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Abstract. The boundary value problem is considered for the abstract

functional di�erential equation Lx = f , where L : D ! B is a linear

operator, B is a Banach space, and D is isomorphic to the direct product

B � R

n

. The Green operator is constructed, continuous dependence on

parameters is studied. The obtained results are applied to ordinary, impulse

and singular equations.
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reziume. naSromSi ganxilulia sasazGvro amocana Lx = f abstraq-

tuli Punqcionalur-diPerencialuri gantolebisaTvis, sadac L : D !

B CrPivi operatoria, B -banaxis sivrcea, xolo D izomorPulia B�R

n

pirdapiri namravlisa. agebulia grinis operatori, SesCavlilia amonax-

snis parametrze uCKvetad damokidebuleba. miGebuli Sedegebi gamoKe-

nebulia hveulebrivi, impulsuri da singularuli gantolebebisaTvis.
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PREFACE

The equation Lx = f with a linear operator L acting from the space

D

n

of absolutely continuous functions x : [a; b] ! R

n

into the space L

n

of summable functions f : [a; b] ! R

n

has been thoroughly studied in the

works of the Perm Seminar. The results of these investigations are system-

atized in the book [1]. Such a generalization of the ordinary di�erential

equation

(Lx)(t)

def

= _x(t) + P (t)x(t) = f(t); t 2 [a; b]; (0.1)

covers many classes of equations containing the derivative of the unknown

function, for instance, integro-di�erential equations and equations with de-

viated argument as well as their hybrids and so on. The theory of the

equation Lx = f with the linear operator L : D

n

! L

n

is based upon the

isomorphism between the space D

n

and the direct product L

n

�R

n

. The

isomorphism may be de�ned by

x(t) =

t

Z

a

z(s)ds+ �; x 2 D

n

; fz; �g 2 L

n

�R

n

:

As it turned out, the replacement of the space L

n

by an arbitrary Banach

space B does not violate validity of the fundamental theorems. Thus, a

further generalization arises in the form of the theory of abstract functional

di�erential equation

Lx = f (0.2)

with a linear operator L : D ! B, where B is a Banach space and D is

isomorphic to the direct product B�R

n

(D ' B�R

n

).

The space W

n

of the functions x : [a; b] ! R

1

with absolutely contin-

uous derivative x

(n�1)

is isomorphic to the direct product L

1

� R

n

. The

isomorphism may be de�ned on the base of the representation

x(t) =

t

Z

a

(t� s)

n�1

(n� 1)!

x

(n)

(s)ds+

n�1

X

k=0

(t� a)

k

k!

x

(k)

(a)

of the element x 2W

n

. Thus, the equation of the n-th order

(Lx)(t)

def

= x

(n)

(t) +

n�1

X

k=0

p

k

(t)x

(k)

[h

k

(t)] = f(t); t 2 [a; b];

x

(k)

(�) = 0; if � 62 [a; b]; k = 0; 1; : : : ; n� 1;

as well as its generalization of the form

(Lx)(t)

def

= x

(n)

(t) + q(t)x

(n)

[g(t)] +



4

+

n�1

X

k=0

b

Z

a

x

(k)

(s)d

s

r

k

(t; s) = f(t); t 2 [a; b];

x

(n)

(�) = 0; if � 62 [a; b];

are the equations (0.2) in the spaceW

n

.

The space DS

n

(m) of the functions x : [a; b] ! R

n

permitting �nite

discontinuity at the �xed points t

1

; : : : ; t

m

2 (a; b) and absolutely continuous

on the intervals [a; t

1

), [t

1

; t

2

); : : : , [t

m

; b] is isomorphic to L

n

�R

n(m+1)

.

The isomorphism is de�ned by

x(t) =

t

Z

a

z(s)ds+ �

0

+

m

X

i=1

�

[t

i

;b]

(t)�

i

;

z 2 L

n

; f�

0

; �

1

; : : : ; �

m

g 2 R

n(m+1)

;

where �

e

denotes the characteristic function of the set e.

Any space D isomorphic to B�R

n

forms its own proper class of equa-

tions. Some examples of nontraditional spaces isomorphic to the product

B �R

n

are provided in [2]. It is shown there in particular that the space

of functions x : [a; b] ! R

1

which have \quasi-derivatives" up to the n-th

order inclusively is isomorphic to L

1

�R

n

. Thus, the linear equation with

quasi-derivatives is one of the form (0.2).

The theory of abstract functional di�erential equations considers wide

classes of equations from a single point of view. During the last ten-year

period, this theory found various applications in studying old and new prob-

lems due to possibility of choosing proper space D ' B�R

n

for each class

of problems. A successful choice of the space permits in virtue of the general

theory direct using of standard schemes and theorems of analysis in such

cases, where we have been forced before to invent special devices and put

severe restrictions connected with application of these devices.

It is relevant to emphasize the principal di�erence between the gener-

alization of the ordinary di�erential equation in the form of the abstract

functional di�erential equation and the \ordinary di�erential equation in

Banach spaces". The equation (0.1) is de�ned by the operator L : D

n

! L

n

belonging to the class of the so called \local operators" [3, 4]. An operator L

in a functional space is called local, if the value of the image f(t) = (Lx)(t)

in a neighborhood of each point t depends only on the value of the preim-

age x(�) in the neighborhood of the same point t. The generalization in

the theory of ordinary di�erential equations in Banach spaces consists in

replacement of the �nite dimensional space R

n

of the values x(t) of the

unknown function x by an arbitrary Banach space. In this connection, the

property of L to be a local operator keeps. In the theory of abstract func-

tional di�erential equation the generalization consists in replacement of the
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space L

n

by an arbitrary Banach space B and in replacement of the local

operator L : D

n

! L

n

by an arbitrary linear operator L : D! B.

The main notation.

R

n

space of n-dimensional real vectors with the norm j�j.

k � k

X

norm of an element of the normed space X.

kAk

X!Y

norm of an operator A : X! Y. Usually the symbol

\X ! Y " is ommited.

A

�

operator adjoint to the operator A.

R(A) range of values of the operator A.

D(A) domain of de�nition of the operator A.

dimM dimension of the linear set M .

kerA null-set (the kernel) of the operator A.

indA index of the operator A : indA = dimkerA �

dimkerA

�

.

[A

1

; A

2

] linear operator acting from the space X into the

product Y

1

� Y

2

by [A

1

; A

2

]x = fA

1

x;A

2

xg, x 2 X ,

A

1

x 2 Y

1

, A

2

x 2 Y

2

.

fA

1

; A

2

g linear operator acting from the product of the spaces

X

1

�X

2

into Y by fA

1

; A

2

gfx

1

; x

2

g = A

1

x

1

+A

2

x

2

,

x

1

2 X

1

, x

2

2 X

2

.

I identity operator.

E identity matrix or E

n

under the necessity to empha-

size the dimension of the identity n� n-matrix.

< '; x >, 'x value of the functional ' on the element x.

S

r

composition operator de�ned by

(S

r

x)(t) =

8

<

:

x[r(t)]; if r(t) 2 [a; b];

0; if r(t) 62 [a; b]:

�

e

(�) characteristic function of the set e :

�

e

=

8

<

:

1; if t 2 e;

0; if t 62 e:

�

ij

Kronecker symbol: �

ij

=

8

<

:

1; if i = j;

0; if i 6= j:
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CHAPTER I

LINEAR ABCTRACT

FUNCTIONAL DIFFERENTIAL EQUATIONS

x

1. Preliminary Knowledge from the Theory of Linear

Equations in Banach Spaces

The main assertions of the theory of linear abstract functional-di�erential

equations are based on the theorems about linear equations in Banach

spaces. We give here without proofs certain results of the book [5] which

we will need below. We formulate some of these assertions not in the most

general form, but in the form satisfying our aims. The enumeration of

the theorems in brackets means that the assertion either coincides with the

corresponding result of the book [5] or is only an extraction from this result.

We will use the following notation.

X, Y, Z are Banach spaces; A, B are linear operators; D(A) is a domain

of de�nition of A; R(A) is a range of values of A; A

�

is an operator adjoined

to A. The set of solutions of the equation Ax = 0 is said to be a null space

or a kernel of A and is denoted by kerA. The dimension of a linear set M

is denoted by dimM .

Let A be acting from X into Y. The equation

Ax = y (1.1)

(the operator A) is said to be normal solvable, if the set R(A) is closed;

(1.1) the operator A is said to be a Noether equation, if it is a normal

solvable one and besides dimkerA <1 and dimkerA

�

<1. The number

indA = dimkerA� dimkerA

�

is said to be an index of the operator A (the

equation (1.1)). If A is a Noether operator and indA = 0, the equation

(1.1) (the operator A) is said to be a Fredholm one. The equation A

�

' = g

is said to be an equation, adjoined to (1.1).

Theorem 1.1 (Theorem 3.2). An operator A is normal solvable if and

only if the equation (1:1) is solvable for such and only such right hand side y

which is orthogonal to all the solutions of the homogenous adjoined equation

A

�

' = 0.

Theorem 1.2 (Theorem 16.4). The property of being Noether operator is

stable in respect to completely continuous perturbations. By such perturba-

tions, the index of the operator does not change.

Theorem 1.3 (Theorem 12.2). Let A be acting from X into Y and D(B)

be dense in Y. If A and B are Noether operators, BA is also a Noether one

and ind(BA) = indA+ indB.

Theorem 1.4 (Theorem 15.1). Let BA be a Noether operator and D(B) �

R(A). Then B is a Noether operator.
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Theorem 1.5 (Theorem 2.4 and Lemma 8.1). Let A be de�ned on X and

acting into Y. A is normal solvable and dimkerA

�

= n if and only if the

space Y is representable in the form of a direct sum Y = R(A)�M

n

, where

M

n

is a �nite-dimensional subspace of the dimension n.

Theorem 1.6 (Theorem 12.2). Let D(A) � X, M

n

be a n-dimensional

subspace of X and D(A) \ M

n

= f0g. If A is a Noether operator, then

its linear extension

e

A on D(A) �M

n

is also a Noether operator. Besides

ind

e

A = indA+ n.

Theorem 1.7. Let a Noether operator A be de�ned on X and acting into

Y, D(B) = Y, BA : X ! Z is a Noether operator. Then B is also a

Noether operator.

Proof. Thanks to Theorem 1.4, we are in need only of the proof of the case

R(A) 6= Y. From this Theorem 1.4 we obtain also that restriction

�

B of B

on R(A) is a Noether operator.

Let dimkerA

�

= n. Then we have from Theorem 1.5 that

Y = R(A)�M

n

= D(

�

B)�M

n

;

where dimM

n

= n.

From Theorem 1.6 we see that B is a Noether operator as a linear ex-

tension of

�

B on Y. �

Let a linear operator A acting from a direct product X

1

�X

2

into Y be

de�ned by a pair of operators A

1

: X

1

! Y and A

2

: X

2

! Y in such a

way, that

Afx

1

; x

2

g = A

1

x

1

+A

2

x

2

; x

1

2 X

1

; x

2

2 X

2

;

where A

1

x

1

= Afx

1

; 0g, A

2

x

2

= Af0; x

2

g. We will denote such an operator

by A = fA

1

; A

2

g.

Let a linear operator A acting from X into a direct product Y

1

�Y

2

be

de�ned by a pair of operators A

1

: X ! Y

1

and A

2

: X ! Y

2

in such a

way, that Ax = fA

1

x;A

2

xg, x 2 X. We will denote such an operator by

A = [A

1

; A

2

].

The theory of linear abstract functional di�erential equation is using

some operators de�ned on a product B �R

n

or acting in such a product.

We will formulate here certain assertions about such operators, reserving as

far as possible the notations from [1].

A linear operator f�;  g acting from a direct product B � R

n

of the

Banach spaces B and R

n

into a Banach space D is de�ned by a pair of

linear operators � : B! D and Y : R

n

! D in such a way that

f�; Y gfz; �g = �z + Y �; z 2 B; � 2 R

n

:



8

A linear operator [�; r] acting from a spaceD into a direct productB�R

n

is de�ned by a pair of linear operators � : D! B and r : D ! R

n

in such

a way that

[�; r]x = f�x; rxg; x 2 D:

If the norm in the space B � R

n

is de�ned in an appropriate way, for

instance by







fz; �g







B�R

n

= kzk

B

+ j�j;

the space B�R

n

will be a Banach one.

If a bounded operator f�; Y g : B�R

n

! D is an inverse to a bounded

operator [�; r] : D! B�R

n

, then

x = ��x+ Y rx; x 2 D; (1.2)

�(�z + Y �) = z, r(�z + Y �) = beta, fz; �g 2 B�R

n

.

Hence

�� + Y r = I; �� = I; �Y = 0; r� = 0; rY = I:

We will identify the �nite-dimensional operator Y : R

n

! D with such

a vector (y

1

; : : : ; y

n

), y

i

2 D, that

Y � =

n

X

i=1

y

i

�

i

; � = col

�

�

1

; : : : ; �

n

	

:

We denote the components of a vector-functional r by r

1

; : : : ; r

n

.

If l = fl

1

; : : : ; l

m

g : D ! R

m

is a linear vector-functional and X =

(x

1

; : : : ; x

n

) is a vector with components x

i

2 D, then lX denotes the

m�n-matrix whose columns are the values of the vector-functional l on the

components of X : lX = (l

i

x

j

), i = 1; : : : ;m; j = 1; : : : ; n.

The operators �, Y , �, r for the spaces suggested above in the Introduc-

tion have the following forms.

For the space D

n

,

(�z)(t) =

t

Z

a

z(s)ds; Y = E; �x = _x; rx = x(a);

where E is the identical n� n-matrix.

For the spaceW

n

,

(�z)(t) =

t

Z

a

(t� s)

n�1

(n� 1)!

z(s)ds; Y =

�

1; t� a; : : : ;

(t� a)

n�1

(n� 1)!

�

;

�x = x

(n)

; rx =

�

x(a); _x(a); : : : ; x

(n�1)

(a)

	

:
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For the space DS

n

(m),

(�z)(t) =

t

Z

a

z(s)ds; Y =

�

E;E � �

[t

1

;b]

(t); : : : ; E � �

[t

m

;b]

(t)

�

;

�x = _x; rx =

�

x(a);�x(t

1

); : : : ;�x(t

m

)

	

;

�x(t

i

) = x(t

i

)� x(t

i

� 0):

Theorem 1.8. A linear bounded operator f�; Y g : B �R

n

! D has the

bounded inverse if and only if the following conditions are satis�ed.

a) The operator � : B! D is a Noether one and ind� = �n.

b) dim ker� = 0.

c) If �

1

; : : : ; �

n

is a basis for ker�

�

and � = [�

1

; : : : ; �

n

], then det�Y 6= 0.

Proof. Su�ciency. From a) and b) it follows that dim ker�

�

= n. By virtue

of Theorem 1.5, D = R(�)�M

n

, where dimM

n

= n. It follows from c) that

any nontrivial linear combination of the elements y

1

; : : : ; y

n

does not belong

to R(�), therefore M

n

= R(Y ). Thus D = R(�)�R(Y ) and consequently

the operator f�; Y g has its inverse by virtue of Banach theorem.

Necessity. From invertibility of f�; Y g, we have D = R(�)�R(Y ). Con-

sequently the operator � is normally solvable by virtue of Theorem 1.5 and

dimker�

�

= n. Besides dimker� = 0. Therefore ind� = �n. Assumption

det�Y = 0 leads to the conclusion that a nontrivial combination of the

elements y

1

; : : : ; y

n

belongs to R(�). �

Theorem 1.9. A linear bounded operator [�; r] : D ! B � R

n

has a

bounded inverse if and only if the following conditions are satis�ed.

a) The operator � : D! B is a Noether one and ind � = n.

b) dim ker � = n.

c) If x

1

; : : : ; x

n

is a basis of ker � and X = (x

1

; : : : ; x

n

), then det rX 6= 0.

Proof. Su�ciency. From a) and b) it follows that dimker �

�

= 0. Thus

R(�) = B. Each solution of the equation �x = z has the form

x =

n

X

i=1

c

i

x

i

+ v;

where c

i

= const, i = 1; : : : ; n, and v is any solution of this equation. By

virtue of c), the system

�x = z; rx = �

has a unique solution for each pair z 2 B, � 2 R

n

. Consequently the

operator [�; r] has the bounded inverse.

Necessity. Let [�; r]

�1

= f�; Y g. From the equality �� = I , by virtue

of Theorem 1.7 it follows that � is a Noether operator and by virtue of
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Theorem 1.3, ind � = n. As far as R(�) = B, we have dim ker �

�

= 0 and

consequently dimker � = n. If det rX = 0, then the homogeneous system

�x = 0; rx = 0

has a nontrivial solution. This gives a contradiction to the invertibility of

the operator [�; r]. �

x

2. Linear Equation and Linear Boundary Value Problem

The Cauchy problem

(Lx)(t)

def

= _x(t)� P (t)x(t) = f(t); x(a) = �; t 2 [a; b];

is uniquely solvable for � 2 R

n

and any summable f if the elements of the

n� n-matrix P are summable. Thus, the representation of the solution

x(t) = X(t)

t

Z

a

X

�1

(s)f(s)ds+X(t)�

of the problem (the Cauchy formula), where X is a fundamental matrix

such that X(a) is the identity matrix, is also a representation of the general

solution of the equation Lx = f . The Cauchy formula is the base for

investigations on various problems in the theory of ordinary di�erential

equations. The Cauchy problem for functional di�erential equation is not

solvable generally speaking, but some boundary value problems may be

solvable. Therefore the boundary value problem plays the same role in the

theory of functional di�erential equations as the Cauchy problem does in

the theory of ordinary di�erential equations.

We will call the equation

Lx = f (2.1)

a linear abstract functional-di�erential equation if L : D ! B is a linear

operator, D and B are Banach spaces and the space D is isomorphic to the

direct product B�R

n

(D ' B�R

n

).

Let J = f�; Y g : B�R

n

! D be a linear isomorphism and J

�1

= [�; r].

Everywhere below the norms in the spaces B�R

n

and D are de�ned by







fz; �g







B�R

n

= kzk

B

+ j�j; kxk

D

= k�xk

B

+ jrxj:

By such a de�nition of the norms, the isomorphism J is an isometrical one.

Therefore







f�; Y g







B�R

n

!D

= 1;







[�; r]







D!B�R

n

= 1:

Since

k�zk

D

=







f�; Y gfz; 0g







D

�







f�; Y g













fz; 0g







B�R

n

= kzk

B

;
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k�k

B!D

= 1. Analogously it is established that kY k

R

n

!D

= 1. Next we

have

k�xk

B

� kxk

D

and, if rx = 0,

k�xk

B

= kxk

D

:

Therefore k�k

D!B

= 1. Analogously krk

D!R

n

= 1.

We will assume that the operator L : D! B is bounded. Applying L to

the both parts of (1.2), we get the decomposition

Lx = Q�x+Arx: (2.2)

Here Q = L� : B ! B is a principal part, and A = LY : R

n

! B is a

�nite-dimensional part of L.

As examples of (2.1) in the case where D is a space D

n

of absolutely

continuous functions x : [a; b] ! R

n

and B is a space L

n

of summable

functions z : [a; b]! R

n

, we can take an ordinary di�erential equation

_x(t)� P (t)x(t) = f(t); t 2 [a; b]; (2.3)

where the columns of the matrix P belong to L

n

, or an integro-di�erential

equation

_x(t)�

b

Z

a

H

1

(t; s) _x(s)ds�

b

Z

a

H(t; s)x(s)ds = f(t); t 2 [a; b]: (2.4)

We will assume the elements h

ij

(t; s) of the matrix H(t; s) to be measurable

on [a; b] � [a; b], the functions

R

b

a

h

ij

(t; s)ds to be summable on [a; b], and

the integral operator

(H

1

z)(t) =

b

Z

a

H

1

(t; s)z(s)ds

on L

n

into L

n

to be completely continuous. The corresponding operators

L for these equations have the representation in the form (2.2)

(Lx)(t) = _x(t)� P (t)

t

Z

a

_x(s)ds � P (t)x(a)

for (2.3), and

(Lx)(t) = _x(t)�

b

Z

a

�

H

1

(t; s) +

b

Z

s

H(t; �)d�

�

_x(s)ds�

b

Z

a

H(t; s)ds x(a)

for (2.4).
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Theorem 2.1. An operator L : D ! B is a Noether one if and only if

the principal part Q : B ! B of L is a Noether operator. In this case,

indL = indQ+ n.

Proof. If L is a Noether operator, Q = L� is also Noether as the product

of Noether operators and indL = indQ+ n (Theorems 1.8 and 1.3).

If Q is a Noether operator, Q� is also Noether. Consequently L = Q�+Ar

is also Noether (Theorem 1.9 and 1.2). �

Due to Theorem 2.1, the equality indL = n is equivalent to the fact that

Q is a Fredholm operator. The operator Q : B ! B is a Fredholm one if

and only if it is representable in the form Q = P

�1

+ V (Q = P

�1

1

+ V

1

),

where P

�1

is an inverse to a bounded operator P and V is a completely

continuous operator (P

�1

1

is an inverse to the bounded P

1

and V

1

is a �nite-

dimensional operator) [6]. An operator Q = (I+V ) : B! B is a Fredholm

one, if a certain degree V

m

of V is completely continuous [6]. If the operator

V itself is completely continuous, the operator Q = I + V is said to be a

canonical Fredholm operator.

In the above given examples Q = I�K, where K is an integral operator.

For (2.3),

(Kz)(t) =

t

Z

a

P (t)z(s)ds

and it is a completely continuous operator. For (2.4),

(Kz)(t) =

b

Z

a

�

H

1

(t; s) +

b

Z

s

H(t; �)d�

�

z(s)ds:

Here K

2

is a completely continuous operator. The property of being com-

pletely continuous of these operators may be established by V. Maksimov's

Theorem 6.1 [7, 1] which is given below.

Theorem 2.2. Let L : D! B be a Noether operator, indL = n. Then

dimkerL � n and dimkerL = n if and only if the equation (2:1) is solvable

for each f 2 B.

Proof. Recall that dim kerL�dimkerL

�

= n. Besides the equation Lx = f

is solvable for each f 2 B if and only if dimkerL

�

= 0 (Theorem 1.1). �

We call the vector X = (x

1

; : : : ; x

�

) whose components constitute a basis

for the kernel of L the fundamental vector of the equation Lx = 0 and the

components x

1

; : : : ; x

�

we call the fundamental system of solutions of this

equation.

Let l = [l

1

; : : : ; l

m

] : D ! R

m

be a linear bounded vector-functional,

� = colf�

1

; : : : ; �

m

g 2 R

m

. The system

Lx = f; lx = � (2.5)
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is called a linear boundary value problem.

If R(L) = B and dimkerL = n, the question of solvability of (2.5) is the

one of solvability of a linear system of algebraic equations with the matrix

lX = (l

i

x

j

), i = 1; : : : ;m; j = 1; : : : ; n. Indeed, since the general solution

of the equation Lx = f has the form

x =

n

X

j=1

c

j

x

j

+ v;

where v is any solution of this equation, c

1

; : : : ; c

n

are arbitrary constants,

the problem (2.5) is solvable if and only if the algebraic system

n

X

j=1

l

i

x

j

c

j

= �

i

� l

i

v; i = 1; : : : ;m;

in respect of c

1

; : : : ; c

n

is solvable. In such a way the problem (2.5) has a

unique solution for each f 2 B, � 2 R

m

if and only ifm = n and det lX 6= 0.

The determinant det lX is said to be the determinant of the problem (2:5).

By applying the operator l to the two parts of the equality (1.2), we get

the decomposition

lx = ��x+	rx; (2.6)

where � : B ! R

m

is a linear bounded vector-functional. We will denote

the matrix de�ned by the linear operator 	 : R

n

! R

m

also by 	.

Using the representations (2.2) and (2.6), we can rewrite the problem

(2.5) in the form of the equation

�

Q A

� 	

��

�x

rx

�

=

�

f

�

�

: (2.5)

The operator

�

Q

�

�

�

A

�

	

�

�

: B

�

� (R

m

)

�

! B

�

� (R

n

)

�

is adjoint to the operator

�

Q A

� 	

�

: B�R

n

! B�R

m

:

Taking into account the isomorphism between the spaces B

�

� (R

n

)

�

and

D

�

, we therefore call the equation

�

Q

�

�

�

A

�

	

�

��

!




�

=

�

g

�

�

to be adjoint to the problem (2.5).

Lemma 2.1. The operator [�; l] : D ! B � R

m

is a Noether one with

ind[�; l] = n�m.
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Proof. We have [�; l] = [�; 0] + [0; l], where the symbol \0" denotes a null-

operator on the corresponding space. The operator [0; l] : D ! B�R

m

is

compact because the �nite-dimensional operator l : D ! R

m

is compact.

Compact perturbations does not change the index of the operator (Theorem

1.2). Therefore it is su�cient to prove Lemma only for the operator [�; 0].

The direct product B � f0g is the range of values of [�; 0]. The homo-

geneous adjoint equation to the problem [�; 0]x = ff; 0g is reducible to one

equation ! = 0 in the space B

�

� (R

m

)

�

. The solutions of this equation are

the pairs f0; 
g. Therefore dimker[�; 0]

�

= m.

Thus [�; 0] : D! B�R

m

is a Noether operator with ind[�; 0] = n�m. �

Rewrite the problem (2.5) in the form of one equation

[L; l]x = ff; �g: (2.5)

Theorem 2.3. The problem (2:5) is a Noether one if and only if the prin-

cipal part Q : B ! B of L is a Noether operator and also ind[L; l] =

indQ+ n�m.

