the fact that 9 (R) is independent of s: if the operator W, in (4.2.5) is bounded for some
s € R, it is bounded for all other values of s. Another definition of the multiplier class 90 (R) is
written as follows: a € M7 (R) if and only if A™"a € M,(R) = MY(R), where A"(€) := (1 + 1€)2)7/2.
This assertion is one of the consequences of the following theorem.

Theorem 4.2.1. Let 1 < p < oo. Then:

(1) For anyr,s € R, v € C, Im~ > 0, the convolution operators (VDOs)

A; = WM’ : ]ﬁIZ(R"') N ﬁ;—T(R—k)’
AT =1 W £ HG(RY) — H 7 (RY), (4.2.6)
1€ = (E£7)", £€R, Imy>0,

where £ : HZ(R"’) — H(R) ds an extension operator and r is the restriction from the azes
R to the semi-azes RT, arrange isomorphisms of the corresponding spaces. The final result is
independent of the choice of an extension £.

(2) For arbitrary operator A : HT]IZ(Rﬂ — Hff”(R*) of order r, the following diagram is commutative
~S A S—T
HS (RT) ——H3"(R*)

iA . (4.2.7)

Diagram (4.2.6) provides an equivalent lifting of the operator A of order r to the operator
ATTAANDT Ly (RT) — Ly (RY) of order 0.
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(3) For any bounded convolution operator W, : IF]I;(R*‘) — H2~"(R™) of order r and for any pair of
complex numbers y1, v2 such that Im~y; > 0, j = 1,2, the lifted operator

AL WA, =W, , cHy(RY) 5 Hy 7 (RY), 0, () == (6 — ) al€)(§ +12)" (4.28)

is again a Fourier convolution.

In particular, the lifted operator W, in Ly-spaces, A" "W, AZ® : Ly(RT) — L,(RY) has the
symbol

mrma(€) = MO0 = (552) ;fz?y |

(4) The Hilbert transform Sg+ = iK{ = W_ ggn is a Fourier convolution operator and

s 1A—s
A—’YlKlA’m = Wigiﬁ,wz sign; (429)
where ¢
s — 71 ) s
= . 4.2.10
0 n© = (50 (4.2.10)
Proof. For the proof of items (1)—(3) we refer the reader to [47, Lemma 5.1] and [67,72]. The item
(4) is a consequence of the proved items (2) and (3) (see [47,59]). O
Remark 4.2.1. The class of Fourier convolution operators is a subclass of pseudodifferential operators
(IDOs). Moreover, for integer parameters m = 1,2, ... the Bessel potentials Al = W’\QH’ which are
Fourier convolutions of order m, are ordinary differential operators of the same order m:
n d ™ (M i df
= Wap = (zaify) :kz—o(k>l ()" 2 (4.2.11)

These potentials map both spaces (cf. (4.2.6))

LTS TrS—1 +
T HS(RY) — HIT(RY),

(4.2.12)
: H;(Rﬂ — H;_m(RJF),

but the mappings are not isomorphisms because the inverses A;Zz are bounded only for one pair of
spaces indicated in (4.2.6).

Remark 4.2.2. For any pair of multipliers a € M (R), b € Dﬁg,( ), the corresponding convolution
operators on the half-axes W2 and WO have the property WOW WOWO Wfb
For the corresponding Wiener— Hopf operators on the half—axes a sunllar equality

WaWb = Wab (4213)

holds if and only if either the function a(£) has an analytic extension in the lower half-plane, or the
function b(§) has an analytic extension in the upper half-plane (see [47]).
Note that, actually, (4.2.8) is a consequence of (4.2.13).

4.3 Mellin convolutions with admissible meromorphic kernels

Now we consider kernels % (t) exposed in (4.1.11), which are meromorphic functions on the complex
plane C, vanishing at infinity, having poles at ¢g,c1,... € C\ {0} and complex coefficients d; € C.

Definition 4.3.1. We call a kernel JZ(¢) in (4.1.11) admissible if and only if

(i) A (t) has only a finite number of poles ¢y, ..., ¢, which belong to the positive semi-axes, i.e.,
argcy = --- = argcy = 0;



100 Tengiz Buchukuri, Roland Duduchava

(ii) The corresponding multiplicities are one: mg = --- =my = 1;

(iii) The remainder points c¢g11,cpt2,... do not condense to the positive semi-axes and their real
parts are bounded uniformly

lim ¢; ¢ [0, 00), sup  Rec; < K < 0. (4.3.1)
j—roo J=E1,E42,...

(iv) A (t) is a kernel of an operator, which is a composition of finite number of operators with
admissible kernels.

Example 4.3.1. The function

1
J(t) = exp (t—), Rec <0 or Imc#0,
—c
is an example of the admissible kernel which also satisfies the condition of the next Theorem 4.3.1.
Other examples of operators with admissible kernels (which also satisfy the condition of the next
Theorem 4.3.1) are operators which we encounter in (4.1.3), in (4.1.10) and in (4.2.4) and, in general,
any finite sum in (4.1.11).

Example 4.3.2. The function

B Int —cieo

H(t) = , Imeyg #0, Tmes # 0,

t— C1C2

is another example of the admissible kernel and it represents the composition of operators c; K¢ K,

(see (4.2.10)) with admissible kernels which also satisfies the condition of the next Theorem 4.3.1.
More trivial examples of operators with admissible kernels (which also satisfy the condition of the
next Theorem 4.3.1) are operators which we encounter in (4.1.3), in (4.1.10) and in (4.2.4) and, in
general, any finite sum in (4.1.11).

Theorem 4.3.1. Let conditions

1
Bim 0 lcp<oo, —l<y<p—1, (4.3.2)
p

hold,  (t) in (4.1.11) be an admissible kernel and

Ky =Y 2" d;]|ej| ™™ < oo, (4:33)
j=0

Then the Mellin convolution zmgB in (4.1.9) with the admissible meromorphic kernel ¢ (t) in (4.1.11)
is bounded in the Lebesgue space L,(R™,t7) and its norm has the estimate ||9ﬁgﬁ | Z(Ly(RT, 7)) <
MKg with some M > 0.

We can drop the constant M and replace 2™3 by 9% in estimate (4.3.3) provided Rec; < 0 for all
j=0,1,....

Proof. The first £ 4+ 1 summands in the definition of the admissible kernel (4.1.11) correspond to the
Cauchy operators

e o0
Aw(t)zzdi/ 20 4 ¢;>0, j=01,....0
0

t—c;T
=0 !

and their boundedness property in the weighted Lebesgue space

A Ly(RY 7)) = Ly (R, 17) (4.3.4)
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] and also [83]). Therefore, we can ignore the first ¢

under constraints (4.3.2) is well known (see [93
(4.1.11). To the boundedness of the operator MY,
B

summands in the expansion of the kernel .7 (¢) in

with the remainder kernel

YAOEY (79% ¢; 20, j=0,1,...

t—cj)

, O<ap:=arge, <2m, k=0+1,0+2,...

j=e+1
(see (4.1.11)), we apply estimate (4.1.8)
0o Z tﬁ*l
||smg(é | Z(Ly(RT, 7)) < /t5’1|<%/ )| dt < Z |d; /Wdt. (4.3.5)
0 Jj=0+1 J

Now note that

_my
2

|t —c;|7™ = (t* +|¢j|* — 2Rec;t)
t2 2 my
(#) oMt + le;|)™™ for all ¢ > 2K = 2sup|Rec;| >0,

due to constraints (4.3.1). On the other hand,
(t+|c;|)~™ forall 0 <t<2K

X

[t —c|7™ <M

and a certain constant M > 0. Therefore,

[t —c;|7™ < M2™Mi(t+ |¢;|)™™ forall 0 <t < oo. (4.3.6)
Next, we recall the formula from [84, Formula 3.194.4]
7 A1 B—1\ mwcB—m
————dt = (1) - R 1 4.3.7
/(t+c)m (=1) (ml) sinmB ’ m<arge<m Reff <1, ( )
F-1\ _(B-D-(B-mtl) (F-1y_
m—1)" (m— 1) Lo /-

to calculate the integrals. By inserting estimate (4.3.6) into (4.3.5) and applying (4.3.7), we get

IM/HCW7

Jj=0+1

1922, | 2 (Lyp(®T,47))]| <

A1 -1 B—m,;
MOZMH/ e 225 gy (7 )]
Pyt (t+ le;l) sm7r6 S -1
. M,
<M Z 27 |dy|e ™ = MKg, M := 87;7057 (4.3.8)

j=t+1

(o, )

where K3 is from (4.3.3). The boundedness of (4.3.4) and estimate (4.3.8) imply the claimed estimate

since (see (4.3.7))

<1

[9m2, | L(Ly(RY,17))|| < MKp.
If Recj < Oforall j =0,1,..., we have
L= (Pl —2Rect) T < (P 1) T <2 (14 o) ™,

[t —cjlm

valid for all ¢ > 0 and a constant M does not emerge in the estimate.
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Let us find the symbol (the Mellin transform of the kernel) of operator (4.2.10) for 0 < argc < 2,
m=1,2,... (see (4.2.9), (4.2.10)). For this, we apply formula (4.3.7):

P PR O B
MK, (g)_o/t Ly (t)dt_wo/(t+(_c))m dt
_ ﬂ _ ZE -1 (_l)m—l(_c)ﬁ—iﬁ—m _ /B _ Zg -1 (_l)m—le—iﬂ(ﬁ—iﬁ—m)cﬁ—ig—m
_< m—1 ) sinm(8 — i) _< m—1 ) sinm(8 — i) ’

since if —7 < arg(—c) < 7 and 0 < argc < 27, then —c¢ = e~ "c. In particular,

e—im(B—if—1) . B—it—1

1 _
Mp i, (§) = Sn (B — i€) , 0 <arge < 2m, (4.3.9a)
M A i d 4.3.9b
8 7d(§)_Mv —n <argd <, (4.3.9b)
1

1 = — "~ R, 4. .
Mp K (§) S8 —if) S (4.3.9¢)
Now let us find the symbol of the Cauchy singular integral operator Ki = —iSgp+ (see (4.2.9),

(4.2.10)). For this, we apply Plemeli formula and formula (4.3.7):

o0 o0

: I
A 0) = [ = -1 [
T t—1
0 0
o T ppie—1 it—1
- 21_13% o Lj + ei(m—e) ™ t+ e—i(ﬂ—s)] dt
0
i(m—e)(B—i€—1) —i(m—e)(B—if~1)
e +e
=1 = cot —§).
=50 2sinm(8 — &) cotm(f —it)
For an admissible kernel with poles argcy = arge, = 0 (and, therefore, mg = --- = my = 1) and

0<arge; <2m, j=L0+1,..., we get

l
MK () = cotm(B —i&) > dje]

j=0
1 s B—if—1 1 im(Beit—m.) B—if—m,
+— d»( ) —1)milemim(Bmigmmy) L 7. (4.3.10
sinm (8 — i) ]_;_1 T\ my—1 (=1) J ( )

Theorem 4.3.2. If # is an admissible kernel, then the corresponding Mellin convolution operator
with the kernel &

oo
Ko(t) = /x/(f)w) T KCHERY) - HI(RY), (4.3.11)
) T T
is bounded for all 1 < p < oo and s € R.
The condition on the parameter p can be relazed to 1 < p < 0o, provided the admissible kernel &
in (4.1.11) has no poles on positive semi-azes: o = arge; # 0 for all j =0,1,... .

Proof. Due to representation (4.1.11), we have to prove the theorem only for a model kernel

1
H(t) = ———, ¢c#0, O0<arge<2m, m=1,2,.... (4.3.12)
7(t —c)™
The respective Mellin convolution operator K”* (see (4.2.10)) is bounded in L,(R*) for all 1 < p < o0
for arbitrary 0 < |argc| < 7 (cf. (4.1.2)).
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To accomplish the boundedness result of K7 in LL,(R™"), we need to consider the case arge = 0
(i.e., ¢ € (0,00)) and, therefore, m = 1 (see Definition 4.3.1). Then the operator K} coincides with
the “dilated” Cauchy singular integral operator with a constant multiplier

Loy L) i t
0
where -
1 o)
Sr+@(t) := — / p— dr, (4.3.14)
0

and is bounded in L,(R™) for all 1 < p < oo (cf., e.g., [47,83]).
Now let 0 < arge < 27 and m = 1. Then if ¢ € C§°(R") is a smooth function with compact
support and k = 1,2,..., by integrating by parts we get

d* 1 7T dv 1
LKy =L / L1 iy

dtk ~¢ T) dtt t—cT
0
T kT 1 dbe(n) "
= dr = dr = cH(KLSp e ) (1), (4315
/d Ft—cr? w(r)dr 71' /t—cr drk T € Cdtk(p() ( )
0 0
Form=2,3,... and 0 < argc < 27 we get similarly
d 1 T d 1 el (—c)~ 17 T d tm =i
g Ke'olt) = ﬂ/dt (t—cr)m p(r)dr Jz_; ™ /dt (t—cr)ym—i wlr) dr
) -

Recall now that for an integer s = n the spaces HJ(R"), ]ﬁlg(R*) coincide with the Sobolev
spaces Wy (RT), WZ(R*), respectively (these spaces are isomorphic and the norms are equivalent),
and C§°(R") is a dense subset in Wp(R*) = Hy(R"). Then, using equalities (4.3.14), (4.3.16) and
the boundedness of the operators K77 (see (4.3.12)—(4.3.14)), we proceed as follows:

K | HE(R5)|| = Z [l

n m-—1 n
dk
SN R Lo @) | < M Y| | LR = Ml R,
k=0 j=0 k=0
where M > 0 is a constant, and the boundedness of (4.3.11) follows for s = 0,1,2,.... The case of

arbitrary s > 0 follows by the interpolation between the spaces Hy'(RT) and H)(R™) = L, (R™), also
between the spaces H"(R*) and HO(R*) = L, (R*).
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For s < 0, the boundedness of (4.3.11) follows by duality: the adjoint operator to K" is

_1 [t Lo
K" o(t) = = w; KJ
™ / (r— ct Z / et
0
for some constant coefficients wy,...,wy,. The operator K»* has the admissible kernel and, due

to the proved part of the theorem, is bounded in the space setting K7"* : ]IT]I;/S(RJF) — H;,S(RJF),
p :=p/(p—1), since —s > 0. The initial operator K7 : ]ﬁl;(R*) — H(RT) is dual to K** and,
therefore, is bounded as well. O

Corollary 4.3.1. Let 1 < p < oo and s € R. A Mellin convolution operator MY with an admissible
kernel described in Definition 4.3.1 (also see Example 4.3.2 and Theorem 4.3.1) is bounded in the
Bessel potential spaces
0 . 17 + s (M+
M, : HO(RT) — H(R™).
The boundedness property
0 . S + S —+
M, : A (RT) — H(RT)
does not hold in general for even a simplest Mellin convolution operator K., except the case when
the spaces H}";(R“‘ and H;(R“‘) can be identified, i.e., except the case ]% —-1<s< % . Indeed, to check

this, consider a smooth function with a compact support ¢ € C§°(R™) which is constant on the unit
interval: ¢(t) =1 for 0 <t < 1. Obviously, ¢ € H>(R") and ¢ ¢ H>(R* for all s > % . Then

0o 1

[ [
t—

0 0

where @o € H5(RT) N C*>°(R*), while the first summand In 7 does not belong to H*(R™), since all

functions in this space are continuous and uniformly bounded for s > 1.
We can prove the following very partial result, which has important practical applications.

=n~

t—

smH

1 oo
+;/ (T cillnTJrcpo(t),
1

Theorem 4.3.3. Let 1 < p < 0o, ¢ € C and X;(R") denote one of the spaces HJ,(RY) or Wy (RT),
while X5(R*) denote one of the spaces Hy (RT) or Wr(RT).
]f% —-l<r< %—&— 1, the operator
A.:=cK,—c 'K, 1 : X (R") = X"(RT),
i g (4.3.17)
K (RY) - KR

is bounded, while for % -2<r< % the operator

A =K.— K. :X(RT) = XI(RT),
:XI(RY) — XI(RY)

14

(4.3.18)

is bounded.

Proof. 1f % —l<r< %, the spaces ]ﬁlg(R“‘) and HJ(R*) can be identified and the boundedness of
(4.3.17), (4.3.18) follows from Theorem 4.3.2.
Now let % <r< % + 1. Due to (1.6.4) and (4.2.12), the following diagrams

HY(R) — 2> HI (RY) I (R+) — 2> i (R¥)

A‘iT J{All , AllT J{Ai (4.3.19)

Hr LR+ > Hr-Y(RT mr—1 (T +
( LAAT? (RT) H, (R ?/\}ACAl_l
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are commutative. Diagrams (4.3.19) provide equivalent lifting of the operator A. from the spaces
Hy(R*) and HJ(RT) to the operator A := ATA.AT! in the space Hj~'(RT) and the operator
A; = A', A_A"] in the space H~'(RT). On the other hand, AL, =0, + I (see (4.2.11)) and it
can be easily checked, using the integration by parts, that 9, A, = —Af@t. Then
AT = AL AL = (0, £ ) AAL
= (+A, - AN + A (i0, £ DAL = (£A. — A)AT + A7

Since % -l<r—-1< % and the embeddings

AZIHDYRT) = H(RT) C HLH(RY),

P P
ATTHDTH(RY) = Hp(RT) € H7H(RY)

are continuous, the operators

A = (A — ADAT + AF HH(RT) — HL YR,

C

Al = (A, - AH)AT + AY CHU(RY) - HLU(RY)

are bounded. Then, according to the commutative diagrams (4.3.19), the operator A, in (4.3.17) is

bounded for X7 = Hy. For X = W, the boundedness is proved similarly or, alternatively, with the

help of the interpolation theorems (see below Corollary 4.7.2 for similar arguments).
Nowlet%72<r<%. Then

1 1 1
S l=—t<r<—41=2-=, pi= L (4.3.20)
p p p p—1

The pair of the operator K. and —¢ ' K51 are adjoint to each other. Therefore, the operator
Az =Kz — ¢ 'K 1 : X[ (RY) = X (RY), (4321)

X" (RT X" (R e
(X RT) — X(RT)

is the adjoint to the operator A% in (4.3.18). Since the parameters {—r,p'} satisfy the condition of
the first part of the present theorem (see (4.3.20)), the operator Az in (4.3.21) is bounded and justifies
the boundedness of the adjoint operator A7 in (4.3.18). O

The next result is crucial in the present investigation. Note that the case argc = 0 is essentially
different and will be considered in Theorem 4.5.1 below.

Theorem 4.3.4. Let 0 < argc < 27 and 0 < arg(—cy) < w. Then

K 1, - 1A« T +
AP Kop=c K A2 o, peH (RT), (4.3.22)

c

s —isargc

where ¢ = |¢|%e

Proof. First of all note that due to the mapping properties of the Bessel potential operators (see
(4.2.6)) and the mapping properties of a Mellin convolution operator with an admissible kernel, both
operators
1 T —
AP K, : H;(RJF) — H, $(RT),

L L (4.3.23)
KIA®, :Hi(RY) — H, S (RY)

are correctly defined and bounded for all s € R, 1 < p < oo, since —7 < arg(—y) < 0 and 0 <
arg(—cy) < .

Second, let us consider the positive integer values s = n = 1,2, .... Then, with the help of formulae
(4.2.11) and (4.3.14), it follows that
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d n
n 1 1
AT Koo = <Z p7i ’y) K.p

=i(§j)i’f< Kl = Z() ke (i ) 0

k=0

—-n — (n : n— dF —n n o
- Ki(Z (1) et o) = iAo o e By,
k=0
and we have proven formula (4.3.22) for positive integers s =n =1,2,... .
For negative s = —1,-2,..., formula (4.3.22) follows if we apply the inverse operator A7 and
AT , to the proved operator equahty
A" K! =c "KIA"

—cy

for positive n = 1,2, ... from the left and from the right, respectively. We obtain
KIAT], =c¢"ATIK! or ATK} = "KIATL

and (4.3.22) is proved also for a negative s = —1,—2,... .

In order to derive formula (4.3.22) for non-integer values of s, we can confine ourselves to the case
—2 < s < —1. Indeed, any non-integer value s € R can be represented in the form s = sy + m, where
—2 < 89 < —1 and m is an integer. Therefore, if for s = sg +m the operators in (4.3.23) are correctly
defined and bounded, and if the relations in question are valid for —2 < sy < —1, then we can write

A? Kl _ Aso+mK1 —77LA5() K A™
—yTrc T -y c —cy
= ¢ o mK! AL AT =0 TK Ai";m = °K! AL
Thus let us assume that —2 < s < —1 and consider the expression

o0

1 B . o0 oo
AivKigp(t):ﬁhr/e SHE—7) /e /y*" dr dy dé, (4.3.24)
—o0 0 0

where r is the restriction to RT. It is clear that the integral in the right-hand side of (4.3.24) exists.
Indeed, if ¢ € Ly, then Klgp €LoNC*™ and AS_WKigo cH = NC® CLynNC®™.

Now consider the function e=%!(z — v)%e¢**¥, » € C. Since Imy # 0, s < —1, for sufficiently small
€ > 0 this function is analytic in the strip between the lines R and R + ie and vanishes at infinity for
all finite ¢ € R and for all y > 0. Therefore, the integration over the real line R in the first integral of
(4.3.24) can be replaced by the integration over the line R + ie, i.e.,

o0 o0 (o)
A° K1 / —itEl (6 4 e — )S/eiéy{y/y@ p dr dy dx. (4.3.25)
—cr
—o00 0 0

Let us use the density of the set C§°(R™) in ]ﬁl;(R*‘). Thus for all finite ¢ € R and for all functions
© € C§°(R) with compact supports the integrand in the corresponding triple integral for (4.3.25) is
absolutely integrable. Therefore, for such functions one can use Fubini—-Tonelli theorem and change
the order of integration in (4.3.25). Thereafter, one returns to the integration over the real line R and

obtains
o0 oo o0

1 1 ,

s 1 = €(y—t) o s

A Klp(t) = 55 /cp(’r) / - / e (€ —~)° d¢dy dr. (4.3.26)
0 0 —0o0

In order to study the expression in the right-hand side of (4.3.26), one can use a well known formula

o 0 for p >0,

Fin) Ve dp = 4 on(_p)r-lefr Rev >0, Ref >0
/(/3 iz)™" r=9q 2n( 1]321/) e for p<o, ROV e
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[84, Formula 3.382.6]. It can be rewritten in a more convenient form, viz.,

o 0 if u<0, Im~vy >0,
eip,& —~A)SdE = 2 —s—1_—Fsituyi 4.3.27
[ emste = de =4 2mn S a0, a0 (4.3.27)

Applying (4.3.27) to the last integral in (4.3.26), one obtains

o o

AS Kl 67%51- d ei(yft)'-y d
T Koo(t) = e /@(T) 7'/ (y—O)i+s(y —er)
t

— 58t < —s—1_ivy
=’ )r+/<p(7) dT/ud% (4.3.28)
0

y+t—cr
0

where the integrals exist, since —s —1 > —1 and 0 < argy < 7 (i.e.,, Im~v > 0).
Let us recall the formula

v—=1,—px

/% dz = " 1P ()I(1 — v, Bpu), Rev >0, Rep >0, argf| < (4.3.29)
0

(cf. [84, Formula 3.383.10]). Due to the conditions 0 < arge < 27, t > 0, 7 > 0, we have |arg(t—c7)| <

7 and, therefore, we can apply (4.3.29) to equality (4.3.28). Then (4.3.28) acquires the following final

form:

S oo
s B T eI (1 g s, it — er))(r)
A Kop(t) = — T+ / T cr)its dr. (4.3.30)

Consider now the reverse composition K{A® . ¢(t). Changing the order of integration in the
corresponding expression (see (4.3.26) for a similar motivation), one obtains

1 oo 1 %) . %) o
KIA®, ¢ (>:=ﬁr+/ticy [ e e [ ot dr deay
—o0 0
=3 2r+/g0 /t /eig(T*y)(ffcv)s dé dydr. (4.3.31)
0 0 —oo

In order to compute the expression in the right-hand side of (4.3.31), let us recall formula 3.382.7
from [84]:

o ' 0 for p <0,
/ (B—izx) Ve P dr =< 2rp¥~le PP Rev >0, Ref >0,
kS T fOI' p > O,

and rewrite it in the form, more suitable for our consideration, viz.,
< 0 w>0, Imw >0,
WE(Ef W) dE = 2 (—p) 5 LeFsimnwi 4.3.32
[ ersterwp e ={ on 0 o, =0, (13.32)

Res <0, peR, w,seC.

Using (4.3.32), we represent (4.3.31) in the form

KIAS o) = /@ dT/ v,
Aot =Zr gy ™ —G )
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291 3 oo —S 16—""de
_ 4.3.33
wel(—s) r+/<p /y—i-T—c i 4 ( )
0

where the integrals exist, since —s — 1 > —1 and —7 < arg(cv) < 0 (i.e., Imcvy < 0).
Due to the conditions 0 < arge < 27, t > 0, 7 > 0, we have |arg(r — ¢~ *t)| < m. Therefore, we
can apply formula (4.3.29) to (4.3.33) and get the following representation:

T

w 710’7 tfﬂr) o —1,
KiAs—c’ySD(t) = T+/ € F(l +S, ZCV(C t T))SD(T) d
0

(1 — e lt)lts

dr. (4.3.34)

P / em V=D (1 4 5, —in(t — ¢7))p(7)
(t—cT)lts
0

If we multiply (4.3.34) by c¢™°, we get precisely the expression in (4.3.30) and, therefore,
A’ Klp(t) = ¢ *KIA . o(t), which proves the claimed equality (4.3.22) for —2 < s < —1 and
accomplishes the proof. O

Corollary 4.3.2. Let 0 < arge < 27 and 0 < argy < w. Then for arbitrary vo € C such that
0 <argyy <7 and —m < arg(cvyp) < 0, one has

s 1 _ —s
A2 K. =cW,

9—~,—70

KIA®

—c¢Y0?

(4.3.35)

where

#n@ = (22)

If, in addition, 1 < p < oo and % -l<r< %, then equality (4.3.35) can be supplemented as

follows:

AT Ky =c K Wye  +T]A (4.3.36)

—cY0?

where T : ﬂ;(R+) — H7 (R*) ds a compact operator, and if c is a real negative number, then c=* :=

|C|_56_7T8i,
Proof. Tt follows from equalities (4.2.13) and (4.3.22) that

A KL=A° ATSAS KL=c" W, . KA

—Yoo ¢ 9—~.=70 —C¢7

and (4.3.35) is proved. If 1 < p < oo and % -l<r< %, then the commutator
To=Wg K. - K;{,ng%ﬂo :Hp(RY) — Hy (RY)

of Mellin and Fourier convolution operators is correctly defined and bounded. It is compact for
r=0and all 1 < p < oo (see [41,52]). Due to Krasnoselsky’s interpolation theorem (see [96] and
also [133, Sections 1.10.1 and 1.17.4]), the operator T is compact in all LL,-spaces for % —l<r< 1%
Therefore, equality (4.3.35) can be rewritten as
s 1 _ —s 1 s
A K. =c [KCWgsﬂﬁ + T|A

—CYo )
and we are done. O

Remark 4.3.1. The assumption % -l<r< % in (4.3.36) cannot be relaxed. Indeed, the operator
W, = A AT KL ]ﬁIT(Rﬂ — H7(RT) is bounded for all 7 € R (see (4.3.23)). But the

9=+, ’Yo

operator K Wee HT(R“‘) — H(RT) is bounded only for 1 5 —1 <r <, because the function
9% v (€) has an analytic extension into the lower half-plane but not into the upper one.
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4.4 Quasi localization in Banach para-algebras

In the present section, we expose well known, but modified local principle from [38,83,127], which we
apply intensively.

Let %1(%) and B(€) be Banach spaces of functions on an (n-1)-dimensional ¢-smooth hyper-
surface € C ¥ C R", £ > 1, with the Lipshitz boundary I' = 9%, and multiplication by uniformly
bounded smooth C*(%)-functions are bounded operators in both spaces. If ¥ = R"~!, we consider
one point compactification € := Ié”_l of € = R" ! and then I' = 0.

% can also be minded as a domain with the Lipschitz boundary in the Euclidean space R®~!.

Definition 4.4.1. A quadruple .Z = [.Zjx]2x2 of Banach spaces is called a Banach para-algebra
if there exists a binary mapping (a multiplication)

Lk X Lyr — ZLjr
for each choice of j, k,7 = 1,2, which is continuous, associative and bilinear.
Definition 4.4.2. Let 2 be a Banach algebra. A set A C 2 is called a localizing class if:
i) 0 & A;
ii) for a pair of elements a1,as € A an element a € A exists such that a,,a = aa,, =a, m =1,2.

Definition 4.4.3. A system {A, },cq of localizing classes in 2 is said to be covering if from arbitrary
collection {ay, }weq of elements a,, € A, there can be selected a finite collection {a,, }é\le so that the
N
sum ) a,, is invertible in 2.
j=1
In what follows, under the Banach algebra there are taken linear operator algebras on Banach (in
particular-function) spaces and the quotient spaces

j()/(%l(cg)v By(C)) == L (B1(€),B2(C))/ H (B1(€),B2(F))

of linear bounded operators with respect to the ideal of compact operators.

Definition 4.4.1 implies that the spaces 211 and %, from a Banach para-algebra & = [Zji]axe
are Banach algebras.

For a pair of Banach spaces 987 and B2 the quadruple

fo(%h %2) = [3(%]“ %j)]gxz

represents a Banach para-algebra. Moreover, the quadruple of the quotient algebras £ (B1,B2) =
[Llplaxe = [L(Bj,Br)/H (B, Bi)]axe represents a Banach para-algebra, as well. For simplicity,
we dwell on these particular para-algebras.

Let © € 4 and consider the class of multiplication operators by functions

Ay = {vI cv e CYE), v(t)=1for |t —z| <ey, v(z) >0 and v(t) =0 for [t — | > 62}, (4.4.1)

where €9 > g1 > 0 are not fixed and vary from function to function. A, is, obviously, a localizing
class in the algebra of bounded linear operators £ (%B:1(%), B2(¢)) and {A.}, = is a covering class.
Indeed, for a system {v,/} .z we consider the related covering

€ = QUZ, Uy ={ye% : v,(y)=1}.

The set € is compact and there exists a finite covering system ¢ = Uj\;l Uz,;. The corresponding
sum is strictly positive

N
Jnf g(y) > 1 for gly) =3 ve, () (4.4.2)
j=1
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N

and the multiplication operator ) v, I = gI has the inverse g 'I. Thus, the system of localizing
j=1

classes {A;}, 7 is covering.

Definition 4.4.4. A quotient class [A] € Z'(B1(%),B2(¥)) is called A,-invertible from the
left (A, -invertible from the right) if there exists a quotient class [R;] € £/ (B2(%), B1(¥)) and
v, € A, such that the operator equality [R,Av, 1] = [v.]1] ([vzAR,] = [v.]2], respectively) holds,
where I; and I are the identity operators in the spaces B1(%) and B2 (%).

[4] is called A -invertible if it is A -invertible from the left and from the right.

We can generalize Definition 4.4.4 for operators
Aj : B(6;) = B2(F), j=1,2, (4.4.3)

in the same pairs of function spaces B1(%1), B2(%1) and B1(%2), B2(%2) defined on different domains
%1, %> C R™. For this, we assume that for any pair of points 1 € €1 and xo € €5 there exists a local
diffeomorphism of neighbourhoods

B wi—we, Blz1)=22 w;€w;C%E, j=1,2. (4.4.4)

The operators
Bep(a) = p(B(x)), B (y) = (B~ (y))

are inverses to each-other and map the spaces
ﬂ* : %]‘(WQ) — %j(wl), ﬂ*_l : %j(wl) — %j(&)g).

Definition 4.4.5 (local quasi equivalence). Let multiplication by uniformly bounded C*-functions on
corresponding closed domains % and %; are bounded operators in all respective spaces B2(%1) and

B1(%62), B2(62).
Two classes from the quotient spaces [A1],[A2] € £/ (B1,B2) (see (4.4.3)) are called locally

- [A] or [Aq] <" B 73<T [A4] (locally quasi
[As] or [Aq] = 3 2T [A,]) at 2, € @) and

Ay —L
quasi equivalent from the left, [A;] '~ j
Apy =R Dyy—
equivalent from the right, [A;] '~ [ &

Ty € €o, if (see (4.4.4))

R

inf ’ vz, [[A1 — 5*A25*_1]|” =0,

(4.4.5)
i [I[Ar - B g un II]] = o) ,

Vg €Az

where the norm in the quotient space £/ (B1,B2) = L(B1,B2)/ 74 (B1,B2) coincides with the

essential norm
LAl = Al = __inf = fl4+T].
EK%/(‘BM%Q)

If two classes from the quotient spaces [A;], [Az] € Z'(B1,By) are locally quasi equivalent both,

from the left and from the right, they are called locally quasi equivalent at x; € €1 and x5 € €5
A, A T1 5 T

[A1] ~' B~ [Ag] or [A4] R B R [A,].

If ¢4 = %> = € and S(z) = z is the identity map, the equivalence at the point z € ¥ is denoted

as follows: [Aq] 257 [As], [A1] 257 [Ag], [A1] % [As] or also [Aq] "~ [As], [A4] "~ [A,],

[A4] X [Ag).

Definition 4.4.6. Let B1(%) and B2(¥¢) be the same as in Definition 4.4.1. An operator A
B1(%) — Bo(F) is called of local type if v1Aval : B1(E) — Bo(¥€) is compact for all vy,vy €
C*(%), provided supp vy Nsupp va = O (see [127]); or, equivalently, if vA — Avl : B1(€) — Bo(E)
is compact for all v € C*(%) (see [125]).
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Theorem 4.4.1 (Quasi Localization Principle). Let A, B;(¢%), j,k = 1,2, be the same as in
Definition 4.4.5 and

A : B1(61) » Ba(61), By : B(C)) = BE,), y=P(z), z€E,

be operators of local type. The diffeomorphisms B, : wl — wg, y = B.(x) € ‘za”; of neighbourhoods of
T €6 and of y € ngz’ as well as the domains %yz and operators By, depend on y = f,(x) and might

be different for different x € €.

If the Quasi Equivalence [A] ~ B, [B,] holds at some point x € 61, then the quotient class
[A] is locally invertible at x € €1 if and only if the quotient class [B,] is locally invertible at y € ‘5112

If the Quasi Equivalence [A] ~ B, y:%(mL[By} holds for allz € €1 and [B,] € £ (B1(62), B2(62))
are locally invertible at y € ‘5112 for all x € €1, then the quotient class [A] is globally invertible (i.e.,
A : B1(%1) = B2(61) is a Fredholm operator).

y= ﬁz(fr

Proof. Let the left Quasi Equivalence [A] B, y=p ()R [By] hold and A be A,-invertible from

the left. Then there exist R, € Z(B2(%1),B1)(61), v1,v2 € A, such that R, Avi ] = vi1 and

R.[A — o By 0o |2 (B1(61))|| < HR v I|.Z (B2(41), B1(%1))|
< [|[A = Bo Byf7.] vzfl-i” 41),B2(61))]| < 1.
Furthermore, let us pick up an element v € A with the property viv = wvev = v. Then

R.f3:.ByB; vl = [I — D;Jvl, where
D, = R,[A - 8,.B,B; ool = [[ — Ry B, . ByB; ool

Since || Dy ‘f |l < 1, the inverse (I — D,)~" to I — D, exists and R} ,Byvl = vl for R1
B I -D,)~ lRwﬁz . Thus B, is Ay-invertible from the left.

Since Quasi Equivalence is symmetric, the left Quasi Equivalence and left local invertibility of B,
at y = B;(x) follows the left local invertibility of A at .

The case of the right Quasi Equivalence [A] “~ BI v=r()- [By] is similar.
Let the left Quasi Equivalence [A] il Pa=k [B,] hold for all x € 4, and B, be A,-

invertible from the left for y = S.(z) and all z € ¥7. By the first part of theorem A is then locally

A, invertible from the left for all 2 € %;: there exist elements R, € Z(fBs, fB1) and v, € A,

such that R, A,v,I = v,I. Since the system {AJC}IE?1 is covering, there exists a finite collection of
N N

elements vy, ,...,v;, such that the sum vl = > v, I is invertible. By taking R = Z R, vz, I

m=1

and recalling that A is of local type, which provides the commutativity Av,, I = v,,, A + Tm, where
T, € Z(B1(%1),B2(%1)) are all compact operators, m = 1,..., N (see Definition 4.4.6), we get

N N N
RA=) R, v, A=Y R, [Av, I+Tp|=> v, I+T=vI+T,
m=1 m=1 m=1

where vyl is invertible and

N
T=> R, T,cZ(Bi(6) B1(%))

m=1

is a compact operator. Hence, the operator A has a left regularizer and the quotient class [A] is
invertible from the left and the inverse reads [A]~! = [vy ' I]R.

The case of the right Quasi Equivalence [A] " B, B, ]| is similar. O



112 Tengiz Buchukuri, Roland Duduchava

4.5 Algebra generated by Mellin and Fourier convolution op-
erators

Let R := RU {oo} denote one point compactification of the real axes R and R := R U {£00} be the

two point compactification of R. By C(R) (by C(R), respectively) we denote the space of continuous
functions g(x) on R which have the equal limits at infinity g(—o0) = g(+o00) (limits at infinity can be

different g(—o0) # g(+00)). By PC(I@) it is denoted the space of piecewise-continuous functions on

R having the limits a(t & 0) at all points ¢ € R, including infinity.
Unlike the operators W2 and 99 (see Section 3.1) possessing the property

WOWP = w2, momy) =m?, for all a,b € M, (R), (4.5.1)

the composition of the convolution operators on the semi-axes W, and W, cannot be computed by
the rules similar to (4.5.1). Nevertheless, the following propositions hold.

Proposition 4.5.1 ([47, § 2]). Let 1 <p < oo and a,b € M,(RT) N PC(R) be scalar L,-multipliers,
piecewise-continuous on R including infinity. Then the commutant (W, Wp] := W, W, — W W, of the
operators W, and Wy, is a compact operator in the Lebesgue space [Wq, Wp] : Ly(RT) — L, (R™).

Moreover, if, in addition, the symbols a(§) and b(§) of the operators W, and W), have no common
discontinuity points, i.e., if

[a(€ +0) — a(€ +0)] [B(€ +0) — b(E+0)] =0 for all &€ R,
then T = W, W, — Wy, is a compact operator in L,(RT).

Note that the algebra of N x N matrix multipliers 9t2(R) coincides with the algebra of N x N
matrix functions essentially bounded on R. For p # 2, the algebra 9,(R) is rather complicated.
There are multipliers g € 91,(R) which are elliptic, i.e., ess inf|g(x)| > 0, but 1/g ¢ M,(R). In
connection with this, let us consider the subalgebra PC9,(R) which is the closure of the algebra of
piecewise-constant functions on R in the norm of multipliers 9t,(RR)

Ha | Sﬁp(R)H = HWL? | LP(R)H'

Note that any function g € PCI,(R) C PC(R) has limits g(x & 0) for all z € R, including infinity.
Let

CM,(R) := C(R) N PCMI(R), CMY(R) := C(R) N PCM,,(R),

where the functions g € C90,(R) (the functions h € C(R)) might have jump only at infinity g(—o0) #
g(+00) (are continuous at infinity h(—o0) = h(400)).

PCM,(R) is a Banach algebra and contains all functions of bounded variation as a subset for all
1 < p < oo (Stechkin’s theorem, see [47, Section 2]). Therefore, cothn (i + ¢) € CIM,(R) for all
p € (1,00).

Proposition 4.5.2 ([47, § 2]). If g € PCM,(R) is an N x N matriz multiplier, then its inverse
g~' € PCM,(R) if and only if it is elliptic, i.e., det g(x £0) # 0 for all x € R. If this is the case, the
corresponding Mellin convolution operator I : Ly,(RY) — L, (R) is invertible and (M) " = img,l.

Moreover, any N x N matriz multiplier b € C’Emg(R) can be approximated by polynomials
m

(€)= Y cm(glz)m rim € CONY(R),

j=—m

with constant N x N matriz coefficients, whereas any N x N matriz multiplier g € Cimg(@) having a
Jump discontinuity at infinity can be approximated by N x N matriz functions d cothw(i5+&) + 1, (€),
0<p<l.
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The Hilbert transform on the semi-axis

1 [ o)
Sp+(x) := = 0/ Yy — o dy (4.5.2)

is the Fourier convolution Sg+ = W_ g, on the semi-axis R* with the discontinuous symbol — sign ¢
(see [47, Lemma 1.35]), and it is also the Mellin convolution

Sp+ =M = ZgW 75", (4.5.3)
sp(&) := cothm(if + &) = g s e ) e cotw(Bif), £€R

(cf. (4.1.1) and (4.1.7)). Indeed, to verify (4.5.3), rewrite Sg+ in the form

Seeple) = / P - / k(D)o 2.

where K (t) := (1/7i)(1 —t)~!. Further, using the formula

tz—l
/ ] 7tdt:7rcot7rz, Rez <1
0
(cf. [84, formula 3.241.3]), one shows that the Mellin transform .#K (§) coincides with the function
sg(¢&) from (4.5.3).
Next Theorem 4.5.1 is an enhancement of Theorem 4.2.4.

Theorem 4.5.1. Let 1 < p < oo and s € R. For arbitrary v; € C, Im~; > 0 (j = 1,2), the Hilbert

transform B
K} = —iSi = —iW_gign = Wisign : Hj(RT) — H3(RT) (4.5.4)

(see (4.3.13), (4.3.14) and (4.5.2); the case ¢ = 1, argc = 0, Theorem 4.3.4). K is a Fourier
convolution operator and

A KA = Wisigngs,  + Lp(RY) = Ly(RT), (4.5.5)
where g° . . (§) is defined in (4.2.10).
Proof. Formula (4.5.5) follows from (4.2.8) and (4.5.4). O

We need certain results concerning the compactness of Mellin and Fourier convolutions in L,-
spaces. These results are scattered in literature. For the convenience of the reader, we reformulate
them here as Propositions 4.5.3-4.5.7. For more details, the reader can consult [30,47,52].

Proposition 4.5.3 ([52, Proposition 1.6]). Let 1 < p < o0, a € C(]Ié‘*‘), be C’img(ﬂé) and a(0) =
a(00) = b(oo) = 0. Then the operators adM), MY al : L,(RT) — L,(RT) are compact.

Proposition 4.5.4 ([47, Lemma 7.1], [52, Proposition 1.2]). Let1 < p < o0, a € C(Héﬂ, be Cimg(lé)
and a(0o0) = b(oo) = 0. Then the operators aWy,, Wy, al : L,(RT) — L,(R*") are compact.

Proposition 4.5.5 ([52, Lemma 2.5, Lemma 2.6], [30]). Assume that 1 < p < co. Then
(1) ifge Ci)ﬁg(lé) and g(oo) = 0, the Hankel operator H, : L,(R*) — L,(R") is compact;

(2) if the functions a € C(]lé), be CMI(R), c € C(R") satisfy one of the conditions
(i) ¢(0) =b(+00) =0 and a(§) =0 for all £ > 0;
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(i) ¢(0) = b(—o0) =0 and a(§) =0 for all £ < 0;
(iii) ¢(0) = b(o0) = a(0) = 0,
then the operators (W, MY, MW, W, MY eI, MW, eI : L,(RT) — L,(RT) are all compact.

Proof. Let us comment on item (1) which is actually well known. The kernel k(x+y) of the operator H,
is approximated by the Laguerre polynomials k,, (z+y) = e * ¥Yp,,,(z+y), m = 1,2,... , where p,,, (z+
y) are polynomials of order m so that the corresponding Hankel operators converge in norm || H, —
H,, ||Z(L,(RT))| — 0, where a,, = Fk,, are the Fourier transforms of the Laguerre polynomials
(see, e.g. [82]). Since

|km (z +y)| = |e_$_ypm(a: + y)’ < Cpre e V2™y™, m=1,2,...,

for some constant C,,, the condition on the kernel

o0 (o] ) p/pl p
/[/Ikm(ﬂy)lp dy} dr < oo, p' =1
0

0

holds and ensures the compactness of the operator H,,, : L,(R*) — L,(R"). Then the limit operator

H, = lim H,_, is compact as well.
m— 00

Ttems (i) and (ii) are proved in [52].
The item (iii) follows from (i) and (ii) and the representation cW,9MY) = cW,y,_ MY + W, MY,
where y+ are the characteristic functions of the semi-axes R*. O

Proposition 4.5.6 ([47, Lemma 7.1], [52, Proposition 1.2]). Let1 < p < 00, a € C(Héﬂ, be CDJTS(I@)
and a(0o) = b(oo) = 0. Then the operators aWy,, Wy al : L,(RT) — L,(R*") are compact.