Proof. The operator [L; l] has the representation

[L; l] =

�

Q 0

0 I

�

[�; l] + [Ar; 0];

where I : R

m

! R

m

is an identical operator, and the symbol \0" denotes

the null operator on the corresponding space. Indeed,

�

Q 0

0 I

�

[�; l]x+ [Ar; 0]x =

�

Q 0

0 I

�

colf�x; lxg+ colfArx; 0g =

= colfQ�x+Arx; lxg:

The operator Q : B! B is Noether if and only if the operator

�

Q 0

0 I

�

: B�R

m

! B�R

m

is Noether with

ind

�

Q 0

0 I

�

= indQ:

Therefore the operator

�

Q 0

0 I

�

[�; l] : D! B�R

m

is a Noether one if and only if Q is a Noether operator and also

ind

�

Q 0

0 I

�

[�; l] = ind

�

Q 0

0 I

�

+ ind[�; l] = indQ+ n�m

(Theorems 1.3 and 1.7). The product Ar : D ! B is compact. Hence the

operator [Ar; 0] : D! B�R

m

is also compact. Now we get the conclusion
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of the Theorem from the fact that compact perturbation does not violate

the property of being Noether operator and does not change the index. �

It should be noted the following Corollaries from Theorem 2.3 under the

assumption of L being a Noether operator.

Corollary 2.1. The problem (2:5) is a Fredholm one if and only if indQ =

m� n.

Corollary 2.2. The problem (2:5) is solvable if and only if the right hand

side ff; �g is orthogonal to all the solutions f!; 
g of the homogeneous ad-

joint equation

Q

�

! +�

�


 = 0;

A

�

! +	

�


 = 0:

The condition of being orthogonal has the form

h!; fi+ h
; �i = 0:

Everywhere below we assume that the operator L is Noether with indL =

n which means that Q is a Fredholm operator. Under such an assumption,

by virtue of Corollary 2.1 the problem (2.5) is a Fredholm one if and only

if m = n.

The functionals l

1

; : : : ; l

m

are assumed to be linear independent.

We will call the special case of (2.5) when l = r a principal boundary

value problem. The equation [�; r]x = ff; �g is just the problem which is

the base of the isomorphism J

�1

= [�; r] between D and B�R

n

.

Theorem 2.4. The principal boundary value problem

Lx = f; rx = � (2.7)

is uniquely solvable if and only if the principal part Q : B ! B of L has

the bounded inverse Q

�1

: B ! B. The solution x of (2.7) admits the

representation

x = �Q

�1

f + (Y � �Q

�1

A)�: (2.8)

Proof. Using the decomposition (2.2), we can rewrite (2.7) in the form

Q�x+Arx = f; rx = �:

If Q is invertible, then

�x = Q

�1

f �Q

�1

A�:

An application to this equality of the operator � yields (2.8) because �� =

I � Y r.

If Q is not invertible and y is a nontrivial solution of the equation Qy = 0,

the homogeneous problem

Lx = 0; rx = 0
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has a nontrivial solution x, for instance x = �y. �

From (2.8) one can see that the vector X = Y � �Q

�1

A is fundamental

and also rX = E (Here A denotes the vector defying the �nite-dimensional

operator A : R

n

! B).

Theorem 2.5. The following assertions are equivalent.

a) R(L) = B.

b) dim kerL = n.

c) There exists a vector-functional l : D ! R

n

such that the problem

(2:5) is uniquely solvable for each f 2 B, � 2 R

n

.

Proof. The equivalence of the assertions a) and b) was established while

proving Theorem 2.2.

Let dimkerL = n and l = [l

1

; : : : ; l

n

], the system l

1

; : : : ; l

n

be biorthogo-

nal to the basis x

1

; : : : ; x

n

of the kernel of L : l

i

x

j

= �

ij

, i; j = 1; : : : ; n and

�

ij

be the Kronecker symbol. Then the problem (2.5) with such l has the

unique solution

x = X(�� lv) + v;

where X = (x

1

; : : : ; x

n

) and v is any solution of Lx = f . This is seen by

taking into account that lX = E. Conversely, if (2.5) is uniquely solvable

for each f and �, then the solutions of the problems

Lx = 0; lx = �

i

; �

i

2 R

n

; i = 1; : : : ; n;

can be taken as the basis x

1

; : : : ; x

n

provided the matrix (�

1

; : : : ; �

n

) is

invertible. Thus the equivalence of the assertions b) and c) is proved. �

x

3. Green Operator

We will consider here the boundary value problem

Lx = f; lx = � (3.1)

under the assumption that the dimension m of l (the number of the bound-

ary conditions) is equal to n. By virtue of Corollary 2.2, such a condition

is necessary for unique solvability of the problem (3.1). Recall that we as-

sume L to be a Noether operator with indL = n (indQ = 0). If m = n,

then the problem (3.1) is Fredholm ([L; l] : D ! B � R

n

is a Fredholm

operator). Consequently, for this problem the assertions \the problem has

a unique solution for some right hand side ff; �g (the problem is uniquely

solvable)", \the problem is solvable for each ff; �g (the problem is solv-

able everywhere)", \the problem is everywhere and uniquely solvable" are

equivalent.

Let (3.1) be uniquely solvable and denote [L; l]

�1

= fG;Xg. Then the

solution x of the problem ( 3.1) has the representation

x = Gf +X�:
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The operator G : B! D is called the Green operator of the problem (3:1),

the vectorX = (x

1

; : : : ; x

n

) is a fundamental vector for the equation Lx = 0

and also lX = E.

It should be noted that � is the Green operator of the problem �x = f ,

rx = �.

Theorem 3.1. A linear bounded operator G : B! D is Green operator of

the boundary value problem (3:1) if and only if the following conditions are

ful�lled.

a) G is a Noether operator with indG = �n.

b) kerG = f0g.

Proof. fG;Xg : B � R

n

! D is a one-to-one mapping if G is the Green

operator of (3.1). So a) and b) are ful�lled by virtue of Theorem 1.8.

Conversely, let G be such that a) and b) are ful�lled. Then dimkerG

�

= n.

If l

1

; : : : ; l

n

constitute a basis of kerG

�

and l = [l

1

; : : : ; l

n

], then R(G) =

ker l. G is the Green operator of (3.1), where

Lx = G

�1

(x� Ulx) + V lx;

G

�1

is the inverse to G : B ! ker l, U = (u

1

; : : : ; u

n

) with u

i

2 D is a

vector such that lU = E, and V = (v

1

; : : : ; v

n

) with v

i

2 B is an arbitrary

vector. �

Theorem 3.2. Let the problem (3:1) be uniquely solvable and G be the

Green operator of this problem. Let further U = (u

1

; : : : ; u

n

), u

i

2 D,

lU = E. Then the vector

X = U �GLU

is a fundamental one to the equation Lx = 0.

Proof. dimkerL = n by virtue of Theorem 2.5 and the unique solvability of

(3.1). The components of X are linear independent because lX = E. The

equality LX = 0 can be checked immediately. �

Theorem 3.3. Let G and G

1

be the Green operators of the problems

Lx = f; lx = �

and

Lx = f; l

1

x = �:

Let further X be the fundamental vector of Lx = 0. Then

G = G

1

�X(lX)

�1

lG

1

:
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Proof. The general solution of Lx = f has the representation

x = Xc+G

1

f;

where c 2 R

n

is an arbitrary vector. De�ne c in such a way that lx = 0.

We have

0 = lx = lXc+ lG

1

f:

Hence

c = �(lX)

�1

lG

1

f

and the solution x of the half homogeneous problem Lx = f , lx = 0 has the

form

x = (G

1

�X(lX)

�1

lG

1

)f = Gf: �

In the investigation of particular boundary value problems and some

properties of Green operator, it is useful to employ the \elementary Green

operator" W

l

which is possible to construct for any boundary condition

lx = �. Beforehand we will prove the following proposition.

Lemma 3.1. For any linear bounded vector-functional l = [l

1

; : : : ; l

n

] :

D ! R

n

with linear independent components, there exists a vector U =

(u

1

; : : : ; u

n

) with u

i

2 D such that det rU 6= 0 and det lU 6= 0.

Proof. Let U

1

and U

2

be n-dimensional vectors such that det rU

1

6= 0 and

lU

2

= E. Let further

U = U

1

+ �U

2

where � is a numerical parameter. The function  (�) = det rU is continuous

and  (0) 6= 0. Hence  (�) 6= 0 on an interval (��

0

; �

0

). The polynomial

P (�) = det lU = det(lU

1

+ �E) has no more than n roots. Consequently,

there exists such a �

1

2 (��

0

; �

0

) that P (�

1

) 6= 0. For U = U

1

+ �

1

U

2

we

have: det rU 6= 0 and det lU 6= 0. �

Let U = (u

1

; : : : ; u

n

), u

i

2 D, det rU 6= 0, lU = E. De�ne the operator

W

l

: B! D by:

W

l

= �� U�; (3.2)

where U : R

n

! D is a �nite-dimensional operator corresponding to U and

� : B! R

n

is the principal part of the vector-functional l (see the equality

(2.6)). Let further L

0

: D! B be de�ned by

L

0

x = �x� �U(rU)

�1

rx: (3.3)

Theorem 3.4. W

l

is the Green operator of the boundary value problem

L

0

x = f; lx = �: (3.4)
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Proof. The principal boundary value problem for the equation L

0

x = f is

uniquely solvable. Consequently, the dimension of the fundamental vector

for L

0

x = 0 is equal to n. By immediate substitution, we get L

0

U = 0. The

problem (3.4) is solvable because lU = E. We have

L

0

W

l

f = �(�f � U�f)� �U(rU)

�1

r(�f � U�f) =

= f � �U�f + �U(rU)

�1

rU�f = f;

lW

l

f = ��(�f � U�f) + 	r(�f � U�f) =

= �f � lU�f = 0: �

The collection of all Green operators corresponding to a given vector-

functional l : D! R

n

is of the form

G =W

l

�; (3.5)

where � is a linear homeomorphism of B into B. Indeed, if � : B! B is a

homeomorphism, then by virtue of Theorem 3.1W

l

� is a Green operator of

(3.1). Conversely, any Green operator G : B! ker l may be represented by

(3.5), where � =W

�1

l

G, W

�1

l

: ker l! B is the inverse to W

l

: B! ker l.

Theorem 3.5. The collection of all Green operators G : B! D is de�ned

by

G = (�� Uv)�;

where U = (u

1

; : : : ; u

n

), u

i

2 D, det rU 6= 0, v : B ! R

n

is a linear

bounded vector-functional, and � is a linear homeomorphism of the space B

into B.

Proof. W = � � Uv is the Green operator of the problem (3.4), where

lx = v�x+ [E � v�U ](rU)

�1

rx. Indeed,

L

0

Wf = �(�� Uv)f � �U(rU)

�1

r(�� Uv)f =

= f � �Uvf + �U(rU)

�1

rUvf = f;

lWf = v�(�� Uv)f + [E � v�U ](rU)

�1

r(�� Uv)f =

= vf � v�Uvf � [E � v�U ]vf = 0:

Now the assertion of the Theorem follows from the representation (3.5). �

In the investigation of boundary value problems, an important part be-

longs to the so called \W -method" [8] which is based on an expedient choice

of an auxiliary \model" equation L

1

x = f . The foundation to this method

is laid by the following assertion.

Theorem 3.6. Let a model boundary value problem

L

1

x = f; lx = 0

be uniquely solvable and W : B! D be the Green operator of this problem.

The problem (3:1) is uniquely solvable, if and only if the operator LW : B!
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B has the continuous inverse [LW ]

�1

. In this case, the Green operator G

of the problem (3:1) has the representation

G =W [LW ]

�1

:

Proof. There is a one-to-one correspondence between the set of solutions z 2

B of the equation LWz = f and the set of solutions x 2 D of the problem

(3.1) with homogeneous boundary conditions lx = 0 the correspondence

is de�ned by x = Wz and z = L

1

x. Consequently the problem (3.1) is

uniquely solvable and also the solution x of the problem (3.1) for � = 0 has

the representation x =W [LW ]

�1

f . Thus G =W [LW ]

�1

. �

In the applications of Theorem 3.6 one may put W = W

l

, where W

l

is

de�ned by (3.2). Let the operator U : R

n

! D be de�ned as above by

the vector U = (u

1

; : : : ; u

n

), u

i

2 D, det rU 6= 0, lU = E. Let further

� : B ! R

n

be the principal part of l : D ! R

n

. De�ne the operator

F : B! B by F = LU�.

Corollary 3.1. The boundary value problem (3:1) is uniquely solvable if

and only if the operator (Q � F ) : B ! B has the bounded inverse. The

Green operator of this problem has the representation

G =W

l

(Q� F )

�1

: (3.6)

The proof follows from the fact that W

l

is the Green operator of the

model problem L

0

x = z, lx = 0, where L

0

is de�ned by (3.3) and

LW

l

= L��LU� = Q��� Ar��LU� = Q�LU� = Q� F:

The following assertions characterize some properties of the Green op-

erator of the problem (3.1) connected with the properties of the principal

part Q of L.

Theorem 3.7. Assume that a boundary value problem (3:1) is uniquely

solvable. Let P : B! B be a linear bounded operator with bounded inverse

P

�1

. The Green operator of this problem has the representation

G =W

l

(P +H); (3.7)

where H : B ! B is compact, if and only if the principal part Q of L may

be represented in the form Q = P

�1

+ V , where V : B! B is compact.

Proof. Let G =W

l

(Q�F )

�1

(see (3.6)), Q = P

�1

+V . De�ne V

1

= V �F .

Then

(Q� F )

�1

= (P

�1

+ V

1

)

�1

= (I + PV

1

)

�1

P = (I +H

1

)P = P +H;

where H : B! B and H

1

: B! B are compact operators.

Conversely, if (Q� F )

�1

= P +H then

Q = F + (P +H)

�1

= F + (I + P

�1

H)

�1

P

�1

=

= F + (I + V

1

)P

�1

= P

�1

+ V;
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where V : B! B and V

1

: B! B are compact operators. �

Theorem 3.8. A linear bounded operator G : B! D is the Green operator

of the problem (3:1), where Q = P

�1

+ V , if and only if kerG = f0g and

G = �P + T (3.8)

with a compact operator T : B! D.

Proof. If G is the Green operator and Q = P

�1

+V then (3.8) immediately

follows from (3.7) and (3.2).

Conversely, if G has the form (3.8), then G is a Noether operator with

indG = �n. By virtue of Theorem 3.1, G is the Green operator of the

problem (3.1). From LG = I it follows that QP + LT = I . Hence Q =

P

�1

+ V , where V = �LTP

�1

. �

We now state two Corollaries of Theorem 3.8.

Corollary 3.2. The representation �G = P + H, where H : B ! B is

a compact operator and P : B ! B is a linear bounded operator with a

bounded inverse P

�1

is possible if and only if G is the Green operator of

the problem (3:1), where Q = P

�1

+ V , V is a compact operator.

Proof. If �G = P +H , then

G = �P +�H + Y rG

and due to Theorem 3.8, Q = P

�1

+ V .

Conversely, if Q = P

�1

+ V , then G = �P + T and, consequently,

�G = P + �T . �

Corollary 3.3. The operator �G is canonical Fredholm if and only if the

principal part Q of L is canonical Fredholm.

x

4. Boundary Value Problems which are Not Everywhere and

Uniquely Solvable

We assume as above that indL = n (indQ = 0) and, in addition, that the

equation Lx = 0 has an n-dimensional fundamental vector X . By Theorem

2.5, the equation Lx = f is solvable for each f 2 B.

We will consider the boundary value problem

Lx = f; lx = � (4.1)

without the assumption that the number m of boundary conditions is equal

to n.

Denote � = rank lX . In the case � > 0, we may assume without loss of

generality that the determinant of the rank � composed of the elements in

the left top of the matrix lX does not vanish. Let us choose a fundamental

vector as follows. In the case � > 0, the elements x

1

; : : : ; x

�

are selected such

that l

i

x

j

= �

ij

, i; j = 1; : : : ; � (�

ij

is the symbol of Kronecker). If 0 � � < n,
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the homogeneous problem Lx = 0, lx = 0 has n � � linearly independent

solutions u

1

; : : : ; u

n��

. In the capacity of fundamental vector, everywhere

below we will take X = (u

1

; : : : ; u

n

) if � = 0, X = (x

1

; : : : ; x

�

; u

1

; : : : ; u

n��

)

if 0 < � < n, and X = (x

1

; : : : ; x

n

) if � = n.

Recall that the problem (4.1) can not be Fredholm if m 6= n (Corollary

2.1) and the question on solvability of the problem (4.1) is the question on

solvability of a linear algebraic system with the matrix lX .

Consider the cases corresponding to all possible relations between the

numbers n, m and �.

The case n = m = � was investigated in the previous sections.

If � = m < n, the problem is solvable (but not uniquely) for any f 2 B,

� = f�

1

; : : : ; �

m

g 2 R

m

. To obtain the representation of the solution in

this case, we can supplement the functionals l

1

; : : : ; l

m

by such additional

l

m+1

; : : : ; l

n

that

det

�

l

m+i

u

j

�

n�m

i;j=1

6= 0:

The determinant of the problem

Lx = f; l

1

x = �

1

; : : : ; l

n

; x = �

n

does not vanish and therefore this problem is uniquely solvable. Using the

Green operator G of this problem, we can represent the solutions of (4.1)

in the form

x = Gf +

m

X

i=1

�

i

x

i

+

n�m

X

i=1

c

i

u

i

;

where c

1

; : : : ; c

n�m

are arbitrary constants.

In all the other cases (4.1) is not everywhere solvable. The conditions

of solvability can be obtained by using the Green operator of any uniquely

solvable boundary value problem for the equation Lx = f . Such a problem

exists by virtue of Theorem 2.5.

Let � = n < m. In this case, the homogeneous problem Lx = 0, lx = 0

has only the trivial solution. Thus if the problem (4.1) is solvable, the

solution is unique and is a solution of the problem

Lx = f; l

i

x = �

i

; i = 1; : : : ; n

(recall our convention (l

i

x

j

)

n

i;j=1

= E). If G is the Green operator of the

latter problem, the solution of the problem (4.1) in the cases of its solvability

has the representation

x = Gf +

n

X

i=1

�

i

x

i

;

and the necessary and su�cient condition of solvability of the problem (4.1)

obtains the form

�

j

= l

j

Gf +

n

X

i=1

�

i

l

j

x

i

; j = n+ 1; : : : ;m:
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If � < n � m or � < m < n, the solution of the problem (4.1) can not be

unique. Let us choose functionals

�

l

�+1

; : : : ;

�

l

n

such that det(

�

l

�+i

u

j

)

n��

i;j=1

6= 0.

Then the problem

Lx = f;

�

l

i

x = �

i

; i = 1; : : : ; n

for � = 0 or the problem

Lx = f; l

i

x = �

i

; i = 1; : : : ; �;

�

l

�+j

x = �

�+j

; j = 1; : : : ; n� �

for � > 0 is uniquely solvable. Using the Green operator G of this problem,

we may write the solutions of (4.1) in the case of its solvability in the form

x = Gf +

n

X

i=1

c

i

u

i

for � = 0, and in the form

x = Gf +

�

X

i=1

�

i

x

i

+

n��

X

i=1

c

i

u

i

for � > 0. Here c

1

; : : : ; c

n��

are arbitrary constants. The necessary and

su�cient condition of solvability of (4.1) obtains the form

�

j

= l

j

Gf; j = 1; : : : ;m

for � = 0, and

�

j

= l

j

Gf +

�

X

i=1

�

i

l

j

x

i

; j = �+ 1; : : : ;m

for � > 0.

In the theory of ordinary di�erential equation, it is widely used the so

called \generalized Green function" for representation of solutions of the lin-

ear boundary value problem in the case, where the solution is not unique.

The construction of such a function (the kernel of the integral operator,

the generalized Green operator) is based on a well known structure of E.

Schmidt [9]. This structure permits to construct for an irreversible opera-

tor H a �nite-dimensional operator F

0

such that there exists the bounded

inverse (H +F

0

)

�1

. The classical scheme of the construction of generalized

Green operators for di�erential equations is entirely extended for abstract

functional-di�erential equations. We will dwell here on this scheme.

Due to Corollary 3.1, the Fredholm operator Q� F = LW

l

: B ! B is

irreversible if � < m = n. In this case, the half homogeneous problem

Lx = f; lx = 0 (4.2)

is solvable if and only if the function f is orthogonal to all the elements of

the basis of the kernel of (Q�F )

�

. Using the procedure which will be given

below, we will construct an operator F

0

such that the operator Q�F +F

0
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will have the inverse � = (Q� F + F

0

)

�1

. The product G

0

=W

l

� has the

property: if the problem (4.2) is solvable, then the solutions of this problem

may be represented in the form

x = G

0

f +

n��

X

i=1

c

i

u

i

; (4.3)

where u

i

=W

l

y

i

, y

1

; : : : ; y

n��

is the basis of the kernel of the operatorQ�F

and c

1

; : : : ; c

n��

are arbitrary constants. This operator G

0

: B ! ker l is

said to be the generalized Green operator of the problem (4.2). By virtue of

(3.5), G

0

is an ordinary Green operator of a certain boundary value problem

L

0

x = f; lx = �: (4.4)

To construct the operator F

0

, let us choose any system '

1

; : : : ; '

n��

of

functionals from the space B

�

biorthogonal to y

1

; : : : ; y

n��

(h'

i

; y

j

i = �

ij

,

i; j = 1; : : : ; n � �) and a system z

1

; : : : ; z

n��

; z

i

2 B, biorthogonal to the

basis !

1

; : : : ; !

n��

of the kernel of (Q � F )

�

. Schmidt's structure de�nes

the operator F

0

: B! B by

F

0

y =

n��

X

i=1

h'

i

; yiz

i

:

By virtue of Schmidt's Lemma [9], there exists a bounded inverse � =

(Q � F + F

0

)

�1

. Also, if y satis�es the equation (Q � F + F

0

)y = f and

conditions of orthogonality h!

i

; fi = 0, i = 1; : : : ; n��, then (Q�F )y = f .

Indeed, in this case we get from (Q� F )y = f � F

0

y that

h!

i

; f � F

0

yi = 0; i = 1; : : : ; n� �:

Hence

h!

i

; fi � h!

i

; F

0

yi = �

�

!

i

;

n��

X

j=1

c

j

z

j

�

= 0; i = 1; : : : ; n� �;

where c

i

are some arbitrary constants. But the latter equality is possi-

ble only if c

1

= � � � = c

n��

= 0. Therefore F

0

y = 0 and consequently

(Q � F )y = f and x = W

l

�f is a solution of (4.2). Hence we get the

representation (4.3).

Remark 4.1. In the construction of a generalized Green operator one, can

use instead ofW

l

de�ned by (3.6) the Green operator of any model problem

L

1

x = f , lx = 0 (see Theorem 3.6).

The not everywhere solvable problem (4.1) may become everywhere solv-

able by some generalization of the notion of the solution. For instance,

the solution of (4.4) for the equation L

0

x = f constructed on the base of

Schmidt's structure may be considered as a kind of such a generalization.

A generalization of the notion of solution of (4.1) was used in [10, 11] by
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extending of the space D. In this connection, the construction of a gen-

eralized (extended) everywhere solvable boundary value problem requires

sometimes additional boundary conditions. So, the problem

_x(t) = f(t); x(a)� x(b) = 0

has absolutely continuous solutions not for any summable f . If we declare

the solution to be a function admitting a �nite discontinuity at a �xed point

� 2 (a; b), then the extended problem

_y(t) = f(t); y(a)� y(b) = �; y(�) = �; � 2 (a; b);

has a unique solution for each f , � and �. Indeed, in this case the funda-

mental system of solutions of the equation _y(t) = 0 consists of two functions

y

1

= 1 and y

2

= �

[�;b]

(t) (�

[�;b]

(t) is a characteristic function of [�; b]). The

determinant of the problem

� =

�

�

�

�

0 1

�1 �

[�;b]

(�)

�

�

�

�

6= 0:

Next we will prove under the assumption that the space D admits a

�nite-dimensional extension that for any not everywhere solvable problem

(4.1), it is possible to construct an extended problem which is uniquely

solvable.

The problem (4.1) is not everywhere solvable, if � = n < m, � < n � m

or � < m < n. These cases are characterized by the inequality m� � > 0.

Let the space D be embedded into a Banach space

e

D in such a way that

e

D = D�M

�

, where M

�

is a �nite-dimensional subspace of the dimension

�. Any linear extension

e

L :

e

D ! B of L is a Noether operator with

ind

e

L = indL + � = n + �. (Theorem 1.6). As far as R(L) = B, also

R(

e

L) = B, therefore dimker

e

L = n+ �.

Let

e

L :

e

D ! B and

~

l :

e

D ! R

m

be a linear extension of L and l.

Consider the boundary value problem

e

Ly = f;

~

ly = � (4.5)

in the space

e

D. Since dim ker

e

L = n+ �, this problem can be uniquely and

everywhere solvable only if � = m� n. If � > m� n, it is necessary to add

to m boundary conditions some more �+ n�m conditions.

The problem (4.5) if �+ n�m = 0, and the problem

e

Ly = f;

~

ly = �;

~

l

1

y = �

1

; (4.6)

if m + n � � > 0 is called an extended boundary value problem. Here

~

l

1

:

e

D! R

�+n�m

is any bounded vector-functional.

As it was noted above, the inequality � � m� n is necessary for unique

solvability of the extended problem.

Everywhere below y

1

; : : : ; y

�

are such elements of a fundamental system

of the equation

e

Ly = 0 which do not belong to D.
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For the beginning, consider an extended problem for a uniquely solvable

problem (4.1).

Theorem 4.1. Let m = n, the problem (4:1) be uniquely solvable and

e

D =

D�M

�

. For any linear extensions

e

L :

e

D! B,

~

l :

e

D! R

n

of L : D! B

and l : D! R

n

, there exists a vector-functional

~

l

1

:

e

D! R

�

such that the

problem (4:6) is uniquely solvable.