Proposition 4.5.7 ([47, Lemma 7.4], [52, Lemma 1.2]). Let 1 < p < oo and let a and b satisfy at
least one of the conditions

(i) a € C(RT), b e MY(R) N PC(R);
(i) @ € PC(RT), b € CMY(R).
Then the commutants [al, W] and [al, MY] are compact operators in the space L,(RT).

Remark 4.5.1. Note that if both, a symbol b and a function a, have jumps at finite points, the
commutants [al, W] and [al,MY] are not compact. Only jumps of a symbol at infinity does not
matter.

Proposition 4.5.8 ([52]). The Banach algebra generated by the Cauchy singular integral operator Sg+
and the identity operator I on the semi-azis RT contains Fourier convolution operators with symbols
having discontinuity of the jump type only at zero and at infinity and Mellin convolution operators

with continuous symbols on R (including infinity).

Moreover, the Banach algebra §,(R™) generated by the Cauchy singular integral operators with
“shifts”

(o]
1 efzc T— y)so
i

0

Sg+p(x) = dy = W_signe—c)p(x) forall ce R

and by the identity operator I on the semi-axis RT over the field of N x N complex valued matrices
coincides with the Banach algebra generated by Fourier convolution operators with piecewise-constant
N x N matrixz symbols containing all Fourier convolution W, and Hankel Hy operators with N x N
matriz symbols (multipliers) a,b € PCM,(R).
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Let us consider the Banach algebra 2,(R™) generated by Mellin convolution and Fourier convolu-
tion operators, i.e., by the operators

A= W, (4.5.6)
j=1
and there compositions, in the Lebesgue space L,(R™). Here zmgj are Mellin convolution operators

with continuous N x N matrix symbols a; € CI,(R), W}, are Fourier convolution operators with

N x N matrix symbols b; € CM,(R\ {0}) := CM,(R U R+). The algebra of N x N matrix
L,-multipliers C9,(R \ {0}) consists of those piecewise-continuous N x N matrix multipliers b €
M, (R) N PC(R) which are continuous on the semi-axis R~ and R* but might have finite jump
discontinuities at 0 and at infinity.

This and more general algebras were studied in [52] and also in earlier works [41,51,132].

Remark 4.5.2. If in (4.5.6) we admit more general symbols a; € C9,(R) which have different limits
at infinity a;(—00) # a;(+00), this will not be a generalization.

Indeed, if a; € C,(R) has different limits at infinity a;(—00) # a;j(400), we can represent

1—COth7T<%-‘rf) 1+coth7r(%+§)

a;(§) = a?(f) + a;(—0o0) 5 + a;j(4+00) 5 , a?(j:oo) =0
and the corresponding Mellin operator is written as follows:
my. = smgg - @ [I — Sgp+] + @ [l + Sg+]
= i)ﬁgg + @ [l —W_ sign] + @ [+ W_ sign]

(see (4.5.4) and (4.3.14)). Therefore, the discontinuity at infinity of symbols of Mellin convolution
operators is taken over in Fourier convolution operators and we can even assume in (4.5.6) that
aj(£o0) =0 forall j=1,...,m.

In order to keep the exposition self-contained and to improve formulations from [52], the results
concerning the Banach algebra generated by operators (4.5.6) are presented here with some modifica-
tion and the proofs.

Note that the algebra 2(,(R™) is actually a subalgebra of the Banach algebra §,(R") generated by
the Fourier convolution operators W, with piecewise-constant symbols a(£) in the space L,(R™) (cf.
Proposition 4.5.7). Let &(L,(R™)) denote the ideal of all compact operators in L,(R™"). Since the
quotient algebra §,(R")/S(L,(R")) is commutative in the scalar case N = 1, the following is true.

Corollary 4.5.1. The quotient algebra 2,(R*)/S(L,(R")) is commutative in the scalar case N = 1.

To expose the symbol of operator (4.5.6), consider the infinite clockwise oriented “rectangle”
M:=T,Ul; UTS UT3, where (cf. Fig. 4.1)

= {oo} xR, TF:=R" x {£oo}, T5:={0} xR.

The symbol «7,(w) of the operator A in (4.5.6) is a function on the set R, viz.,
> ai(€)(b)p(00,€), w=(00,6) €T,

j=1

> as(0)bi(m),  w=(n,+00) €T,

j=1

()= = (4.5.7)
Zaj(oo)bj(_n)a W= (777 —OO) € F2_7

D ai(©)0)p(0.6),  w=(0.6) €T,
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(00, —00) Iy _ (00, +00)
[ 4 > : J
(00,§)
)
0.6
[ <
(07 _OO) Fg (07 +OO)

Figure 4.1. The domain R of definition of the symbol <7 (w).

The symbol «7,(w), when w = (00, £) ranges through the infinite interval I'; (cf. Fig. 4.1), it fills the
gap between the values

m

S a;(00)by(—00) and Y a;(00)b; (+00)

and, when w = (0, &) ranges through the infinite interval T's (cf. Fig. 4.1), it fills the gap between the

values
m

> a(©)b(0-0) and }a;(€)b;(0+0).

Jj=1

The connecting function g, (0o, &) in (4.5.7) for a piecewise continuous function g € PC(R) is defined
as follows:

9(x+0)+g(x—0)  g(x+0)—g(xz—0) L.
5 + 5 cotw(ffzf)

+ - .
sz cosm(h — B3 —ig)
2

sinﬁ(% — &)

gp(r,§) :=

_ 6i7r

, CER, (4.5.8)
.1 +_ 1 >
9 ::Elng(x:t()), Reg; = - argg(z +£0), € R:=RU{oo}.

The function g,(00,€) fills up the discontinuity (the jump) of g(§) at oo between g(—oo0) and
g(+00) with an oriented arc of the circle such that from every point of the arc the oriented interval
[9(—00), g(+00)] is seen under the angle 7/p. Moreover, the oriented arc lies above the oriented interval
if 2 < % <1 (ie., if 1 < p < 2) and the oriented arc is under the oriented interval if 0 < % <1 (ie,
if 2 < p < 00). For p = 2, the oriented arc coincides with the oriented interval (cf. Fig. 4.2 on page
117)).

A similar geometric interpretation is valid for the function g, (¢, &), which connects the point g(t—0)
with g(¢t + 0) at the point ¢ where g(¢) has a jump discontinuity.

To make the symbol «7,(w) continuous, we endow the rectangle SR with a special topology. Thus,
let us define the distance on the curves I'y, FQi, I's and on R by

plx,y) = |arg i - z —arg z —I—z for arbitrary z,y € R.

In this topology, the length || of R is 67, and the symbol 27, (w) is continuous everywhere on 9. The
image of the function det o7, (w), w € R (det B,(w)) is a closed curve in the complex plane. It follows
from the continuity of the symbol at the angular points of the rectangle S8 where the one-sided limits
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9(+00) 9(+00) g(+00)

g9(—00) g(—o0) g(—o0)
1<p<?2 2<p<oo p=2

Figure 4.2. Arc condition.

coincide. Thus

p(£00,0) = Y [a;(00)b; (0 F 0).

Hence, if the symbol of the corresponding operator is elliptic, i.e., if

wlg; | det o7, (w)| > 0, (4.5.9)

the increment of the argument (1/27) arg o7,(w), when w ranges through R in the positive direction,
is an integer, is called the winding number or the index and it is denoted by ind det .27,.

Theorem 4.5.2. Let 1 < p < oo and let A be defined by (4.5.6). The operator A : L,(RT) — L,(R")
is Fredholm if and only if its symbol o7, (w) is elliptic. If A is Fredholm, the index of the operator has
the value

Ind A = — ind det «7,. (4.5.10)

The operator A is locally invertible at 0 € R™ if and only if its symbol a2y (w), defined in (4.5.7),

is elliptic on T'y, i.e.,

wier11£1 | det o7, (w)| = guelnfk | det .77 (€, 00)| > 0.
Proof. Note that our study is based on a localization technique. For more details concerning this
approach, we refer the reader to [47,49,83,127].

Let us apply the Gohberg—Krupnik local principle to the operator A in (4.5.8), “freezing” the
symbol of A at a point * € R := RU{—00}U{+oc}. Forx € Rand £ € N, £ > 1, let C4(R) denote the
set of all /-times differentiable non-negative functions which are supported in a neighborhood of z € R
and are identically one everywhere in a smaller neighborhood of z. For z € {—oo} U {400} U {0},
the functions from the corresponding classes C{ (R) and C* (R) vanish on semi-infinite intervals
[—00,¢) and (—c, 0], respectively, for certain ¢ > 0, and are identically one in smaller neighborhoods.
It is easily seen that the system of localizing classes {C%L(R)}, g is covering in the algebras C(R),

M, (R), respectively (cf. [38,47,49,83]).
Let us now consider a system of localizing classes {€u.2}, ,)eox

2, (RT)/S(IL,(R*)). These localizing classes depend on two variables, viz. on w € R and 2 € R¥. In
particular, the class £, ; contains the operator A, ,

7+ in the quotient algebra

hogﬁggwm] = [hogﬁgg] if w= f,OO)GFh z =0,
hzfmgmng} = [hzimgimW

(
] if w=(#00,00) eTs NIy, z€RT,

o) ? (4.5.11)
(

(

)

hocm?)ioowgn] = [ho@mgiwwg;n] lf w = :I:OOaT]) € F§E7 T = 00,

[
Ay i= [
[
[

hoom’lo)gwgo] = [mqo)EWgo] if w = £)O> € f?)? €T = 00,
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where h, € CL(R"), ve € C{(RT), g, € CL(R), and [A] € A,(R")/S(L,(R")) denotes the coset
containing the operator A € A, (R™).

To verify the equalities in (4.5.11), one has to show that the difference between the operators in
the square brackets is compact.

Consider the first equality in (4.5.11). The operator

hoW.. — hol = hoWi, 1) = hoWy,

is compact, since both functions hg and 1 — go, = gg have compact supports, so Proposition 4.5.3
applies.

To check the second equality in (4.5.11), let us note that h;(0) = 0, VLo (Foo) =0 and g100(§) =0
for all F& > 0. From the fourth part of Proposition 4.5.5 we conclude that for any z € R* the operator
9N + . Wy, 1s compact. This leads to the claimed equality, since

0 0 0
[hf’?mvixwgm] = [hmmvioo {W et W9+ao }] = [hf’?mvixwﬁm]'
The third identity in (4.5.11) can be verified analogously. Concerning the fourth identity in (4.5.11):
one can replace hoo by 1 because the difference hoo Wy, — Wy, = (1 — hoo )W, = hoWy, is compact
due to Proposition 4.5.3.

Now consider other properties of the system {Sw,m}(w 2)ERXEF - Propositions 4.5.3-4.5.6 imply

that
[he9M) W, ] =0 forall (¢,n,2) € RxRx R\ R xR

Therefore, the system of localizing classes {i}w’m}(w o) R+ is covering: for a given system

{A%f,;}(uJ 2)ERXRH of localizing operators one can select a finite number of points (wi,x1) =
my Wgs+j] =0

Tatj ™ e

with (§s45, Ms4s, Ts+j)) € RX R X RT\ (R x RY), j =1,2,...,r, so that the equality

(E1,m,x1)y .y (Wsyxs) = (€5, M5, ) € R and add appropriately chosen terms [h

Do oo Mo, We, | = [cMoW] (4.5.12)

j=1k=1

holds and the functions ¢ € C(RT), a € CM,(R), b € CM,(R) are all elliptic. This implies the
invertibility of the coset [¢IMIW,] in the quotient algebra 2A,(RT)/S(L,(RT)) and the inverse coset is
[eMOW,] 1 = [¢™ 1m0, W],

Note that the choice of a finite number of terms in (4.5.12) is possible due to the Borel-Lebesgue
lemma and the compactness of the sets R and R* (two point and one point compactification of R and
of R, respectively).

Moreover, localization in the quotient algebra 2,(R™)/S(L,(R")) leads to the following local
representatives of the cosets containing Mellin and Fourier convolution operators with symbols a,b €
cm,(R):

0

vz L

(W] = W] = [ (oo, ] if 20 € RY, (4.5.13h

[R50 IMS )] = a(€0)]] if & € R, (4.5.13a)
om0] " 0L i @ € R, ao £0, (4.5.13D)
(9] "= (Y] if @ = oo, (4.5.13¢)
9] " ] if @ =0, (4.5.13d)
Wil 2 [Wigge)] = b)) i mo € R\ {0}, (4.5.13¢)
W] ' [Wie] = [0 (0,y] if n=0, (4.5.13f)
(W] " (Wi (oo, )] = [ (00, )] i 70 = 00, (4.5.13g)

)
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(W] "=’ Wy if 2 = oo, (4.5.13)
where
go() = A 900) 9000 Z91209) i = g—sohx- () + gl +oc) (6),
() = 20D IO gOFDEIOZD) e~ (0 - 0y (6) + 90+ 0)x1 6),

and x4 (§) := (1/2)(1£sign&). Note that in the equivalency relations (4.5.13¢)—(4.5.13g) we used the
identities (cf. (4.5.2) and (4.5.8))

g(—00) ;g(+oo) _ 9(=) ;9<+°°) Sg+ =My, (00, )

g(0+0)+g(0—-0) ¢g(0+0)—g(0-0)
2 B 2

Wy =

Wgo = S]R+ = Dﬁgp(o, o
which means that the Fourier convolution operators with homogeneous of order 0 symbols g>° (&) and
g°(&) are, simultaneously, Mellin convolutions with the symbols g,(c0, €), g,(0,£).

Using the equivalence relations (4.5.13a)—(4.5.13h) and the compactness of the corresponding op-
erators, cf. Propositions 4.5.3—4.5.5, one easily finds the following local representatives of the operator
(coset) A € A,(RT)/SL,(RT) (see (4.5.8) for the operator A):

(A [ S ) W~
j=1
m Aen ooy, m
= [Zlmﬂj(go)(%(oo,.)} i {Zlmgj@o)(bj)p(oo,ao)}
J= Jj=
= [ (507 )I] if w=(£,00) €T, 2o=0, (4.5.14a)
[ A(:(:oo ©0), 0 [Zm% ioo i| [Zm (F00) (b;)p (00, - )i|
= [ e, ] T [y (00, 00)1] (4.5.14D)

if w=(£o0,00) Eﬁﬂﬁ, 0 < x9 < 00,
Altoo T no)oe [ v
[A] " {thgj(:l:oo)wbj(¥no)} = {Z% (f00)b 4[770)—7}

j=1
= [ (oo, Fno)I| if no >0, w= (:I:oo,:Fno) eTs, xy = oo, (4.5.14c¢)

A(€00) {me Wbo]
J

[iaa (€0)M(v,), 0, - >} hag {Zay £0)(b;) (0, 50)}

j=1
[%(5070) ] if w= (507 ) € F37 XTo = (4514(‘1)
A(ioo n),00 {Zgﬁa](iw)Wb } [Za] (Fo00)b } =
Jj=1
= [ (£00,0)]] if w= (:I:oo,O) €T3, z¢=oo. (4.5.14e)

It is remarkable that the local representatives (4.5.14a)—(4.5.14e) are just the quotient classes of
multiplication operators by constant N x N matrices [<7,(&,m0)]. If det 27,(£o,1m0) = 0, these repre-
sentatives are not invertible, both locally and globally. On the other hand, they are globally invertible
if det 7,(€0,m0) # 0. Thus, the conditions of the local invertibility for all points wg = (&,70) € R
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and the global invertibility of the operators under consideration coincide with the ellipticity condition
for the symbol ( ing mdet (&, m0) # 0.
€

£0,M0

The index Ind A is a continuous integer-valued multiplicative function Ind AB = Ind A + Ind B
defined on the group of Fredholm operators of 20,(RT). On the other hand, the index function
ind det 27, defined on L,-symbols o7, possesses the same property inddet .o, %, = inddet ., +
ind det %,, sec explanations after (4.5.9). Moreover, the set of operators (4.5.8) is dense in the alge-
bra 2, (R™) and the corresponding set of their symbols is dense in the algebra C(R) of all continuous
functions on R. For p = 2, these algebras even coincide. Therefore, there is an algebraic homeomor-
phism between the quotient algebra 2,(R*)/S(L,(R1)) and the algebra of their symbols which is a
dense subalgebra of C(R). Hence, two various index functions can only be connected by the relation
Ind A = M) ind det <7, with an integer constant M independent of A € 2,(R")/S(L,(R")). Since
for any Fourier convolution operator A = W, the index formula is Ind A = — ind det 7, [41,42,47],
the constant My = —1, and the index formula (4.5.10) is proved.

Concerning the concluding assertion of the theorem: A is, after lifting to IL,-space, locally equiv-
alent at 0 to the Mellin convolution operator 9)??2{;(00@, which commutes with the dilation

MOV, = VA, Vap(t) == o(\t) for all A >0

and, therefore, is locally invertible at 0 if and only if it is globally invertible (see [45,47,127]) and this
is the case if and only if ginﬂfg |7, (00, &)| > 0. O
€

Remark 4.5.3. Let us emphasize that formula (4.5.10) does not contradict the invertibility of “pure
Mellin convolution” operators MY : Ly,(RT) — L,(RT) with an elliptic matrix symbol a € CIN)(R),
gnﬂg |a(€)] > 0, stated in Proposition 4.1.1, even if ind a # 0.

€

In fact, computing the symbol of MY by formula (4.5.7), one obtains

a(é), w=(§00) ey,
0Y (W) := a(+00), w = (+oo,m) € Iy,
(Mg)p(w) a(-0), w=(—o0,n) €Ty,
a(¢),  w=(60)€Ts

Noting that on the sets I'y and I's the variable w runs in opposite direction, the increment of the
argument [arg det(9MY),(w)]s = 0 is zero, implying Ind 92 = 0.

In contrast to the above, the pure Fourier convolution operators W, : L,(RT) — L,(R*) with
elliptic matrix symbol b € C9)(R), f12{g |b,(&,m)] > 0 can possess non-zero indices. Since

bp(00,§), w = (£ 00) €Iy,
by (w) = b(—n), w = (+00,7) € F;,
8 b(n), w = (_00777) ely,
b(0), w=(§,0) €T3,

one arrives at the well-known formula
Ind W, = —indb,.

Moreover, in the case where the symbol b(—o0) = b(+00) is continuous, one has b,(§,n) = b(§). Thus
the ellipticity of the corresponding operator leads to the formula

ind b, = ind det b.

If o7,(w) is the symbol of an operator A of (4.5.6), the set Z(<,) = {o,(w) € C: w € R}
coincides with the essential spectrum of A. Recall that the essential spectrum o.ss(A) of a bounded
operator A is the set of all A € C such that the operator A — AI is not Fredholm in L,(R™) or,
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equivalently, the coset [A — AI] is not invertible in the quotient algebra 2A,(R")/S(L,(R")). Then,
due to Banach theorem, the essential norm ||||A]|| of the operator A can be estimated as follows

sup |\ (W)| < [[[|Al]] == nf [|(A+T)| ZL,(RY))]. (4.5.15)

TEG(I]Lp(R*))
Inequality (4.5.15) enables one to extend continuously the symbol map (4.5.7)
[A] = #p(w),  [A] € A (RT)/S(Lyp(RT)) (4.5.16)

on the whole Banach algebra 2,(R™). Now, applying Theorem 4.5.2 and standard methods, cf. [52,
Theorem 3.2], one can derive the following result.

Corollary 4.5.2. Let 1 < p < 0o and A € A,(RT). The operator A : L,(R*) — L,(R") is Fredholm
if and only if its symbol <, (w) is elliptic. If A is Fredholm, then

Ind A = —ind «7,.

Corollary 4.5.3. The set of mazximal ideals of the commutative Banach quotient algebra
2A,(RT)/S(L,(RY)), generated by scalar N = 1 operators in (4.5.6), is homeomorphic to R, and
the symbol map in (4.5.7), (4.5.16) is a Gelfand homeomorphism of the corresponding Banach alge-
bras.

Proof. The proof is based on Theorem 4.5.2 and Corollary 4.5.2 and is similar to [52, Theorem 3.1].
The details of the proof is left to the reader. O

Remark 4.5.4. All the above results are valid in a more general setting, viz., for the Banach algebra
‘I?Qlﬁ OfN (RT) generated in the weighted Lebesgue space of N-vector-functions Lév (RT,2%) by the
operators

A=) [dyl‘mg;wb} + d?WS;HC; + d?WI%HCJz (4.5.17)
j=1

when coefficients d}, d?, d;’ € PCN*N(R) are piecewise-continuous N x N matrix functions, symbols

of Mellin convolution operators smg;, Dﬁgi, Winer-Hopf (Fourier convolution) operators Wi, Wi
and Hankel operators HC}, HC§ are N x N piecewise-continuous matrix L,-multipliers a?,b?,c? €
PCN*Nop (R).

The spectral set E(‘BQ{?{ JN(RT)) of such Banach algebra (viz., the set where the symbols are
defined, e.g., R for the Banach algebra 2[5)\' *N(R*) investigated above) is more sophisticated and
described in the papers [45,46,52,132]. Let €2, o(RT)S(L,(R™)) be the sub-algebra of PA, ,(RT) =
‘}32[11,21 (RT) generated by the scalar operators (4.5.17) with continuous coefficients cj, h; € C(R)
and the scalar piecewise-continuous L,-multipliers a;,b;,d;,g; € PCM,(R). The quotient-algebra
€A, o (RT)S(L,(RT)) with respect to the ideal of all compact operators is a commutative algebra and
the spectral set X (P2, ,(RT)) is homeomorphic to the set of maximal ideals.

We will not elaborate more on further details concerning the Banach algebra ‘1391;\{ XN(RT), since
the result exposed above are sufficient for the purpose of this and subsequent papers dealing with the
BVPs in domains with corners at the boundary.

4.6 Mellin convolution operators in the Bessel potential spa-
ces. The boundedness and lifting

As it was already mentioned, the primary aim of the present paper is to study Mellin convolution
operators MY acting in the Bessel potential spaces,

MmO H3(RY) — HE(RY). (4.6.1)

The symbols of these operators are N x N matrix functions a € C’Smg (R) continuous on the real axis
R with the only possible jump at infinity.