Proof. For any linear extension

~

l of vector-functional l, we have

~

lX = lX .

Therefore det

~

lX 6= 0. Let us choose y

1

; : : : ; y

�

such that

~

ly

i

= 0, i =

1; : : : ; �. This is possible since letting

y

i

= �y

i

�

n

X

j=1

c

j

x

j

for a fundamental system x

1

; : : : ; x

n

; �y

1

; : : : ; �y

�

of the solutions of the equa-

tion

e

Ly = 0, we get for constants c

1

; : : : ; c

n

the system

n

X

j=1

c

j

~

l

k

x

j

=

~

l

k

�y

i

; k = 1; : : : ; n

with the determinant not equal to zero. Let us take now a system of func-

tionals

~

l

n+i

:

e

D! R

1

, i = 1; : : : ; �, such that

� = det(

~

l

n+i

y

j

)

�

i;j=1

6= 0:

Then the determinant of the problem (4.6) with

~

l

1

= [

~

l

n+1

; : : : ;

~

l

n+�

] is

equal to � � det lX 6= 0. �

Any element y 2

e

D has the representation

y = �y +

�

X

i=1

z

i

�

i

y; (4.7)

where � :

e

D! D is a projector, z

1

; : : : ; z

�

is a basis ofM

�

, � = [�

1

; : : : ; �

�

] :

e

D ! R

�

is a vector-functional such that �x = 0 for each x 2 D and

�

i

z

j

= �

ij

, i; j = 1; : : : ; �. From (4.7) it follows that any linear extension

e

L :

e

D! B of the operator L : D! B has the representation

e

Ly = L�y +

�

X

i=1

a

i

�

i

y; (4.8)

where a

i

=

e

Lz

i

, and also for any a

i

2 B, i = 1; : : : ; �, the last equality

de�nes a linear extension of L on the space

e

D. Analogously, the represen-

tation

~

ly = l�y + ��y; (4.9)
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where � = (


ij

) is a numerical m � n-matrix, de�nes the general form of

the linear extension

~

l :

e

D! R

m

of the vector-functional l : D! R

m

.

In what follows, m� � > 0. The next assertion recommends for uniquely

solvable problem a more precise estimate of the number � then the above

given inequality � � m� n.

Theorem 4.2. Let

e

D = D � M

�

. If the problem (4:1) has a uniquely

solvable extended problem, then � � m� �.

Proof. Let � < m � �. If � = n, then � < m� n. Therefore only the case

� < n needs the proof.

Let

e

L and

~

l be any linear extensions on the spaces

e

D of L and l, re-

spectively. If � = m � n, then the determinant of the problem (4.5), the

determinant of the order m, is equal to zero because it has non-zero ele-

ments only at the columns corresponding to x

1

; : : : ; x

�

; y

1

; : : : ; y

�

, if � > 0

or y

1

; : : : ; y

�

, if � = 0. The number of such columns is equal to �+ � < m.

Let � > m�n. Then the determinant of the problem (4.6) is equal to zero.

Indeed, the cofactors of the minors of the (� + n �m)-th order composed

of the elements of the rows corresponding to the vector-functional

~

l

1

are

determinants of the m-th order. These determinants are equal to zero. �

Theorem 4.3. Let

e

D = D�M

m��

. For any linear extension

e

L :

e

D! B

of the operator L : D ! B there exists a linear extension

~

l :

e

D ! R

m

of

the vector-functional l : D! R

m

, and in the case � < n a vector-functional

~

l

1

:

e

D! R

n��

such that the extended problem (4:5) if � = n or the extended

problem (4:6) if � < n is uniquely solvable.

Proof. The operator

e

L admits the representation (4.8), where � = m � �.

Denote by v

i

any solution of the equation

Lx = �a

i

;

and let y

i

= v

i

+ z

i

, i = 1; : : : ;m� �. Thus u

1

; : : : ; u

n

; y

1

; : : : ; y

m

if � = 0,

x

1

; : : : ; x

�

; u

1

; : : : ; u

n��

; y

1

; : : : ; y

m��

if 0<�<n and x

1

; : : : ; x

n

; y

1

; : : : ; y

m�n

if � = n is a fundamental system of solutions of the equation

e

Ly = 0

Let 0 < � � n. Denote Y = (x

1

; : : : ; x

�

; y

1

; : : : ; y

m��

). We will show

that it is possible to choose a m� (m � �)-matrix � for the corresponding

extension (4.9) of the vector-functional l such that det

~

lY 6= 0. Due to

special choice of x

1

; : : : ; x

�

, we have

~

l

i

x

j

= �

ij

, i; j = 1; : : : ; � for any

extension

~

l. Further, �Y = (x

1

; : : : ; x

�

; v

1

; : : : ; v

m��

); �x

i

= 0, i = 1; : : : ; �;

�

i

y

j

= �

ij

, i; j = 1; : : : ;m� �. Therefore

~

lY = l�Y + ��Y =
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=

0

B

B

B

B

B

B

B

B

@

1 0 : : : 0 l

1

v

1

: : : l

1

v

m��

0 1 : : : 0 l

2

v

1

: : : l

2

v

m��

: : : : : : : : : : : : : : : : : : : : :

0 0 : : : 1 l

�

v

i

: : : l

�

v

m��

l

�+1

x

1

l

�+1

x

2

: : : l

�+1

x

�

l

�+1

v

1

: : : l

�+1

v

m��

: : : : : : : : : : : : : : : : : : : : :

l

m

x

1

l

m

x

2

: : : l

m

x

�

l

m

v

1

: : : l

m

v

m��

1

C

C

C

C

C

C

C

C

A

+

+

0

@

0 : : : 0 


11

: : : 


1;m��

: : : : : : : : : : : : : : : : : :

0 : : : 0 


m1

: : : 


m;m��

1

A

:

The matrix � may be chosen, for instance, as follows. Let 


ij

= �l

i

v

j

for

i = 1; : : : ; �, j = 1; : : : ;m� �, and the numbers 


�+i;j

, i; j = 1; : : : ;m � �,

be chosen such that

� = det

�

l

�+i

v

j

+ 


�+i;j

�

m��

i;j=1

6= 0:

Then det

~

lY = � 6= 0.

If � = n, the theorem is proved because the problem (4.5) with the

constructed extension

~

l is uniquely solvable.

If 0 < � < n, we choose in addition a vector-functional

~

l

1

= [

~

l

m+1

; : : : ;

~

l

m+n��

] :

e

D! R

n��

such that

�

1

= det

�

~

l

m+i

u

j

�

n��

i;j=1

6= 0:

The determinant of the problem (4.6) with the above constructed extension

~

l and the vector-functional

~

l

1

is equal to �

1

� det

~

lY 6= 0.

If � = 0, let Y = (y

1

; : : : ; y

m

). In this case,

~

lY =

�

l

i

v

j

+ 


ij

�

m

i;j=1

:

Let us choose 


ij

such that det

~

lY 6= 0 and further, as above, take a vector-

functional

~

l

1

=

�

~

l

m+1

; : : : ;

~

l

m+n

�

:

e

D! R

n

such that

�

1

= det

�

~

l

m+i

u

j

�

n

i;j=1

6= 0:

Then the determinant of the problem (4.6) will be equal to �

1

� det

~

lY

6= 0. �

Denote by

e

G the Green operator of the extended problem (the problem

(4.5) if � = n or (4.6) if � < n). Then the solution of the problem admits

the representation

y =

e

Gf + Z(

~

l

�

Z)

�1

�

�

;

where Z is a fundamental vector of the equation

e

Ly = 0;

~

l

�

=

~

l, �

�

= � if

� = n and

~

l

�

= [

~

l;

~

l

1

], �

�

= f�; �

1

g, if � < n.
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Theorems 4.2. and 4.3 provide the minimal number � = m� � for which

there exists a uniquely solvable extended problem to the problem (4.1). If

� > m� �, the uniquely solvable extended problem also exists by virtue of

Theorem 4.1. If the rank of the matrix lX is unknown, then we can take

� = m for the construction of uniquely solvable extended problem. It will

demand n additional boundary conditions. The inequality � � m� � could

be used for the estimation of the rank of the matrix lX : if for a certain �

there exists a uniquely solvable extended problem, then rank lX � m� �.

x

5. Continuous Dependence on Parameters of Solution of the

Boundary Value Problem

One of the central places in the theory of di�erential equations belongs

to the question on conditions guaranteeing continuous dependence on the

parameters �; � of the solution of the Cauchy problem

_x(t) = f(t; x(t); �); x(a) = �:

J. Kurzweil [12] has approached this question in the following generalized

formulation: under which conditions does the sequence fx

k

g of the solutions

of the problems

_x(t) = f

k

(t; x(t)); x(a) = �

k

; k = 1; 2; : : :

converge to the solution x

0

of the \limiting case"

_x(t) = f

0

(t; x(t)); x(a) = �

0

of the problems? The general linear boundary value problem

Lx = f; lx = �

was studied in [1]. Here L : D

n

! L

n

and l : D

n

! R

n

are linear operators,

D

n

and L

n

are Banach spaces of n-dimensional vector functions de�ned on

[a; b], absolutely continuous and summable, respectively. The conditions of

convergence to the solution x

0

of the limiting case

L

0

x = f

0

; l

0

x = �

0

of the solutions x

k

of the problems

L

k

x = f

k

; l

k

x = �

k

; k = 1; 2; : : :

are formulated.

An analogous question for linear abstract functional di�erential equation

was considered by A. V. Anokhin on the base of general theory of G. M.

Vainikko [13]. Each operator L

k

and vector-functional l

k

are de�ned on

their own space in Anokhin's setting of the question. Anokhin's theorem

was published in [14] without proof. We o�er below the thorough proof of

this theorem.
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We will formulate here the de�nitions and propositions of Vainikko's

paper [13] which are required for the proof of the main theorem. We provide

these results of G. M. Vainikko in the form we are in need of. In the brackets

there are indicated those general propositions of the paper [13] on the base

of which the theorems stated below are formulated.

Let E

0

and E

k

, k = 1; 2; : : : , be Banach spaces.

De�nition 5.1. A system P = (P

k

), k = 1; 2; : : : , of linear bounded oper-

ators P

k

: E

0

! E

k

is said to be connecting for E

0

and E

k

, k = 1; 2; : : : ,

if

lim

k!1

kP

k

uk

E

k

= kuk

E

0

for any u 2 E

0

.

Observe that the norms of the operators P

k

are bounded in common

(sup

k

k P

k

k<1) due to the principle of uniform boundedness.

De�nition 5.2. The sequence fu

k

g, u

k

2 E

k

, is said to be P-convergent

to u

0

2 E

0

(this fact is denoted by u

k

P

!u

0

) if

lim

k!1

ku

k

�P

k

u

0

k

E

k

= 0:

Observe that from the P-convergence u

k

P

!u

0

follows, in particular, that

lim

k!1

ku

k

k

E

k

= ku

0

k

E

0

.

De�nition 5.3. The sequence fu

k

g, u

k

2 E

k

, is said to be P-compact if

any of its subsequences includes a P-convergent subsequence.

Let further F

0

and F

k

, k = 1; 2; : : : , be Banach spaces; P = (P

k

),

k = 1; 2; : : : , be a connecting system for E

0

and E

k

; Q = (Q

k

), k = 1; 2; : : : ,

be a connecting system for F

0

and F

k

; A

k

: E

k

! F

k

; k = 0; 1; : : : , be linear

bounded operators.

De�nition 5.4. A sequence fA

k

g is said to be PQ-convergent to A

0

(this

fact is denoted by A

k

PQ

!A

0

) if the sequence fA

k

u

k

g is Q-convergent to A

0

u

0

for any P-convergent to u

0

2 E

0

sequence fu

k

g, u

k

2 E

k

.

Theorem 5.1 (Proposition 2.1). If A

k

PQ

! A

0

, then sup

k

kA

k

k <1.

If a sequence f


k

g of the elements of a Banach space converges to 


0

by

the norm, we will denote this fact henceforth by 


k

! 


0

.

Theorem 5.2 (Proposition 3.5 and Theorem 4.1). Let the sequences fB

k

g

and fC

k

g of linear bounded operators B

k

: E

k

! F

k

, C

k

: E

k

! F

k

,

k = 1; 2; : : : , be PQ-convergent to B

0

and C

0

, respectively. Let further the

following conditions be ful�lled.

1: R(B

0

) = F

0

, there exist continuous inverses B

�1

k

, k = 1; 2; : : : , and

sup

k

kB

�1

k

k <1.
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2: The sequence fC

k

u

k

g is Q-compact for any bounded sequence fu

k

g,

u

k

2 E

k

(sup

k

ku

k

k

E

k

<1).

3. The operators A

k

= B

k

+C

k

, k = 0; 1; : : : , are Fredholm, kerA

0

= f0g.

Then for k = 0 and all su�ciently large k, there exist bounded inverses

A

�1

k

and

A

�1

k

y

k

P

!A

�1

0

y

0

if y

k

Q

!y

0

�

A

�1

k

QP

!A

�1

0

�

:

Remark 5.1. Condition 1 of Theorem 5.2 is equivalent to Condition 1

�

.

There exist bounded inversesB

�1

k

: F

k

! E

k

, k = 0; 1; : : : , and B

�1

k

QP

!B

�1

0

.

The implication 1

�

) 1 is obvious. Let us prove the implication 1) 1

�

.

As it was shown in [13] (Proposition 3.3), conditions imposed on the

operators B

k

guarantee the existence of a 
 > 0 such that

kB

0

uk

F

0

� 
kuk

E

0

for any u 2 E

0

, and from R(B

0

) = F

0

it follows the existence of bounded

inverse B

�1

0

.

Let y

k

Q

!y

0

, y

k

2 F

k

. We have







B

�1

k

y

k

�P

k

B

�1

0

y

0







E

k

�







B

�1

k

y

k

� B

�1

k

Q

k

y

0







E

k

+

+







B

�1

k

Q

k

y

0

�P

k

B

�1

0

y

0







E

k

:







B

�1

k

y

k

�B

�1

k

Q

k

y

0







E

k

� kB

�1

k

k







y

k

�Q

k

y

0







F

k

! 0:

Denote B

�1

0

y

0

= u

0

. Then







B

�1

k

Q

k

y

0

�P

k

B

�1

0

y

0







E

k

� kB

�1

k

k







Q

k

B

0

u

0

�B

k

P

k

u

0







F

k

! 0

since P

k

u

0

P

! u

0

and B

k

PQ

! B

0

. �

LetD

k

andB

k

be Banach spaces,D

k

be isomorphic to the direct product

B

k

�R

n

,

f�

k

; Y

k

g : B

k

�R

n

! D

k

�

[�

k

; r

k

] = f�

k

; Y

k

g

�1

�

be isomorphisms, and

kuk

D

k

= k�

k

uk

B

k

+ jr

k

uj; k = 0; 1; : : : :

Let further H = (H

k

) be a connecting system for B

0

, B

k

and P = (P

k

) be

a connectig system for D

0

, D

k

, k = 1; 2; : : : . By H

0

and P

0

we denote the

identical operators in the spaces B

0

and D

0

, respectively.

Consider sequences fL

k

g, fl

k

g of bounded linearly Noether operatorsL

k

:

D

k

! B

k

, indL

k

= n, and bounded linear vector-functionals l

k

: D

k

! R

n

with linear independent components, k = 0; 1; : : : . We will assume that

L

k

PH

! L

0

and l

k

u

k

! l

0

u

0

provided u

k

P

! u

0

.

Let the boundary value problem

L

0

x = f; l

0

x = � (5.1)
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be uniquely solvable. Consider the question on conditions which guarantee

unique solvability for all su�ciently large k of the problems

L

k

x = f; l

k

x = � (5.2)

as well as the convergence x

k

P

!x

0

for any sequences ff

k

g and f�

k

g with

f

k

H

!f

0

and �

k

! �

0

. Here x

k

is the solution of the problem

L

k

x = f

k

; l

k

x = �

k

; (5.3)

x

0

is the solution of the problem

L

0

x = f

0

; l

0

x = �

0

: (5.4)

We will assume the spaces B

k

, k = 1; 2; : : : , to be isomorphic to B

0

and

the operators H

k

: B

0

! B

k

of the connecting system for B

0

and B

k

to be

isomorphisms and sup

k

kH

�1

k

k <1.

De�ne the connecting system Q = (Q

k

) of the isomorphisms of the spaces

B

0

�R

n

and B

k

�R

n

by

Q

k

ff; �g =

�

H

k

f; �

	

; ff; �g 2 B

0

�R

n

;

Q

�1

k

ff; �g =

�

H

�1

k

f; �

	

; ff; �g 2 B

k

�R

n

:

Thus if f

k

H

!f

0

and �

k

! �

0

, then ff

k

; �

k

g

Q

!ff

0

; �

0

g. It is easy to see that

kQ

k

k = max

�

kH

k

k; 1

	

; kQ

�1

k

k = max

�

kH

�1

k

k; 1

	

:

We will choose the connecting system P = (P

k

) for the spacesD

0

andD

k

in such a way that the operators P

k

have bounded inverses and sup

k

kP

�1

k

k <

1. For instance,

P

k

= �

k

H

k

�

0

+ Y

k

r

0

=

�

�

k

; Y

k

	

Q

k

[�

0

; r

0

]:

Then

P

�1

k

= �

0

H

�1

k

�

k

+ Y

0

r

k

= f�

0

; Y

0

gQ

�1

k

[�

k

; r

k

];

kP

k

k = kQ

k

k; kP

�1

k

k = kQ

�1

k

k:

This system is a connecting one for D

0

and D

k

. Really,

�

k

P

k

u = H

k

�

0

u; r

k

P

k

u = r

0

u

for any u 2 D

0

. Therefore

kP

k

uk

D

k

= kH

k

�

0

uk

B

k

+ jr

0

uj ! k�

0

uk

B

0

+ jr

o

uj = kuk

D

0

:

(The possibility of choosing of P

k

will be considered more extensive in the

end of this section).

We will prove the following Theorem 5.3 under the assumptions:
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a) There exists a connecting system H = (H

k

) of isomorphisms for the

spaces B

0

and B

k

such that

sup

k

kH

�1

k

k <1:

b) The connecting system P = (P

k

) for D

0

and D

k

is chosen such that

the operators P

k

: B

0

! B

k

are isomorphisms and

sup

k

kP

�1

k

k <1:

c) L

k

PH

! L

0

and l

k

u

k

! l

0

u

0

, if u

k

P

!u

0

.

Theorem 5.3. Let the problem (5:1) be uniquely solvable. Then the prob-

lems (5:2) are uniquely solvable for all su�ciently large k. For any sequences

ff

k

g, f�

k

g with f

k

H

!f

0

, �

k

! �

0

, the solutions x

k

of the problems (5:3)

are P-convergent to the solution x

0

of the problem (5:4) if and only if there

exists a vector-functional l : D

0

! R

n

such that the problems

H

�1

k

L

k

P

k

x = f; lx = � (5.5)

are uniquely solvable for k = 0 and all su�ciently large k by any right hand

side ff; �g 2 B

0

�R

n

and v

k

! v

0

, where v

k

2 D

0

are the solutions of the

problems (5:5) holds.

Let us rewrite the problems (5.1) - (5.4) in the form

�

L

0

; l

0

�

x =

�

f; �

	

; (5.1)

�

L

k

; l

k

�

x =

�

f; �

	

; (5.2)

�

L

k

; l

k

�

x =

�

f

k

; �

k

	

; (5.3)

�

L

0

; l

0

�

x =

�

f

0

; �

0

	

: (5.4)

Then the Theorem 5.3 may be stated as follows.

Let the operator [L

0

; l

0

] : D

0

! B

0

�R

n

be continuously invertiple. Then

the operators [L

k

; l

k

] : D

k

! B

k

� R

n

are continuously invertiply for all

su�ciently large k and also

�

L

k

; l

k

�

�1

QP

!

�

L

0

; l

0

�

�1

;

if and only if there exists a vector-functional l : D

0

! R

n

such that the

operators

�

H

�1

k

L

k

P

k

; l

�

: D

0

! B

0

�R

n

are continuously invertiply for k = 0 and all su�ciently large k and

�

H

�1

k

L

k

P

k

; l

�

�1

ff; �g ! [L

0

; l]

�1

ff; �g

for any ff; �g 2 B

0

�R

n

.

Beforehand we will prove two lemmas.

Denote M

k

= H

�1

k

L

k

P

k

.
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Lemma 5.1. M

k

u! L

0

u for any u 2 D

0

if and only if L

k

PH

! L

0

.

Proof. Let L

k

PH

! L

0

. Since P

k

u

P

! u and sup

k

kH

�1

k

k <1, we have

M

k

u�L

0

u = H

�1

k

�

L

k

P

k

u�H

k

L

0

u

�

! 0:

Conversely, let M

k

u! L

0

u for any u 2 D

0

and u

k

P

! u

0

. We have

L

k

u

k

�H

k

L

0

u

0

= H

k

M

k

P

�1

k

u

k

�H

k

L

0

u

0

=

= H

k

n

M

k

�

P

�1

k

u

k

� u

0

�

+

�

M

k

u

0

�L

0

u

0

�

o

! 0;

since P

�1

k

u

k

! u

0

, M

k

u

0

! L

0

u

0

, sup

k

kH

k

k <1, sup

k

kM

k

k <1. �

Denote

�

k

=

�

L

k

; lP

�1

k

�

: D

k

! B

k

�R

n

;

F

k

=

�

H

�1

k

L

k

P

k

; l

�

: D

0

! B

0

�R

n

(�

0

= F

0

):

Lemma 5.2. The operators �

k

and F

k

are (or are not) continuously in-

vertible simultaneously; �

�1

k

QP

!�

�1

0

if and only if F

�1

k

y ! F

�1

0

y for any

y 2 B

0

�R

n

.

Proof. Simultaneous invertipility follows from the representation

�

k

= Q

k

F

k

P

�1

k

. Let F

�1

k

y ! F

�1

0

y for any y 2 B

0

� R

n

and y

k

Q

!y

0

,

y

k

2 B

k

�R

n

. We have

�

�1

k

y

k

�P

k

�

�1

0

y

0

= P

k

F

�1

k

Q

�1

k

�

y

k

�Q

k

y

0

�

+ P

k

�

F

�1

k

y

0

� F

�1

0

y

0

�

:

Hence it follows that �

�1

k

QP

!�

�1

0

.

Conversely, let �

�1

k

QP

!�

�1

0

. We have

F

�1

k

y � F

�1

0

y = P

�1

k

�

�

�1

k

Q

k

y �P

k

�

�1

0

y

�

:

Hence F

�1

k

y ! F

�1

0

y. �

The proof of Theorem 5:3: Su�ciency. Let us represent the operator [L

k

; l

k

]

in the form

[L

k

; l

k

] =

�

L

k

; lP

�1

k

�

+

�

0; l

k

� lP

�1

k

�

:

Since L

k

PH

! L

0

and lP

�1

k

u

k

! lu

0

if u

k

P

!u

0

, we have:

�

k

=

�

L

k

; lP

�1

k

�

PQ

! [L

0

; l] = �

0

:

By virtue of Lemma 5.2, for all su�ciently large k there exist continuous

inverses

�

�1

k

=

�

L

k

; lP

�1

k

�

�1

: B

k

�R

n

! D

k

and �

�1

k

QP

! �

�1

0

. Thus, taking into account Theorem 5.1, Condition 1 is

ful�lled for the sequence f�

k

g.
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Next consider the sequence of the operators

C

k

=

�

0; l

k

� lP

�1

k

�

: D

k

! B

k

�R

n

; k = 1; 2; : : : :

Let u

k

P

!u

0

. Then l

k

u

k

! l

0

u

0

due to the assumption c) of Theorem, and

lP

�1

k

u

k

� lu

0

! 0 since P

�1

k

u

k

! u

0

. Therefore

C

k

PQ

! C

0

= [0; l

0

� l]:

If the sequence fu

k

g, u

k

2 D

k

, is bounded, from the estimate

�

�

(l

k

� lP

�1

k

)u

k

�

�

� kl

k

� lP

�1

k

k ku

k

k

D

k

and the boundedness in common of the norms kl

k

� lP

�1

k

k it follows bound-

edness inR

n

and consequently compactness of the sequence f(l

k

�lP

�1

k

)u

k

g.

So the sequence fC

k

u

k

g is Q-compact. Thus Condition 2 of Theorem 5.2 is

ful�lled for the operators C

k

.

Further, since A

k

= [L

k

; l

k

] = �

k

+ C

k

are Fredholm operators, the

equality kerA

0

= f0g follows from the unique solvability of the problem

(5.1). Thus by virtue of Theorem 5.2, continuous inverses A

�1

k

= [L

k

; l

k

]

�1

exist, and

[L

k

; l

k

]

�1

QP

! [L

0

; l

0

]

�1

:

Necessity. Let us show that we can take l

0

as of the vector-functional l.

In other words, the operators

F

k

=

�

H

�1

k

L

k

P

k

; l

0

�

: D

0

! B

0

�R

n

have continuous inverses F

�1

k

for all su�ciently large k and F

�1

k

y ! F

�1

0

y

for any y 2 B

0

�R

n

. By virtue of Lemma 5.2, it is su�cient to verify that

for all su�ciently large k, the operators

�

k

=

�

L

k

; l

0

P

�1

k

�

: D

k

! B

k

�R

n

have continuous inverses with �

�1

k

QP

! �

�1

0

. We have

�

k

= [L

k

; l

k

] +

�

0; l

0

P

�1

k

� l

k

�

:

Under the condition

B

k

= [L

k

; l

k

]

PQ

! [L

0

; l

0

] = B

0

;

for k = 0 and all su�ciently large k there exist continuous inverses B

�1

k

and

B

�1

k

QP

! B

�1

0

.