122 Tengiz Buchukuri, Roland Duduchava

Theorem 4.6.1. Let s€ R and 1 < p < oo.
If conditions of Theorem 4.3.4 hold, the Mellin convolution operator between the Bessel potential
spaces
1., mr + T +
K. : Hy(R™) — H(RT) (4.6.2)
is lifted to the equivalent operator
A KA = K Wys i Ly(RT) = Ly(RY), (4.6.3)

where ¢ * = |c and the function g° .. . is defined in (4.2.10).
If conditions of Corollary 4.3.2 hold, the Mellin convolution operator between the Bessel potential
spaces (4.6.2) is lifted to the equivalent operator
s —s —s sl
A_,YKiA,y =c 1/17575%7W KW, =c KchSW

s
9% cvg.y —v,—v09=cvo.v

s —s,—tsargc
[Tt e

+T:Ly(RY) — Ly(RY), (4.6.4)
where T : L,(RT) = L,(R") is a compact operator.
Proof. The equivalent operator after lifting is
AS_WKéA;S :Ly(RY) = Ly(RY)
(see Theorem 4.2.1). To proceed we need two formulae

A* AT =W, Wye

ety 9= cvyy?

Woe o =Wee g . (4.6.5)

Y70 CY0Y Y—Y0
The first one holds because 0 < argy < 7 (see (4.2.8)) and the second one holds because g*. __ (&)
has a smooth, uniformly bounded analytic extension in the complex lower half-plane (see (4.2.13)).
If conditions of Theorem 4.3.4 hold, we apply formula (4.3.23), the first formula in (4.6.5) and
derive the equality in (4.6.3):
s 1A—s __ —9 1As — _q 1
A KA = KA AL =K Wee
If conditions of Corollary 4.3.2 hold, we apply formulae (4.3.35), (4.3.36), both formulae in (4.6.5)
and derive the equality in (4.6.4):
s 1A—s _ —s s —
A KA =Wy K! AL AT

_ —s 1 _ —s 1
=W KWy =KW,

I/Ikg.s
¢ —cv0,Y —¥:=70 -0,y

+ T. O

Remark 4.6.1. The case of operator Kj is not covered by the foregoing Theorem 4.6.1, where
argc # 0. This case is essentially different as underlined in Theorem 4.5.1 because K} is a Hilbert
transform K{ = —miSg+ = miWsign and K} between the Bessel potential spaces (4.6.2) is lifted to
the equivalent Fourier convolution operator

A KIAD® = Waigs sign - Lp(RY) = L,(RY), (4.6.6)
as it follows from Theorem 4.5.1.
Theorem 4.6.2. Let ¢j,d; € C, 0 < argej; < 2m, 0 <argy <m, —m < arg(c;v) <0 forj=1,...,m
and 0 < arg(c;y) <m forj=m+1,...,n

The Mellin convolution operator between the Bessel potential spaces

A=>"d;K! Hy(RY) - H(RT) (4.6.7)
j=1

is lifted to the equivalent operator

S AN Zd o "KL W, St > dic; "W Kingiw . (4.6.8a)
7=0 j=m+1
_ —spcl —sK!l
=Y dic; K} Woe .+ 3 dic KL W, o, +T (4.6.8D)

7=0 j=m+1

S

in the space L,(RT), where ¢=% = |¢|~%e ™" 218¢ qnd ~y; are such that 0 < argy; < m, —m < arg(c; ;) <
0forj=m+1,...,n. T:L,(R") = L,(R") is a compact operator.
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Proof. The proof is a direct consequence of Theorem 4.6.1. O

Theorem 4.6.3. Let s € R and 1 < p < oco.
If conditions of Theorem 4.3.4 hold, the Mellin convolution operator between the Bessel potential
spaces
2 . mr + T +
K7 Hp(RT) — H(RT) (4.6.9)

is lifted to the equivalent operator

A KIAS® = ¢ [KD = se KW+ syc—SK;W(m)_lg:;v (4.6.10)
in the space L,(RT), where = = |c|~*e™"**"8¢ and the function g* .  is defined in (4.2.10) and the
last summand in (4.6.10)

T:=syc KW, AT Ly(RY) — Ly(RT) (4.6.11)
—cy,y
18 a compact operator.
If conditions of Corollary 4.3.2 hold, the Mellin convolution operator between the Bessel potential
spaces (4.6.9) is lifted to the equivalent operator in the space L,(R™)
A* KIS =W, [K? —sc ' K]Wye  +syc Wy KW,

_1,.s—1
7)1 9500

_+T, (46.12)

s
70,

+ sy C*SK}‘,W@,C%)A

s
—7—70

=c K2 - sc KW,

s s s s
—v,=v09=c0.7 9= cvg.—v09-7,

where T : L,(RT) = L,(R™") is a compact operator.

Proof. Let conditions of Theorem 4.3.4 hold (that means Im~ > 0 and Im ¢y < 0). Then

1 . 1 [ 1 1 }
m
(t—c)?2  e—02ei

t—c—aiit—c—&—si

and we have

1
s 2A—5 __ 71: s 1 1 —s
ATKIASS = lim o= A [KL o~ KL A
. 1 N\ —S s -\ —S S —S
= gg% E [(C + 52) Ki—&-aiA—(c—i-ei)'y - (C - EZ) Ki—aiA—(c—ai)'y A’y
Cflete) T —(e—e) " oy
=l { 2ei Kereilh—(eteiy

G—s 1 (
- (C - El) s% [Kijtsz' - Kifei] Ai(cfei)'y
1

N\ —spol s s —s
- (C - 67’) chsi %2%i [Af(chsi)'y - Af(cfsi)'y] }A'y

= —scfsflKiAs_C,yA;S + ciSKzAS_C,yA;S
(€= ey — i) = (€= ey + e3i)°
2¢e1

= [K2 —sc KL Wye sy e KIAT AT

= [K? sc_lKi]V[/giC%7 + svc_sKiW(é_M),l 1

- s
¢ 9,y

+ ¢ KL lim F FAN®
e—0

Formula (4.6.10) is proved.
Formula (4.6.12) is derived from (4.6.10) as in Theorem 4.6.1. O

Remark 4.6.2. The case of operators K!', n = 3,4,. .., can be treated similarly as in Corollary 4.6.3:
with the help of perturbation the operator K" can be represented in the form

KZLSO = glE)I%) KCl,E7"')C7L,E<p7 v@ € H;(R+)7
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o0
t dr -
Koy #0) = [ oy (2)0ln) T = Y 0K ()
0 j=1
1 "L dj(e)
Her s, (t) = = 2, 4.6.13
Cl,e5--,Cm, () (t—Cl’g)"'(t_Cn,e) ]_th_cjs ( )
cje=c(l+ee™), wj€ (—m7), argeje,argcicvj #0, j=1,...,m
The points wq,...,w, € (-, 7r] are pairwise different, i.e., w; # wy for j # k (we remind that
argc # 0 because n = 3,4, ...). By equating the numerators in formula (4.6.2) we find the coefficients
d1(€), ey dn_l(f).
Since the operators K2, K‘Cl, ... encounter in applications rather rarely, we have confined ourselves

with the exact formulae only for the operators K! and K2.

4.7 Mellin convolution operators in the Bessel potential spa-
ces. Fredholm properties

Let us write the symbol of a model operator

A i=dol + Wa, + > Wa, KL Wy, (4.7.1)
j=1

acting in the Bessel potential spaces Hs (R*) — H® (R*), compiled of the identity I, of Fourier
Wags--o s Wa,,, Wy, ..., Wy, and Mellin KC17 .. K1 convolution operators.

We assume that ao,...,an,bl,...,bn e CMm (R\{O}), €1,...,¢n € Cand, if s < zl) —lors> %,
the functions a;(§), ..., a,(§) have bounded analytic extensions in the lower half-plane Im £ < 0, while
the functions b1 (€),. .., b, (&) have bounded analytic extensions in the upper half-plane Im& > 0 to
ensure the proper mapping properties of the operator A : ﬁ;(Rﬂ — H;(]R*‘). For % —1<s< }%,
such constraints are not necessary. _

Now we describe the symbol @7 (w) of the operator A. For this, we lift the operator A : H(R*) —
H;(R*) to the Ly-setting and apply equality (4.2.13) to the operator

AS AASS Ly (RY) = L, (RY), (4.7.2)

A AN =doA’ AL+ A W ALS + ZW A KL ATW,

— 1
= doWiez)s + Wy (52)- + Z Wa, K, Wisgen)s W,

_ o) W, (4.7.3)
Jj=1

(see Theorem 4.2.1, diagram (4.2.7)), if conditions of Theorem 4.3.4 hold (see (4.6.4)) and to the

operator

Ai,yAA; = dow(%)s + W (f)(ﬁ ’Y)s + Zl Wa,K W( Efw’yo) (5 C‘YO)st + T (474)
J
where T : L,(R") — L, (R™) is a compact operator, if conditions of Corollary 4.3.2 hold (see (4.6.5)).
We declare the symbol of the lifted operator (4.7.2)—(4.7.4) in the space L,(R™) as the symbol of
the operator A in the Bessel potential space. This symbol, written according formulae (4.5.7) and
(4.5.8), has the form

() 1= do (@) + Wi )+ 3WD () I @I (), (475)

j=1
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where J5(w), #5 (w), # (w), ZL5(w) and #,°  (w) are the symbols of the operators W, ¢ oy in

ao,p aj,p\*F) Lrejp 55D (2
L, (of I in Hy), of W, 0(€)(£22)¢ in L, (of Wy, in H3), of W, in L, (and in H), of K} W T in
L, (of Klj in H), of Wp, in L, (and in H?). Now it suffices to expose the symbols .7 (w ) 7/;0 p( w),

7/0 p(w) and %/Cj;(w) of the operators I, Wy, W,,(j = 1,2,...,n) and K! separately (the symbol
7/0 p(W) of Wi, (j = 1,2,...,n) is written analogously):

gify,fy,p(©©7€)7 w = (ga OO) € fla
Fiw) =4 (1= _ + 4.7.6a
(W) (77+’y) ., w=(+o00,m) €Ty, ( )
eﬂ—Siv w = (57 0) € f37
a;)(ooaf)a w= (f,OO) efly
s — Fs
V@)= alEn)(12) ", w=(+o0,m) €TF, (4.7.6b)
n+y B
e™ap(0,€), w=(£0)els,
ap(OO,E), W = (fa OO) € fla
Vi) = a(Fn),  w=(+oe,n) €Iy, (4.7.6¢)
ap(07£)7 w = (670) €F37
s —im(L—ig—1) 1-ig—1
c ey cr — —
s . . ) w:(évoo)el_‘lw w:(£a0)€F3
Koy (w) = sinm(L —if) (4.7.6d)
0, w = (4o0,m) € I's for arge # 0,
1 _
—icotw(};—if), w= (£ 00) €Ty,
Jif;(w) +1, w = (+o0,n) € I'E, (4.7.6¢)
1 _
icotw(f—if), w=(£0) €T,
p
e?™iq(00) + a(—oc0)  e*™*la(c0) — a(—o0) 1
S = . t —
ap(OO,f) 9 % CO 7T<p Zf),
0 -0 0) — -0 1
(z,8) == ale + )—;a(x )_a(x+ )2.(1(33 )cotw(f—if), x =0, 00,
¢ p
2msi 2msi 1 1_ . _
+1 e 1 sinm(s — s —if)
S = — t —_ — E e R R+
92 ,7,p(00:€) 5 5, CO W(p 26) e snn(l—i€) R, neRY,
where
0<arge < 2w, —7 <arg(cy) <0, 0<argy <,
and ¢* = |c[%e** 8¢ (—)® = |¢|?e®@8¢FT) for ¢, § € C; the sign “—” is chosen for 7 < arge < 27 and

the sign “+” is chosen for 0 < arge < 7.
Note that we got the equal symbol J,';*(w) of the operator K}:j in cases (4.7.3) and (4.7.4), since
the functions

gi%_%(g)giww(g) = (f:;ﬁ)5<§ — C’;ﬂ))s and gs_cw,y(ﬁ) = (21?)3

have equal limits at infinity
9% ey (F00) = g% (£00)g° 1y o (£00) =1 and g7, 1 (0) =g°, . (0)g%.,, ,(0) = (—¢)".

If a(—o00) = 1 and a(+o0) = €*™*, then a3, = 0, af, = 2« and the symbol aj(c0, &) acquires the
form
Sinw(% — s+ a—if)

cos 71'(% — &)

T(s+a)i

ap(00, &) =e (4.7.6f)
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Note that the Mellin convolution operator

wd P11
sinm(f — i)

T T)dT
Kol = [ B0 w0, a9 =
0 P

(see (4.3.9b)), which we encounter in applications, has a rather simple symbol in the Bessel potential
space H;(R*) (see (4.7.6¢), where ¢ = —1 = €'™):

efﬂ'si
AP (w) = { sinm(B —i€)’
03 w:(:l:oo777)€]‘—‘g:7

w = (&00) €Ty UTs,

Theorem 4.7.1. Let 1 < p < oo, s € R. The operator
. TS (et s(m+
A Hp(RT) — H(RT), (4.7.7)

defined in (4.7.1), is Fredholm if and only if its symbol 7’ (w), defined in (4.7.5) and (4.7.6a)—(4.7.6),
is elliptic.
If A is Fredholm, the index of the operator has the value

Ind A = —inddet ,Szf;.

Proof. Let ¢;,d; € C, 0 < arge; < 2m. Lifting the operator A to the space L,(RT) we get
A* AN =doAT AT+ AT W, ALC + ZW A° KL AW, (4.7.8)

s |c|—se—is argc

where ¢~ and ; are such that 0 < arg~y; < m, —7 < arg(c;y;) < 0 for j =
m+1,...,n

To derive (4.7.8), we have applied the following property of convolution operators A® W, =
W, AS and Wy, AS = Af{wa Aif/ = WAE , which are based on the analytic extension properties of
the symbols A, a (5), -5 an(§) in the lower half-plane Im ¢ < 0 and of symbols A7*,b1(€), ..., bn(§)
in the upper half-plane Im & > 0 (see (4.2.6)).

The model operators I, K! and W, lifted to the space L,(R™") acquire the form

AiIA’;S = ngww’ A’SYWakA’;S = Wakgiw ¥
CiSKlei
S KIWye

s
—v.=v09=co.v

for —m <arg(cy) <0,
+T for 0<arg(cy) <m, —m<arg(cyo)| <0,

ey,

1A—s _
A KA = { (4.7.9)
where T is a compact operator. Here, as above, 0 < arge < 27, 0 < argy < 7, 0 < argyy < 7w and

either —m < arg(cy) < 0 or, if —7 < arg(cy) < 0, then —7 < arg(c~yg)| < 0. Here ¢=% = |¢|Se~tsar8¢,
Therefore, the operator A* AA_* in (4.7.8) is rewritten as follows:

A AN = dgWyr A Waggs  + 3¢ W, KE Wee Wy,

= —civ.Y
+ Z W, KL Wye ge - Wi, + T Ly(RY) = Ly(RY),  (4.7.10)
j=m+1

where T is a compact operator and we ignore it when writing the symbol of A.
We declare the symbol of the lifted operator A*  AAZ* (see (4.7.10)) in the Lebesgue space L, (R™)

as the symbol of the initial operator A : HJ(R*) — H3(R*) in (4.7.1).
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The function g, € C(R) is continuous on R, but has different limits at infinity

92, (=) =1, g2, (400)= ™ g°, (0) =€, (4.7.11a)

while the functions ¢°, _. , g%, .,9% ., - € C(R) are continuous on R including infinity

0 e (00) = g7, (00) = g, (00) = 1,

9 (0)g% oy (0) = (__—770)(_?0) = (—¢)®, (4.7.11b)

92 cnn(0) = (=c)* if 0 <arge < 2.

In the Lebesgue space L,(R"), the symbols of the first two operators in (4.7.10) are written
according to formulae (4.5.7)—(4.5.8) by taking into account equalities (4.7.11a) and (4.7.11a). The
symbols of these operators have, respectively, forms (4.7.6a) and (4.7.6c¢).

The symbols of operators Wy, ,..., W, and Wy,,..., W), are written with the help of formulae
(4.5.7)—(4.5.8) and have form (4.7.6b).

The lifted Mellin convolution operators

n

ASKE AT Ly(RT) — Ly(RY)

are of mixed type and comprise both the Mellin convolution operators Kij = zmgq @) where the
symbol Jig’p(f) = ///;Ji/cj (&) is defined in (4.3.9b) and (4.3.9¢c), and the Fourier convolution op-
erators ngcj o and VpVgi%,mgicj o The symbol of the operators AiKijA;s from (4.7) in the
Lebesgue space ]Lp(Ri) is found according formulae (4.5.7)—(4.5.8), has form (4.7.6d) and is declared
the symbol of Kij : H3(RT) — HP(RT). The symbols of Fourier convolution factors Wys and

—Cj Y0
Wes 09 s v which contribute the symbol of K}jj = imgi,clj _are written again according formulae
(4.5.7)—(4.5.8) by taking into account equalities (4.7.11a) and (4.7.11b).
Theorem 4.6.2 applied to the lifted operator gives the result formulated in Theorem 4.7.1. O
Corollary 4.7.1. Let 1 < p < 0o, s € R. The operator
TS (R s (+
A HP(R™T) — H(RT),

defined in (4.5.15), is locally invertible at 0 € R if and only if its symbol <77 (w), defined in (4.7.5)
and (4.7.6a)—(4.7.6f), is elliptic on T'y, i.e.,

wiélrfl | det o7 (w)| = ElIelﬂg | det @77 (&, 00)| > 0.

Proof. For the definition of the Sobolev—Slobodeckij (Besov) spaces Wy (Q2) = B, (€2), WZ(Q) =

@;’p(Q) for an arbitrary domain © C R”, including the half-axes R™, we refer to the monograph
[133]. O

Corollary 4.7.2. Let 1 < p < oo, s € R. If the operator A : ﬁ;(R“‘) — H2(RY), defined in
(4.5.15), is Fredholm (is invertible) for all a € (sg,$1) and p € (po,p1), where —oo < sp < §1 < 00,
1 < py < p1 < oo, then

A WE(RY) = WE(RY), s € (s0,51), pE (po,p1), (4.7.12)
is Fredholm (is invertible, respectively) and has the equal index
Ind A = —ind det @] (4.7.13)

in the Sobolev-Slobodeckij (Besov) spaces W = B»

p,p°
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Proof. First of all recall that the Sobolev-Slobodeckij (Besov) spaces Wy = B?  emerge as the result
of interpolation with the real interpolation method between the Bessel potential spaces
(Hzg (), Hy (Q)) =W (), s:=s0(1—0)+s10,
1

=~ 1
=W:;(Q), p=—(1-0)+—0, 0<0<1.
oy = W), pi= = (1-0)+

0,p
- - 4.7.14
(fizo (), 3t () ()

IfA: ]1:]1;(*) — H?(R") is Fredholm (or is invertible) for all s € (so,s1) and p € (po,p1), it has a
regularizer R (has the inverse A~! = R, respectively), which is bounded in the setting

. + W (R+
R: W (RT) — Wi (RT),
due to the interpolation (4.7.14) and
RA=I+T,, AR=1+T,,

where T and T are compact in ]ﬁl; (R*) and in HZ(R*), respectively (T1 = To = 0 if A is invertible).
Due to the Krasnoselskij interpolation theorem (see [133]), Ty and T5 are compact in W;(R‘*‘) and
in W#(R"), respectively, for all s € (so,s1) and p € (po, p1) and, therefore, A in (4.7.12) is Fredholm
(is invertible, respectively).
The index formula (4.7.13) follows from the embedding properties of the Sobolev—Slobodeckij and
the Bessel potential spaces by standard well-known arguments. O



Chapter 5

BVPs for the Laplace—Beltrami
equations on surfaces with
Lipschitz boundary

The objective of the present chapter is to investigate the general Mixed type boundary value problems
for the Laplace—Beltrami equation on a surface with the Lipschitz boundary % in a non-classical
setting, when solutions are sought in the Bessel potential spaces H (%), % <s<1l+4 % , 1 <p<oo.
Fredholm criteria and the unique solvability criteria are found. By the localization the problem is
reduced to the investigation of Model Dirichlet, Neumann and mixed boundary value problems for
the Laplace equation in a planar angular domain Q, C R? of magnitude . The model mixed BVP
is investigated in earlier paper [69] and here we study Model Dirichlet and Neumann boundary value
problems in a non-classical setting. The problems are investigated by the potential method and by
reducing to locally equivalent 2 x 2 systems of Mellin convolution equations with meromorphic kernels
on the semi-infinite axes Rt in the Bessel potential spaces. Such equations were studied recently by
R. Duduchava in [59] and V. Didenko and R. Duduchava in [37].

5.1 Introduction and formulation of the problems

Many problems in mathematical physics, e.g., cracks in elastic media, electromagnetic scattering
by surfaces, etc., are reformulated in the form of a boundary value problem for an elliptic partial
differential equation in domains and surfaces with angular points at the boundary. In the recent
paper [15], investigation of such BVPs with the help of localization are reduced to the investigation
of a family of model problems in plane with finite number of angular points on the boundary of
magnitude «; € (0,27), j = 1,...,m, which, in its turn, are reduced to the investigation of the
associated model BVPs in angles with vertex at 0 and the same magnitude.

Consider a hypersurface ¥ C R?® with the Lipschitz boundary I' := 9%, which is a smooth
subsurface of a closed hypersurface .# in the Euclidean space R3. Let .#t denote the angular points
(the knots) of I'. Let v := (v, 19,13) " be the normal vector field on the surface €.

On ¥ we consider the mixed BVP

ut(s) = g(s), on I'p, (5.1.1)

where A is the Laplace—Beltrami operator

129
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Figure 5.1.

and 9; := 0; — v;0,, j = 1,2,3, are Glinter’s tangent derivatives on the surface. Note that for the
flat case ¢ C R? Giinter’s tangent derivatives coincide with the coordinate derivatives 2; := 9; and
the Laplace-Beltrami operator with the Laplace operator Ay = A = 97 + 93 + 03.

vr = (vra,vpe, l/f"g)T is the normal vector field to the boundary I' tangent to . and 9, =
vr1 21 + vr 2 P2 + vr 3%5 is the normal derivative.

Problem (5.1.1) is considered in the non-classical setting

~ g1 611 1
weH (%), feHA6), geH, "(I'p), heH, = *(I'y), I=I'pUly, 1<p<oo, s> (512)

Note that the upper constraint in % < 5 <1+ 1 is necessary to ensure an invariant definition of
the Bessel potential and Besov spaces on non-smooth boundary I', while the lower constraint ensures
the existence of the Dirichlet trace u™ and, together with the Green formulae, also the existence of
the Neumann trace (9, u)" of a solution on the boundary. These constraints cannot be relaxed.