Further we have

C

k

=

�

0; l

0

P

�1

k

� l

k

�

PQ

! [0; 0] = C

0

:

Indeed, if u

k

P

!u

0

, then

�

l

0

P

�1

k

� l

k

�

u

k

= l

0

P

�1

k

�

u

k

�P

k

u

0

�

�

�

l

k

u

k

� l

0

u

0

�

! 0:
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Q-compactness of the sequence fC

k

u

k

g can be proved like it was done while

proving the su�ciency.

�

k

= [L

k

; l

0

P

�1

k

] = B

k

+ C

k

are Fredholm operators and ker�

0

= f0g.

Thus there for all su�ciently large k continuous inverses �

�1

k

exist with

�

�1

k

QP

! �

�1

0

. �

The condition v

k

! v

0

in the statement of Theorem 5.3 may be changed

by another equivalent one due to the following Theorem 5.4.

Let M

k

: D

0

! B

0

, k = 0; 1; : : : , be linear bounded operators, M

k

u !

M

0

u for any u 2 D

0

, and let there exist a linear bounded vector-functional

l : D

0

! R

n

such that for each k = 0; 1; : : : , the boundary value problem

M

k

x = f; lx = � (5.6)

is uniquely and everywhere solvable. Denote by v

k

the solution of this

problem and by z

k

the solution of the half homogeneous problem

M

k

x = f; lx = 0

Let G

k

be the Green operator of the latter problem.

Theorem 5.4. The following assertions are equivalent.

a) v

k

! v

0

for any ff; �g 2 B

0

�R

n

.

b) sup

k

kz

k

k

D

0

<1 for any f 2 B

0

.

c) G

k

f ! G

0

f for any f 2 B

0

.

Proof. The implication a)) b) is obvious.

The implication b) ) c). The Green operator G

k

: B

0

! ker l is an

inverse to M

k

: ker l ! B

0

. From b) it follows that sup

k

kG

k

k < 1. Thus

by virtue of Remark 5.1, we have c).

Implication c)) a). The solution v

k

has the representation

v

k

= G

k

f +X

k

�;

where X

k

is the fundamental vector of the equationM

k

x = 0 and lX

k

= E.

By virtue of Theorem 3.2,

X

k

= U �G

k

M

k

U;

where U = (u

1

; : : : ; u

n

), u

i

2 D

0

, lU = E. Thus X

k

� ! X

0

� for any

� 2 R

n

, and consequently v

k

! v

0

. �

Next we dwell on the question of choosing the connecting systems of iso-

morphisms H

k

: B

0

! B

k

and P

k

: D

0

! D

k

. It is natural to subordinate

the operators P

k

and H

k

to the following request of agreement

u

k

P

!u

0

, �

k

u

k

H

!�

0

u

0

and r

k

u

k

! r

0

u

0

: (5.7)
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Theorem 5.5. Let







(H

k

�

0

� �

k

P

k

)u







B

k

! 0 and (r

0

� r

k

P

k

)u! 0 8u 2 D

0

: (5.8)

Then (5:7) holds.

Proof. The assertion follows from the inequalities







�

k

u

k

�H

k

�

0

u

0







B

k

�







�

k

(u

k

�P

k

u

0

)







B

k

+







(�

k

P

k

�H

k

�

0

)u

0







B

k

;

jr

k

u

k

� r

0

u

0

j �

�

�

r

k

(u

k

�P

k

u

0

)

�

�

+

�

�

(r

k

P

k

� r

0

)u

0

�

�

;







u

k

�P

k

u

0







D

k

=







�

k

(u

k

�P

k

u

0

)







B

k

+

�

�

r

k

(u

k

�P

k

u

0

)

�

�

�

�







�

k

u

k

�H

k

�

0

u

0







B

k

+







(H

k

�

0

� �

k

P

k

)u

0







B

k

+

+ jr

k

u

k

� r

0

u

0

j+

�

�

(r

0

� r

k

P

k

)u

0

�

�

: �

Conversley, if �

k

u

k

H

!�

0

u

0

and r

k

u

k

! r

0

u

0

, where u

k

P

!u

0

, the limiting

relations (5.8) are ful�lled. This follows from P

k

u

P

!u.

Thus (5.7) are ful�lled if and only if the limiting relations (5.8) hold, in

particular, if �

k

P

k

= H

k

�

0

and r

k

P

k

= r

0

. Applying �

k

to the �rst of these

relations, we get

(I � Y

k

r

k

)P

k

= �

k

H

k

�

0

:

Hence, taking into account the second equality,

P

k

= �

k

H

k

�

0

+ Y

k

r

0

= f�

k

; Y

k

gQ

k

[�

0

; r

0

]:
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CHAPTER II

APPLICATIONS OF THE GENERAL THEORY

The theory of abstract functional di�erential equation Lx = f considers

wide classes of equations from a uni�ed point of view. The unity of the

consideration is de�ned by the property of the principal part Q of L being

Fredholm.

The ideas and methods of the general theory permit new approaches to

many problems and adoption of standard schemes and theorems to their

study. This is why the application of the abstract theory begins to play a

serious role in modern investigations connected with various equations, in

particular, with ordinary di�erential equations and systems with aftere�ect.

The Chapter is devoted to some typical applications. In xx6,7, using a

uniform scheme, the fundamentals of the theory of equations on the space of

absolutely continuous and piecewise absolutely continuous vector-functions

are presented. In x8, by the same scheme a concise theory of the n-th order

scalar equations of the is presented. In x9, some singular equations are

considered. A special choice of the space D ' B�R

n

ensures the principal

part Q : B! B of L : D! B of being a Fredholm operator. In such a way,

the theorems of Chapter 1 became applicable to the equation. In x10, a new

approach to the minimization of square functionals is proposed. The role of

the choosing of the space for the existence of the minimum is emphasized.

Some e�cient tests of existence of the unique point of minimum are given

in terms of parameters of the functional.

x

6. Systems of Ordinary Functional Differential Equations

The equation

Lx = f (6.1)

with a linear operator L acting from the space D

n

of absolutely continuous

functions x : [a; b] ! R

n

into the space L

n

of summable functions z :

[a; b]! R

n

is called a linear ordinary functional di�erential equation

kxk

D

n

= k _xk

L

n

+ jx(a)j; kzk

L

n

=

b

Z

a

jz(s)jds:

As examples of (6.1), we can present the equations (2.3), (2.4) and also

(Lx)(t)

def

= _x(t) +

b

Z

a

d

s

R(t; s)x(s) = f(t); t 2 [a; b]; (6.2)

under the assumption that the elements r

ij

(t; s) of the n� n-matrix R(t; s)

are measurable on [a; b]�[a; b], the functions var

s2[a;b]

r

ij

(t; s) are summable

on [a; b] and R(t; b) � 0.
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If the isomorphism J : L

n

� R

n

! D

n

is de�ned on the base of the

representation

x(t) =

t

Z

a

_x(s)ds+ x(a)

�

(�z)(t) =

t

Z

a

z(s)ds; (Y �)(t) = �

�

;

then the principal parts Q of the operators L for the equations (2.3), (2.4)

and (6.2) have the forms

(Q

1

z)(t) = z(t)�

t

Z

a

P (t)z(s)ds;

(Q

2

z)(t) = z(t)�

b

Z

a

�

H

1

(t; s) +

b

Z

s

H(t; �)d�

�

z(s)ds;

(Q

3

z)(t) = z(t)�

b

Z

a

R(t; s)z(s)ds;

respectively, and the equations may be represented as follows

_x(t)�

t

Z

a

P (t) _x(s)ds� P (t)x(a) = f(t);

_x(t)�

b

Z

a

�

H

1

(t; s) +

b

Z

s

H(t; �)d�

�

_x(s)ds�

�

b

Z

a

H(t; �)d�

�

x(a) = f(t);

_x(t)�

b

Z

a

R(t; s) _x(s)ds�R(t; a)x(a) = f(t):

The principal parts of these equations have the form Q = I �K, where

K : L

n

! L

n

is an integral operator. The compactness of K (of K

2

if Q

2

)

can be established by means of the following test.

Theorem 6.1 ([1]). Let the elements k

ij

(t; s), i; j = 1; : : : ; n, of the matrix

K(t; s) be measurable on [a; b]�[a; b], for almost every t 2 [a; b] the functions

k

ij

(t; �) have �nite one sided limits at each point s 2 [a; b] and there exist

summable functions v

ij

: [a; b] ! R

1

such that jk

ij

(�; s)j � v

ij

(�) for each

s 2 [a; b]. Then the integral operator

(Kz)(t) =

b

Z

a

K(t; s)z(s)ds

acts in the space L

n

and is compact.



40

The equation with \deviated argument"

_x(t)�B(t) _x[g(t)]� P (t)x[h(t)] = v(t); t 2 [a; b];

x(�) = '(�); _x(�) =  (�); if � 62 [a; b];

(6.3)

is also an equation of the kind (6.1). The necessity of introduction of the

so called \initial functions" ' and  is due to the fact that the solution is

de�ned only on [a; b]. In order to rewrite (6.3) in the form (6.1), we must

use the linear operation of interior superposition de�ned by

(S

r

y)(t) =

(

y[r(t)]; if r(t) 2 [a; b];

0; if r(t) 62 [a; b]:

(6.4)

De�ne also the function �

r

by

�

r

(t) =

(

0; if r(t) 2 [a; b];

�[r(t)]; if r(t) 62 [a; b]:

(6.5)

Using these notation, we can rewrite (6.3) in the form Lx = f de�ning L

and f by

(Lx)(t) = _x(t)�B(t)(S

g

_x)(t) � P (t)(S

h

x)(t)

and

f(t) = v(t) +B(t) 

g

(t) + P (t)'

h

(t):

The linear operator S

h

: D

n

! L

n

can be represented in the form

(S

h

x)(t) =

b

Z

a

�

h

(t; s) _x(s)ds+ �

h

(t; a)x(a);

where �

h

(t; s) is the characteristic function of the set

n

(t; s) 2 [a; b]� [a; b] : a � s � h(t) � b

o

:

Denoting

(Sz)(t) = B(t)(S

g

z)(t); (Kz)(t) =

b

Z

a

P (t)�

h

(t; s)z(s)ds;

we obtain the principal part Q of L corresponding to (6.3) in the form

Q = I � S �K.

By virtue of Theorem 6.1, the integral operator K : L

n

! L

n

with

K(t; s) = �

h

(t; s)P (t)

is compact. Thus if (6.3) can be solved in respect to the derivative _x (Sz = 0

for all z 2 L

n

), then Q is a canonical Fredholm operator. If that is not

the case, the question arises when S

g

: L

n

! L

n

is continuous and Q =

I�S�K is Fredholm? During the last 20 years a large series of investigations
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necessary for completion of the general theory of the equation (6.3) was

devoted to these questions. The main results of these investigations are

thoroughly treated in [1]. Some of them will be stated below.

If the equation (6.3) is solved in respect to the derivative, (6.3) can be

written in the form (6.2) by denoting

R(t; s) = ��(t; s)P (t);

where �(t; s) is the characteristic function of the set

n

(t; s) 2 [a; b]�[a; b] : a � s � h(t) < b

o

[

n

(t; s) 2 [a; b]�[a; b) : h(t) = b

o

:

A natural generalization of (6.3) is the equation

_x(t)�

k

X

i=1

B

i

(t)(S

g

i

_x)(t) +

b

Z

a

d

s

R(t; s)x(s) = f(t): (6.6)

If g

i

(t) � t, i = 1; : : : ; k, and R(t; s) = 0 for t < s, then (6.6) is called the

equation with retarded argument.

The solution of the equation (6.3) was de�ned by many authors as a

continuous prolongation on [a; b] of the initial function '. In other words,

the conditions x(a) = '(a), x(b) = '(b) of \continuous junction" was de-

manded. There is no need of such conditions from the point of view of

correctness of all the operations in the left side of (6.3). But these condi-

tions cause many complications in the conception of the equation and turn

out to be a serious obstacle in applying of the general theory of the equation

Lx = f

with the linear operator L : D

n

! L

n

to the equation (6.3). Beginning from

the works [15, 16], the most part of authors refused from the necessity of the

continuous junction condition. It is relevant to note that the refusal from old

conceptions, connected with continuous junction, does not mean forbidding

the boundary conditions x(a) = '(a), x(b) = '(b) and the modern theory

generalizes the results of previous investigations but does not contradict

them.

In the book [17], the equation with \distributed retardation"

_x(t) +

�(t)

Z

0

d

s

g(t; s)x(t� s) = v(t); t 2 [a; b]; �(t) � 0;

x(�) = '(�); if � < a
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was studied along with the necessary condition x(a) = '(a). We can write

this equation in the form

_x(t) +

t

Z

�1

d

s

R(t; s)x(s) = v(t); t 2 [a; b];

x(�) = '(�); if � � a:

(6.7)

Thus, (6.7) is a boundary value problem for the equation

(Lx)(t)

def

= _x(t) +

t

Z

a

d

s

R(t; s)x(s) = f(t) (6.8)

with boundary condition x(a) = '(a) and

f(t) = v(t)�

a

Z

�1

d

s

R(t; s)'(s):

The equation (6.8) (without boundary conditions) under the assumption

of the mentioned book [17] turns out to be an equation Lx = f with the

linear operator L : D

n

! L

n

. The principal part

(Qz)(t) = z(t)�

t

Z

a

R(t; s)z(s)ds

of L has a bounded inverse by virtue of the compactness of the integral

Volterra operator with the kernel R(t; s). Thus by virtue of Theorem 2.4,

the equation (6.8) with boundary conditions x(a) = � is uniquely solvable.

Consequently (Theorem 2.5) the dimension of the fundamental system of

the homogeneous equation Lx = 0 is equal to n. It is relevant to point

out that in the book [17], the \in�nite-dimensional fundamental system"

of solutions of the homogeneous equation is determined. This does not

contradict to what has been said above because, due to A. D. Myshkis, the

homogeneous equation corresponding to (6.7) is said to be this equation

with v(t) � 0.

The equation (6.6) arises some problems about properties of S

g

in the

spaces of summable functions. We will state here the main facts of the

theory of the operator S

g

: L

n

! L

n

. The thorough treatment of the

matter can be found in [1].

The values of the function g : [a; b] ! R

1

which do not belong to [a; b]

have no e�ect on the construction of the operator S

g

. Thus this function

can be de�ned arbitrarily on the set

n

t 2 [a; b] : g(t) 62 [a; b]

o

:
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Let mes be Lebesgue measure, e � [a; b],

g

�1

(e) =

n

t 2 [a; b] : g(t) 2 e

o

:

Theorem 6.2 ([18, 19]). The operator S

g

is continuous in the space L

n

if

and only if

sup

e�[a;b]

mes e>0

mes g

�1

(e)

mes e

=M <1 (6.9)

and

k S

g

k=M:

It is useful to point out that the condition

mes e = 0) mes g

�1

(e) = 0 (6.10)

is necessary for (6.9). The condition (6.10) (the so called condition of \non-

hovering") does not hold, in particular, if g(t) = const on a set e � [a; b]

of positive measure. (6.10) is ful�lled, for instance, if g is piecewise strictly

monotonic and on each segment of monotonicity has an absolutely contin-

uous inverse function g

�1

. For a strictly monotonic g, we have

kS

g

k = sup

e�[a;b]

mes e>0

mes g

�1

(e)

mes e

= vraisup

s2[a;b]\g([a;b])

�

�

�

dg

�1

ds

(s)

�

�

�

:

From this and Theorem 6.2 it follows, in particular, that the operator S

g

with g(t) =

1

2

t

2

, [a; b] = [0; 1] is not continuous on L

n

.

For the equation (6.6), the principal part Q of L has the form

Q = I � S �K;

where K : L

n

! L

n

is an integral operator and

(Sz)(t) =

k

X

i=1

B

i

(t)(S

g

i

z)(t): (6.11)

The operator S : L

n

! L

n

de�ned by (6.11) is continuous if S

g

i

: L

n

!

L

n

are continuous and the elements of n � n-matrixes B

i

are bounded

in essential. For more sophistical conditions of continuity of the operator

S : L

n

! L

n

, we refer to [20] .

It ought to be pointed out that the operator S : L

n

! L

n

is never

compact (but in the case Sz = 0 for all z 2 L

n

).

Theorem 6.3 ([21, 22]). Let S : L

n

! L

n

be a bounded operator, and

K : L

n

! L

n

be a compact one. Then the operator I � S �K is Fredholm

if and only if there exists the bounded inverse (I � S)

�1

: L

n

! L

n

.
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In connection with this Theorem, it is interesting to point out the fol-

lowing.

Let

Lx = (I � S �K) _x+Ax(a)

and

P = (I � S)

�1

be bounded. Then the equation Lx = f may be transformed to the form

L

1

x

def

= (I �K

1

) _x+A

1

x(a) = f

1

;

where K

1

= PK, A

1

= PA, f

1

= Pf . If K : L

n

! L

n

is compact, then the

principal part of L

1

is a Fredholm operator.

Equations with Volterra operator L or, as it is called, \the equations with

aftere�ect" represent a special allurement for some investigators.

De�nition 6.1. Let X and Y be linear spaces of measurable functions x :

[a; b]! R

n

and y : [a; b]! R

n

, respectively. A linear operator F : X! Y

is said to be the Volterra one if for each c 2 (a; b), (Fx)(t) = 0 almost

everywhere on [a; c] for all such x 2 X that x(t) = 0 almost everywhere on

[a; c].

The Volterra property of L permits to consider the solution x of the

equation Lx = f on every segment [a; c] � [a; b] disregarding the values of

x(t) and (Lx)(t) for t > c. Thus we can study the evolution of the process

described by the equation Lx = f with Volterra operator L.

A highly general representative of the equation with aftere�ect is the

equation of the form

Lx

def

= (I � S �K) _x+Ax(a) = f;

where S and K are Volterra operators. The equation (6.3) is of such a kind

if g(t) � t, h(t) � t.

Let us dwell on some results about equations with aftere�ect.

By virtue of Theorem 2.4, the Cauchy problem

Lx = f; x(a) = � (6.12)

is uniquely solvable if and only if there exists the bounded inverse Q

�1

:

L

n

! L

n

. In this case, the solution of (6.12) admits the representation

x = �Q

�1

f +

�

E � �Q

�1

A

�

�:

Here (�Q

�1

f)(t) =

R

t

a

(Q

�1

f)(s)ds is the Green operator of the problem

(6.12), and X = E � �Q

�1

A is the fundamental matrix of solutions of the

homogeneous equation Lx = 0.
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If Q

�1

is a Volterra operator, the product �Q

�1

of Volterra operators is

also Volterra. Any bounded operator C : L

n

! D

n

is an integral one. Thus

in the case of Volterra Q

�1

, we have

(Cf)(t)

def

=

t

Z

a

(Q

�1

f)(s)ds =

t

Z

a

C(t; s)f(s)ds:

By analogy with the theory of di�erential equations, the operator C is called

the Cauchy operator and C(t; s) is called the Cauchy matrix.

The following statement gives us a condition of Volterra invertibility of

Q = I � S �K.

Theorem 6.4 ([23, 1]). Let Q = I � S �K. Assume that S : L

n

! L

n

is

the Volterra operator de�ned by (6.11), K : L

n

! L

n

is a compact Volterra

operator, the spectral radius �(S) of S is less then 1 (�(S) < 1). Then there

exists a bounded inverse Q

�1

: L

n

! L

n

and Q

�1

is also Volterra.

Under the condition of Theorem 6.4, the general solution of the equation

Lx = f admits the representation

x(t) =

t

Z

a

C(t; s)f(s)ds+X(t)x(a): (6.13)

By analogy with the theory of di�erential equations, this representation is

called the Cauchy formula.

Let us remark that only for di�erential equation the Cauchy matrix is

de�ned by the fundamental matrix, namely C(t; s) = X(t)X

�1

(s).

In order to formulate some estimates of the spectral radius �(S) of the

Volterra operator S : L

n

! L

n

de�ned by (6.11), let us �x the numbers

�

i

> 0 and denote

!

i

=

n

t 2 [a; b] : t� g

i

(t) � �

i

; g

i

(t) 2 [a; b]

o

:

Let us stipulate also that

vraisup

t2!

y(t) = 0

if ! is an empty set. By jBj we denote the norm of the matrix B compatible

with the norm j � j in R

n

.

Theorem 6.5 ([23, 1]). Let g

i

(t) � t, M

i

= kS

g

i

k, i = 1; : : : ; k. Then

�(S) �

k

X

i=1

M

i

vraisup

t2!

i

jB(t)j:
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Thus, in particular, the existence of such a number � > 0 that t �

g

i

(t) � � , i = 1; : : : ; k, means that the sets !

i

are empty for �

i

< � and,

consequently, �(S) = 0.

Let us return to the general linear boundary value problem

(Lx)(t)

def

= (Q _x)(t) +A(t)x(a) = f(t); lx = � (6.14)

under the assumption that Q : L

n

! L

n

is a Fredholm operator.

The decomposition (2.6) of a bounded linear vector-functional

l = [l

1

; : : : ; l

m

] : D

n

! R

m

has the form

lx =

b

Z

a

�(s) _x(s)ds+	x(a);

where the elements of the m� n-matrix � are measurable and bounded in

essential, and the m� n-matrix 	 is constant. Rewrite the problem (6.14)

in the form

�

Q A

� 	

��

_x

x(a)

�

=

�

f

�

�

(6.14)

de�ning the operators A : R

n

! L

n

and � : L

n

! R

m

by

(A�)(t) = A(t)�; �y =

b

Z

a

�(s)y(s)ds:

The operator 	 : R

n

! R

m

is de�ned by the matrix 	.

Let ! be a linear bounded functional on L

n

and !(s) = f!

1

(s); : : : ; !

n

(s)g

be a row vector with measurable and bounded in essential components which

realizes this functional. Then

A

�

! =

b

Z

a

!(s)A(s)ds:

Assume further

(�

�


)(t) = 
�(t); 	

�


 = 
	;

whose 
 denotes a linear functional on R

m

and simultaneously the row

vector which realizes this functional. Thus the equation

�

Q

�

�

�

A

�

	

�

��

!




�

=

�

g

�

�

which is adjoint to the problem (6.14) is realized in the form of the system

(Q

�

!)(t) + 
�(t) = g(t);

b

Z

a

!(s)A(s)ds + 
	 = �:

(6.15)
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The condition of orthogonality of the right-hand side ff; �g of the equation

(6.14) to the solution f!; 
g of the homogeneous adjoint equation

(Q

�

!)(t) + 
�(t) = 0;

b

Z

a

!(s)A(s)ds+ 
	 = 0

obtains the form

b

Z

a

!(s)f(s)ds+ 
� = 0:

The substitution

y(t) =

t

Z

a

!(s)ds+ 


into (6.14) in the case m = n leads to the boundary value problem

(Q

�

_y)(t) + y(a)�(t) = g(t);

b

Z

a

_y(s)A(s)ds + y(a)	 = �:

(6.16)

This problem is naturally said to be the boundary value problem adjoined

to (6.14). The solution of this problem is a row vector y = fy

1

; : : : ; y

n

g with

absolutely continuous components y

i

and bounded in essential derivatives

d

dt

y

i

. The condition of orthogonality of ff; �g to the solution y of the

homogeneous adjoint problem has the form

b

Z

a

_y(s)f(s)ds+ y(a)� = 0:

Consider, as an example, the \periodic" boundary value problem

(Q _x)(t) +A(t)x(a) = f(t);

b

Z

a

_x(s)ds = �: (6.17)

The problem

(Q

�

_y)(t) + y(a) = 0;

b

Z

a

_y(s)A(s)ds = 0

(6.18)

is homogeneous adjoint to (6.17). The problem (6.17) is uniquely solvable

if and only if (6.18) has only the trivial solution. Therefore the linear
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independence of the columns of the matrix A is a necessary condition for

unique solvability of (6.17). Thus the linear independence of the columns

of the matrices P (t),

R

b

a

H(t; �)d� , R(t; a) and P (t)�

h

(t; a) is necessary for

unique solvability of the periodic problem for the equations (2.6), (2.4),

(6.2) and (6.3), respectively.

Let Q = I � S �K, where S is de�ned by (6.11) and K is an integral

compact operator. Then

(K

�

y)(t) =

b

Z

a

y(s)K(s; t)ds;

(S

�

y)(t) =

k

X

i=1

d

dt

b

Z

a

y(s)B

i

(s)�

i

(t; s)ds;

where �

i

(t; s) is the characteristic function of the set [1]

n

(t; s) 2 [a; b]� [a; b] : a � g

i

(s) � t

o

:

If the problem (6.14) is uniquely solvable, then m = n (Corollary 2.1)

and x = Gf is the solution of this problem for � = 0. Here G : L

n

! D

n

is the Green operator of the considered problem. This operator as every

bounded operator acting from L

n

into D

n

is an integral one:

(Gf)(t) =

b

Z

a

G(t; s)f(s)ds:

The kernel G(t; s) of this operator is called Green matrix.

By virtue of Theorem 3.2, the matrix X de�ned by

X(t) = U(t)�

b

Z

a

G(t; s)(LU)(s)ds

is a fundamental matrix of the solutions of the homogeneous equation

Lx = 0 provided n � n-matrix U with columns from D

n

satis�es the

condition lU = E.

Thus, the Green matrix of any problem for the equation Lx = f being

available, we may write the general solution of this equation in explicit form

x = Gf +Xc; c 2 R

n

:

It follows from Theorem 3.3 that the Green functions G(t; s) and G

1

(t; s)

of various boundary value problems for the same equation Lx = f with

di�erent vector-functionals l and l

1

are connected by the relation

G(t; s) = G

1

(t; s)�X(t)(lX)

�1

V (s);
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where X is a fundamental matrix of Lx = 0, n � n-matrix V is the kernel

of the integral representation

lG

1

f =

b

Z

a

V (s)f(s)ds

of the vector-functional lG

1

: L

n

! R

n

.

Denote by U an n� n-matrix with columns from D

n

such that detU(a)

6= 0, lU = E. By virtue of Lemma 3.1, such a matrix exists for any bounded

vector-functional l : D

n

! R

n

with linearly independent components.

The Green matrix W

l

(t; s) of the problem

_x(t)�

_

U(t)[U(a)]

�1

x(a) = f(t); lx = � (6.19)

is de�ned by

W

l

(t; s) = E�

[a;t]

(s)� U(t)�(s)

due to Theorem 3.4. Using the representation (3.6), one may investigate

some properties of Green functions by means of the \primary" Green func-

tion W

l

(t; s) of the problem (6.19).

Theorem 6.6 (1]). Let the problem (6:14) be uniquely solvable, Q = I�K,

(Kz)(t) =

b

Z

a

K(t; s)z(s)ds

be a compact operator in the space L

n

. Then the Green matrix G(t; s) of

the problem (6:14) possesses the properties:

a) for almost every s 2 (a; b), G(�; s) is absolutely continuous on [a; s)

and (s; b], and besides

G(s+ 0; s)�G(s� 0; s) = E:

b)

d

dt

b

Z

a

G(t; s)f(s)ds =

b

Z

a

@

@t

G(t; s)f(s)ds+ f(t)

for each f 2 L

n

.

c) for almost every s 2 (a; b), G(�; s) satis�es

@

@t

G(t; s)�

b

Z

a

K(t; �)

@

@�

G(�; s)d� +A(t)G(a; s) = K(t; s);

b

Z

a

�(�)

@

@�

G(�; s)d� +	G(a; s) = ��(s):
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The Green matrix has a much more complicated structure if Q = I�S�

K, with S de�ned by (6.11). The results of studying of such matrices have

only fragmentary character as yet.

x

7. Systems With Impulse Effect

Denote by DS

n

(m) = DS

n

[a; t

1

; : : : ; t

m

; b] the space of piecewise abso-

lutely continuous functions y : [a; b]! R

n

representable in the form

y(t) =

t

Z

a

_y(s)ds+ y(a) +

m

X

i=1

�

[t

i

;b]

(t)�y(t

i

):

Here t

i

are �xed points, a < t

1

< � � � < t

m

< b, �y(t

i

) = y(t

i

)� y(t

i

� 0),

�

[t

i

;b]

(t) is the characteristic function of the segment [t

i

; b]. Thus, the

elements x 2 DS

n

(m) are the functions absolutely continuous on each

[a; t

1

), [t

i

; t

i+1

), i = 1; : : : ;m� 1, [t

m

; b] and right-continuous at the points

t

1

; : : : ; t

m

. The space DS

n

(m) is isomorphic to the product L

n

�R

n+nm

,

the isomorphism

J = f�; Y g : L

n

�R

n+nm

! DS

n

(m)

is de�ned by

(�z)(t) =

t

Z

a

z(s)ds; Y (t) =

�

E

n

; �

[t

1

;b]

(t)E

n

; : : : ; �

[t

m

;b]

(t)E

n

�

;

E

n

is identical n� n-matrix. The inverse

J

�1

= [�; r] : DS

n

(m)! L

n

�R

n+nm

is de�ned by

�y = _y; ry =

�

y(a);�y(t

1

); : : : ;�y(t

m

)

�

:

If

kyk

n

DS

(m)

= k _yk

L

n

+ kryk

R

n+nm

;

then DS

n

(m) is a Banach space.

The space D

n

is continuously imbedded into DS

n

(m), and also

DS

n

(m) = D

n

�M

nm

;

where M

nm

is a �nite-dimensional subspace with dimension nm. Thus any

linear operator on DS

n

(m) is a linear extension on this space of a linear

operator L de�ned on D

n

. To emphasize this fact, we will denote by

e

L

the linear operator de�ned on DS

n

(m). If L : D

n

! L

n

is a Noether

operator, indL = n (which is always supposed), then the linear extension

e

L : DS

n

(m)! L

n

is as well a Noether operator, and also

ind

e

L = indL+ nm = n+ nm:
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A linear bounded operator

e

L : DS

n

(m)! L

n

has the representation

(

e

Ly)(t) = (Q _y)(t) +A

0

(t)y(a) +

m

X

i=1

A

i

(t)�y(t

i

); (7.1)

where Q =

e

L�, A

0

=

e

L(E

n

), A

i

=

e

L(�

[t

i

;b]

E

n

), i = 1; : : : ;m. Hence any

operator de�ned by (7.1) is a linear extension on DS

n

(m) of an operator

L : D

n

! L

n

such that

(Lx)(t) = (Q _x)(t) +A

0

(t)x(a)

for any matrices A

1

; : : : ; A

m

with columns from L

n

.

All the assertions of the theory of abstract functional di�erential equa-

tions are valid for the equation

e

Ly = f (7.2)

with Noether operator

e

L : DS

n

(m) ! L

n

, ind

e

L = n + nm. In particular,

it is necessary for unique solvability of a boundary value problem that the

number of boundary conditions be equal to n+ nm.

The studying of the equation (7.2) and boundary value problems for such

an equation was started by A. V. Anokhin [24].

The solution of the principal boundary value problem

e

Ly = f; ry = �

(in the case of its unique solvability) has the form

y(t) =

t

Z

a

(Q

�1

f)(s)ds+

�

Y (t)�

t

Z

a

(Q

�1

A)(s)ds

�

�;

where A = (A

0

; A

1

; : : : ; A

m

). The matrix

e

X(t) = Y (t)�

t

Z

a

(Q

�1

A)(s)ds

is a fundamental one of the solutions of the homogeneous equation

e

Ly = 0.

For this matrix, r

e

X = E

n+nm

(E

n+nm

is an unity (n + nm) � (n + nm)-

matrix).

If the boundary value problem

e

Ly = f;

e

ly = � (7.3)

is uniquely solvable, its solution has the form

y(t) = (

e

Gf)(t) +

e

X(t)�:
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Here

e

X is such a fundamental matrix of

e

Ly = 0 that

e

l

e

X = E

n+mn

,

e

G :

L

n

! DS

n

(m) is the Green operator of this problem. This operator is an

integral one. This follows from the fact that the equality

y(t) = (Fz)(t)

for the linear bounded operator F : L

n

! DS

n

(m) de�nes at every point

t 2 [a; b] a bounded linear vector-functional on the space L

n

.

Let

e

L : DS

n

(m)! L

n

and

e

l : DS

n

(m)! R

n

be linear extensions of

L : D

n

! L

n

and l : D

n

! R

n

:

Theorem 7.1. If one of the boundary value problems

Lx = f; lx = � (7.4)

and

e

Ly = f;

e

ly = �; �y(t

i

) = 


i

; i = 1; : : : ;m (7.5)

is uniquely solvable, then the other one is also solvable. If these problems are

uniquely solvable then the Green operator of (7:4) is also the Green operator

of (7:5).

Proof. The problem

e

Ly = f;

e

ly = �; �y(t

i

) = 0; i = 1; : : : ;m;

and (7.4) are equivalent. The problems (7.4) and (7.5) are both Fredholm.

Consequently, the unique solvability of (7.4) or (7.5) for any right-hand side

implies the unique solvability of the other one for each right-hand side. If

x = Gf is the unique solution of (7.4) for � = 0, this x is also the unique

solution of (7.5) for � = 0, 


i

= 0, i = 1; : : : ;m. Thus G is the Green

operator of (7.5). �

Assume that the principal part Q of L : D

n

! L

n

has the form Q =

I �K, where K : L

n

! L

n

is a compact operator. In this event (Theorem

6.6) for almost every s 2 (a; b) the Green matrix G(�; s) of (7.4) satis�es the

matrix equations

(

e

LZ)(t)

def

=

_

Z(t)�

b

Z

a

K(t; �)

_

Z(�)d� +A

0

(t)Z(a)�K(t; s)�Z(s) = 0;

e

lZ

def

=

b

Z

a

�(�)

_

Z(�)d� +	Z(a) + �(s)�Z(s) = 0;

where

�Z(s) = Z(s)� Z(s� 0);
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and besides the condition

G(s; s) �G(s� 0; s) = E

n

is ful�lled (we may assume that G(�; s) is right-continuous at the point

s). Thus, the Green matrix G(�; s) of (7.4) is the solution of the matrix

boundary value problem

e

LZ = 0;

e

lZ = 0; �Z(s) = E

n

for almost every s 2 (a; b) if the linear extensions of L and l on the space

DS

n

[a; s; b] are constructed as follows

(

e

Ly)(t) = _y(t)�

b

Z

a

K(t; �) _y(�)d� +

+A

0

(t)y(a)�K(t; s)�y(s); (7.6)

e

ly =

b

Z

a

�(�) _y(�)d� +	y(a) + �(s)�y(s): (7.7)

In respect of extensions (7.6) and (7.7), observe the following. Let

(Lx)(t)

def

= _x(t) + P (t)(S

h

x)(t) =

= _x(t) +

b

Z

a

P (t)�

h

(t; �) _x(�)d� + P (t)�

h

(t; a)x(a);

where �

h

(t; �) is the characteristic function of the set

n

(t; �) 2 [a; b]� [a; b] : � � h(t) � b

o

:

Then the extension (7.6) preserves its original form

(

e

Ly)(t) = _y(t) + P (t)(S

h

y)(t):

This follows from the representation

(S

h

y)(t) =

b

Z

a

�

h

(t; �) _y(�)d� + y(a) + �

h

(t; s)�y(s):

Analogously, for the vector-functional

lx

def

= �(�) =

b

Z

a

�

[a;�]

(�) _x(�)d� + x(a)

�

� 2 [a; b]

�
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the original form preserves after the extension (7.7):

~

ly =

b

Z

a

�

[a;�]

(�) _y(�)d� + y(a) + �

[a;�]

(s)�y(s) = y(�):

In the general case, the form of the operators L and l may be changed after

extension. Let

(Lx)(t)

def

= _x(t) +

b

Z

a

d

�

R(t; �)x(�) =

= _x(t)�

b

Z

a

R(t; �) _x(�)d� �R(t; a)x(a):

Without loss of generality one may assume that R(t; �) is left-continuous at

any point s 2 (a; b). Then the extension (7.6) can be written in the form

(

e

Ly)(t) = _y(t) +

s

Z

a

d

�

R(t; �)y(�) +

b

Z

s

d

�

R(t; �)y(�):

Indeed,

s

Z

a

d

�

R(t; �)y(�) = R(t; s)y(s� 0)�R(t; a)y(a)�

s

Z

a

R(t; �) _y(�)d�;

b

Z

s

d

�

R(t; �)y(�) = �R(t; s)y(s)�

b

Z

s

R(t; �) _y(�)d�:

From this

s

Z

a

d

�

R(t; �)y(�) +

b

Z

s

d

�

R(t; �)y(�) =

= �

b

Z

a

R(t; �) _y(�)d� �R(t; a)y(a)�R(t; s)�y(s):

Let us consider by using Theorem 5.3 the conditions which guarantee the

continuous dependence of the solution of the problem (7.3) with respect to

parameters of the problem, in particular, with respect to the arrangement

of the points a; t

1

; : : : ; t

m

; b.

For each k = 0; 1; : : : , let us choose such a system of points a

k

= t

k

0

<

t

k

1

< � � � < t

k

m+1

= b

k

that

lim

k!1

t

k

i

= t

0

i

; i = 0; 1; : : : ;m+ 1:
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Denote

D

k

= DS

n

[a

k

; t

k

1

; : : : ; t

k

m

; b

k

]; B

k

= L

n

[a

k

; b

k

]:

The element y 2 D

k

has the representation

y(t) =

t

Z

a

k

_y(s)ds+ y(a

k

) +

m

X

i=1

�

[t

k

i

; b

k

]

(t)�y(t

k

i

):

The space D

k

is isomorphic to the direct product B

k

�R

n+nm

, the isomor-

phism J

k

= f�

k

; Y

k

g : B

k

�R

n+nm

! D

k

being de�ned by

(�

k

z)(t) =

t

Z

a

k

z(s)ds; Y

k

(t) =

�

E

n

; �

[t

k

1

; b

k

]

(t)E

n

; : : : ; �

[t

k

m

; b

k

]

(t)E

n

�

:

J

�1

k

= [�

k

; r

k

]; �

k

y = _y; r

k

y =

�

y(a

k

);�y(t

k

1

); : : : ;�y(t

k

m

)

�

;

kyk

D

k

= k _yk

B

k

+ kr

k

yk

R

n+nm

:

De�ne the functions !

k

: [a

k

; b

k

]! [a

0

; b

0

] by

!

0

(t) = t; !

k

(t) =

m

X

i=0

h

t

0

i+1

� t

0

i

t

k

i+1

� t

k

i

(t� t

k

i

) + t

0

i

i

�

[t

k

i

; t

k

i+1

]

(t);

k = 1; 2; : : : :

This function has the inverse

!

�1

k

(t) =

m

X

i=0

h

t

k

i+1

� t

k

i

t

0

i+1

� t

0

i

(t� t

0

i

) + t

k

i

i

�

[t

0

i

; t

0

i+1

]

(t); t 2 [a

0

; b

0

]:

De�ne H

k

: B

0

! B

k

by

(H

k

z)(t) = z[!

k

(t)]:

Then

(H

�1

k

z)(t) = z[!

�1

k

(t)]:

We have

kH

k

zk

B

k

=

m

X

i=0

t

k

i+1

Z

t

k

i

�

�

�

�

z

h

t

0

i+1

� t

0

i

t

k

i+1

� t

k

i

(t� t

k

i

) + t

0

i

i

�

�

�

�

dt =

=

m

X

i=0

t

k

i+1

� t

k

i

t

0

i+1

� t

0

i

t

0

i+1

Z

t

0

i

jz(�)jd�:

We have from this that

kH

k

zk

B

k

� max

i

t

k

i+1

� t

k

i

t

0

i+1

� t

0

i

kzk

B

0

; kH

k

k = max

i

t

k

i+1

� t

k

i

t

0

i+1

� t

0

i

;
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lim

k!1

kH

k

zk

B

k

= kzk

B

0

for all z 2 B

0

.

Quite similarly

kH

�1

k

k = max

i

t

0

i+1

� t

0

i

t

k

i+1

� t

k

i

:

De�ne (P

k

y)(t) = y[!

k

(t)], y 2 D

0

. We have

(P

k

y)(t) =

!

k

(t)

Z

a

0

_y(s)ds+ y(a

0

) +

m

X

i=1

�

[t

0

i

; b

0

]

[!

k

(t)]�y(t

0

i

) =

=

t

Z

a

k

d

ds

�

y[!

k

(s)]

�

ds+ y(a

0

) +

m

X

i=1

�

[t

k

i

; b

k

]

(t)�y(t

0

i

):

Thus P

k

y 2 D

k

, r

k

P

k

y = r

0

y, (P

�1

k

y)(t) = y[!

�1

k

(t)]. Further we have:

kP

k

yk

D

k

=










d

dt

P

k

y










B

k

+ kr

k

P

k

yk

jboldR

n+nm

=

=

m

X

i=0

t

k

i+1

Z

t

k

i

�

�

�

�

_y

h

t

0

i+1

� t

0

i

t

k

i+1

� t

k

i

(t� t

k

i

) + t

0

i

i

�

�

�

�

t

0

i+1

� t

0

i

t

k

i+1

� t

k

i

dt+ kr

0

yk

R

n+nm

=

=

m

X

i=0

t

0

i+1

Z

t

0

i

j _y(�)jd� + kr

0

yk

R

n+nm

= kyk

D

0

:

Hence the systems fH

k

g and fP

k

g are connecting systems of isomorphisms

for the spaces B

0

, B

k

and D

0

, D

k

, satisfying the conditions of Theorem

5.3.

Let

e

L

k

: DS

n

[a

k

; t

k

1

; : : : ; t

k

m

; b

k

]! L

n

[a

k

; b

k

] be a linear bounded Noether

operator with ind

e

L

k

= n + nm and

e

l

k

: DS

n

[a

k

; t

k

1

; : : : ; t

k

m

; b

k

] ! R

n+nm

be a linear bounded vector-functional, k = 0; 1; : : : . Under the assumption

that

e

L

k

PH

!

e

L

0

,

e

l

k

u

k

!

e

l

0

u

0

whenever u

k

P

!u

0

, the following assertion is valid.

Theorem 7.2. Let the boundary value problem

e

L

0

y = f;

e

l

0

y = �

be uniquely solvable.

The problems

e

L

k

y = f;

e

l

k

y = �

are uniquely solvable for all su�ciently large k, and for all f

k

H

!f

0

and

�

k

! �

0

, the sequence fy

k

g of solutions y

k

of the problems

e

L

k

y = f

k

;

e

l

k

y = �

k
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has the property y

k

P

!y

0

, where y

0

is the solution of

f

L

0

y = f

0

;

e

l

0

y = �

0

if and only if

a) there exists a vector-functional

l : DS

n

�

a

0

; t

0

1

; : : : ; t

0

m

; b

0

�

! R

n+nm

such that the problems

H

�1

k

f

L

k

P

k

y = f; ly = � (7.8)

are uniquely solvable for k = 0 and all su�ciently large k,

b) for any right-hand side ff; �g 2 L

n

[a

0

; b

0

]�R

n+nm

, the convergence

v

k

! v

0

holds, where v

k

2 DS

n

[a

0

; t

0

1

; : : : ; t

0

m

; b

0

] are the solutions of the

problem (7:8).

x

8. Equations of the n-th Order

Denote byW

n

the space of the functions x : [a; b]! R

1

with absolutely

continuous derivative of the (n � 1)-th order. Such a space is isomorphic

to L � R

n

, where L is the space of summable functions z : [a; b] ! R

1

.

The isomorphism J = f�; Y g : L�R

n

!W

n

may be constructed on the

ground of the equality

x(t) =

t

Z

a

(t� s)

n�1

(n� 1)!

x

(n)

(s)ds+

n�1

X

i=0

(t� a)

i

i!

x

(i)

(a)

for any element x 2W

n

. Then

(�z)(t) =

t

Z

a

(t� s)

n�1

(n� 1)!

z(s)ds; (Y �)(t) =

n�1

X

i=0

(t� a)

i

i!

�

i+1

;

� =

�

�

1

; : : : ; �

n

	

; J

�1

= [�; r] :W

n

! L�R

n

;

(�x)(t) = x

(n)

(t); rx = col

�

x(a); : : : ; x

(n�1)

(a)

	

;

kxk

W

n

= kx

(n)

k

L

+

�

�

col

�

x(a); : : : ; x

(n�1)

(a)

	

�

�

:

The decomposition (2.2) of a linear operator L :W

n

! L under such a

choice of isomorphism has the form

(Lx)(t) = (Qx

(n)

)(t) +

n�1

X

i=0

p

i

(t)x

(i)

(a): (8.1)
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The decomposition of the component l

i

:W

n

! R

1

of the vector-functional

l = [l

1

; : : : ; l

m

] :W

n

! R

m

has the form

l

i

x =

b

Z

a

'

i

(s)x

(n)

(s)ds +

n�1

X

j=0

 

i

j

x

(j)

(a);

where '

i

are measurable and bounded in essential functions,  

i

j

are con-

stants.

A su�ciently general representative of the equation Lx = f with the

linear operator L :W

n

! L has the form

(Lx)(t)

def

= x

(n)

(t)�

k

X

i=1

b

i

(t)

�

S

g

i

x

(n)

�

(t) +

+

n�1

X

i=0

b

Z

a

x

(i)

(s)d

s

r

i

(t; s) = f(t): (8.2)

We will assume below that the coe�cients b

i

are measurable and essentially

bounded on [a; b], the functions g

i

satisfy the conditions of Theorem 6.2

about continuity of S

g

i

: L ! L, r

i

(t; s) are measurable on the square

[a; b]� [a; b], var

s2[a;b]

r

i

(t; s) are summable on [a; b], and r

i

(t; b) � 0.

Using (8.1), rewrite (8.2) in the form

(Qx

(n)

)(t) +

n�1

X

i=0

p

i

(t)x

(i)

(a) = f(t):

Here the principal part Q = L� of the operator L is de�ned by Q = I �

S �K, where

(Sz)(t) =

k

X

i=1

b

i

(t)

�

S

g

i

z)(t); (8.3)

(Kz)(t) =

n�1

X

i=0

b

Z

a

d

i

ds

i

(�z)(s)d

s

r

i

(t; s) =

b

Z

a

K(t; s)z(s)ds;

K(t; s) =

n�2

X

i=0

b

Z

s

(� � s)

n�i�2

(n� i� 2)!

r

i

(t; �)d� + r

n�1

(t; s); if n � 2;

K(t; s) = r

0

(t; s); if n = 1:

The coe�cients p

i

(t) = (Ly

i

)(t) of the �nite-dimensional part LY , where

y

i

(t) =

(t� a)

i

i!

are the components of the vector Y = (y

0

; : : : ; y

n�1

), are

de�ned by

p

0

(t) = �r

0

(t; a);
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p

i

(t) = �r

i

(t; a)�

i�1

X

j=0

b

Z

a

(� � a)

i�j�1

(i� j � 1)!

r

j

(t; �)d�; i = 1; : : : ; n� 1:

Under the above assumption, S : L ! L is continuous and K : L ! L is

compact by virtue of Theorem 6.1. Hence Q = I�S�K is Fredholm if and

only if there exists the continuous inverse (I � S)

�1

(Theorem 6.3). The

condition kSk < 1 or �(S) < 1 guarantee such invertibility.

Under the chosen isomorphism between W

n

and L �R

n

, the principal

boundary value problem turns out to be the Cauchy one

Lx = f; x

(i)

(a) = �

i

; i = 0; 1; : : : ; n� 1: (8.4)

This problem is uniquely solvable if and only if there exists the bounded

inverse Q

�1

.

If L is a Volterra operator, then the equation (8.2) possesses some spe-

ci�c properties which put it into a special position among other equations

from the point of view of theory and application. Theorem 6.4 permits to

formulate the following conditions of Volterra invertibility of the operator

Q of the equation (8.2) with Volterra operator L.

Theorem 8.1. Let g

i

(t) � t, i = 1; : : : ; k; r

i

(t; s) = 0 for a � t < s � b,

i = 0; : : : ; n� 1. Suppose that the spectral radius of the operator S : L! L

de�ned by (8:3) is less than 1. Then the Cauchy problem

Lx = f; x

(i)

(a) = 0; i = 0; : : : ; n� 1;

for the equation (8:2) is uniquely solvable and the solution admits the rep-

resentation

x(t)

def

= (Cf)(t) =

t

Z

a

C(t; s)f(s)ds: (8.5)

Under the assumptions of Theorem 8.1, the representation (2.8) of the

solution of the Cauchy problem (8.4) for (8.2) obtains the form

x(t) =

t

Z

a

C(t; s)f(s)ds +

n�1

X

i=0

�

(t� a)

i

i!

�

t

Z

a

C(t; s)p

i

(s)ds

�

�

i

;

where p

0

(s) = �r

0

(s; a),

p

i

(s) = �r

i

(s; a)�

i�1

X

j=0

s

Z

a

(� � a)

i�j�1

(i� j � 1)!

r

j

(s; �)d�; i = 1; : : : ; n� 1:

The integral Volterra operator de�ned by (8.5) is said to be the Cauchy

operator and the function C(t; s) is said to be the Cauchy function of the

equation (8.2).
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Let L :W

n

! L be a linear bounded Noether operator of the index n.

Consider the boundary value problem

Lx = f; l

i

x = �

i

; i = 1; : : : ; n; (8.6)

with linearly independent functionals l

1

; : : : ; l

n

. If the problem is uniquely

solvable, then the solution in the case �

1

= � � � = �

n

= 0 admits the integral

representation

x(t)

def

= (Gf)(t) =

b

Z

a

G(t; s)f(s)ds:

The kernel G(t; s) of the operator G (the Green operator) is called to be

the Green function.

By virtue of Theorem 3.6, the problem (8.6) is uniquely solvable if and

only if there exists the bounded inverse [LW ]

�1

, where W : L!W

n

is the

Green operator of any model problem

L

1

x = z; l

i

x = 0; i = 1; : : : ; n:

As a model equation L

1

x = f , it is possible to take the one with

(L

1

x)(t)

def

=

1

w(a)

�

�

�

�

�

�

�

�

u

1

(a) : : : u

n

(a) x(a)

: : : : : : : : : : : :

u

(n�1)

1

(a) : : : u

(n�1)

n

(a) x

(n�1)

(a)

u

(n)

1

(t) : : : u

(n)

n

(t) x

(n)

(t)

�

�

�

�

�

�

�

�

=

= x

(n)

(t) +

n�1

X

i=0

p

i

(t)x

(i)

(a);

provided the system u

1

; : : : ; u

n

is chosen such that

w(a) =

�

�

�

�

�

�

u

1

(a) : : : u

n

(a)

: : : : : : : : :

u

(n�1)

1

(a) : : : u

(n�1)

n

(a)

�

�

�

�

�

�

6= 0;

�

�

�

�

�

�

l

1

u

1

: : : l

1

u

n

: : : : : : : : :

l

n

u

1

: : : l

n

u

n

�

�

�

�

�

�

6= 0:

Such a system exists due to Lemma 3.1.