For the definitions of the Bessel potential H (%), ]IT]I;(Y), H (%), ]ﬁI;(]R*) and Sobolev-Slobodeckii

W;(Rﬂ, etc., spaces for r € R, 1 < p < oo, we refer to the classical source [133] and also the
papers [54,68,69].

Here we define only the space ﬁ; 0(%) mentioned above. Let ﬁf 1(€) be a subspace of H1(%)
consisting of functions supported just on the boundary I, i.e.:

A (€) = {f cHNE): (f,9)=0 forall pe cg(%)}. (5.1.3)

]ﬁlg (%) is a subspace of H™(%) orthogonal to f[-v]lli L(€). H"Y(%) is decomposed into the direct sum
of the subspaces: B B B
H (%) =Hy ' (¢) @ Hy (7). (5.1.4)

The space Hp (%) is non-empty (see [89, § 5.1] and excluding it from H~(%) it is necessary to make
BVPs uniquely solvable (cf. [89] and the next Theorem 5.1.1).
Let

= —r m— 1

H, (%) =H,"(¢) NH, W), r> . (5.1.5)
Theorem 5.1.1 (see Theorem 5.2.1 below). The BVP (5.1.1) has a unique solution in the classical
weak setting

uweHY(%), feH; (%), geH2(I), heH 3(I). (5.1.6)

A natural question arises: why we investigate the BVP (5.1.1) in the non-classical setting, when
in the classical setting the solvability result is easily obtainable. Besides that this is an interesting
mathematical problem in many cases, for example, in approximation methods, it is important to know
a maximal smoothness of a solution. From the solvability results in non-classical setting it is possible
to conclude smoothness property of a solution.

To formulate the appropriate main theorems of the present chapter we need the following definition.
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Definition 5.1.1. The BVP (5.1.1) in setting (5.1.2) (the BVP (5.7.1), the BVP (5.8.1)) is Fredholm
if the homogeneous problem f = g = 0 (f = h = 0, respectively) has a finite number of solutions
and the BVP has a solution if and only if the data f, g, h satisfy a finite number of orthogonality
conditions.

Let .1 denote the set of knots of the boundary I' := 0%, where the smoothness of the curve I'
is violated, the angle between the left and right tangent half-lines at ¢; € .#r (inside the surface %)
is aj # 0,7,2m or, c; is a smoothness point of I', but Dirichlet and Neumann boundary conditions
collide there. The set .41 consists of three subsets: .#r = .#p U .#n U .#pn; the first subset 4 p
consists of all knots ¢; where the Dirichlet conditions collide and «; # m; .#x consists of all knots
¢; where Neumenn conditions collide and «; # m; .#py consists of all knots ¢; where Dirichlet and
Neumenn conditions collide and here «; can be smoothness point 0 < a; < 2.

Next, we formulate the main theorem of the present chapter which was proved in [61].

Theorem 5.1.2. The BVP on a surface (5.1.1) in the non-classical setting (5.1.2) is Fredholm if and
only if the following holds:

(i) If at ¢c; € Mp collide the Dirichlet conditions, then either « =7 or o # m and

. ) 1
e2m(5=3) gin2 m(s —i€) + e ™ sin®(a; — ) (f —s—1- iﬁ) #0 forall £ eR. (5.1.7)
p

(i) If at ¢; € Mn collide the Neumann conditions, then either « =7 or a # m and

) , 1
2757 3) gip? m(s —i&) + e ™ sin®(a; — ) (f —5— zf) #0 forall £ €R. (5.1.8)
p

(iii) If at ¢; € AN collide the Dirichlet and Neumann conditions, then either oo =m or o # 7 and

2™ (s=1/P) gin? (s —i€) —cos?[n /p+as—i(t—a)E] A0 forall € €R. forall £ €R. (5.1.9)

If conditions (5.1.7), (5.1.8) and (5.1.9) hold (i.e., the BVP (5.1.1), (5.1.2) is Fredholm), the subset
(%,oo) x (1,00) of the Euclidean plane R?, where the pairs (s,p) range, decomposes into an infinite
union o UFH1 U- - of non-intersecting connected subsets of reqular pairs, for which the BVP (5.1.1)
is Fredholm in setting (5.1.2).

If the connected subset %oy contains the point (1,2) (i.e., s =1, p = 2), then the BVP (5.1.1) is

uniquely solvable in setting (5.1.2) for all pairs (s,p) € Zo.

The formulated Theorem 5.1.2 is proved at the end of Section 5.8. Theorem is proved based
on a local principle, which reduces the proof to the investigation of the model problems, Dirichlet,
Neumann and Mixed BVPs on a model domain, an angle of magnitude « (see Section 5.3). We will
investigate model Dirichlet, Neumann and Mixed BVPs in Sections 5.6-5.8.

We can formulate more transparent criteria of solvability of BVP (5.1.1), where % is a hypersurface
with a smooth boundary I' = 0% and, consequently, the set of knots .Z consists of only points where
the Dirichlet and Neumann boundary conditions collide .41 = #py.

Corollary 5.1.1 (cf. [68]). Let € be a hypersurface with a smooth boundary Mr = Mpn and
l<p<oo,1/p<s<1l/p+1. The BVP (5.1.1) is Fredholm in the non-classical setting (see (5.1.6))
if and only if

COS2 T™s —

sin27r(5 - }%) ’ £0. (5.1.10)

In other words, the isotherm curves on Fig. 5.2 does not cross the point (s — k,1/p), where k =0,1,...
is an integer such that % <s—k< %

In particular, the BVP (5.1.1) has a unique solution u in the non-classical setting (5.1.6) if the
point (s,1/p) belongs to the open curved quadrangle ABCD on Fig. 5.2.
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Figure 5.2. The symbol (5.1.10) plot.

Investigations of the boundary integral equations run into difficulties due to the absence of results
on Mellin convolution equations in the Bessel potential space setting ¢ € H5(R*), f € HS(RT). In
the recent paper [19], L. Castro and D. Kapanadze reduce BVPs (5.6.1) and (5.7.1) in the H'™¢(£,)
space settings to equivalent Wiener-Hopf + Hankel operators, by manipulating with the even and
odd extensions and the reflection operators. The obtained equations were investigated in Lg(R™) and
in the special potential space defined by Mellin transforms.

In [97], P. A. Krutitskii investigated boundary value problems for the Helmholtz equation in a
planar 2D domain 2 outer to a finite number of domains and cuts, with Dirichlet, Neumann, mixed
and impedance conditions on the boundary and faces of cuts. Unique solvability was proved in classical
strong setting v € C1(Q)NC2%(Q) by reducing the problems to boundary Fredholm integral equations.
Singularities at the tips of cuts were described as well.

In the present chapter, we apply the potential method and reduce investigation of BVPs (5.6.1)
and (5.7.1) to the investigation of simpler equivalent systems.

The chapter is organized as follows. In Section 5.2, we apply Lax—Milgram Lemma (see Lemma
1.1.4) and prove the solvability of Dirichlet, Neumann and Mixed boundary value problems for the the
Laplace—Beltrami equation on a hypersurface € with the Lipschitz boundary I' := 0% in the classical
W1(%) setting. In Section 5.3, we expose quasi localisation method for the boundary value problem
for a second order elliptic partial differential equation on a hypersurface with the Lipschitz bounbdary
(cf. (5.3.1)) and prove Theorem 5.3.1 on Quasi Localization. In Section 5.4, we recall auxiliary
materials on potential operators and representation of solutions to BVPs in model domain, then on
Mellin convolution operators in the Bessel potential spaces (see Section 5.5). We prove criteria of
Fredholm property and unique solvability in non-classical setting of model Dirichlet problem (5.6.1)
(Section 5.6), of model Neumann BVP (5.7.1) (Section 5.7) and of the model Mixed BVP (5.8.1)
(Section 5.8). At the end of Section 5.8, we prove the main theorem of the section, Theorem 5.1.2,
based on Quasi Localization (cf. Section 5.3) and investigation of model BVPs in Sections 5.6-5.8.

5.2 Solvability of BVPs for the anisotropic Laplace-Beltrami
equation on a hypersurface in the classical setting

The exposition in the present section follows the paper [70].
We will use the notation from Section 5.1 and consider, along with the Mixed BVP (slightly more
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general than in (5.1.1)),
dive o V 2u(t) = f(t), tev,
ut(s) = g(s), on I'p, (5.2.1)
(vr(s), (o Vgu)*(s)) = h(s), on T,

the particular cases — the Dirichlet BVP (when I'y is the empty set I'y = 0)

diveo/ Veu(t) = f(t), te %,

ut(s) = g(s), on T (5.2.2)
and the Neumann BVP (when I'p is the empty set I'p = ()
diveos Veu(t) = f(t), te ¥,
e Veu(t) = f(t) (5.2.3)
(vr(s), (o Vegu)*(s) = h(s), on T,

Here divg.e? V¢ is the “anisotropic” Laplace-Beltrami operator and &7 is a positive definite 3 x 3
matrix function

(Ao, p)p=>C>0 forall |plLa(cC)| =1 (5.2.4)

and (vp(s), o (Vgu)t(s)) denotes the “Neumann” operator, the scalar product of 3-vectors vr(s)
and o (Vgu) in R®. For o7 (t) = 1, the operator diveye” V¢ becomes the Laplace—Beltrami operator
divgVy = Ag and the “Neumann” operator becomes the normal derivative (vr(s), (Vgu)t(s)) =
(vr, Veu)t(s).

The BVPs (5.2.1)—(5.2.3) are investigated in the following classical weak settings in 3-vector spaces

weH (%), feH; %), geH*(p), heH *(Ty), I'=CpUly (5.2.5)
for the mixed BVP (also cf. (5.1.2)), and in the weak settings
feH Y(€), geHY* ), heH Y*T) (5.2.6)

for the Dirichlet and Neumann BVPs.
The main objective of the present section is to prove the following

Theorem 5.2.1. Let € C R? be a hypersurface with the Lipschitz boundary T’ := 0% .

The Mized BVP (5.2.1) in the classical setting (5.2.5) has a unique solution.

The Dirichlet BVP (5.2.2) in the classical setting (5.2.6) has a unique solution.

For the solvability of the Neumann problem (5.2.3) in the classical setting (5.2.5) the following
necessary and sufficient compatibility condition has to hold:

(f’ 1)‘5 - (h7 1)F =0. (527)

Note that if f and h are regular integrable functions, the compatibility condition (5.2.7) acquires
the form

/f(y) do — j{h(s)ds 0. (5.2.8)
€ Iy

The formulated theorem will be proved at the end of the present section. Prior to this, we will
expose auxiliary material for this proof.

Remark 5.2.1. Theorem 5.2.1 was proved in [56] for Dirichlet and Neumann BVPs with the help of
potential method and in [70] for Mixed, Dirichlet and Neumann BVPs using Lax-Milgram Lemma in
case of smooth boundary T.

Moreover, for the Dirichlet (5.2.2) and Neumann (5.2.3) BVPs and non-classical setting

~ _1 -1 1
weH: (%), feHS %), geH, *(I), heH, = (I, 1<p<oo, 5> (5.2.9)
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in case of a hypersurface with the smooth boundary, the unique solvability holds as well (see [56]).
For the mixed BVP (5.2.3) in the non-classical setting

1

~ s—1 s—1-1 1
weH (%), fEHSA¥), geH, *(I'p), heH, *(I'y), I'=TpUl'y, 1<p<oo, s>5, (5.2.10)

even for a hypersurface with the smooth boundary and for Dirichlet (5.2.2) and Neumann (5.2.3) BVPs
for a hypersurface with the Lipshitz boundary and the non-classical setting (5.2.9), the solvability
conditions change dramatically (see Theorem 5.1.2 above and Sections 5.6-5.8 below).

Mixed BVPs for the Laplace equation in domains were investigated by Lax-Milgram Lemma by
many authors (see, e.g., the recent lecture notes online [103]).

Let .# be a non-trivial, mes.# # (), smooth closed or open hypersurface, s € R and 1 < p < co.
If A is definitely closed, we use ., while in case .# is definitely open, we use % .
By X7 () we denote one of the spaces: Hj(.#), Sobolev-Slobodecki Wy (.#) (if .# is closed or

open) and by X;(%) denote one of the spaces: ]ﬁlf,(%) and Wg(%) Consider the space
Xou( ) ={peX5(A) : (p,1) =0}. (5.2.11)
It is obvious that X7 , (.#) does not contain constants: if ¢ = const € X7 ,, (.#), then
0= (co,1) = co(1,1) = comes.#
and ¢y = 0. Moreover, X} (.#) decomposes into the direct sum
Xo( M) =X, (M) + {const} (5.2.12)

and the dual (adjoint) space is
(Xp () =X 20 (M), p= ——. (5.2.13)

Indeed, decomposition (5.2.12) follows from the representation

1
= aver) X5 y aver +— 1
o =0+ o € X} (M), ¢ mes%(@ )

of arbitrary function ¢ € X;(/// )), because the average of the difference of a function and its average

is zero: (©g)aver = (¢ — Paver) gyer = 0-
Description (5.2.13) of the dual space follows from the fact that the dual space to X5(.#) is

X,°(A) (see [133]) and, therefore, due to the decomposition (5.2.12) and Hahn-Banach theorem,
the dual space to X7 ,,(.#) should be embedded into X ,°(.#). The only functional from X *(.#)
that vanishes on the entire space X , (.#) is constant 1 € X °(.#) (see definition (5.2.11)). After

detaching this functional the remainder coincides, due to (5.2.12), with the space X, (.#), which is
the dual to XJ , ().

Lemma 5.2.1. The equivalent norm in the space W', (') is defined as follows:

lelwgscaily = Y 7l (5.2.14)

1<]al<m
In particular, in the space W;,#(///) the equivalent norm is
|| Wy 4 ()] = ||V |Lp ()] (5.2.15)

Proof. By WZ;; (') denote the same subspace W', (#) of Wi (#'), but equipped with the standard
norm of the subspace

oWl (|| = el Wy ()| = D | 2°e[Ly(a)]. (5.2.16)

0 |e|<m
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Then the embedding W;";Z(,///) C Wi, () is continuous

el W5 (g < el Wy ()] (5.2.17)

On the other hand, this embedding is bijective due to representations (5.2.12). Then the Banach
inverse mapping theorem states that these norms are equivalent: along with inequality (5.2.17) also
the inverse inequality

e[ Wi ()l < Cllel Wiy ()]

holds with some constant C, which is independent of a function (. O

Let I'y C T" be a non-trivial subset of the boundary I' = 0% of the surface ¥ and X;(Fo,%),
s> 1/p, 1 < p < oo, denote the subspace of Xz(‘f) which consists of functions with vanishing trace
on I'y.

Lemma 5.2.2. Along with the standard norm of subspace of W;' (%) (m = 1,2,...), the equivalent
norm in the space W?(Fo,%) is defined as follows:

| Wi To, )y = Y. [[2°¢[Lp(%)]. (5.2.18)

1<]al<m
In particular, in the space W;,(FO, %) the equivalent norm is
[ |WL (Lo, €)||, := || Voro|Lp())|. (5.2.19)

Proof. By WZL’O(FO,%) denote the same subspace W?(Fo,%) of Wi (%), but equipped with the
standard norm of the subspace

le[omo o) = ey @) = 3 |o7elL@) (5:2.20

o<|al<m
Then the embedding W;’*O(Fo, C) C W;”(FO, %) is continuous

[l (o, D, < ol Wy Lo, %)), (5.221)
On the other hand, this embedding is bijective due to the definition. Then the Banach inverse

mapping theorem states that these norms are equivalent: along with inequality (5.2.21) also the
inverse inequality

lolW5(To, )]l < Cllio| Wy (Do, %)

holds with some constant C', which is independent of a function . O

Theorem 5.2.2. Let .7 be L-smooth £ =1,2,..., 1 <p < oo, |s| <l and &/ (t) be a positive definite
3 x 3 matriz function. Let X3() be the same vector-space as above.

Let the matriz-function 7 € [C*~1(R™)]3*3 have one of the following properties:

i. J€ has a non-negative definite real part (Re ¢, p), > 0 and messupp Re 5 # 0;

7. messupp Im S # 0 and the complex part Im 5 is either positive definite or negative definite:
(elm Ao, )y > C >0 forall |¢|L(€)|| =1, (5.2.22)

where e =1 ore = —1.
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Then the perturbed operator
dive @ Vg — AT : X3TH(F) - X7HS) (5.2.23)

is invertible.
Moreover, the operator dive.o? V o is also invertible between the spaces with detached constants

(see (5.2.11))
dived Vo : XOLU(S) = X0 J(S) (5.2.24)

and, therefore, div.y o/ V & has the fundamental solution in setting (5.2.24).

The invertibility is also interpreted as the existence of the fundamental solution to the operators
dived' Vo — I and dived V o in the appropriate spaces.

In particular, the perturbed Laplace—Beltrami operator Ay — FI (the particular case o (t) = 1)
is invertible in setting (5.2.23) (has the fundamental solution), while the Laplace—Beltrami operator
A & is invertible in setting (5.2.24) (has the fundamental solution).

Proof. First of all note that the operators in (5.2.22) and (5.2.23) are bounded. For the operator
in (5.2.22) this is trivial, while for the operator in (5.2.23) we need to check that the image of the
operator belongs to the subspace X57!(.7), i.e., is orthogonal to the identity 1 (see (5.2.11)). Indeed,
by applying formula (1.3.37) we get

(dived Vop, 1), =(#Vep,Val), =0.
This operator in the setting
dived Vo @ X5 4(F) = X4 (7) (5.2.25)
is coercive:
—(dived Vg, 0) = (4 V00,V 29) 5 = CllolXgu (L)% (5.2.26)

Then, due to Lemma 1.1.5, this operator is invertible in setting (5.2.25).

Moreover, this operator div.ee/ Vo is elliptic and even has negative definite symbol fopa/€,
& € R™ (ellipticity follows from the invertibility in setting (5.2.26), as well). As an elliptic operator
on the closed hypersurface the operator in (5.2.24) is Fredholm for all s € R and 1 < p < oo (it has
a parametrix if . is infinitely smooth, see [88,126,130] and the proof of Theorem 1.7.1 for a similar
arguments). Since all operators in the homotopy

By=(1-\Ndived Vo —AA*(2,D), 0< A<,
where
Ag(2,D) : XoLH(F) = X5 (S)

is the Bessel potential operator with positive definite symbol and arranges the isometrical isomorphism
of the spaces (see (1.7.17)), have positive definite symbol, they are Fredholm operators in the setting

B, : X’U() = X0 )(7)
forall 0 <K A< 1,1 <p<oo, |s| <L Then
Inddivy o/ Vs = Ind By = Ind By = Ind B; = Ind A\2(2, D) = 0

and Theorem 1.1.1 can be applied, which states that the operator in (5.2.24) is invertible for all
1<p<oo,|s <L

Since the operator in (5.2.23) is the perturbation by lower order operator 2 I (i.e., by a compact
operator) of the invertible operator in (5.2.23), the operator in (5.2.23) is Fredholm and has trivial
index Ind [divy e/ V.o — 5] = 0. Then to prove that the operator in (5.2.23) is invertible we just
need to check that it has trivial kernel, i.e., if (divyo/ V.o — 5 )¢ = 0, then ¢ = 0. Due to equality
(1.3.37),

(= ([dived Vo =)0, 0) o
= (IVr9,Vrp) oy + Relp,0) o +i(lmHp,0) 5, Vo€ Wy(S). (5.2.27)
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If ¢ is a solution to the homogeneous equation (div.y o/ V.o — ) = 0, equality (5.2.24) takes the
form

Now let Re #2(t) > 0 for all t € . and messupp Re 52 # 0 (case (i)). Then from the first equality
in (5.2.27) it follows

ClIVeoll < (ZVop,Vop), =0, (ReHp,p), =0

(the inequality is due to the positive definiteness of 7). From the first inequality we get V.o = 0
and, consequently, ¢ = C' = const (this is easy to ascertain by analysing the definition of Giinter’s
derivatives; see, e.g., [56]). By inserting this in the second equality in (5.2.27) we get

0= ReHp, @), = C/%ﬂ(t)da,
2%

and the conclusion ¢(t) = C' = 0 is immediate, because messupp Re 5 # 0.
In the case (ii), from the second equality in (5.2.28) we have

Clell < e(Im A ¢, V) 5 =0
(the inequality is due to the positive definiteness of eIm 5#) and, again, ¢ = 0. O

Corollary 5.2.1 (cf. [56]). For the operator diveo/ Ve on the open hypersurface € with the boundary
0% =T the following Green formulae are valid

(dive Vo, ) = (v, (@ V) t), v ) — (@ Vep, Ve,
(dive ' Vegp, 1)y — (0, dive o Verh), (5.2.29)
= (<VF7 ('Q{ V%W)Jr% ¢+)F - (90+7 <VF7 (ﬂ V%ql})+>)1"7

where (¢, 1) denotes the scalar product of functions. The normal boundary derivative (vr, (V) ™)
we have encountered already in the mized BVP (5.2.1).

Note that a function ¢ € W# (%) (and ¢ € Hj (%)) has the trace p* € W, ”(T') on the boundary,
provided 1 < p < oo and s > % (see [133] for details). Therefore, if we look for a solution to Dirichlet

BVP (5.2.2) in the space W'(%), the trace ut on I'p exists and belongs to the space HY/?(T'p).

Concerning the existence of the Neumann trace (vr, & Vgu)™t in (5.2.1) and (5.2.3) for a solution
u € WH(%), it is not guaranteed by the general trace theorem. But in this case, the first Green formula
(5.2.29) ensures the existence of the Neumann trace. Indeed, by setting ¢ = u and inserting the data
(divg AVe)u(t) = f(t) from (5.2.1) into the first Green formula (5.2.29) we obtain

((vr, (& Veu)t), v 1) — (o Veu, Vep), = (dive (o Veu),¥), = (f,¢)4

and, finally, we get

((vr, (7 Veu) '), 7). = (7 Veu, Vo) o + (1) (5.2.30)

for arbitrary 1 € W(%). Since 1)+ € H'?(T'), the scalar product (& Veu, V1)), in the right-hand
side of equality (5.2.30) is correctly defined and defines correct duality in the left-hand side of the
equality. Since ¢t € H'Y?(T) is arbitrary, by the duality argument this gives that (v, (& Vgu)t)
should be in the dual space, i.e., in H='/2(T).