As an example, consider the two-point boundary value problem

(Lx)(t)

def

= �x(t) + p(t)

�

S

h

x

�

(t) = f(t);

x(a) = �

1

; x(b) = �

2

:

(8.7)

As a model problem, we may use

�x(t) = z(t); x(a) = 0; x(b) = 0: (8.8)
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The Green functionW (t; s) in this case may be constructed in the explicit

form

W (t; s) =

8

>

<

>

:

�

(s� a)(b� t)

b� a

; if a � s � t � b;

�

(t� a)(b� s)

b� a

; if a � t < s � b:

(8.9)

AssumingW (t; s) = 0 outside the square [a; b]� [a; b], we have LW = I�
,

where

(
z)(t) = �

b

Z

a

p(t)W [h(t); s]z(s)ds;

k
k �

b

Z

a

jp(t)j max

s2[a;b]

�

�

W [h(t); s]

�

�

dt:

For every t 2 [a; b], the function jW (t; s)j achieves its maximum at the point

s = t. Thus

jW (t; s)j �

(t� a)(b� t)

b� a

:

Consequently,

k
k �

b

Z

a

jp(t)j�

h

(t)

[h(t)� a][b� h(t)]

b� a

dt;

where

�

h

(t) =

(

1; if h(t) 2 [a; b];

0; if h(t) 62 [a; b]:

Hence the problem (8.7) is uniquely solvable if

b

Z

a

jp(t)j�

h

(t)[h(t)� a] [b� h(t)]dt < b� a: (8.10)

This inequality holds, in particular, if

b

Z

a

jp(t)j�

h

(t)dt �

4

b� a

:

In the theory of di�erential equations, the last condition is known as the

inequality of Lyapunov and Zhukovsk�.

Various estimates of Green function G(t; s) is one of the central questions

in the theory of boundary value problem. The conditions which guarantee

the propertyG(t; s) � 0 (G(t; s) � 0) call a special interest of many authors.

Under such conditions the famous Theorem of Chaplygin is valid. This
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theorem guarantees for the solution x of the problem (8.6) the estimate of

the form x(t) � y(t) (x(t) � y(t)) if y satis�es the inequality

(Ly)(t) � f(t) = '(t) � 0; l

i

y = �

i

; i = 1; : : : ; n:

Really, the di�erence � = y � x satis�es

L� = '; l

i

� = 0; i = 1; : : : ; n;

and consequently

�(t) =

b

Z

a

G(t; s)'(s)ds:

This di�erence � = y � x is positive (negative) if the Green function does

not assume negative (positive) values on the square [a; b]� [a; b].

An operator A : L ! L is called isotone (antitone) if (Az)(t) � 0

((Az)(t) � 0) almost everywhere on [a; b] for each z 2 L such that z(t) � 0

almost everywhere on [a; b].

The criterion for the Green operator to be isotone or antitone may be

formulated as follows.

Theorem 8.2. The problem (8:6) is uniquely solvable and its Green oper-

ator is isotone (antitone) if and only if

a) There exists a model problem

L

1

x = z; l

i

x = 0; i = 1; : : : ; n;

with isotone (antitone) Green operator W .

b) The operator (I �LW ) = 
 : L! L is isotone.

c) The successive approximations for the equation LWz = f are conver-

gent in L.

Proof. Su�ciency. Unique solvability of (8.6) follows from c) by virtue of

Theorem 3.6. The solution x of (8.6) and the solution z of the equation

z = 
z + f are connected by x = Wz, z = L

1

x. Under the assumption c),

z = f + 
f + 


2

f + � � � . Thus for every f 2 L, f(t) � 0, the inequality

z(t) � f(t) holds. Hence

x(t)

def

= (Gf)(t) = (Wz)(t) � 0 ((Gf)(t) � 0):

The necessity follows if we put L

1

= L. �

Remark 8.1. It follows from the proof of Theorem 8.2 that the di�er-

ence G �W is an isotone (antitone) operator because (Wz)(t) � (Wf)(t)

(Wz)(t) � (Wf)(t)).
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To exemplify Theorem 8.2, consider the problem (8.7) under the assump-

tion p(t) � 0. The Green operatorW of the model problem (8.8) is antitone,


 is isotone and if (8.10) holds, all the conditions of Theorem 8.2 are ful-

�lled. Consequently, the Green operator G of the problem (8.7) is antitone.

Since W (t; s) < 0 on the open square (a; b) � (a; b), the Green function

G(t; s) < 0 in (a; b)� (a; b) due to Remark 8.1.

On the basis of the representation (3.6) of the Green operator, the fol-

lowing assertion is proved in [1].

Theorem 8.3. Let the principal part Q of the operator L :W

n

! L be of

the form Q = I �K with a compact operator K : L! L

(Kz)(t) =

b

Z

a

K(t; s)z(s)ds: (8.11)

Let further the boundary value problem

(Lx)(t)

def

= x

(n)

(t)�

b

Z

a

K(t; s)x

(n)

(s)ds+

n�1

X

k=0

p

k

(t)x

(k)

(a) = f(t);

l

i

x = �

i

; i = 1; : : : ; n;

(8.12)

be uniquely solvable. Then the Green function G(t; s) of this problem pos-

sesses the following properties.

a) For almost every s 2 (a; b), the function G(�; s) has absolutely contin-

uous derivative of the (n� 1)-th order on [a; s) and (s; b], and also

@

n�1

@t

n�1

G(t; s)

�

�

t=s+0

�

@

n�1

@t

n�1

G(t; s)

�

�

t=s�0

= 1:

b)

d

n

dt

n

b

Z

a

G(t; s)f(s)ds = f(t) +

b

Z

a

@

n

@t

n

G(t; s)f(s)ds

for any f 2 L.

c) For almost every s 2 (a; b), the function G(�; s) satis�es the equalities

@

n

@t

n

G(t; s)�

b

Z

a

K(t; �)

@

n

@�

n

G(�; s)d� +

+

n�1

X

k=0

p

k

(t)

@

k

@t

k

G(t; s)

�

�

�

t=a

= K(t; s);

b

Z

a

'

i

(�)

@

n

@�

n

G(�; s)d� +

n�1

X

k=0

 

i

k

@

k

@t

k

G(t; s)

�

�

�

t=a

= �'

i

(s); i = 1; : : : ; n:
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In [10], it is suggested a detailed scheme of investigation of the linear

functional-di�erential equation of the n-th order in the space of functions

y : [a; b]! R

1

with possible discontinuity of derivatives of various order at

�nite number of �xed points of the interval (a; b). Theorem 8.3 permits to

consider the section G(�; s) as a solution of the proper boundary value prob-

lem in the space of functions with possible discontinuity of the derivative of

the (n � 1)-th order at the point s 2 (a; b). We con�ne ourselves below to

this special case.

Let s be a �xed point of the interval (a; b). Denote by WS

n

[a; s; b] the

space of functions y : [a; b]! R

1

which are representable in the form

y(t) =

t

Z

a

(t� �)

n�1

(n� 1)!

y

(n)

(�)d� +

+

n�1

X

i=0

(t� a)

i

i!

y

(i)

(a) +

(t� s)

n�1

(n� 1)!

�

[s;b]

(t)�y

(n�1)

(s);

where �y

(n�1)

(s) = y

(n�1)

(s) � y

(n�1)

(s � 0), �

[s;b]

is the characteristic

function of the segment [s; b]. On the ground of this representation, the

isomorphism J = f�; Y g : L�R

n+1

!WS

n

[a; s; b] might be constructed:

(�z)(t) =

t

Z

a

(t� �)

n�1

(n� 1)!

z(�)d�;

(Y �)(t) =

n�1

X

i=0

(t� a)

i

i!

�

i

+

(t� s)

n�1

(n� 1)!

�

[s;b]

(t)�

n

;

� = col

�

�

0

; �

1

; : : : ; �

n

	

:

Under the norm

kyk

WS

n

[a;s;b]

= ky

(n)

k

L

+







col

�

y(a); : : : ; y

n�1

(a);�y

(n�1)

(s)

	







R

n+1

;

the spaceWS

n

[a; s; b] will be a Banach one.

Let

e

L :WS

n

[a; s; b]! L and

e

l

i

:WS

n

[a; s; b]! R

1

be linear extensions

of L : W

n

! L and l

i

: W

n

! R

1

, respectively. Analogously to the case

of systems with impulse perturbation (Theorem 7.1), it may be established

that the problem (8.6) as well as the problem

e

Ly = f;

e

l

i

y = �

i

; i = 1; : : : ; n; �y

(n�1)

(s) = �

n+1

are (or are not) uniquely solvable simultaneously. In the case of their unique

solvability, the Green functions of both problems coincide.
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The section G(�; s) of the Green function of the problem (8.12) is an

element ofWS

n

[a; s; b]. De�ning

e

L and

e

l

i

by

(

e

Ly)(t) = y

(n)

(t)�

b

Z

a

K(t; �)y

(n)

(�)d� +

+

n�1

X

k=0

p

k

(t)y

(k)

(a)�K(t; s)�y

(n�1)

(s); (8.13)

e

l

i

y =

b

Z

a

'

i

(�)y

(n)

(�)d� +

n�1

X

k=0

 

i

k

y

(k)

(a) +

+ '

i

(s)�y

(n�1)

(s); (8.14)

we may rephrase Theorem 8.3 as follows.

Let the principal part Q of the operator L : W

n

! L be of the form

Q = I � K with a compact K : L ! L de�ned by (8.11). Let further

the problem (8.12) be uniquely solvable. Then for almost every s 2 (a; b),

the section G(�; s) of the Green function is a solution of the boundary value

problem

(

e

Ly)(t) = 0;

e

l

i

y = 0; i = 1; : : : ; n; �y

(n�1)

(s) = 1: (8.15)

Thus the question on unique solvability of the problem (8.12) and on

the Green function having a �xed sign can be reduced to the question on

unique solvability and the solution of the problem (8.15) having a �xed sign

for each s 2 (a; b). In this connection, we will understand the Green function

G(t; s) as a function which is a solution of (8.15) for each s 2 (a; b). Let us

remind that the Green function G(t; s) as a kernel of the integral operator

G : L!W

n

permits for each �xed t 2 [a; b] a deliberate change on the set

of measure zero.

The fact of the Green function having a �xed sign sometimes might be

established on the ground of the following Theorem 8.4.

Let us �x a point � 2 [a; b] such that the functionals l

1

; : : : ; l

n

; l

n+1

, where

l

n+1

x = x(�), are linearly independent. De�ne the linear extensions L and

l

i

by (8.13) and (8.14).

Theorem 8.4. Let the problem (8:12) be uniquely solvable. The Green

function of this problem possesses the property G(�; s) 6= 0 if and only if the

boundary value problem

e

Ly = 0;

e

l

i

y = 0; i = 1; : : : ; n; y(�) = 0 (8.16)

has only the trivial solution.
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Proof. Let x

1

; : : : ; x

n

be a fundamental system of solutions of the equation

Lx = 0 and

� =

�

�

�

�

�

�

l

1

x

1

: : : l

1

x

n

: : : : : : : : :

l

n

x

1

: : : l

n

x

n

�

�

�

�

�

�

be the determinant of the problem (8.12). Due to the assumption, � 6= 0.

Denote g

s

(t) = G(t; s). The functions x

1

; : : : ; x

n

; g

s

form a fundamental

system of solutions of the equation

e

Ly = 0. The determinant of the problem

(8.16) obtains the form

e

� =

�

�

�

�

�

�

�

�

l

1

x

1

: : : l

1

x

n

0

: : : : : : : : : : : :

l

n

x

1

: : : l

n

x

n

0

x

1

(�) : : : x

n

(�) g

s

(�)

�

�

�

�

�

�

�

�

= G(�; s)�:

Hence it follows the conclusion of the Theorem. �

Let us return to the problem (8.7) under the assumption p(t)�

h

(t) � 0,

t 2 [a; b]. This problem is uniquely solvable if and only if the problem

(

e

Ly)(t)

def

= �y(t) + p(t)(S

h

y)(t) = f(t); y(a) = y(b) = � _y(s) = 0

is uniquely solvable in the space WS

2

[a; s; b]. If both these problems are

uniquely solvable, then they have the same Green function G

�

(t; s), and

besides for each s 2 (a; b), the section G

�

(�; s) of the Green function is the

solution of the problem

e

Ly = 0; y(a) = y(b) = 0; � _y(s) = 1:

The last problem is equivalent to the equation

y(t) = �

b

Z

a

W (t; �)p(�)(S

h

y)(�)d� + !

s

(t); (8.17)

where W (t; s) is the Green function of the problem

�y = f; y(a) = y(b) = � _y(s) = 0

in the space WS

2

[a; s; b], !

s

(�) = W (�; s) (W (t; s) is the Green function of

the problem (8.8) in the spaceW

2

). The equation (8.17) may be considered

in the spaceC of continuous functions because all the continuous solutions of

this equation belong toWS

2

[a; s; b]. Thus the question on unique solvability

and the Green function of the problem (8.7) having a �xed sign is reducible

to the question on unique solvability and the solution of the equation (8.17)

in the space C having a �xed sign.

Denoting

(Hy)(t) = �

b

Z

a

W (t; �)p(�)(S

h

y)(�)d�;
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rewrite (8.17) in the form

y �Hy = !

s

: (8.17)

H is an antitone operator. Applying to both parts of the last equation the

operator I +H , we obtain the equation

y �H

2

y = ' (' = !

s

+H!

s

) (8.18)

with the isotone operator H

2

. If kHk

C!C

< 1, then both equations (8.17)

and (8.18) are equivalent and besides the successive approximations for these

equations converge. Consequently, under the condition kHk

C!C

< 1 the

inequality '(t) � 0, t 2 [a; b], guarantees the estimate

g

s

= '+H

2

'+ � � � � ':

for the solution g

s

(�) = G

�

(�; s) of the equation (8.17). From this estimate

and (8.17), we have

W (t; s) � G

�

(t; s) � 0; (t; s) 2 [a; b]� (a; b):

Thus, assuming W (t; s) = 0 outside the square [a; b]� [a; b], we may formu-

late.

Lemma 8.1. Let the following conditions be ful�lled.

a) p(t)�

h

(t) � 0, t 2 [a; b].

b) kHk

C!C

< 1.

c) For each �xed s 2 (a; b),

'(t) =W (t; s)�

b

Z

a

W (t; �)p(�)W [h(�); s]d� � 0; t 2 [a; b]:

Then the problem (8:7) is uniquely solvable and the Green function of

this problem does not assume positive values in the square [a; b]� (a; b).

Following [25], we will show that the inequality

b

Z

a

jp(�)j�

h

(�)d� �

1

b� a

guarantees the ful�lment of the conditions b) and c) of Lemma 8.1. Since

kHk

C!C

= max

t2[a;b]

b

Z

a

jW (t; �)j jp(�)j�

h

(�)d� < (b� a)

b

Z

a

jp(�)j�

h

(�)d�;

b) is ful�lled.
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For veri�cation of the ful�lment of the condition c), we will use the

estimates

jW (t; s)j �

(t� a)(b� t)

b� a

; jW (t; s)j �

(s� a)(b� s)

b� a

following from (8.9).

Let a < t < s. Then

'(t) = �

(t� a)(b� s)

b� a

+

b

Z

a

jW (t; �)j � jp(�)j � jW [h(�); s]jd� <

<

b

Z

a

(b� t)(t� a)

b� a

jp(�)j�

h

(�)

(s� a)(b� s)

b� a

d� �

(t� a)(b� s)

b� a

�

�

(t� a)(b� s)

b� a

�

(b� a)

b

Z

a

jp(�)j�

h

(�)d� � 1

�

� 0:

Analogously it may be shown that '(t) < 0, t 2 [s; b].

Next consider the problem (8.7) in the general case, where the coe�cient

p may change the sign. Let p = p

+

� p

�

, p

+

(t) � 0, p

�

(t) � 0. Then the

equation Lx = f can be rewritten in the form

�x(t)� p

�

(t)(S

h

x)(t) = �p

+

(t)(S

h

x)(t) + f(t):

Let us assume that for the auxiliary problem

�x(t)� p

�

(t)(S

h

x)(t) = z(t); x(a) = x(b) = 0;

the conditions of Lemma 8.1 are ful�lled. Under these conditions the Green

operator (G

�

z)(t) =

R

b

a

G

�

(t; s)z(s)ds of the auxiliary problem is antitone.

For the problem (8.7), LG

�

= I �
, where

(
z)(t) = �p

+

(t)

b

Z

a

G

�

[h(t); s]z(s)ds

is an isotone operator. Thus, by virtue of Theorem 8.2, the inequality

k
k

L!L

< 1 guarantees unique solvability of the problem (8.7) and anti-

tonicity of the Green operator of this problem. Since

jG

�

(t; s)j � jW (t; s)j and max

(t;s)2[a;b]�[a;b]

jW (t; s)j =

b� a

4

;

we have

k
k

L!L

<

b� a

4

b

Z

a

p

+

(t)�

h

(t)dt:

So we can formulate the following test.
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Theorem 8.5. The problem (8:7) is uniquely solvable and the Green oper-

ator of this problem is antitone if

b

Z

a

p

�

(t)�

h

(t)dt �

1

b� a

;

b

Z

a

p

+

(t)�

h

(t)dt �

4

b� a

:

We will illustrate the application of Theorem 8.4 on the example of the

following periodic problem

(Lx)(t)

def

= �x(t) +

b

Z

a

x(�)d

�

r(t; �) = f(t);

x(b)� x(a) = 0; _x(b)� _x(a) = 0

(8.19)

under the assumption that r(t; �) is measurable on the square [a; b]� [a; b],

var

�2[a;b]

r(�; �) is summable on [a; b] and r(t; b) � 0.

Theorem 8.6. Let the problem (8:19) be uniquely solvable and

b

Z

a

var

�2[a;b]

r(t; �)dt <

1

b� a

:

Then the Green function G(t; s) of this problem has the same sign at each

point of the square [a; b]� (a; b).

Here we give only a scheme of the proof of this Theorem. The thorough

proof for a more general equation is produced in [26].

By virtue of Theorem 8.4, unique solvability of the problem

(

e

Ly)(t)

def

= �y(t) +

b

Z

a

y(�)d

�

r(t; �) = f(t);

y(b)� y(a) = 0; _y(b)� _y(a) = 0; y(�) = 0

(8.20)

in the spaceWS

2

[a; s; b] for each s 2 (a; b) and any � 2 [a; b] guarantees that

G(t; s) does not have zeros at any point of the square [a; b] � (a; b). In [1]

(Theorem 3.4.5), conditions are formulated which guarantee continuity of

the function G(t; �) on the interval (a; b) for each t 2 [a; b]. These conditions

are ful�lled for the problem (8.19). Thus, from unique solvability of (8.20)

it follows that the sign of G(t; s) is the same at each point of the square

[a; b] � (a; b). The unique solvability of (8.20) may be established on the

base of Theorem 3.6. As a model problem, we will use the following one

�y = z; y(b)� y(a) = 0; _y(b)� _y(a) = 0; y(�) = 0: (8.21)
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The functions 1, t and (t � s)�

[s;b]

(t) compose a fundamental system of

solutions of the equation �y = 0 in the spaceWS

2

[a; s; b]. The determinant

of the problem (8.21)

�

�

�

�

�

�

0 b� a b� s

0 0 1

1 � (� � s)�

[s;b]

(�)

�

�

�

�

�

�

= �(b� a) 6= 0:

Consequently, the problem (8.21) is uniquely solvable. The Green function

of this problem was constructed in [26]:

W

�;s

(t; �) = �

[a;t]

(�)(t � �) � �

[a;�]

(�)(� � �)�

� �

[s;b]

(t)(t � s) + �

[s;b]

(�)(� � s) +

� � s

b� a

(t� �):

In [1] it was derived the estimate

jW

�;s

(t; �)j � b� a; (t; �) 2 [a; b]� [a; b]; s 2 (a; b); � 2 [a; b]:

We have

e

LW

�;s

= I � 
, where W

�;s

is the Green operator of the problem

(8.21),

(
z)(t) =

b

Z

a

�

b

Z

a

W

�;s

(�; �)z(�)d�

�

d

�

r(t; �) =

=

b

Z

a

�

b

Z

a

W

�;s

(�; �) d

�

r(t; �)

�

z(�)d�;

k
k

L!L

� (b� a)

b

Z

a

var

�2[a;b]

r(t; �)dt < 1:

From this it follows the unique solvability of the problem (8.20). �

x

9. Singular Equations

The set of functions to which solutions of an equation belong sometimes

is chosen without proper reason: the space of continuous or summable func-

tions, or some other well known space is often used. But an unsuccessful

choice of the set may cause much trouble in utilizing traditional schemes

and standard theorems. Below we will discuss some reasons and examples

connected with the question of choosing the proper Banach space in which

it would be advisable to seek the solution of a given equation.

Let Lx = f be an equation with the linear operator L : D

0

! B

0

, D

0

be isomorphic to B

0

� R

n

, and J

0

= f�

0

; Y

0

g : B

0

� R

n

! D

0

be the

isomorphism. If the principal part L�

0

: B

0

! B

0

of the operator L is

not Fredholm, we have not available standard schemes for investigation of

the equation. In this case, it is reasonable to call the equation \singular".
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Yet one may try to �nd or construct another space D ' B �R

n

with the

isomorphism J = f�; Y g : B�R

n

! D so that the principal part L� of the

operator L : D ! B would be a Fredholm or even an invertible operator.

Then the equation ceases to be singular and one may apply to this equation

the theorems of the above developed general theory.

Let us note that the property of the principal part being Fredholm char-

acterizes many intrinsic speci�cs of the equation. For instance, this property

is necessary for unique solvability of any boundary value problem

Lx = f; lx = �

for each ff; �g 2 B�R

n

.

Considering the same equation in various spaces, we change correspond-

ingly the notion of this equation. The classical theory of di�erential equa-

tions does not use the notions of spaces and operators in these spaces and

in that theory the investigation of singular equations begins with the de�ni-

tion of the notion of solution as a function satisfying in one sense or another

the equation and possessing certain properties. Thus the set is chosen to

which solutions belong. In our reasoning, we act analogously by choosing a

Banach space on which the operator L is de�ned. In addition, we o�er some

recommendation about construction of the spaces D on which the operator

L possesses necessary properties.

A. I. Shindyapin [27] has considered the equation

(Lx)(t)

def

= _x(t)� (S _x)(t)� (K _x)(t)�A(t)x(a) = f(t) (9.1)

with unbounded composition operator S : L ! L (de�ned by (6.11)) and

unbounded integral operator K : L ! L. Thus the equation (9.1) in the

space of absolutely continuous functions x : [a; b] ! R

1

is singular. A.

I. Shindyapin has constructed a special space B, more narrow than L, so

that both operators S and K are bounded in this space, and has considered

the equation (9.1) in the space D ' B�R

1

, where the isomorphism J =

f�; Y g : B�R

1

! D is de�ned by

(�z)(t) =

t

Z

a

z(s)ds; (Y �)(t) = �; fz; �g 2 B�R

1

:

Under some natural conditions, the principal part Q = L� of the operator

L : D ! B has the bounded inverse. Therefore under these conditions

the equation (9.1) has a one-dimensional fundamental vector X(t) and the

general solution of this equation has the form

x(t) =

t

Z

a

(Q

�1

f)(s)ds+ cX(t); c = const :
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It is relevant to observe that severe constraints are needed for the com-

position operator S : L ! L to be bounded. Therefore some works arose

[28] concerning the operator in special spaces, where this operator could be

bounded without some constraints necessary for boundedness in Lebesque

spaces.

E. I. Bravi [29, 30] has been studying the equation

(Lx)(t)

def

= �(t)x

(n)

(t) +

n�1

X

k=0

p

k

(t)(S

h

k

x

(k)

)(t) = f(t); t 2 [a; b];

with summable coe�cients p

k

. Here the singularity arises due to zeros of

the coe�cient � (� has �nite numbers of zeros, the multiplicity of each

is not greater than n � 1). The results of E. I. Bravi are a far-reaching

generalization of those of S. M. Labovski

�

i [31] concerning the equation

(Lx)(t)

def

= t(1� t)�x(t) + p(t)(S

h

x)(t) = f(t); t 2 [0; 1]; (9.2)

with measurable h and summable p,f . We will dwell on this equation.

The principal part Q = L�

0

: L! L of the operator L :W

2

! L, where

W

2

is a traditional space for the second order equation is not a Fredholm

operator. Really, let J

0

= f�

0

; Y

0

g : L�R

2

!W

2

be the isomorphism,

(�

0

z)(t) =

t

Z

0

(t� s)z(s)ds:

Then

Q

0

= L�

0

= P + V; (Pz)(t) = t(1� t)z(t); (V z)(t) = p(t)(S

h

�

0

z)(t):

The operator V : L ! L is compact, but the range of values R(P ) of the

operator P : L ! L is not closed. Thus the principal part Q

0

: L ! L of

L :W

2

! L is not even Noether. Therefore we will consider the equation

(9.2) in another space D = �L� YR

2

de�ned by

(�z)(t) =

1

Z

0

�(t; s)z(s)ds; (Y �)(t) = (1� t)�

1

+ t�

2

; � = col

�

�

1

; �

2

	

;

where

�(t; s) =

G

0

(t; s)

s(1� s)

; G

0

(t; s) =

(

s(t� 1); if 0 � s � t � 1;

t(s� 1); if 0 � t < s � 1;

(G

0

(t; s) is the Green function of the boundary value problem �x(t) = z(t),

x(0) = x(1) = 0). The space D is isomorphic to L � R

2

, J = f�; Y g :

L �R

2

! D is an isomorphism, the inverse J

�1

= [�; r] : D ! L �R

2

is

de�ned by

(�x)(t) = t(1� t)�x(t); rx = fx(0); x(1)g;
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kxk

D

= k�xk

L

+ jx(0)j+ jx(1)j:

The element x 2 D is de�ned by x = �z + Y � and consequently is

characterized by the following properties.

a) The function x is continuous on [0; 1].

b) The derivative _x is absolutely continuous on the interval (0; 1).

c) The product t(1� t)�x(t) is summable on [0; 1].