To prove the above formulated Theorem 5.2.1, we need more properties of trace operator (called
retraction) and their inverses, called co-retractions (see [133, § 2.7]).

To keep the exposition simpler we recall a very particular case of Lemma 4.8 from [53], which we
apply in the present investigation.
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A differential operator
B(t,7)= Y aa()2% te¢,

lal<m

on a hypersurface ¢ C R? with the Lipschitz boundary I' = 9% is called normal if its symbol (the
characteristic polynomial)

B8 = D aa(t)(—i&)*, te¥, (eR’

loe|<m
does not vanish on normal vactor field on the boundary infser | det (s, v(s))| > 0.

Lemma 5.2.3 (see Lemma 4.8 in [53]). Let s € N, 1 < p < oo, and € be a hypersurface with the
Lipschitz boundary T = 0€. Further, let s > 0, B(D) be a normal differential operator of the first
order defined in the vicinity of the boundary T' and A(D) be a normal differential operator of the
second order defined on the surface €. Then there exists a continuous linear operator

S s— s+%
Z W) @W:™HT) — H, * (%) (5.2.31)
such that )
(2D)* = gy, (B(D)ZRV)* =1, AD)BDcH, 7(%) (5.2.32)

for arbitrary pair of functions ® = (pg, 1), where o € Wi (T) and o1 € W5—1(T).

Proof of Theorem 5.2.1. We commence by the reduction of the BVP (5.2.1) to an equivalent one with
the homogeneous Dirichlet condition. For this, we extend the boundary data g € W'/ 2('p) up to
some function § € W1/ 2(T') on the entire boundary I' and apply Lemma 5.2.3: there exists a function
G € W% such that Gt (t) = g(t) for t € I'p (actually GT = g almost everywhere on the boundary)

and ding(JZ{ V%&G) € W_l(?).

For a new unknown function v := u — G we have the following equivalent reformulation of the
BVP (5.2.1):
divee (' Vev)(t) = folt), te?,
vT(s) =0, on I'p, (5.2.33)

(vr(s), (& V)T (s)) = ho(s), on Iy,
where
for=f+divg(@VeG) € WHE), ho:=h+ (vr, (o VeG)T) € W VT,

— (5.2.34)
vt e WH(T'p, €)WY2(Ty).

To justify the last inclusion v € W'/2(I'y) note that, due to our construction, the trace of a solution
vanishes on I'p: vt |p,= 0.

By inserting the data from the reformulated boundary value problem (5.2.33) into the first Green
identity (5.2.29), where p = 1 = v, we get

(JZ{ V%U,V%U)% = (<VF7 (JZ{ V%U)+>7v+)FD + (<VF7 (”‘Z{ v%v)+>7v+)[‘N - (le(g(JZ{ v(gv)yv)cg
= (ho,v "), — (fo.v)y. vEWY(Dp,%). (5.2.35)

In the left-hand side of equality (5.2.35) we have a symmetric bilinear form, which is positive definite
(& Vigv, Vigv) = C|Vig|® = [v[W! (Ip, €)|> Vo e W(I'p,%),

because &7 (s) is strictly positive definite matrix and we have applied Lemma 5.2.2 on equivalent norms
in the space W(I'p, %).
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(ho,v*)p, and (fo,v) in equality (5.2.35) are correctly defined continuous functionals, because
ho € W-V2(I), fo € W’l(%), while their counterparts in the functional belong to the dual spaces
vt € WY2(I'p) and v € W{(T'y, %) C WY(%).

Application of the Lax-Milgram Lemma 1.1.4 accomplishes the proof of the unique solvability of
the mixed BVP (5.2.1) in setting (5.2.5).

Now we prove the unique solvability of the Dirichlet BVP (5.2.2) in setting (5.2.6). We commence,
as above, with an equivalent reformulation: due to Lemma 5.2.3, we can pick up a function G € W!(%)
such that G* = g and diveg (o Vo G) € W-1(%).

For a new unknown function v := v — G we have the following equivalent reformulation of the
BVP (5.2.2):

{ divg (AVe)(t) = fo(t), teE, (5.2.36)

vT(s) =0, on T,

where _ —
fo = [ +dive(/ VeG) € WH(E), veW!(?).

By inserting the data from the reformulated boundary value problem (5.2.36) into the first Green
identity (5.2.29), where ¢ = ¢ = v, we get

(AVgv,Vgv), = ((vr, (A chv)+>,v+)r — (divg(AVgv),v)e = —(fo,v)e, v E Wl(%ﬂ)

What we get is similar to identity (5.2.35) which we derived in the foregoing case: the positive definite
form in the left-hand side and a single correctly defined functional in the right-hand side. Again,
applying the Lax-Milgram Lemma, the unique solvability of the Dirichlet BVP (5.2.2) can be proved
in setting (5.2.6).

In conclusion, we prove the unique solvability of the Dirichlet BVP (5.2.3) in setting (5.2.6). Let us
insert the data from the boundary value problem (5.2.3) into the first Green identity (5.2.29), where
=1 =u. We get

(#Veu,Veu)y = ((vr, & Veu) T, u)p — (dived Vi )u,u)y,
= (h,u)p — (fiu)y, u€ Wy (). (5.2.37)

We have to look for a solution in the subspace W%#((f) (see (5.2.11)) because the constants are trivial
solutions of the homogeneous BVP (5.2.1) with f = h = 0. Since identity (5.2.37) has to be valid for
constant u(t) = 1 and the left-hand side vanishes for such solution, we get the necessary condition of
solvability (h, 1) — (f,1), = 0, which is the compatibility condition (5.2.7).
In the left-hand side of equality (5.2.37) we have a symmetric bilinear form, which is positive
definite
(Vigv, Vigv)yg > C|[Vigu]2 = o] W3 4(6)[* Vv € W}, (%),

because &7 (s) is strictly positive definite matrix and we have applied Lemma 5.2.1 on equivalent norms
in the space W2, #(%).

Further, both functionals in the right-hand side of (5.2.37) are bounded on the subspace W3 ,, (%).
Application of the Lax-Milgram Lemma 1.1.4 accomplishes the proof of the unique solvability of the
Neumann BVP (5.2.3) in setting (5.2.6), provided the compatibility condition (5.2.6) holds. O

5.3 Quasi localization of boundary value problems

The exposition of Quasi Localization of BVPs follows from the paper [15]. Similar localization is also
applied in [17].

In recent years, there is a substantial interest to investigate the boundary value problems in domains
with Lipschitz boundary. Let 4 C R3 be a 2-dimensional hypersurface with the Lipschitz boundary
' = 9%; € (cf. Fig. 5.1 on page 130). The boundary I" := 9% is decomposed into two closed parts
I' =T Uy, each consisting of finite number of smooth arcs, having in common only endpoints.
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T on € which solves the mixed boundary

Look for a vector-function u(z) = (ui(x),us(x), usz(x))
value problem

A D= f in €,
[Bi(Z)u]t =g; on Tu, (5.3.1)
[B2(2)u]" =gz on I

for a second order elliptic operator A(Z) with constant scalar or 3 x 3 matrix coefficients in the
domains and 0 or 1-st order normal boundary operators By (Z) of order 0 < r, < 1, k = 1,2, with
constant scalar or 3 x 3 matrix coefficients:

3
A2)= > aa?”, Bi(2)=bi+> b7;, k=12 (5.3.2)

o] <2 J=1

Here 2 = (91, %5, %3) " denotes Giinter’s gradient.

We denote by tg,t1,...,t, # wo the knots on the boundary I" where either I' has an angle (of
magnitude a; # 7, measured from the inner domain), or I' is smooth at t; (i.e., aj = 7), but ¢; is
an endpoint of both I'y and I'y (at such points two different boundary conditions collide, see (5.3.1)).
Let tg,t1,...,tn, be the knots where the different boundary conditions B;(2) and B3(%2) do not
collide, while at the rest knots tp,+1, - . ., t, different boundary conditions collide (in the left and right
neighbourhoods of t; boundary condition is prescribed with different boundary operators B;(Z) and
B(2)).

The BVP (5.3.1) is considered in the non-classical setting

we (%), feHX(€), g, cH ™ YP(Ty), 1<p<oo, s> % j=1,2. (5.3.3)
Our objective is to find a criterion of unique solvability of particular BVPs of type (5.3.1) when,
for example, operators in the domains (surfaces) are Laplace-Beltrami, Lamé or Hepmholz operators.
In the present section, we will reduce investigation of the BVP (5.3.1) to the investigation of local
representatives — model BVPs in model domains of the type described below.
To formulate the model problems, let us introduce the operators

3
A(V)= > and®, Br(V)=0bf+ > bho;, k=12, (5.3.4)
o] <2 j=1
defined now on the Euclidean space R? and its subdomains RZ and the model domains g, (see
Fig. 5.3 below). V = (91,02) " denotes the classical gradient.
I model problem. A local representative of the BVP (5.3.1) at an inner point ¢ € € is problem

in the entire Euclidean space R2:
AV)u=f in R? (5.3.5)

in the non-classical setting
u e H3(R?), feH?(R?). (5.3.6)

The fundamental solution is the inverse to the model differential equation and the invertibility is
granted. In this case we do not need even ellipticity of the operator.

IT model problem. A local representative of the BVP (5.3.1) at a boundary point ¢ € T'N
0%}, different from knots ¢t # ¢, ...,t, and where in the neighbourhood the boundary condition is
prescribed by the operator By(Z), is a model problem in a half-plane R := R x R*

{A(V)u =f in RZ,

5.3.7
(B((V)u)t =g, on R:= IR (5.3.7)

in the non-classical setting

~ s 1
we HHRE), feH P (RY), geeH,," *R". (5.3.8)
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v(t)

Figure 5.3.

Only the ellipticity of the symbol ensures the unique solvability of BVP (5.3.7), (5.3.8) and we drop
the details again.

ITI model problem. Assume that at a knot t = ¢, € I' N1 0%, 0 < k < ng, the boundary
condition in the neighbourhood is prescribed by B¢(Z). A local representative of the BVP (5.3.1) at
such vertex is the model problem in an angular domain €, (cf. Fig. 5.3):

A V)u = in Q oy
(V)u=f o 539)
(Be(V)u)" =g on Ty, =00, =RTUR,,
in the non-classical setting
~ s—pp—1
we M Q) fEM (), geH, 7 (Ta,). (5.3.10)

Here €, is the angle of magnitude «j between the half-axes R* and the beam R, inclined to Rt
by the angle @ = a,. 4, is oriented counterclockwise (cf. Fig. 5.3):

Lo, =00, =RTUR,,, R =[0,00), R, :={e*"=(tcosaj,tsina;): teR}. (53.11)

The unit normal vector field on the boundary I', of the model domain and the corresponding
normal derivative are given by the following formulae:

= for t € RT
I/(t) _ (07 . ) or ¢ & ,
(—sin aj,cos a;) for t € Ry,
(5.3.12)
—51;290(9517$2)|(3¢17x2):(t70) for t € RT,

for t € R,.

Duep(t) == .
(_ S aaxl + cos Oéax2>(,0<.’1,‘1, $2)|(m1,m2):(t sin a,t cos o)

IV model problem. Assume that at a boundary knot ¢t = ¢, € I'N0%j, np +1 < k < n, the
boundary condition in the left neighbourhood is prescribed by B1(%) and in the right neighbourhood-
by B2(2). A local representative of the BVP (5.3.1) at such vertex is the mixed type model problem

in an angular domain Q,, (see Fig. 5.3):

A(V)U/ = f in Qak7
(Bi(V)u)" =g' on Ra,, (5.3.13)
(Bx(V)u)* =¢* on RY
in the non-classical setting
u e HZ(QO%)’ f S ﬁ;;ﬁ(ﬂak), gl c H;—Tl_E(Rak)’ 92 c H;—T2_p (R+), (5314)
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Remark 5.3.1. Further model case is when the boundary condition in the left neighbourhood is
prescribed by Bs(2) and in the right neighbourhood-by B1(2):

AJ (V)u = f m Qakv
(B2(V)u)" =g¢*> on Ry, (5.3.15)
(B1(2)u)t =g' on RT

Theorem 5.3.1 (Quasi Localization Principle). The initial mized boundary value problem (5.3.1) in
the non-classical setting (5.3.3) is Fredholm if and only if:

e III model BVPs (5.3.9) in the non-classical setting (5.3.10) (or the alternative BVP (5.3.11)~
(5.3.10)) are Fredholm for all knots tg, ... tn,;

e IV model BVPs (5.3.13) in the non-classical setting (5.3.14) are Fredholm for all knots t,,+1,
ot

Proof. The unique solvability (the Fredholmness) of the BVP (5.3.1) can be reformulated as the
invertibility (Fredholmness) of the operator between Banach spaces, direct product of Bessel potential
spaces:

MA(2) : By — B, (5.3.16)
A2) H(%) Hj o*(%)
Ma(2):= | Tre,Bi(2) |, Bi:=| H(®) |, Bo:= | Hy V1Y) |,
Trr, B2 (%) HX(%) Hy "2~ (Ty)

where Trr,, is the trace operator from the hypersurface € to the part of the boundaery Iy, k = 1, 2.
The unique solvability (the Fredholmness) of the model BVPs (5.3.5)—(5.3.15) can be reformulated
as the invertibility (Fredholmness) of the following operators between Banach spaces:

M[(V) : %1 — %2, (5317)
M (V)=A(V), B1:=HR?), B,:=H IR,

for the I Model BVP (5.3.5)—(5.3.6);

M[](V) . By — B, (5318)
A(V) H(RY) Hy 5H(R?)
M[[(V) = 5 %1 = P —; 5 %2 = 7p7 1 5
TI‘RBZ(V) H;(R ) H; Te /P(R)
for the IT Model BVP (5.3.7)—(5.3.8);
M (V) : 9B — Bo, (5.3.19)
A(V) H(Qa,) H 53 Q)
M]]](V) = , 1= : ; Bo = 71”71/
Ter,, B,(V) H3(00,) By, )
for the IIT Model BVP (5.3.9)—(5.3.10);
M[\/(V) . B — B, (5320)
A(V) Hy(0,) Hy 64 2,)
Mpy(V)i= | Tra+Bi(V) |, B := | HQu,) |, Bo:= | BT, |,

Tre,, B2(V) HE(Q0,) HE " YRT,,)
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for the IV Model BVP (5.3.13)—(5.3.14),

For the localizing class A, at a point ¢ € ¥ = € UT we take operators of multiplication by
smooth functions v.I which is 1 at some neighbourhood U, C € and has support at some larger
neighbourhood. Similar localizing class A° is chosen for the operators M, My, M7, My of the
model BVPs, consisting of operators of multiplication by smooth functions v°I which is 1 at some
neighbourhood U of the respective point 0 € R? (for the I model BVP), 0 € R (for the II model
BVP) and 0 € €, (for the III and IV model BVPs), and has support at some larger neighbourhood.

Instead of initial operator M 4 (%) and model operators M (V), M ;(V), M ;;(V) and My (V)
we consider the quotient classes [M 4(2)], [M(V)], [M1(V)], [M11(V)] and [M (V)] in the re-
spective quotient spaces f(gl,\%g) = Z(B1,B2)/T(B1,B>) of linear operators £ (B, By) with
respect to the compact operators T'(B1,B2). This approach has two advantages. First, the Fred-
holmness criteria for operators turns into the invertibility of the corresponding quotient class (see
Corollary 1.1.3 on page 11). Second, quotient classes [v.I] and [v°I] of operators from the localizing
classes commute with the corresponding quotient classes of operators:

[M A(D))[vel] = [ed][M a(2)), [M(V)][°I] = [W°T[M(V)], [M(V)][°I] = °I][M (V)]
[M 111 (V)][0°1] = [°1[M 111(V)],  [M v (V)][0°1] = [W°I)[M v (V)]

Next, note that if 8. : U, — UY is a diffeomorphism of the neighbourhood U, of a point ¢ € €
and of the point 0 in the model domain of the corresponding model BVPs I-1V, the corresponding
quotient classes are locally quasi equivalent:

[MA(D)] % B~ [Mo(V)],

where M (V) is one of the model operators M ;(V), M;(V), Mr;(V) and My (V), chosen de-
pending on the point ¢ € € according to the algorithm described above.

Now note that the quotient classes of operators M (V) in (5.3.17) and M;;(V) in (5.3.18) are
invertible. Indeed, the operator M (V) in (5.3.17) is invertible itself and the inverse is given by the
Newton’s potential

Noazyoyol@) i= / Htr)(@ —y)o(y) dy, =€ R?,
]R2

where s, (v)(z) is the fundamental solution to M (V).

The operator M ;;(V) in (5.3.18) is invertible itself if B,(V) = const and is Fredholm (has one
dimensional kernel and cokernel) if By(V) = ag+ a101 + a20>. The inverse (the regularizer) is written
by analogy of Poisson integrals for the Laplace equation Au(x) = f(x) with the Dirichlet u™ = g and
the Neumann (—0,,u)™ = h boundary conditions.

There remains to note that the proof follows now from Theorem 4.4.1 on Quasi Localization. [

5.4 Potential operators

It is well known that the Laplace operator A has the fundamental solution J#a
1
Jn(x) == o In|z|, AXA(z)=0(x), x€R?

which is used to define the standard double layer W A, the single layer V o and the Newton N a
potentials on the angle €2:

1 1
Vagle)i= o [le = rlo()dn. Wae(e) = o= [ oo inle = rlotr) do,
To

te X (5.4.1)
Nap()i= 5 [ lnfe ~ yle(w)dy. = € Q.
Qo
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For the standard properties of these potentials we refer to [53].
Let us recall the Plemelji formulae

(Wag) (1) = 5 0(t) + Waop(t), (G Var) (1) = % V() + Wt (),

2 (5.4.2)
OoaWap)™(t) = Vad(t), (Vap)™(t) =Vaip(t), t€Ta =0,
where the pseudodifferential operators (?DO)
1
Va_1p(t) = Py /ln|t —Tlo(r)do, Vatipt:=— /81,(,5)8 nnlt —7|o(7)do
1 5.4.3
Wane(®)i= o [ O lnlt = rlo(r) o, Wi gl / duty nft — Tlp(r) o, P4D)
tely,,

of orders —1, 0, 0 and +1 are associated with the layer potentials of the Helmholtz equation. The
operator V o _; has weakly singular kernel and the integral exists in the Lebesgue sense, while the
operators Wa o and W*A,O have singular kernel of order —1 and the integrals exist in the Cauchy
Mean Value sense. V a 41 is a hypersingular integral operator and it is interpreted in [68, § 1]. The
standard mapping property is listed below (see [53,65,89] for details):

Va1 H (D) — HPHT,),

Wao: H (To) = H (Ta),

Wi H (o) = H (T'a),

Vaqr :HY (Do) » HS (Do), s€R, 1<p<oo.

(5.4.4)

Next, we need to find explicit forms of pseudodifferential operators (PsDOs) Wa o and WJ  for
the use in Chapters 4-5.

Let us consider the following Mellin convolutions operators, where the first one is known as the
Cauchy singular integral operator (see [37,47,59]):

1 Ooﬁb dr +
Sg+d(t) m/ , ;/ P 0 <arge<2m, ¢eL,(RT). (5.4.5)

0
The pull back operator J, : H5(R,) — H5(RY) and its inverse J 1 H? (R*) — H(R,) are defined

as follows:
Jap(t) = @(t cos a,t sin a), t € R,

5.4.6
'];lw(xl’xQ) :¢<\/ SU%+(E%), (581,1‘2)T €RO¢' ( )

Note that the tangent vector ¢(x) to the boundary of the model domain I, and the corresponding
tangent derivative are given by the formulae (we remind that R,, is oriented from oo to 0):

o) = (1,0)" for z € RT,
| —(cos a,sin @) for x € R, ( )
5.4.7
Orp(t,0 for z = (t,0) € R,

Seole) i { i(t,0) (t.0)

(cos a By, 4 sin ady,)p(tcos a,t sin @) for = = (tcos a,tsin @) € R,.

Theorem 5.4.1 (cf. [61,69]). For the singular integral operator on the boundary Ty of the model
domain W a o and its dual (conjugate) W*A,o the following explicit representations hold:

— 1 (1o —i
TR+WA,0rRaJa1gp(t) = —Jarr, Waorg+e(t) = % [e K.io —e Keuzﬂfa)]gp(t), (5.4.8a)
1
A [Kem — K iero|p(t), t€ R+7 (5.4.8b)
TR+ Waorrt @ = TR, Wa 0rR, ¢ = TR+ WA TR Y = TR, WA 0TR. ¢ = 0, (5.4.8¢)

resWa e, Jo @(t) = —Jarr, Wi ore+0(t) =
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where rg+ and Tr,, are the restriction operators to the spaces on the corresponding subsets RT and R,.
For the pseudodifferential operators V o _1 and V a1 the following explicit representations hold:

_ 1
T’R+8ZVA,_1T]RQJ041§0(t) = J(X’I"]Ra({)gVA7_1TR+(p(t) = _Z [Kem + Ke—ia] (p(t), (549&)
_ 1
TR+ VA7+1T]RQ Jal(p(t) = JQTRaagVA7+1TR+aTQD(t) = Z [Keia + Kefm] aTﬁp(t), (549b)
_ 1
rr+ OV A —1mp+ p(t)Jarr, = 0V A 1R, I 0(t) = ZSR+@(t)a (5.4.9¢)

1
et VA r1rpr@(t) = Jorr, Vasire, Jo o(t) = —p(t) + ZSR‘*’aTSD(t)v teR",  (5.4.9d)

where the operator Jy is defined from (5.4.7).