Under such a choice of the space D, the operator L : D! L is Noether,

and

(Qz)(t)

def

= (L�z)(t) = z(t)� (Kz)(t) = z(t) + p(t)

1

Z

0

�[h(t); s]z(s)ds:

Here and below we suppose �(t; s) = 0 outside the square [0; 1]� [0; 1]. The

operator K : L ! L is compact (Theorem 6.1) and therefore Q : L ! L is

canonical Fredholm.

If kKk

L!L

< 1, then there exists the bounded Q

�1

. Due to theorem 2.4,

in this case the principal boundary value problem

Lx = f; x(0) = 0; x(1) = 0 (9.3)

is uniquely solvable and the general solution of the equation Lx = f has

the form

x(t) =

1

Z

0

G(t; s)f(s)ds+ c

1

x

1

(t) + c

2

x

2

(t);

where G(t; s) is the Green function of (9.3), x

1

, x

2

constitute a fundamental

system of solutions of the homogeneous equation Lx = 0 in the space D,

and c

1

, c

2

are constants.

Since j�(t; s)j � 1, the estimate kKk

L!L

< 1 follows from the inequality

1

Z

0

jp(s)j�

h

(s)ds � 1;

where

�

h

(s) =

(

1; if h(s) 2 [0; 1];

0; if h(s) 62 [0; 1]:

If kKk

L!L

< 1 and besides p(t) � 0, G(t; s) � 0 in the square [0; 1] �

[0; 1]. Really, in this case z = f + Kf +K

2

f + � � � is the solution of the

equation Qz = f . From this and the isotonical property of K, we have

z(t) � f(t) if f(t) � 0. Consequently, for the solution

x(t) =

1

Z

0

G(t; s)f(s)ds

of (9.3), we have x(t) � 0 if f(t) � 0, t 2 [0; 1].
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To the conclusion, we observe that the properties a), b), c) were laid to

the ground of the de�nition of the solution of (9.2) in the works of I. T.

Kiguradze [32, 33].

The case where the coe�cient � has zeros inside [a; b] demands a more

complicated construction. We will illustrate the situation on the example

of the equation

(Lx)(t)

def

= t�x(t) + p(t)(S

h

x)(t) = f(t); t 2 [a; b];

a < 0 < b, p; f 2 L, h is a measurable function.

As in the previous example, the principal part of L : W

2

! L is not a

Fredholm operator. As the space D on which it is reasonable to consider

the operator L we will take the space of solutions of the three-point impulse

model boundary value problem

t�x(t) = z(t); x(a) = �

1

; x(b) = �

2

; x(0) = �

3

: (9.4)

We will suppose that the solution of this problem is a function x : [a; b]! R

1

such that _x is absolutely continuous on [a; 0) and [0; b] and t�x(t) is summable

on [a; b]. Thus the homogeneous equation t�x(t) = 0 has three linearly

independent solutions

u

1

(t) =

t

a

�

[a;0)

(t); u

2

(t) =

a� t

a

�

[a;0)

(t) +

b� t

b

�

[0;b]

(t);

u

3

(t) =

t

b

�

[0;b]

(t);

and the nonhomogeneous equation t�x(t) = z(t) has solutions for any z 2 L,

for instance

x(t) = (�z)(t) =

b

Z

a

�(t; s)z(s)ds;

where

�(t; s) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

�

t(s� a)

as

; if a � s � t < 0;

�

t� a

a

; if a � t < s � 0;

t� b

b

; f 0 � s � t � b;

t(s� b)

bs

; if 0 � t < s � b;

0 at all other points:

Since the determinant of the model problem

�

�

�

�

�

�

u

1

(a) u

2

(a) u

3

(a)

u

1

(b) u

2

(b) u

3

(b)

u

1

(0) u

2

(0) u

3

(0)

�

�

�

�

�

�

=

�

�

�

�

�

�

1 0 0

0 1 0

0 0 1

�

�

�

�

�

�

6= 0;
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this problem has for any fz; �g 2 L�R

3

the unique solution x = �z+Y �,

where � = colf�

1

; �

2

; �

3

g,

(Y �)(t) = �

1

u

1

(t) + �

2

u

2

(t) + �

3

u

3

(t):

Let us take D = �L � YR

3

, where J = f�; Y g : L �R

3

! D is the

isomorphism, the inverse J

�1

= [�; r] being de�ned by

(�x)(t) = t�x(t); rx = fx(a); x(b); x(0)g:

The principal part of L : D! L has the form Q = I +K, where

(Kz)(t) =

b

Z

a

p(t)�[h(t); s]z(s)ds:

If the operator Q : L ! L has the bounded inverse, then the principal

boundary value problem

Lx = f; x(a) = �

1

; x(b) = �

2

; x(0) = �

3

is uniquely solvable (Theorem 2.4), and the general solution of the equation

Lx = f admits the representation

x(t) =

b

Z

a

G(t; s)f(s)ds+ c

1

x

1

(t) + c

2

x

2

(t) + c

3

x

3

(t);

where G(t; s) is the Green function of this problem, x

1

, x

2

, x

3

constitute a

fundamental system of solutions of Lx = 0, c

i

are constants.

Consider an example of singularity of the other kind. De�ne the operation

� by

(�x)(t) =

(

�x(t); if t 2 [1; 2];

0; if t 2 [0; 1);

and let us study the equation

(Lx)(t)

def

= (�x)(t) + _x(t) + (Tx)(t) = f(t); t 2 [0; 2]; (9.5)

with a linear operator T :W

2

! L.

The principal part of the operator L : W

2

! L is not Fredholm even

under the assumption that T : W

2

! L is a compact operator. We will

de�ne the operator L on a more wide space D, assuming that T allows an

extension onto this space. We will construct the space D as follows.

Let us take as a model the problem

(L

0

x)(t)

def

= (�x)(t) + �

[0;1)

(t) _x(t) = z(t); t 2 [0; 2];

x(0) = �

1

; x(1) = �

2

; _x(1) = �

3

:

(9.6)
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This problem splits up into two ones which are integrable in the explicit

form

_x(t) = z(t); t 2 [0; 1); x(0) = �

1

;

�x(t) = z(t); t 2 [1; 2]; x(1) = �

2

; _x(1) = �

3

:

As a solution of the model problem, we may take the function

x(t) = �

[0;1)

(t)

�

t

Z

0

z(s)ds+ �

1

�

+

+ �

[1;2]

(t)

�

t

Z

0

�

[1;2]

(s)(t � s)z(s)ds+ �

2

+ �

3

(t� 1)

�

:

Denote (�z)(t) =

R

2

0

�(t; s)z(s)ds, where

�(t; s) =

8

>

<

>

:

1; if 0 � s � t < 1;

t� s; if 1 � s � t � 2;

0 at all other points:

Let further

(Y �)(t) = �

1

u

1

(t) + �

2

u

2

(t) + �

3

u

3

(t); � = col

�

�

1

; �

2

; �

3

	

;

u

1

(t) = �

[0;1)

(t); u

2

(t) = �

[1;2]

(t); u

3

(t) = �

[1;2]

(t)(t� 1):

The solution of the model problem has the form x = �z + Y �.

Next, de�ne the space D by D = �L � YR

3

. This space consists of

the functions x : [0; 2] ! R

1

with possible discontinuity at t = 1. These

functions are absolutely continuous on [0; 1) and have absolutely continuous

derivatives on [1; 2]. J = f�; Y g : L � R

3

! D is the isomorphism,

J

�1

= [�; r], where

�x = L

0

x; rx =

�

x(0); x(1); _x(1)

	

:

The norm may be de�ned by

kxk

D

= kL

0

xk

L

+ jx(0)j+ jx(1)j+ j _x(1)j:

Since Lx = L

0

x+ �

[1;2]

_x+ Tx,

(Qz)(t) = z(t) + �

[1;2]

(t)

t

Z

0

�

[1;2]

(s)z(s)ds+ (T�z)(t):
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If the product T� : L ! L is compact, the principal part Q : L ! L will

be canonical Fredholm. If kKk

L!L

< 1, where

(Kz)(t) = (T�z)(t) + �

[1;2]

(t)

t

Z

0

�

[1;2]

(s)z(s)ds;

then the principal boundary value problem

Lx = f; x(0) = �

1

; x(1) = �

2

; _x(1) = �

3

is uniquely solvable. In this case (Theorem 2.5), the homogeneous equation

Lx = 0 has a three-dimensional fundamental system of solutions x

1

, x

2

, x

3

,

and the general solution of the equation Lx = f in the space D has the

representation

x(t) =

2

Z

0

G(t; s)f(s)ds+ c

1

x

1

(t) + c

2

x

2

(t) + c

3

x

3

(t);

where G(t; s) is the Green function of the principal boundary value problem,

c

i

= const.

Denote �x(t) = x(t)�x(t�0). The subspaceD

0

= fx 2 D : �x(1) = 0g

of the spaceD is constituted only of continuous functions. The homogeneous

equation L

0

x = 0 has two linearly independent solutions

y

1

(t) = 1� �

[1;2]

(t)(t � 1); y

2

(t) = �

[1;2]

(t)(t � 1)

in the spaceD

0

. The equation L

0

x = z has for any z 2 L solutions belonging

to D

0

, for instance,

v(t) = �

[0;1)

(t)

t

Z

0

z(s)ds+

+ �

[1;2]

(t)

�

t

Z

0

�

[1;2]

(s)(t� s)z(s)ds+

1

Z

0

z(s)ds

�

:

Thus the general solution of the model equation L

0

x = z in the space D

0

may be represented in the form

x(t) = v(t) + c

1

y

1

(t) + c

2

y

2

(t); (9.7)

where c

1

, c

2

are constants.

Since

�

�

�

�

y

1

(0) y

2

(0)

y

1

(2) y

2

(2)

�

�

�

�

=

�

�

�

�

1 0

0 1

�

�

�

�

6= 0;

the two-point boundary value problem

L

0

x = z; x(0) = 0; x(2) = 0
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is uniquely solvable in the space D

0

. The Green function W (t; s) of this

problem can be constructed by �nding the constants c

1

, c

2

in (9.7) such

that x(0) = x(2) = 0. We have

x(t)

def

= (Wz)(t) =

2

Z

0

W (t; s)z(s)ds;

where

W (t; s) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1; if 0 � s � t < 1;

2� t; if 1 � t � 2; 0 � s < 1;

�(2� t)(s� 1); if 1 � s � t � 2;

�(2� s)(t� 1); if 1 � t < s � 2;

0 at all other points.

Notice that it is possible to construct W (t; s) on the ground of the rep-

resentation

x(t) = (�z)(t) + �

1

u

1

(t) + �

2

u

2

(t) + �

3

u

3

(t)

of the solution (9.6) by demanding the ful�llment of the conditions x(0) =

�x(1) = x(2) = 0.

Thus the space D

0

is de�ned by D

0

=WL� Y

0

R

2

, where

(Y

0

�)(t) =

�

1� �

[1;2]

(t)(t� 1)

�

�

1

+ �

[1;2]

(t)(t � 1)�

2

;

� = col

�

�

1

; �

2

	

;

J

0

= fW;Y

0

g : L � R

2

! D

0

is the isomorphism, J

�1

0

= [L

0

; r

0

], r

0

x =

fx(0); x(2)g. The two-point boundary value problem

Lx = f; x(0) = �

1

; x(2) = �

2

is the principal boundary value problem for the equation Lx = f in the

space D

0

. This problem is uniquely solvable if and only if the operator

Q = LW : L! L has the bounded inverse.

x

10. Minimization of Square Functionals

The problem of minimization of functionals is unsolvable in the frame of

classical calculus of variations if the given functional has not a minimum

on the traditional sets of functions. The question on the expedient choice

of the set on which the functional must be de�ned was put up by Hilbert

and, as it was emphasized by the authors of the book [34], each class of

functionals must be studied in the proper \own" space.

The scheme proposed below permits to approach in a new fashion the

problem of minimization, expands the possibility of the calculus of variations

and leads to tests for the existence of the minimum for some classes of

problems in terms of the problem.
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The scheme has been developing on the base of the theory of abstract

functional di�erential equations in the works of the Perm Seminar [35-38].

LetD be a Banach space of functions x : [a; b]! R

1

isomorphic to the direct

product L

2

� R

n

, L

2

be the Banach space of square summable functions

z : [a; b] ! R

1

, kzk

L

2

= f

R

b

a

z

2

(s)dsg

1

2

. Denote by T

ji

: D ! L

2

, j = 1; 2;

i = 1; : : : ; �, T

0

: D ! L

2

linear bounded operators. Let further l =

[l

1

; : : : ; l

N

] : D ! R

N

be a bounded linear vector-functional with linearly

independent components, N � n, ! 2 L.

Consider the problem on existence of an element x 2 D on which the

square functional

I(x) =

b

Z

a

�

�

X

i=1

(T

1i

x)(s)(T

2i

x)(s) + (T

0

x)(s) + !(s)

�

ds

with additional conditions l

i

x = �

i

, i = 1; : : : ; N , has the minimum.

The problem on the minimum of the functional I on the set D

�

= fx 2

D : l

1

x = �

1

; : : : ; l

N

x = �

N

g contains the problems of classical calculus of

variations and many other new ones.

The approach to this problem is based on the substitution

x = �z + u; (10.1)

where u 2 D

�

is a �xed element and � : L

2

! D is a linear operator

such that D

�

= �L

2

+ fug. By means of this substitution, the considered

problem may be reduced to the well-known problem of the unconditional

minimum of the functional I

1

(z) = I(�z + u) on the space L

2

.

Beforehand we will note the following. The isomorphism J : L

2

�R

n

!

D for the given spaceD may be de�ned on the base of any uniquely solvable

boundary value problem in this space. In particular, it might be constructed

on the base of the problem

L

1

x = z; l

i

x = �

i

; i = 1; : : : ; n (10.2)

with boundary conditions de�ned by any n components of the given vector-

functional l = [l

1

; : : : ; l

N

]. Theorem 3.4 guarantees the existence of a linear

operator L

1

: D! L

2

such that the problem (10.2) is uniquely solvable.

Let � be the Green operator for the problem (10.2) and Y = (y

1

; : : : ; y

n

)

be a fundamental vector of the equation L

1

x = 0, i.e., l

i

y

j

= �

ij

, i; j =

1; : : : ; n. Then we can set J = f�; Y g, J

�1

= [�; r], where � = L

1

,

r = [r

1

; : : : ; r

n

] = [l

1

; : : : ; l

n

]. Therefore we may suppose without loss of

generality that r = [l

1

; : : : ; l

n

].

If N = n, we will suppose � = � and u = Y � in (10.1). In the case

N > n, we will use the following construction.
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Let a system of elements v

1

; : : : ; v

N

2 D be biorthogonal to the system

of functionals l

1

; : : : ; l

N

(l

i

v

j

= �

ij

, i; j = 1; : : : ; N). Let further

�z = �z �

N

X

k=n+1

v

k

l

k

�z; u =

N

X

i=1

v

i

�

i

:

We will show that �L

2

+ fug = D

�

.

It is su�cient to see that �L

2

= D

0

def

= fx 2 D : lx = 0g. The inclusion

�L

2

� D

0

is verifying immediately. Let us show that D

0

� �L

2

, that is,

for each x 2 D

0

there exists a z 2 L

2

such that �z = x.

De�ne the degenerate operator F : D

0

! D

0

by

F� =

N

X

k=n+1

v

k

l

k

�:

Let us �x x 2 D

0

and consider the equation

� � F� = x: (10.3)

The unit is an eigen-value of F because the functions v

n+1

; : : : ; v

N

are solu-

tions to the equation � = F�. Due to de�nition of the set D

0

, any x 2 D

0

is orthogonal to the functionals l

n+1

; : : : ; l

N

. This system is a basis of the

kernel of the operator (I � F )

�

adjoint to I � F . Thus the equation (10.3)

has solutions. Let �

0

be one of them and z = ��

0

. Then

�z = ��(x+ F�

0

)� F��(x+ F�

0

) = x+ F�

0

� Fx� F

2

�

0

= x;

because from (10.3) it follows that Fx = F�

0

� F

2

�

0

.

Denote

Q

ji

= T

ji

�; Q

0

= T

0

�:

Due to the substitution (10.1), we have:

I(x) = I(�z + u)

def

= I

1

(z) =

b

Z

a

�

X

i=1

(Q

1i

z)(s)(Q

2i

z)(s)ds+

+

b

Z

a

�

X

i=1

�

(Q

1i

z)(s)(T

2i

u)(s) + (Q

2i

z)(s)(T

1i

u)(s)

	

ds+

+

b

Z

a

�

X

i=1

(T

1i

u)(s)(T

2i

u)(s)ds+

+

b

Z

a

�

(Q

0

z)(s) + (T

0

u)(s)

	

ds+

b

Z

a

!(s)ds:
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Using the equality

b

Z

a

(Az)(s)(Bz)(s)ds =

b

Z

a

(A

�

Bz)(s)z(s)ds

and denoting

< '; >=

b

Z

a

'(s) (s)ds;

we may write

I

1

(z) =

1

2

< Hz; z > � < f; z > +g; (10.4)

where

H =

�

X

i=1

(Q

�

1i

Q

2i

+Q

�

2i

Q

1i

); (10.5)

f = �

�

X

i=1

(Q

�

1i

T

2i

+Q

�

2i

T

1i

)u�Q

�

0

(1);

g =

b

Z

a

�

�

X

i=1

(T

1i

u)(s)(T

2i

u)(s) + (T

0

u)(s) + !(s)

�

ds:

Thus H : L

2

! L

2

is a self-adjoint operator, f 2 L

2

, g = const.

Following the adopted terminology, we will call the operatorH : L

2

! L

2

positive de�nite if < Hz; z >� 0 for all z 2 L

2

. The positive de�nite

operator H is called to be strictly positive de�nite if < Hz; z >= 0 only for

z = 0.

In order to formulate and prove the main result about the problem in

consideration, we will use the following de�nitions.

A point x

0

2 D (z

0

2 L

2

) is called the point of local minimum of func-

tional I (I

1

), if there exists an " > 0 such that I(x) � I(x

0

) (I

1

(z) �

I

1

(z

0

)) for all x 2 D

�

(z 2 L

2

) satisfying kx� x

0

k

D

< " (kz � z

0

k

L

2

< ").

If I(x) � I(x

0

) (I

1

(z) � I

1

(z

0

)) holds for all x 2 D

�

(z 2 L

2

), x

0

(z

0

) is

called the point of global minimum. The value I(x

0

) (I

1

(z

0

)) is called local

or correspondingly global minimum of the functional.

From the equality I(x)�I(x

0

) = I

1

(z)�I

1

(z

0

) for x

0

= �z

0

+u and for

x = �z+u, it immediately follows that x

0

is the point of the global minimum

of the functional I if and only if z

0

is the point of global minimum of the

functional I

1

.

Theorem 10.1. Any local minimum of the functional I is the global one.

The functional I has a point of minimum x

0

on the set D

�

= fx 2 D :

l

i

x = �

i

; i = 1; : : : ; Ng if and only if the operator H : L

2

! L

2

de�ned by
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(10:5) is positive de�nite and the equation Hz = f has a solution z

0

2 L

2

.

In this case, x

0

= �z

0

+ u.

The proof follows from the next two Lemmas.

Lemma 10.1. Any local minimum of the functional I

1

on the space L

2

is

the global one.

The element z

0

2 L

2

is the point of minimum of I

1

if and only if the

operator H : L

2

! L

2

de�ned by (10:5) is positive de�nite and z

0

is a

solution to the equation Hz = f .

Proof. Let z

0

be a point of local minimum. It means that there exists an

" > 0 such that I

1

(z)� I

1

(z

0

) � 0 if kz � z

0

k

L

2

< ". Let us �x � 2 L

2

and

let 


0

> 0 be a number such that k


0

�k

L

2

< ". From (10.4), we have

I

1

(z

0

+ 
�)� I

1

(z

0

) =




2

2

< H�; � > +
 < Hz

0

� f; � > : (10.6)

The quadratic binomial




2

2

< H�; � > +
 < Hz

0

� f; � > takes no negative

values if 
 2 (�


0

; 


0

). It means that this binomial takes no negative values

for any 
. Consequently, z

0

is a point of global minimum. Besides, due to

the arbitrary choice of �, we deduce that Hz

0

� f = 0 and < H�; � >� 0

for any � 2 L

2

.

The converse assertion follows from (10.6). �

Lemma 10.2. If x

0

is the point of a local minimum of the functional I

on the set D

�

and x

0

= �z

0

+ u, then z

0

is the point of minimum of the

functional I

1

.

Proof. Let " > 0 be such that I(x)�I(x

0

) � 0 if kx�x

0

k

D

< ". Any x 2 D

�

has the representation x = �z+u. Since kx�x

0

k

D

� k�k

L

2

!D

kz� z

0

k

L

2

,

I

1

(z)� I

1

(z

0

) = I(x) � I(x

0

) � 0; if kz � z

0

k

L

2

�

"

k�k

L

2

!D

:

Consequently, z

0

is a point of minimum of the functional I

1

. �

It is known that a self-adjoint H : L

2

! L

2

is positive de�nite if and

only if its spectrum �(H) does not contain negative numbers: �(H) �

[0;+1), and it is strictly positive de�nite if �(H) � (0;+1). Therefore

if H = 2(I �K), then H is positive (strictly positive) de�nite if and only

if �(K) � (�1; 1], (�(K) � (�1; 1)). If K is isotonic and �(K) is the

spectral radius of K, then �(K) � [��(K); �(K)]. Consequently, in the

case of isotonic K, the operator H = 2(I �K) is strictly positive de�nite

if and only if �(K) < 1. Thus, from the said and taking into account that

�(K) = kKk

L

2

, we are in a position to state the following
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Corollary 10.1. Let the operator H : L

2

! L

2

be de�ned by (10:5) and

H = 2(I � K). For the existence of unique point x

0

2 D

�

of minimum

of the functional I it is su�cient, and in the case of isotonic K it is also

necessary that kKk

L

2

!L

2

< 1.

Denote f

0

= �Q

�

0

(1) and de�ne L : D! L

2

by

L =

�

X

i�1

�

Q

�

1i

T

2i

+Q

�

2i

T

1i

�

:

Theorem 10.2. x

0

2 D

�

is the point of minimum of the functional I if

and only if

a) x

0

is a solution to the boundary value problem

Lx = f

0

; lx = �; (10.7)

where � = colf�

1

; : : : ; �

N

g.

Remark 10.1. b) The operator H : L

2

! L

2

de�ned by (10:5) is positive

de�nite.

Proof. Let x

0

2 D

�

be a solution to (10.6). There exists z

0

2 L

2

such that

x

0

= �z

0

+ u, besides

Hz

0

= L�z

0

= L(x

0

� u) = f

0

+ f � f

0

= f:

Consequently, z

0

is a solution to Hz = f . By virtue of Theorem 10.1, x

0

is

the point of minimum of the functional I.

Conversely, if z

0

is a solution to Hz = f , then x

0

= �z

0

+u is the point of

minimum of I and satis�es to (10.6). Really, lx

0

= �, Lx

0

= L(�z

0

+ u) =

Hz

0

� f + f

0

= f

0

. �

Remark 10.2. It is natural to call the equation Lx = f

0

Euler's equa-

tion and the boundary condition lx = � corresponds to \natural boundary

condition" in the classical calculus of variations.

Corollary 10.1 permits sometimes to reduce the problem on the minimum

of a functional to proper estimation of the spectral radius (the norm) of the

operator K : L

2

! L

2

. Such an estimation meets a good deal of di�culty

in many cases. But sometimes it is possible to construct an operator in the

space C of continuous functions with the same spectral radius as the one

of K.

We give below a well-known Lemma 10.3 and an addition to the results

of [39, 40] in the form of Lemma 10.4.

Lemma 10.3. The spectral radius of a linear bounded isotonic operator

A : C! C is less than 1 if and only if there exists a continuous function v

such that

v(t) > 0; r(t)

def

= v(t)� (Av)(t) > 0; t 2 [a; b]:
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Proof. Necessity is obvious: as the function v one can take the solution of

the equation x� Ax = 1.

Su�ciency. De�ne the isotonic operator F : C ! C by Fx =

1

v

A(vx).

We have

�(F ) � kFk

C!C

= max

t2[a;b]

[F (1)](t) = max

t2[a;b]

(Av)(t)

v(t)

< 1:

For each � there exists a one-to-one mapping between the set of solutions

x to the equation �x = Ax + f and the set of solutions y to the equation

�y = Fy +

1

v

f : x = vy, y =

1

v

x. Therefore the spectrums of F and A

coincide. Thus �(A) < 1. �

The condition of Lemma 10.3 about strong positiveness of r and v meets

some di�culties in application of this Lemma. But some additional requests

on the properties of the operator A permit to weaken this condition.

Lemma 10.4. Let a linear bounded isotonic operator A : C! C have the

property (A�)(a) = (A�)(b) = 0 for each � 2 C. Let further a continuous

function v satisfy the inequalities

v(t) > 0; r(t)

def

= v(t)� (Av)(t) > 0; t 2 (a; b):

Then �(A) < 1.

Proof. Denote

� = 1�A(1); v

"

= v + "�; r

"

def

= v

"

�Av

"

= r + " ;

where " > 0,  = � � A�. It follows from �(t) � 0 that v

"

(t) > 0 on [a; b],

and from  (t) � 0 that r

"

(t) > 0 on [a; b]. If both inequalities �(t) � 0 and

 (t) � 0 are ful�lled, �(A) < 1 by virtue of Lemma 10.3.

Let  change its sign on [a; b]. Denote ! = ft 2 [a; b] :  (t) < 0g. The

inequality r

"

(t) > 0 is ful�lled on [a; b] n !. Denote by � the �rst zero of  

to the right of a and denote by � the �rst zero of  to the left of b (� > a

and � < b since  (a) =  (b) = 1). Denote

m

1

= min

t2[�;�]

r(t); m

2

= min

t2[�;�]

 (t):

For "

1

2 (0;

m

1

�m

2

), we have the inequality

r(t) + "

1

 (t) > r(t) +

m

1

�m

2

 (t) � r(t) �m

1

� 0

on !. Consequently, r(t) + "

1

 (t) > 0 on the whole segment [a; b].