T T

Proof. Using the parametrizations x = (v1,22)" =(t,0)T of Rt and y = (y1,%2) " = (7 cos a, T sin «a)
of R, (cf. (5.3.11)), recalling the form of the normal derivative 8, (y) on 'y, = RT UR,, (cf. (5.3.12))
and taking into account that R, is oriented from oo to 0, we get

oo

1

e W (@) = 5= [ e = ylelu)do = =5 [ [0, 101(6.0) = (0,92l 0,9 0)
Ts 0

+ [—sin ady, + cos ady,|In|(t,0) — (yl,y2)|<p(y1,y2)‘(y1’y2):(T cos a,‘rsina):|d7-'
Here we apply the equality
1
In|z—y| =In|(z1,22) — (y1,¥2) = |§ In [(z1 — 1) + (22 — y2)?] (5.4.10)
and continue as follows:

1 OO[( Y2004 (7)

rr+ Waop(z) = — 7‘
® 0 () 27 J t—y1)% + y3 l(y1,y2)=(7,0)
¢ .
n [(t —y1)sina + 32/2 coz a]pa(T) }dr
(t — yl) + Y5 (y1,y2)=(7 cos a,T sin a)
1 tsin o o (7) dr 1 tsin oupg (7) dr
21 ) (t—7cos @) +72sin’a 21 ) 2472 —2trcos o
0 0

1 ] —ia 1 1ot —ia
= _7 [elaKem —-e Ke—i”]@a(t) = _Zi [6 K.« —e Kei(%*a)}goa(t)a
01 (1) == o(1,0),  @alT) = p(Tcos a,Tsina) = J,p(t), TR (5.4.11)

The obtained equality proves the first equalities in (5.4.8a) and (5.4.8c), because the integral on Rt
in the third line of (5.4.11) turned to 0. Similarly,

(oo}
1
s Wi gple / O 0l —lp)ir = —5- [ [0 mlier,22) = (0 o2 0)
0

+ Oy, In|(x1,22) — (7 cOS @, TSI oz)H(Il wa)=(t O)gp(T cos a, T sin oz)} dr

(o — 78in @)pa(T)
(@1,32)=(t,0)  (z1 — Tcos )2 + (g — Tsin a)?

_ 1 Oo[( x2p(7,0)

d
o2m r1 —7)% + 23 (Jcl,xz):(t,o)} T
0

1 7 rsina 0o (T)dT 1
= — = — | K o — K _ir—a)|pa(t). (5.4.12
2m ) t2 4+ 72 — 2tT cos « 42'[ € ei(® >]('0 (). ( )
0
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The obtained equality proves the first equality in (5.4.8b) and the third equality in (5.4.8¢c) (because
the integral on R in the third line of (5.4.12) turned to 0).

If 2 = (w1,22) " = (tcos a,t sina)T € R, and y = (y1,92) " = (1,0)7 € RY (cf. (5.3.11)), as in
the foregoing case, we get the following:

1
TR, WA 0p(z) = g/au(y) In|z —yle(y)do

=(7,0) P+ (T)

1
/ , In|(tcos a,tsina) — (y1,y2) H (y1,y2)

S or
0

+ [—sin ady, + cos ady,|In|(tcos a,tsina) — (yl,yg)\‘(yl’yz):ﬁ cos a,‘rsina)spa(T):| dr

o0

_ L[] et
27 (tcos o —y1)2 + (tsina — y2)? l(y1,y2)=(,0)
0
[sin a(t cos oo — y1) — cos a(tsina—yz)]wa(ﬂ‘ ]d
_ T
(t Ccos . — y1)2 + (t smo — y2)2 (y1,y2)=(7 cos a,Tsin a)
17 tsinap (1) dr 1, i
= — chem _ ZaKei e t , 5.4.13
e / 2472 - 2trcos @ 41 [e ‘ e >]<p+() ( )
0

The obtained equality proves the second equalities in (5.4.8a) and (5.4.8¢c), because the integral on
R, in the fourth line of (5.4.13) turned to 0. Similarly,

ra, W 00(2) / Doy In 2 — ylip(y)dor
1 T
= Tor [[_ sin ady, + cos ady,|In|(z1,22) — (7, O)H(xl,wg):(t cos a,tsina)‘er(T)
0

+ [—sin @dy, + cos ady,|In|(z1,22) — (T cos o, Tsin )| |(x1,x2)=(tcos ot sin o) P (7)} dr

1 [{—Sina(acl —T) 4 cos axs}py(T)
27 (x1 —7)% + 23

(z1,22)=(t cos a,tsin av)
0

[—sina(z; — 7 cos a) 4 cos a(xe — 7sina)]pa(7) ]d
-
(331 — T COS a)2 + (1’2 — tsin OZ)2 (z1,22)=(t cos a,tsin av)
1 7 rsin apy (1)dr 1
- — - Keza - K (27— t . 5414
o | 24+ 72 —2rcosa  4i [ el )]90+( ) ( )
0

The obtained equality proves the second equality in (5.4.8b) and the fourth equality in (5.4.8¢c),
because the integral on Ry in the fifth line of (5.4.14) turned to 0.

Prior to calculating the operator V a 41 from (5.4.3), consider its kernel 50, (;)9y () In |z — y|.

Using equalities (5.4.10), (5.4.7) and, as above, the parametrizations of R, and R™ we calculate
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the kernel for x = (t,0)T € RT, y = (rcos a7 sin a)" € R,, as follows:

By Do) Ha (2 — ) = — By (— sin @By, + cO8 0y, ) Ha(z — y)‘ _p
y=(7 cos a,T sin «a)

= 0y, {—sin a0y, + cos a0y, } #n(z —y)

z=(t,0)
y=(7 cos a,T sin «a)

= [cos aAKA(x —y) — Oy, {cos ady, +sin a0y, } Za(z — y)] ‘ w:gt 0
y=(7 cos a,T sin a)

= [cos ab(z — y) + Oy, Opy) Ha(x — y)]

z=(t,0)
y=(7 cos a,T sin a)

1
= [cos a5(0)+4—3@(y)8y1 In (21 — y1)? + (20 — y2)2]] o)
& y:E‘Hcos a,Tsin a)

— [cos ad(0) — 1, 1= ] (5.4.15)

2n 1 (a1 = y0)? + (22— 1)

z=(t,0
y=(7 cos a,7sin o),

since, 6(z —y) = 0 for x € R* and y € R* with Dirac’s delta function §(x).
In the case x = (tcos a, t sin )T € R, y = (7,0)" € RT we calculate similarly:

Ou(2)Op(y) #a(x —y) = —(—sin a0y, + cos ady,)0y, Ha(x —y)

z=(t cos a,tsin )
y=(7,0

= {—sin ady, +cos a0y, } Oy, Fa(x — )

z=(t cos a,tsin )
y=(7,0

= [cos aAFN(x —y) — Oy, {cos a0y, +sin a0y, } Ha(x —y)]

z=(t cos a,tsin )
y=(7,0

= [cos ad(z — y) + Oy, {cos a By, + sin ady,} Ha(z —y)]

;v:Et cos a,tsin «a)
Yy=(7,

_ 1 cos a(xy; —y1) + sin a(zy — y2)
SO O T G T | et 410
For the case x = (t,0)T € RT, y = (7,0)T € R* we get
au(x)au(y)%A(m - y) = am2ay2<%/A(x - y) 2=(£.0 = _a‘grfjng(x - y) 2=(.0
y:E‘rJ,O)) y:ETV,O%
= [-AAA(z —y) + 0 Hn(x —y)] (10
y:ET:O%
(b= T) 4 PAN(—T) = —0(t — 7) + B —— (5.4.17)
= N = 50— A.

For the case © = (tcos at, sin @)’ € R,, y = (Tcos a, 7 sin a) T € R, we get

Ou(2)Ou(y)#a (T —y) = (—sin ady, + cos ady,)(—sin ady, + cos ady,)Ha(x —y)

z=(t cos a,tsin «)
y=(7 cos a,Tsin «)

= —{—sin ad,, +cos ady,}* Ha(z —y)

z=(t cos a,tsin «)
y=(7 cos a,Tsin a)

= —[A = (cos a8y, +sin ady,)?] Ha(z —y)

z=(t cos a,tsin a)
y=(7 cos a,T sin )

= [5(.’1) - y> - ag(y)ji/A(x - y):| x:Et cos a,tsin a)
y=(7 cos a,Tsin a)
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—cos a(x1 — y1) — sin a(ze — y2)
(71 — y1)2 + (332 - y2)2 :Et cos a,tsin a)
y:

T Ccos a Tsin )

1
= — 5(x - y) + gag(y)

1 1
=—4(t — —0,——. 5.4.18
(t=m)+ 2r T —1 ( )
Now we calculate the operator g+ V a 41 from (5.4.3), using the derived representations of the kernel
(5.4.15), (5.4.17) and integration by parts:

/8Ts0+ L, / (@1 = 41)u(y) p(y)do
S or (

T—t % R x1 —y1)? + (22 — y2)?

oY

TR+ Va10(t) = —pi(t

=Et 0)

y=(7 cos a,Tsin «)

o0

1 1 t —Tcos «
= —pslt) + 58w Orios(t) — - [ T (Tadip)(r)dr

o2 ) t24+ 72 —2tr coso
0

= —pi(t)+ %SR+8TSD+(t) - 1/[ 1- + 1,- ] (J aOpp)(T)dT

47 t—er  t—etr
0

1
1 [Kei‘l + Ke*m] 8T¥7a<t)a
since (Jo0pp)(7) = —(0-94)(T), where, we remind, ¢ (t) := ¢(t,0), pa(t) := Jop(t). Thus, the first
formula in (5.4.9b) and the first formula in (5.4.9d) are proved.

Next, we calculate the operator J,rr,V a +1 using the derived representations of the kernel
(5.4.16), (5.4.18) and integration by parts:

1
= —@+(t) + %SR+8T§0+(1€) +

1 - i — y2)]0, d
Toure.Vas10(t) = /[cos a1 — y1) + sin a(ze — y2)]0u(y)p(y)do

o (rr—00)? + (2— o)’ r—{tsgs ot o)
R+
1 [ Orpa(r)dr 1
— palt) — — — L = —,(t *S 87— olt
Palt) 2W/ Pl pult) + S o)

o0

/ cos aftcos a — 1) + tsin® )0, o4 (1)dr
o t2 + 72 — 271 cosa

0

1 [t—7cos a)O0r4(T)dT

o t2 4+ 72 —2tT cosa
0

1
— @a(t) + 27-&1%* 0rpa(t)

1 1
= Koo + K] 0,04 (1) = ¢alt) + - Su-0rpalt).
Thus, the second formula in (5.4.9b) and the second formula in (5.4.9d) are proved.

Now we look at the singular integral operator rg+9,V A _1:

rer OV a1(1) / Ouey I — vl @lw)da| _,
y:ETZO%
+ 2—/8,3(@ In|z —yle(y)do| _
ﬂ-R yZETVCOS a,T sin «)

1 [ (t—7)ps(r)dr 1 (t — 7 cos a)pa(T)dr
27 (t—7)2 2 | (t —7cos )2 + 12sin’ a
R+ 0

1 ® 1 ® 2o —i
:_7/M_7 Le. + e_. :|<poz(’7')d7'

21 T—1 47 —er  t—eTtor
0 0
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1 1., ,
= Q—Z_Sww(t) -1 (€K io + e “Ko-ia| po(t), teRT, teRT,

Thus, the first formula in (5.4.9a) and the first formula in (5.4.9¢) are proved.
In conclusion, we look at the singular integral operator J,rg, d¢V a,—1:

Jarr, 00V A, —1(t) /34 @) In |z —y| (y)do

= §tcos a,tsin a))
y=(7,0)

+ 5 / Oz In |7 — y| (y)do

:Et cos a,tsin oz);

R, y:TCOSOLTSIHOL)
1 cos a(r1 — 7) + zo8in
=—— d
2T ($1 — T)2 + x% SO+(T) T z=(t cos a,tsin «)
R+
1 [ cos a(zi —Tcos a)+ (z2 — TS%H a) sin awa(T) ir
27 (1 — Tcos @)? 4+ (x9 — Tsin «)? w=(tcos a,tsin a)
R+
1 7 cos a(tcos o — 1)+t sin® a 1 wa(T)dr
. Sy - 5 [ PO
2 (t cosa—T)2+tsin”« 27 T—t
0 R+
17 1
t— 7T cosa
=—— dr + =S t
27T/t2+7'2—2t7 cosawa(T) T+2i r+¢a(t)
0
1 1 N
= 71[K8m +Kefria]<p+(t)+2fiSR+gaa(t), teRT.
Thus, the second formula in (5.4.9a) and the second formula in (5.4.9¢) are proved. O

5.5 Mellin convolution equations in Bessel potential spaces

Let us recall from [37] the results on the Fredholm properties of operators

A=dol + Y d;K! H3(RT) - Hy(RY), (5.5.1)
j=1
where K:;l, ... ,Ki are admissible Mellin convolution operators and dy,...,d, are m X m constant

matrix coefficients. ]ﬁ;(R*) and H (R") are the spaces of m-vector functions.

To this end, consider the infinite clockwise oriented “rectangle” R : =11 UT'; U F; U I's, where
(cf. Fig. 4.1 on page 116)

Iy = {+o0} xR, T :=R" x {#oo}, Ty:={0} xR

According to [37, formulae (52)—(53d)], the symbol 7(w) of the operator A is

A (w) = )+ Zd S ( (5.5.2)

ch

where
gs—'y7'y7p(ooa§)7 W= (00,6) € fla
Iy (w) == <:|:77 — 7)8, w = (1, +00) € T'F, (5.5.3a)

0+ B
eTrSi7 W= (075) e F3) f?n e R?
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e2msi ] p2msi _ 1 sin(2 4+ s —if)
s €)= : t <7 —i ) —emi P " R, (55.3b
9% y.p(00:€) S TR P i) =e sin(s — i€) <€ ( )

1 e 1
efwr(gfzﬁ)cgfmfsfl

b = ) E f )
sin 71'(% —1i€) w=(00,8) !
HLs(w) =0, w = n,+00) €Ty, (5.5.3¢)

—im(t4s—i&) L—it—s—1 .
< - < , W= (075) € F3a

sinw(% — &)

0< argc < 27, c % = ‘c|—sel(2ﬂ'—argc)s’ & = |C|’yel'yargc.

The function det <7; (w) is continuous on the rectangle . The statement is easy to verify, analyzing
the symbols in (5.5.2), (5.5.3a)—(5.5.3b) and taking into account that

T3 (—00,—00) =1, F5(0,—00) = .75 (0,+00) = €™, .77(+00,+00) = ™,
HP(—00, —00) = AP, (0, —00) = A}, (0,+00) = A} (+00, +00) =0,

92y p(00,—00) =1, g2, (00, +00) = e,

Therefore, the image of the function det.«/;(w) is a closed curve in the complex plane and, if the
symbol is elliptic

inf |det @77 (w)| > 0,

weENR

the increment of the argument % arg &/ (w), when w ranges through 9 in the direction of orientation,
is an integer. It is called the winding number or the index of the curve I := {z € C : z = det @7, (w),
w € R} and is denoted by ind det 7.

Propositions 5.5.1-5.5.3, exposed below, are well known and will be applied in the next section in
the proof of the main theorems.

Proposition 5.5.1 ([59] and [37, Theorem 5.4]). Let 1 < p < 0o, s € R. The operator
TS (R s+
A HP(R™T) — H(R™) (5.5.4)

defined in (5.5.1) is Fredholm if and only if its symbol o7 (w) defined in (5.5.2), (5.5.3a)—(5.5.3b) is
elliptic. If A is Fredholm, then
Ind A = —ind det &7

The operator A in (5.5.4) is locally invertible at 0 if and only if it is globally invertible.
The operator A in (5.5.4) is locally invertible at 0 if and only if its symbol </ (w) is elliptic on
the set T'y only, inf,er, |det o7 (w)| > 0.

Proposition 5.5.2 ([59, Corollary 6.3]). Let 1 < p < oo, s € R and let A be defined by (5.5.1). If
the operator A : ]ﬁl;(R*‘) — H5(RT) is Fredholm (is invertible) for all s € (so,s1) and p € (po,p1),
where —o0 < sp < 81 < 00, 1 < pg < p1 < oo, then A is Fredholm (is invertible, respectively) in the
Sobolev-Slobodeckii space setting

A WE(RY) = WE(RY) for all s € (so,51), p € (po,p1)

and has the same index
Ind A = —inddet ﬁ%ps.

Proposition 5.5.3 ([40,65]). Let two pairs of parameter-dependent Banach spaces 5 and 3, s1 <
s < 89, have intersections .6;-, ﬂ.ﬁj-” dense in .VJj/ and in Y)j” forall j=1,2, ¢ 5" € (s1,52).

If a linear bounded operator A : 5 — 95 is Fredholm for all s € (s1,82), it has the same kernel
and co-kernel for all values of this parameter s € (s1, $2).

In particular, if A : 95 — 95 is Fredholm for all s € (s1,s2) and is invertible for only one value

S0 € (81, 82), it is invertible for all values of this parameter s € (s1,82).
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5.6 Model Dirichlet BVP

In the present section, we investigate model Dirichlet Boundary value problem, associated with the
BVP (5.2.2) and described in general in the foregoing Section 5.5. We derive an equivalent boundary
integral equation in the model domain (5.6.10) and investigate it.

Results for the model Dirirchlet BVP (5.6.1) (Fredholm criteria, the unique solvability) were
obtained in [60,61].

Let us commence with the formulation of the model Dirichlet BVP associated with the BVP (5.2.2)
in the non-classical setting (5.1.2) at a knot ¢; € .#p (where Dirichlet conditions collide):

{Au(t) =f(t), tea,, (5.6.1)

ut(s) =g(s) on Ly, = Rt U Ry,

J

~ s—1 1 1
uweH(Q,), feH P(Q,), geH, "(Ty,), 1<p< oo, 5<8<1+5'

Here (2, is the model domain, associated with this problem (cf. Fig. 5.3 on page 141 and formula
(5.3.11)) and Ty, := 0Qq, = RT UR,, is the boundary. We assume that a # =, because for o = 7
we have the case I'y = R and BVP (5.6.1) is trivially solvable.

As a particular case of Theorem 5.1.1 we get the following

Corollary 5.6.1. The boundary value problem (5.6.1) has a unique solution in the classical weak
settingp =2, s = 1.

Let C§(T'y) denote the set of Holder continuous functions with exponent s and compact supports.
It is well known that C§(I'y) is a dense subset of H?(T',) for 0 < s < 1+ % .

The next proposition is a standard consequence of the Green formulae and can easily be found e.g.
in [53,65,89].

Proposition 5.6.1 (Representation of a solution to BVP). Any solution u € H;(Q4,;) to the BVP
(5.6.1) (and also to the BVPs (5.7.1) and (5.8.1) in the forthcoming sections) is represented as follows:

U(IE) = NAf(x) + WAU+(‘CC) - VA[auu]Jr(x)v HANS Qa]’? (562)
where u and [0, u]™ are the Dirichlet and the Neumann traces of the solution u on the boundary Ty, .

Lemma 5.6.1. Let 1 <p < oo, —1— % <s<1l+ %, go € C§(T'a), go(0) =1, is a fized function. Let
us constider the linear functional

1 .
Fole) = lim o [ 0(r)do, 0 € BT,
FOLE

where 'y ¢ is the intersection of I'q, with the circle of radius € centered at the vertex 0 € T',,.
Then for arbitrary ¢ € H}(T'y) and o € W3 (T'y) the following representations hold:

¢ =Folp)go+ ¢t +va, 94 €MRY), ¢, € H(R,),
b= Fo($)go + Vs +va, Yy € WERT), 1o € W(Ra), (5.6.3)
Fo(py) = Fo(pa) = Fo(1h4) = Fo(¥a) = 0.

Proof. It is easy to check that for ¢ € C§(I'y) there holds Fy(v) = ¢(0) and, since go(0) = 1, we get
©+(0) = 0, po(0) = 0. The inclusions ¢ € HTH;(RJF), Yo € ﬁ;(Ra) follow automatically. Since the
subset Cg(I'y) is dense in H)(T',) (also in W (I'y)) and Fp is a linear bounded functional in H(I's)
(also in W#(T',)), the both representations in (5.6.3) remain valid for arbitrary function ¢ € H>(T'y)
(for arbitrary function ¢ € W5 (I'y)). O
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We remind that the Dirichlet trace ut = g € W;_E(I‘a) is a known function and let (9,u)™ =

s_1-1
e W, T (T'y) denote the unknown Neuman’s trace. Then the representation formula (5.6.2) for a
solution to the Dirichlet BVP (5.6.1) has the form

u=Naf+Wag—Var. (5.6.4)

By applying the Plemelji Formulae (5.4.2) to (5.6.4) we get

(Ou)" = = @ Naf)" +Vag+ - Wi
and rewrite the obtained equality as follows:
SUH Wi =G, Gi=@ONA +Vang $.GeW,  *(T.), (5.6.5)
Since I = rg+ + rg,,, applying equalities (5.4.8c) we rewrite equation (5.6.5) as follows:
% b+ rrr WA grr, ¥ + 1R, Wa orri ¥ = G, G, € W (L. (5.6.6)

Now we recall representation (5.4.8b), restrict equation (5.6.6) to R™ by applying rg+, which gives
us the first equation in (5.6.7) below. Then restrict equation (5.6.6) to R, and apply the pull back
operator J, and its inverse (see (5.4.6)) and get the second equation in (5.6.7). Thus, we get the
system of two equations on the half-axes with two unknown functions:

1 " _
St (res WA orr. I o b2 + Fo(v)g2 = G,
2 (5.6.7)

3 Yy + (Jarr, Wa orrt )11 + Fo(¥)g1 = Ga,

g1 :=1r+ WA TR, 90, g2 = JaTrR, WA TR+ 90,
Yri=rp+®, Yo i=Jdarg, ¥, Gri=1reG, Goi=Jare,G, (5.6.8)
~g—1—1 s—1—1
V1,2, € W, P(RY), g1,92,G1,G2 €W,  7(RY).

Since one-dimensional operator Fy( ) does not influence Fredholm property of system (5.6.7), the
system

1 N _
3 U1+ (res WA ore, J )2 = G,
1

5 V2 + (Jarr, Wh orr+ )1 = G2,

_1
P

~s—1-1 s—1
¢1,1ﬁ2 S Wp P (R+), Gh GQ c Wp (R+), (569)

is Fredholm-equivalent to system (5.6.7)—(5.6.8).
Due to formula (5.4.8b), system (5.6.9) of boundary integral equations coincides with the following
system of integral equations of Mellin type:

1
1 — % [Kiw - Kimw—a)]% =Gy,
1
b2+ 5 [Klio — Kligeo]t1 = Go, (5.6.10)
~s—1—1 s—1—1
Vi, €W, ~ "(RT), G1,GaeW, 7(R").

Theorem 5.6.1. Let 1 < p < o0, % <s< 1+ %,

The model Dirichlet boundary value problem in the non-classical setting (5.6.1) is Freholm if and
only if the system of boundary integral equation (5.6.10) is Fredholm.

Now we can prove the main theorem of the present section.
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Theorem 5.6.2. Let1 <p < oo, —1— % <s< 1+ %. The Model Dirichlet BVP in the non-classical

setting (5.6.1) is Fredholm (and the system of boundary integral equations (5.6.10) is Fredholm) if and
only if either o =7, or (p,s) = (2,1) or a # 7, (p,s) # (2,1), a # 7 and the following holds:

) 1 : 1
e 5=3) sin? (s — i€) 4+ e 27 sin? (o — ) (5 —s—1- i§) #£0, VEER. (5.6.11)

If condition (5.6.11) holds, the semi-strip (%, o0) x (0,1) of the Euclidean plane R?, where the pair
(s, %) ranges, decomposes into an infinite union %y U %1 U --- of non-intersecting connected subsets
of regular pairs, for which the BVP (5.6.1) is Fredholm.

If the point (1,3) (i.e., s =1, p=2) belongs to the connected subset X, then the BVP (5.6.1) is
uniquely solvable for all pairs (s, %) € %.

The same unique solvability holds for the system of integral equations (5.6.7).
Proof. The unique solvability of the BVP (5.6.1) in the cases (p,s) = (2,1) and o = 7 are already
proved in Corollary 5.6.1 on page 151 and the Model case II on page 140, respectively. Thus, we
assume that (p,s) # (2,1), a # .

Let us investigate the Fredholm properties of system (5.6.10). An equivalent task is to study the
Fredholm property of the corresponding operator

s—1—21
P

1 —~ s—1-1
Do =1— - d[Kle = Klaro] W, 7(RY) = W, R (RT). (5.6.12a)

For this, it suffices, due to Proposition 5.5.2, to prove the same theorem for the operator
1 ~s—1—1 s—1—-1
Do =1~ 5 d[Klo ~ Kl B RN S H U (RY). (5.6.12b)

Here d is the 2 x 2 constant matrix

d:= [_01 (1)] . (5.6.13)

The symbol of the operator D,, in (5.6.12b) on the set 'y, according to the formulae (5.5.3a)—
(5.5.3¢), reads:

gim(s—1) sinm(s — i€) _ —ims Sin(a—ﬂ')(% —s—1-i)
95717%(00 £) = sinw(% — &) sinw(% — &) ’ (5.6.14)
“p ' _ins Sin(a_ﬂ—)(% —S—].—Zf) im(s—2) SiIlTr(S*Z‘f) ’ e
e P
sinﬂ(% —i€) sinﬂ(% —i€)
because
1 i 1 _1_1_ . .
f;_l_g(oo ) = J2n(s—1- )i sm7r(p +s—1-4 i&) _ _im(s—1) sinm(s — i) (5.6.15)
’ sinﬁ(% — &) sinﬂ'(% —i€)’
1 ls_1_1 ls1_1 L eia(%—s—l—if) _ ei(2ﬂ'—o¢)(%—s—1—z£)
il » — » — _pim(5—ig)
57 |[Heiap (00:8) = Hinw(00,6) c 7 2isinm (5 — i€)
B e_iﬂ-s ei(afﬂ) %757172'5) _ e*i(affr) %757171'5) C ins sin(a _ ﬂ-)(% —s—1— 7/5)
B Qisinw(% — &) B Sinw(% — &)

s_1_1
Since det 2 ! " (00,€) coincides with the function in (5.6.11), due to Proposition 5.5.1, the

operator in (5.6.12b) is locally Fredholm and, therefore, globally Fredholm if condition (5.6.11) holds.
The determinant of the symbol

s—1—1 ) . 1
det 2, T (00,€) = 27 (5= %) gin2 (s —i€) + e ™ sin’(a — 7) (f —s5—1- i{)
p

is a periodic function with respect to the parameters s and % and vanishes on curves which divide the
strip (1,00) x (0,1) C R? into connected subsets %o, %1, . .. . Due to Corollary 5.6.1, the BVP (5.6.1)
is uniquely solvable for s = 1 and p = 2. Then, due to Proposition 5.5.3, the BVP (5.6.1) is uniquely
solvable for all pairs (s, %) € Ay, provided (1, %) € %. O
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5.7 Model Neumann BVP

In the present section, we investigate model Neumann Boundary value problem, associated with the
BVP (5.1.1) and described in general in the foregoing Section 5.5. We derive an equivalent boundary
integral equation for the model domain (5.7.5) and investigate it.

Results for the model Neumann BVP (5.7.1) (Fredholm criteria, the unique solability) was obtained
in [60,61].

Let us commence with the formulation of the model Neumann BVP associated with the BVP
(5.1.1) in the non-classical setting (5.1.2) at a knot ¢; € .#p (where Neumann conditions collide):

{Au(t) = f(t), teQ,,

5.7.1
(Ovu)T(s) =h(s) on Ty, =RTUR,,, ( )

~ s—1— 1 1
uweEH(Q,), fEH P (Q,), heH, 7(Ia,), 1<p<oo, 53<1+};.

Here the model domain €2, and the boundary Iy, are the same as in Section 5.6 (see Fig. 5.3 on page
141 and formula (5.3.11)). The unit normal vector field v(¢) and the normal derivative 9, are defined
above in (5.3.12). We assume, as above, that « # 7, because for & = 7 we have the case I'; = R and
BVP (5.7.1) is trivially solvable.

As a particular case of Theorem 5.1.1 we get the following

Corollary 5.7.1. The boundary value problems (5.7.1) has a unique solution in the classical weak
settingp =2, s = 1.

s—1—L1 s—L
If the Neuman trace (9,u)"™ = h € W, T (T'y) is known and ut = ¢ € W, *(T',) denotes the
unknown Dirichlet trace, the representation formula (5.6.2) for a solution to BVP (5.7.1) takes the
form

u=Naf+Wap—Vah. (5.7.2)
By applying the Plemelji Formulae (5.4.2) to (5.7.2) we get

1
ut =p=(Naf)t + 3P+ Waop—Va ih, pela.

Since I = rg+ + rg,,, rewrite the obtained equation as follows:

1

1 s—1
5(p—’/‘R+WA,QT]RQQO—T’RQWA,()TRJA,O = H,, H = (8UNAf)+—VA7_1h, @,H S Wp ”(Fa). (5.7.3)

By using representation (5.6.3), similarly to (5.6.6)—(5.6.8), equation (5.7.3) is rewritten as an equiv-
alent system of boundary integral equations on the semi-axes R¥:

1

5%~ TR+ WA 0TR, 2 — Fo(p)he = Hi,

1
5P2 Jarr, Wa o+ 1 — Fo(p)h1 = Ha,
hi =g+ Waorr,g0, h2 = Jarr, WA 0Tr+ 0,

(5.7.4)

Y1 = TR+, Yo 1= JocTRaSOa H1 = TR+H, H2 = JaT']RaH,
~g—1 s—1
©Y1,P2 € Wp p(R+)7 hi,he, Hy, Hs € WP p(R+)‘

Due to formula (5.4.8a), system (5.7.4) of boundary integral equations coincides with the following
system of integral equations of Mellin type:

1 . .
1 — o [ew‘Kem — eizaKei(Zw—a)jIwQ =G,
i B (5.7.5)
Vot o [ Ko — €T K pian-o |ty = G,

~s—1-1 s—1—1
1,2 € Wy, p(R+)7 Gi,G2 € W, p(R+).
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Theorem 5.7.1. Let 1 < p < 00, % <S<1+%.
The model Neumann boundary value problem in the non-classical setting (5.7.1) is Freholm if and
only if the system of boundary integral equation (5.7.5) is Fredholm.

Now we can prove the main theorem of the present section.

Theorem 5.7.2. Let1 < p < oo, —1 —% <s< 1+ %, The Model Neumann BVP in the non-classical

setting (5.7.1) is Fredholm (and the system of boundary integral equations (5.7.5) is Fredholm) if and
only if either « = m or (p,s) = (2,1) or a # 7, (p,s) # (2,1) and the following holds:

2= 3) i (s — i€) + e~ 2" sin®(ov — 1) (% —s5— if) £0, VEER. (5.7.6)

If condition (5.7.6) holds, the subset (%, ) x (1,00) of the Euclidean plane R?, where the pairs
(s,p) range, decomposes into an infinite union %o\ %1 U--- of non-intersecting connected subsets of
regular pairs, for which the BVP (5.7.1) is Fredholm.

If point (1,2) (i.e., s = 1, p = 2) belongs to the connected subset %y, then the BVP (5.7.1) is
uniquely solvable for all pairs (s,p) € %o.

The same unique solvability holds for the system of integral equations (5.7.4).

Proof. The unique solvability of the BVP (5.7.1) in the cases (p,s) = (2,1) and « = 7 are already
proved in Corollary 5.7.1 on page 154 and the Model case II on page 140, resepctively. Thus, we
assume that (p, s) # (2,1), a # .

Let us investigate the Fredholm properties of system (5.7.5). An equivalent task is to study the
Fredholm property of the corresponding operator

1 . . —~ s—1_1
No=1= 5 d[e Ko =Ko i W, TR RY) 5 W TR (RY). (5.7.7a)

For this, it suffices, due to Proposition 5.5.2, to prove the same theorem for the operator

1 ; i ~s—1-1 s—1
N,=1- 5 d[ew‘Kem —€ laKei(Qﬂ—a)] : Hp P (R+) — Hp
i
Here the 2 x 2 matrix d is defined in (5.6.13). B
The symbol of the operator D, in (5.7.7b) on the set I'1, according to formulae (5.5.3a)—(5.5.3c),

reads:

_%(RJF). (5.7.7b)

im(s—1) sinm(s — i€) Cirs sin(a—ﬂ-)(% — s —1f)
s e — 1
s—1-1 sinm(= —1 sinm(= —1
-@a,;ﬂl p(ooag) = . . //Tl(p_ _5) 'ﬂ—(p g) , (578)
—ims SIH(CV ﬂ-)(p $ Zf) i‘n’(s—l) S 7T(8 — ’Lg)
—e p R S
sinw(% —i£) sinw(% —i€)
because
171, 1,5—1—1 . ls—1—1 il —s—ig) _ i2r—a)(f—s—i€)
— e T (00,8) — e T a o P (00, } — _emim(3if)
9i & e (00,§) —e wien—ap (00, €) e Yisin (L)
—iTS ei(a_ﬂ) %—s—i&) - e_i(a_ﬂ—)(%_s_ig) —4iTs SiH(Oé — 71')(%7 — 85— 15)
=€ — 1 - = e - I - ,
2isinm(s; — i) sinm(; — i€)

s_1-1
and for .7, ! " (00,&) cf. (5.6.15).

Since det %5—1—;(00’ &) coincides with the function in (5.7.6), due to Proposition 5.5.1, the op-
erator in (5.7.7a) is locally Fredholm and, therefore, globally Fredholm if condition (5.7.6) holds.
The determinant of the symbol

so1-1 . ‘ 1
det A, T (00,8) = 2757 3) sin? m(s — i) + e ™ sin? (o — ) (= — 5 — Q&)
b
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is a periodic function with respect to the parameters s and % and vanishes on curves which divide the

strip (1,00) x (0,1) C R? into connected subsets %y, %1, - .. . Due to Corollary 5.7.1, the BVP (5.7.1)
is uniquely solvable for s = 1 and p = 2. Then, due to Proposition 5.5.3, the BVP (5.7.1) is uniquely
solvable for all pairs (s, %) € %o, provided (1,1) € %,. O

5.8 Model Mixed BVP and proof of Theorem 5.1.2

In the present section, we investigate model Mixed (Dirichlet—Neumann) Boundary value problem,
associated with the BVP (5.1.1) and described in general in the foregoing Section 5.5. We derive an
equivalent boundary integral equation for the model domain (5.8.7) and investigate it.

Moreover, at the end of this section we prove the main theorem of the present Chapter 5, Theorem
5.1.2.

The results for the model mixed BVP (5.8.1) (Fredholm criteria, the unique solability) were ob-
tained in [68,69]. Similar results for the BVPs with mixed impedance conditions are proved in [18].

Let us commence with the formulation of the model Mixed BVP associated with the BVP (5.1.1) in
the non-classical setting (5.1.2) at a knot ¢; € .#p (where Neumann and Dirichlet conditions collide):

on RT, (5.8.1)

- s—1 -1 1 1
ueH(Q,), feEH P(,), geH, "(RT), heH, "(R,,), 1<p< oo, 5<s<1+2;,

at a knot ¢; € #py (where the Dirichlet and Neumann conditions collide). We assume, as above,
that o # 7, bacause for & = m we have the case I'; = R and the unique solvability of BVP (5.8.1) is
well known.

As a particular case of Theorem 5.1.1 we get the following

Corollary 5.8.1. The boundary value problems (5.8.1) has a unique solution in the classical weak
settingp =2, s =1.

Let go € ]HI‘;,_l/p(I‘a) and hg € Hf,_l_l/p(Fa) be some fixed extensions of the boundary conditions
g€ Hf,_l/p(RJr) and h € Hf,_l_l/p(Ra) in BVP (5.8.1), initially defined on the parts of the boundary
I', = RTUR®. Since the difference between such two extensions belong to the spaces ﬂ;_l/ P(R,) and
HS '~ YP(R+), respectively, we seek two unknown functions ¢ € ﬁ;_l/p(Ra) and ¢ € Hy ' HP(RY),
for which the boundary conditions in (5.8.1) hold on the entire boundary. It is usual to consider
]ﬁl;(R*) and ]ﬁ;(RQ) as subsets of H*(T',,) by extending functions from ]ﬁl;(Rﬂ and fﬂ;(Ra) by 0 to
R, and to R, respectively. Then if u(x) is a solution to the BVP (5.8.1), the following holds:

ut (1) = go(t) + (1) —{ WO +e) i e

ho(t) +(t) if teRT,
t)

(5.8.2)
(Quu)™(t) = ho(t) +(t) = { h( if teR,.

By introducing the data of the boundary value problem (5.8.1) into the representation formula
(5.6.2) of a solution, we get

u(z) = Wu't(z) — VIdyu|t (x) = Wgo + ¢](x) — Vs [ho + ¢](z), 2 € Qa. (5.8.3)
The known and unknown functions in (5.8.3) belong to the following spaces (cf. (5.8.1))

Q€M) hy € HETITVA(T,), o e B P(R,), el mVPRY). (5.8.4)
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Inserting the boundary conditions from (5.8.1) into (5.8.2) and applying the Plemelji formulae
(5.4.2) we get

go(t) + o(t) = ut(t) = %(go(t) +¢(t)) + Wolgo + #](t) = V_1]ho + ¢](2),
ho(t) +4(t) = (Buu) ™ (t) = Vialgo + ] (t) + %(ho(t) + (1) — Wilho +¢](t), t€Tl,.
The obtained system is rewritten in the form

1
5P~ Wop +V_19 = G,

1 .
5@1} +Wiyp—Vio=Hy on T,

(5.8.5)

where

1
Gy = —590 +Wogo—V_iho € HZ_UP(FQ)’

1 % s—1—
Hy = —§h0 +Viigo — Woho S Hp 1 1/p(1“a)_

Since supp ¢ C R, and supp 1 C RT, we restrict the first equation in system (5.8.5) to R, while the
second equation to R*. Let 7, and r, be the corresponding restriction operators: 7o = ro1 = 0.
By restricting system (5.8.5) properly and by applying equalities (5.4.8¢c), we get the equations

1
so+r V_19 =r,Gy on R,,
{290 ¥ 0 (5.8.6)

%¢ —r.Viip=r.Hy on RT.

By applying the operator J,0y = —0;J, (composition of the pull back J, from (5.4.6) and the
tangent derivative 9y from (5.4.7)) to the first equation and using formulae (5.4.9a)—(5.4.9b), we
rewrite system (5.8.6) in the following form:

1
Yo — 77_(_ I:Kiia + Kifia] w = G17

e - (5.8.7)
Vg Ko+ KDL go = Hy on B,

where

wo(t) :== Jo0pp(t) = —0Orp(t cos a, tsin oz)T, Hy:=2r Hy, G1:=2J,0,Gq, (5.8.8)
QOan/}a G17H1 € Hzilil/p(R+)'

Theorem 5.8.1. Let 1 < p < o0 and 1/p < s <1+ 1/p. A solution u € H(Q0) to the mized

BVP (5.8.1) is represented by formula (5.8.3), where the unknown functions 1, pg € ]ﬁl;fl*l/p(R"’)

are solutions to system (5.8.7) and ¢ € ]ﬁ[ffl*l/p(Ru) is recovered from po(t) = Opp4(t) (see (5.8.8))

by the formula
t

p(x) = p(t cos a,t sin a) := —/%(7) dr, teRT, (5.8.9)
0

where x := (t cos a,t sin )T € R,
Vice versa: if the functions ¥,pq € Hffl*l/p(R*) are solutions to system (5.8.7) and ¢ €

ﬁ;fl/p(RQ) is recovered by formula (5.8.9), the function u € H*(Qy,), represented by formula (5.8.3),
is a solution to the model mized BVP (5.8.1).

Proof. Every step in deriving equation system (5.8.7) from the model mixed BVP (5.8.1) is reversible
and the one-to-one correspondence of solutions to the equation system (5.8.7) and solution to the
model mixed BVP (5.8.1), established by representation formula (5.8.3), can easily be checked. O
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Now we can prove the main theorem of the present section.

Theorem 5.8.2. Let 1 < p < o0, % <s<1l+4 %. The Model Mixed BVP in the non-classical setting

(5.8.1) is Fredholm (and the system of boundary integral equations (5.8.7) is Fredholm) if and only if
either (p,s) = (2,1) or (p,s) # (2,1) and the following holds:

2 (5=1/P) gin? (s — i€) — cos?[m/p + as —i(m — @)€] #0  for all £ €R. (5.8.10)

If condition (5.8.10) holds, the subset (%,oo) X (1,00) of the Euclidean plane R?, where the pairs
(s,p) range, decomposes into an infinite union %o\ %1 U--- of non-intersecting connected subsets of
regular pairs, for which the BVP (5.8.1) is Fredholm.

If point (1,2) (i.e., s =1, p = 2) belongs to the connected subset %y, then BVP (5.8.1) is uniquely
solvable for all pairs (s,p) € Zo.

The same unique solvability holds for the system of integral equations (5.8.7).

Proof. The unique solvability of the BVP (5.7.1) in the case (p,s) = (2,1) is already proved in
Corollary 5.8.1 on page 156. Thus, we assume that (p,s) # (2, 1).
Let us rewrite system (5.8.7) in the matrix form

B,% =G, (5.8.11)

where

I A, }

1
B, = { A1 Ay = — Kl + K],

2w

and investigate the operator B, : Hy ' Y/P(R+) — H3 ' "/?(R+) with the help of Theorem 1.4.2.
For this, we have to write the symbol @'~ /% (w) of A, of the operator By, in (5.7.7b) on the set T';.
To this end, note that for ¢; = ¢, = €' and ¢; = c_ = e~** we can choose v = ¢?, 0 < # < 7, such
that arg(cyy) = £a + S < 0 provided g <a<wm If0<a< g, there is needed a couple v = €%,
0 =¢e 0< 6 <m 0< 0 <m,such that arg(c,v) = a+ 8 < 0 and arg(c1yo) = a + By < 0. Since
these values exist but there choice does not influence the symbol of operators, we drop further details
about them.

The symbol of the operator D,, in (5.7.7b) on the set 'y, according to formulae (5.5.3a)—(5.5.3c),
reads:

[ T (00,8) iy TP (00,6)

e@sflfl/p , — X ’
wr OO o) 0 6)

_oin(s=1/p) sin(s — i&) cos[m/p + as —i(m — a)€]
_ sinm(1/p — i) sinm(1/p — i€)
T | _cos[r/p+as —i(m —a)f _pim(s—1/p) sinm(s —i&) |’ (5.8.12)
sinmw(1/p — i) sinm(1/p — i)

for w=(00,&) €Ty, 1/p<s<l+1/p, 1<p< oo,

because (cf. (5.5.3c))

A T ((00,)) = o7 [ AT T (00,6) AN 00,6

= 9 [Teivp i(2m—a),p
=7 (1/p—i€)i g—ia(ig+s) | om(1/p=i€)iialic+s)
2sinw(1/p — i)
cos[m/p + as —i(m — a)f]
- sinm(1/p — i)
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and (cf. (5.6.15))

b (o0 ) = —ein(s—1/p) ST ZiE)
e sin m(1/p — i€)

Since
e2m(s=1/P) in? 1r(s — i€) — cos?[n/p + as — i(m — a)€]
sin? 7(1/p — i€)

due to Proposition 5.5.1 and condition (5.8.10), the operator in (5.7.7a) is locally Fredholm and,
therefore, globally Fredholm provided condition (5.8.10) holds.

The determinant of the symbol det 42{55171/;;((007 ¢) in (5.8.10) vanishes on curves which divide

det %j,;l_l/p((oq &) =

)

the strip (1,00) x (0,1) C R? into connected subsets %o, %1, ... . Due to Corollary 5.8.1, the BVP
(5.8.1) is uniquely solvable for s = 1 and p = 2. Then, due to Proposition 5.5.3, the BVP (5.8.1) is
uniquely solvable for all pairs (s, 1/p) € %y, provided (1, 1) € Zo. O

Next, we are going to prove Theorem 5.1.2. For this we need one auxiliary result, formulated in
Corollary 5.8.2 and which is a direct consequence of Theorem 5.3.1.

Corollary 5.8.2 (Quasi Localization Principle). The initial mized boundary value problem (5.1.1) in
the non-classical setting is Fredholm if and only if the boundary value problems (5.6.1), (5.7.1) and
(5.8.1) are Fredholm in the non-classical setting for all knots c; € Mr.

Proof of Theorem 5.1.2. Due to the Quasi Localization Principle, Corollary 5.8.2, the BVP (5.1.1) is
Fredholm if local representatives (the corresponding BVPs (5.6.1), (5.7.1) and (5.8.1)) at the knots
¢; € M = MpU MNVU MApn are all Fredholm. Due to Theorem 5.6.2, Theorem 5.7.2 and Theorem
5.8.2, conditions (5.1.7), (5.1.8) and (5.1.9) are necessary and sufficient for the corresponding Dirichlet,
Neumann and Mixed BVPs to be Fredholm in appropreate non-classical settings.

The determinants of the symbols in (5.1.7), (5.1.8) and (5.1.9) are periodic functions with respect
to the parameters s and 1/p and vanish on curves which divide the strip (1,00) x (0,1) C R? into

connected subsets %o, %1, ... . Due to Theorem 2.1.1, the BVP (5.1.1) is uniquely solvable for s = 1
and p = 2. Then, due to Proposition 5.5.3, the BVP (5.1.1) is uniquely solvable for all pairs (s, 1/p) €
Ho, provided (1, %) € %. O
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