If � changes its sign, we can analogously choose "

2

> 0 such that v(t) +

"

2

�(t) > 0 on [a; b]. Thus we obtain the inequalities v

"

(t) > 0 and r

"

(t) > 0

on [a; b] if " = minf"

1

; "

2

g. Therefore �(A) < 1 by virtue of Lemma 10.3. �
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Below we will apply to thee examples the above scheme of investigation

of functionals in the space D ' L

2

�R

n

. For the �rst example, a simplest

functional is taken making possible to construct the point of minimum in

the explicit form. This example illustrates also the possibility of choosing

various spaces on which the functional has a minimum. In this connection,

it is emphasized that minimums on di�erent spaces may di�er. For the

second example, the functional is taken which was investigated in partic-

ular cases in [41] on the base of the classical calculus of variations. This

example illustrates the advantage of our scheme before classical methods.

The Euler's equation for the third example turned out to be singular by

using traditional spaces. A particular case of this functional was investi-

gated in [42], where a special minimizing sequence was constructed and its

convergence was proved. The space D ' L

2

� R

2

for this functional was

constructed using the above scheme of investigation of the singular equation

(9.2).

Example 10.1. Consider the functional

I(x) =

1

Z

0

�

_x

2

(s)� q(s) _x(s)� p(s)x(s)

	

ds

with conditions x(0) = �

1

, x(1) = �

2

.

If q is absolutely continuous, then the classical methods from elementary

textbooks are applicable. The classical Euler's equation in this case has the

form

�x(t) =

1

2

[ _q(t)� p(t)];

and consequently the point of minimum is de�ned by

x

0

(t) =

1

2

1

Z

0

W (t; s)[ _q(s)� p(s)]ds+ �

1

(1� t) + �

2

t;

where

W (t; s) =

(

�s(1� t); if 0 � s � t � 1;

�t(1� s); if 0 � t < s � 1;

is the Green function of the problem �x = z, x(0) = 0, x(1) = 0. Thus

x

0

(t) =

1

2

�

t

Z

0

q(s)ds� t

1

Z

0

q(s)ds� (t� 1)

t

Z

0

sp(s)ds�

� t

1

Z

t

(s� 1)p(s)ds

�

+ �

1

(1� t) + �

2

t:

Thus I(x

0

) = �

p

2

48

, if �

1

= �

2

= 0, p = const, q = const.
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Next consider the same problem using the above scheme and various

spaces D ' L

2

�R

n

.

Since T

11

x = T

21

x

def

= Tx = _x, T

0

x = �q _x � px, we have Q

11

= Q

12

=

T�

def

= Q, H = 2Q

�

Q. In any case of D, the operator H : L

2

! L

2

is

positive de�nite since

< Hz; z >= 2 < Q

�

Qz; z >= 2 < Qz;Qz > :

1). Let D = W

2

2

be the space of the functions x : [a; b] ! R

1

with

absolutely continuous derivative _x and �x 2 L

2

. De�ne the isomorphism

J = f�; Y g : L

2

�R

2

!W

2

2

by

(�z)(t) =

1

Z

0

W (t; s)z(s)ds; (Y �)(t) = �

1

(1� t) + �

2

t;

� = colf�

1

; �

2

g:

In this case, � = �, u = �

1

(1� t) + �

2

t, and

(�z)(t) = (t� 1)

t

Z

0

sz(s)ds� t

1

Z

t

(1� s)z(s)ds:

After direct calculations we have:

(Qz)(t) = �

1

Z

t

z(s)ds+

1

Z

0

sz(s)ds; (Q

�

z)(t) = �

t

Z

0

z(s)ds+ t

1

Z

0

z(s)ds;

(Q

0

z)(t) = q(t)

1

Z

t

z(s)ds� q(t)

1

Z

0

sz(s)ds+

+ (1� t)p(t)

t

Z

0

sz(s)ds+ tp(t)

1

Z

t

(1� s)z(s)ds;

(Q

�

0

z)(t) =

t

Z

0

q(s)z(s)ds� t

1

Z

0

q(s)z(s)ds+

+ t

1

Z

t

(1� s)p(s)z(s)ds+ (1� t)

t

Z

0

sp(s)z(s)ds;

f

0

(t) = �

t

Z

0

q(s)ds+ t

1

Z

0

q(s)ds+
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+ t

1

Z

t

(s� 1)p(s)ds+ (t� 1)

t

Z

0

sp(s)ds:

Next, L = 2Q

�

T and the equation Lx = f

0

obtains the form

2[�x(t) + x(0) + tx(1)� tx(0)] =

= �

t

Z

0

q(s)ds+ t

1

Z

0

q(s)ds+ t

1

Z

t

(s� 1)p(s)ds+ (t� 1)

t

Z

0

sp(s)ds:

By virtue of Theorem 10.2, the unique point of minimum is again the func-

tion

x

0

(t) =

1

2

�

t

Z

0

q(s)ds� t

1

Z

0

q(s)ds� t

1

Z

t

(s� 1)p(s)ds�

� (t� 1)

1

Z

0

sp(s)ds

�

+ �

1

(1� t) + �

2

t:

Direct di�erentiation shows that x

0

2W

2

2

if and only if p; _q 2 L

2

. Therefore,

without this condition, the functional I has no minimum on the spaceW

2

2

.

Let us note that the double di�erentiation of the equation leads to the

classical Euler's equation �x(t) =

1

2

[ _q(t)� p(t)].

2). Supposing p; q 2 L

2

, we may look for the minimum of the functional

I in the space D =W

1

2

' L

2

�R

1

of the absolutely continuous functions

with _x 2 L

2

which is larger than W

2

2

. Each element of this space has the

representation

x(t) = (�z)(t) + (Y �)(t)

def

=

t

Z

0

z(s)ds+ �; fz; �g 2 L

2

�R

1

:

In the case under consideration, N = 2 > n = 1, and therefore we suppose

in the substitution (10.1)

(�z)(t) =

t

Z

0

z(s)ds� t

1

Z

0

z(s)ds; u(t) = �

1

(1� t) + �

2

t:

We have

Qz = Q

�

z = z �

1

Z

0

z(s)ds; Hz = 2

�

z �

1

Z

0

z(s)ds

�

;
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(Q

�

0

z)(t) = �q(t)z(t) +

1

Z

0

[q(s) + sp(s)]z(s)ds�

1

Z

t

p(s)z(s)ds;

f

0

(t) = f(t) = q(t)�

1

Z

0

[q(s) + sp(s)]ds+

1

Z

t

p(s)ds:

Any solution of Hz = f has the form

z

0

=

1

2

f + c; c = const :

Nevertheless, the point x

0

= �z

0

+ u of minimum is unique since �c = 0.

The uniqueness of the point x

0

follows also from the consideration of the

problem (10.7) which has the form

(Lx)(t)

def

= _x(t)�

1

Z

0

_x(s)ds = f

0

(t);

x(0) = �

1

; x(1) = �

2

:

The functions x

1

= 1, x

2

= t constitute a fundamental system of solutions

of Lx = 0 and the determinant

�

�

�

�

x

1

(0) x

2

(0)

x

1

(1) x

2

(1)

�

�

�

�

=

�

�

�

�

1 0

1 1

�

�

�

�

= 1:

Since for the given f

0

the equation Lx = f

0

has a solution, the problem has

a unique solution for any �

1

, �

2

.

Direct computation shows that the functional I has the minimum at the

same point x

0

as in previous case.

3). Finally consider the problem on the minimum of the functional I in

the space D ' L

2

�R

2

of the functions x : [0; 1]! R

1

which are absolutely

continuous on [0; c) and [c; 1] and _x 2 L

2

. The isomorphism between D and

L

2

� R

2

may be constructed on the basis of the impulse boundary value

problem

_x(t) = z(t); x(0) = �

1

; x(1) = �

2

in the space D. The solution of this problem has the form

x(t) = (�z)(t) + (Y �)(t)

def

=

t

Z

0

z(s)ds�

� �

[c;1]

(t)

1

Z

0

z(s)ds+ �

1

�

[0;c)

(t) + �

2

�

[c;1]

(t):
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Let us put � = �. Then Qz = Q

�

z = z, Hz = 2z,

(Q

�

0

z)(t) = �q(t)z(t) +

t

Z

c

p(s)z(s)ds;

f(t) = q(t)�

t

Z

c

p(s)ds:

The solution of Hz = f is z

0

=

1

2

f . In the case �

1

= �

2

= 0, the point of

the minimum has the form

x

0

(t) =

1

2

(�f)(t) =

1

2

�

t

Z

0

q(s)ds+

t

Z

0

sp(s)ds�

� t

t

Z

c

p(s)ds� �

[c;1]

(t)

�

1

Z

0

q(s)ds+

1

Z

0

sp(s)ds�

1

Z

c

p(s)ds

��

:

If p and q are constants,

I(x

0

) = �

1

4

h

q

2

+ pq(2c� 1) + p

2

�

c

2

� c+

1

3

�i

:

Thus the minimum depends on the position of the point c of discontinuity.

If q = 0, then I(x

0

) = �

1

4

p

2

(c

2

� c+

1

3

). I(x

0

) = �

p

2

48

for c =

1

2

. If c ! 0

or c! 1, then I(x

0

)! �

p

2

12

.

Example 10.2. Next consider the functional

I(x) =

!

Z

0

n

x

2

(!)

!

+ _x

2

(s)� p(s)x[h(s)]x[g(s)] + �(s) _x(s) + �(s)x(s)

o

ds;

x(�) = '(�); if � 62 [0; !]

with \periodic" condition lx

def

= x(0)�x(!) = �. Suppose that �; �; � 2 L

2

,

the functions h, g are measurable, and the initial function ' : (�1;+1) n

[0; !]! R

1

is piecewise continuous.

In the case, where h(t) � g(t) � t and the coe�cients are su�ciently

smooth, the problem on the existence { uniqueness of the point of minimum

of the functional I was investigated in [41]. In this connection, the methods

of classical calculus of variations were used. We will consider the problem

following the general scheme given above.

Using the notation (6.4) and (6.5), rewrite the functional in the form

I(x) =

!

Z

0

n

x

2

(!)

!

+ _x

2

(s)� p(s)(S

h

x)(s)(S

g

x)(s)

o

ds�
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�

!

Z

0

p(s)

�

'

g

(s)(S

h

x)(s) + '

h

(s)(S

g

x)(s) +

+ '

h

(s)'

g

(s) + �(s) _x(s) + �(s)x(s)

	

ds:

It is natural to look for the point of minimum of this functional in the space

D = W

1

2

of absolutely continuous functions x : [0; !] ! R

1

with _x 2 L

2

.

The isomorphism J = f�; Y g : L

2

�R

1

!W

1

2

will be constructed on the

basis of the general solution x = �z + Y � of the model boundary value

problem

(L

0

x)(t)

def

= _x(t) +

x(!)

!

= z(t); rx

def

= x(0)� x(!) = �:

One can see directly that the solution of this problem with z 2 L

2

is de�ned

by

(Y �)(t) =

�

2�

t

!

�

�; (�z)(t) =

!

Z

0

�(t; s)z(s)ds;

where

�(t; s) =

8

>

>

>

<

>

>

>

:

2�

t

!

; if 0 � s � t � !;

1�

t

!

; if 0 � t < s � !;

0 outside the square [0; !]� [0; !]:

Let us dwell beforehand on the problem about the minimum of the \cur-

tailed" functional

I

0

x =

!

Z

0

n

_x

2

(s)� p(s)(S

h

x)(s)(S

g

x)(s) +

x

2

(!)

!

o

ds

with condition x(0)� x(!) = 0. We have

(T

11

x)(t) = (T

21

x)(t) = _x(t); (T

12

x)(t) = �p(t)(S

h

x)(t);

(T

22

x)(t) = (S

g

x)(t); T

13

x = T

23

x =

1

p

!

x(!):

Let us set � = �. Thus

Q

11

z = Q

�

11

z = Q

21

z = Q

�

21

z = z �

1

!

!

Z

0

z(s)ds;

(Q

12

z)(t) = �p(t)(S

h

�z)(t) = �p(t)

!

Z

0

�[h(t); s]z(s)ds;
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(Q

�

12

z)(t) = �

!

Z

0

p(s)�[h(s); t]z(s)ds;

(Q

22

z)(t) = (S

g

�z)(t) =

!

Z

0

�[g(t); s]z(s)ds;

(Q

�

22

z)(t) =

!

Z

0

�[g(s); t]z(s)ds;

Q

13

z = Q

23

z = Q

�

13

z = Q

�

23

z =

1

p

!

!

Z

0

z(s)ds;

f(t) = f

0

(t) � 0:

(Lx)(t) = 2 _x(t) + 2x(!)�

�

!

Z

0

p(s)

�

�[g(s); t](S

h

x)(s) + �[h(s); t](S

g

x)(s)

	

ds:

Let us represent L in the form

Lx = 2(L

0

x� Px);

where

(Px)(t) =

1

2

!

Z

0

p(s)

�

�[g(s); t](S

h

x)(s) + �[h(s); t](S

g

x)(s)

	

ds+

+ x(!)

�

1

!

� 1

�

:

The operator P :W

1

2

! L

2

is completely continuous. This follows from

the complete continuity in the space L

2

of the integral operator with the

kernel p(s)�[g(s); t] and the boundedness of S

h

as the operator acting from

W

1

2

into L

2

. Let us represent the operator H : L

2

! L

2

in the form

Hz = L�z = 2(z �Kz);

where K = P�.

The operator H : L

2

! L

2

is Fredholm because of the complete con-

tinuity of K : L

2

! L

2

. Therefore the existence-uniqueness of the point

of minimum of the functional I does not depend on its linear summands

and the number �. The summands and � de�ne the right-hand side of the

equation Hz = f and does not in
uence the construction of H . Thus it

is su�cient to consider the problem of existence-uniqueness of the point of

minimum of the functional I only for the curtailed functional I

0

. Besides,

the condition �(K) < 1 is su�cient, and in the case of isotonicity of K, is
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also necessary (Corollary 10.1) for the existence of unique point of minimum

of the functional I.

The problem (10.7) for I

0

has the form

Lx = 0; lx = 0: (10.8)

Denote

A = �P:

The problem is equivalent to the equation x = Ax in the space W

1

2

. Any

continuous solution of the equation x = Ax belongs toW

1

2

by virtue of the

property of �. For each �, there is the one-to-one mapping z = L

0

x, x = �z

between the set of solutions x 2 C of the equation �x = Ax and the set

of solutions z 2 L

2

of the equation �z = Kz. Thus the spectrums of the

compact operators A : C! C and K : L

2

! L

2

coincide.

The inequalities p(t) � 0 and ! � 1 guarantee the isotonicy of P , K and

A since �(t; s) > 0 on the square [0; !] � [0; !]. Under the assumptions of

these inequalities, the following Vall�ee-Poussin-like [43, 44] theorem is valid.

Theorem 10.3. Let p(t) � 0, t 2 [0; !], ! � 1. Then the following asser-

tions are equivalent.

a) There exists the unique point x

0

2W

1

2

of minimum of functional I.

b) The spectral radius of K : L

2

! L

2

is less than 1.

c) The spectral radius of A : C! C is less than 1.

d) There exists v 2W

1

2

such that

v(t) � 0; �(t)

def

= (Lv)(t) � 0; t 2 [0; !];

besides

�

def

= v(0)� v(!) � 0; � +

!

Z

0

�(s)ds > 0:

e) The problem (10:8) is uniquely solvable and the Green operator G of

the problem is isotonic.

f) There exists a solution � of the homogeneous equation Lx = 0 such

that �(0)� �(!) > 0, �(t) > 0, t 2 [0; !].

Proof. The implication a))b) follows from Corollary 10.1.

The implication b), c) was established above.

The implication d))c). The function v satis�es to Lx = �, lx = �.

Consequently, v �Av = r, where

r(t) =

1

2

(��)(t) +

�

2�

t

!

�

� > 0; t 2 [0; !]:

From this v(t) > (Av)(t) > 0, t 2 [0; !]. Therefore �(A) < 1 by virtue of

Lemma 10.3.

The implication c))d) (c))f)) can be proved by taking the solution x

of the half homogeneous problem Lx = 0, lx = 1 in the capacity of v (the
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solution �). Really, the last problem is equivalent to the equation x = Ax+y,

where y = 2�

t

!

. The solution of the equation is strictly positive:

x(t) = y(t) + (Ay)(t) + (A

2

y)(t) + � � � > y(t) > 0; t 2 [0; !]:

The implication c))e) follows from the fact that the solution of the

problem Lx = f , lx = 0

x(t) = (Gf)(t) = r(t) + (Ar)(t) + (A

2

r)(t) + � � �

�

r =

1

2

�f

�

is strictly positive on [0; !], if f(t) � 0, f(t) 6= 0.

The implication e))d) ( f))d)) can be obtained by taking

v(t) =

!

Z

0

G(t; s)ds (v(t) = u(t)): �

Remark 10.3. The signi�cance of Theorem 10.3 can be seen, in particular,

in the possibility of reducing the problem of minimum of the functional

I to establishing of some properties of Euler's equation: the existence of

a positive solution of the homogeneous equation (the assertion f)) or the

validity of the assertion d) for a functional di�erential inequality like the

theorem of Vall�ee-Poussin [43] for the ordinary di�erential equation of the

second order. The rational choice of the function v in the assertion d) leads

to tests of the existence of minimum in the terms of parameters of the

functional I.

Denoting

�

h

(t) =

(

1; if h(t) 2 [0; !];

0; if h(t) 62 [0; !];

we can formulate the following test derived from Theorem 10.3.

Corollary 10.2. Let p(t) � 0, t 2 [0; !], ! � 1. Then the inequality

!

Z

0

p(s)�

h

(s)�

g

(s)

h

4�

g(s) + h(s)

!

i

� 2 (10.9)

guarantees the existence of a unique point of minimum in the space W

1

2

of

the functional I.

Proof. Let us set v(t) � 1 in the assertion d) of Theorem 10.3. Then

L(1) = 2

�

1�

1

2

!

Z

0

p(s)

�

�[g(s); t]�

h

(s) + �[h(s); t]�

g

(s)

	

ds

�

>

> 2

�

1�

1

2

!

Z

0

p(s)�

h

(s)�

g

(s)

n

4�

g(s) + h(s)

!

o

ds

�

� 0
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if (10.9) holds. �

Remark 10.4. A special case of the functional I

0

, where p(t) � 1 and

h(t) � g(t) � t was thoroughly investigated in [41]. It was shown there, in

particular, that the inequality

! < arcsin

4

5

(10.10)

guarantees the existence of a unique point of minimum. For this case, we

derive from (10.9) only ! �

2

3

. The inequality (10.10) follows from Theorem

10.3 if we choose in the assertion d)

v(t) = cos t+ sin t

1� cos!

sin!

:

Then for t 2 [0; !], we have

v(t) > 0; (Lv)(t) = 2

�

1� sin! �

(1� cos!)

2

sin!

�

> 0

if (10.10) holds.

In the case ! = arcsin

4

5

, the homogeneous problem (10.8) has the non-

trivial solution

v(t) = cos t+ sin t

1� cos!

sin!

= cos t+

1

2

sin t:

Thus the estimate (10.10) which guarantees the existence of a unique point

of minimum is best possible.

Example 10.3. Consider the functional

I(x) =

1

Z

0

�

[s(1� s)�x(s)]

2

� p(s)(S

h

x)(s)(S

g

x)(s)

	

ds

with boundary conditions x(0) = �

1

, x(1) = �

2

. Assume that p 2 L

2

and

the functions h; g : [0; 1] ! R

1

are measurable. Using the space W

2

2

, we

meet the fact that the Euler's equation Lx = f turns out to be singular.

Therefore, as in the case of the equation (9.2), we introduce the space D

whose elements x have the properties:

a) The function x is continuous on [0; 1].

b) The derivative _x is absolutely continuous in the interval (0; 1).

c) The product t(1� t)�x(t) is square integrable on [0; 1].

Such a space is de�ned by D = �L

2

� YR

2

, where

(�z)(t) =

1

Z

0

�(t; s)z(s)ds;

(Y �)(t) = (1� t)�

1

+ t�

2

; � = colf�

1

; �

2

g;
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�(t; s) =

8

>

>

>

<

>

>

>

:

t� 1

1� s

; if 0 � s � t � 1;

�

t

s

; if 0 � t < s � 1;

0 outside the square [0; 1]� [0; 1]:

:

We observe that �(t; s) is the Green function of the singular problem

t(1� t)�x(t) = z(t); x(0) = �

1

; x(1) = �

2

:

The spaceD is isomorphic to the product L

2

�R

2

, J = f�; Y g : L

2

�R

2

!

D is the isomorphism and the inverse J

�1

= [�; r] : D! L

2

�R

2

is de�ned

by

(�x)(t) = t(1� t)�x(t); rx =

�

x(0); x(1)

	

:

Following the general scheme, we have

� = �; u(t) = (1� t)�

1

+ t�

2

; T

11

= T

21

= �;

Q

11

= Q

21

= Q

�

11

= Q

�

21

= I; (T

12

x)(t) = �p(t)(S

h

x)(t);

(T

22

x)(t) = (S

g

x)(t); (Q

12

z)(t) = �p(t)

1

Z

0

�[h(t); s]z(s)ds;

(Q

22

z)(t) =

1

Z

0

�[g(t); s]z(s)ds;

(Q

�

12

z)(t) = �

1

Z

0

p(s)�[h(s); t]z(s)ds;

(Q

�

22

z)(t) =

1

Z

0

�[g(s); t]z(s)ds; f

0

(t) � 0;

Hz = 2

�

z +Q

�

12

Q

22

z +Q

�

22

Q

12

z

�

= 2(z �Kz);

where

(Kz)(t) =

1

Z

0

K(t; s)z(s)ds;

K(t; s) =

1

2

1

Z

0

p(�)

�

�[h(�); t]�[g(�); s] + �[g(�); t]�[h(�); s]

	

d�;

Lx

def

=

2

X

i=1

(Q

�

1i

T

2i

+Q

�

2i

T

1i

)x = 2(�x� Px)
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and

(Px)(t) =

1

2

1

Z

0

p(s)

�

�[h(s); t](S

g

x)(s) + �[g(s); t](S

h

x)(s)

	

ds:

The problem (10.7) has the form

Lx = 0; x(0) = �

1

; x(1) = �

2

: (10.11)

It is equivalent to the equation

�Lx

def

= 2(x�Ax) = u

in the space C. Here A = �P . Thus the problem (10.11) is uniquely

solvable if and only if I �A has the inverse.

The equalities z = �x, x = �z establish a one-to-one mapping between

the sets of solutions x 2 C of equation �x = Ax and of the solutions z 2 L

2

of the equation �z = Kz. Therefore the spectrums of the compact operators

A : C! C and K : L

2

! L

2

coincide.

The inequality �(K) < 1 guarantees by virtue of Corollary 10.1 the ex-

istence of a unique point of minimum. We have �(K) = �(A) � kAk

C!C

.

Since j�(t; s)j � 1, �(A) < 1 if

1

Z

0

jp(s)j

�

�

h

(s) + �

g

(s)

	

ds � 2: (10.12)

Theorem 10.4. Let p(t) � 0, t 2 [0; 1]. Then the following assertions are

equivalent.

a) The functional I has a unique point x

0

2 D of minimum.

b) The spectral radius of K : L

2

! L

2

is less than 1.

c) The spectral radius of A : C! C is less than 1.

d) There exists v 2 C such that for any t 2 [0; 1], the inequalities

v(t) � 0; �(t)

def

= (Lv)(t) � 0;

hold; besides

v(0) + v(1)�

1

Z

0

�(s)ds > 0:

e) The problem (10:11) is uniquely solvable and the Green operator G of

the problem is antitonic.

f) There exists a positive on [0; 1] solution y 2 D of the homogeneous

equation Lx = 0.
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Proof. If p(t) � 0, the operators K and A are isotonic.

The implication a),b) follows directly from Corollary 10.1.

The implication b),c) was established above.

The implication d))c). The function v is a solution of the problem

Lx = �; x(0) = v(0); x(1) = v(1);

and consequently satis�es the equation v �Av = r, where

r(t) =

1

2

(��)(t) + (1� t)v(0) + tv(1) � 0:

The operator A satis�es the conditions of Lemma 10.4. By virtue of the

Lemma, we obtain �(A) < 1.

The implication c))d) (c))f)) may be obtained by taking in the capacity

of the function v (the solution y) the solution x of the half homogeneous

problem

Lx = 0; x(0) = 1; x(1) = 1;

which is equivalent to the equation

x(t) � (Ax)(t) = (1� t) + t � 1:

The solution of the last equation

x = 1 +A(t) +A

2

(t) + � � �

is strictly positive on [0,1].

The implication c))e) follows from the fact that the solution of the

problem

Lx = f; x(0) = 0; x(1) = 0

has the representation

x(t) = (Gf)(t) = r(t) + (Ar)(t) + (A

2

r)(t) + � � � ;

where r =

1

2

�f . This solution is strictly positive in (0; 1) if f(t) � 0,

f(t) 6� 0.

The implication e))d) (f))d)) can be obtained by taking

v(t) = �

1

Z

0

G(t; s)ds; (v(t) � y(t)): �

Corollary 10.3. Let h(t) � g(t) � t, p(t) � 0, t 2 [0; 1]. Then the func-

tional I has a unique point of minimum in the space D if

vraisup

t2[0;1]

p(t) � 4: (10.13)
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Proof. Let us take v(t) = t(1� t) in the assertion d) of Theorem 10.3. We

have

(Lv)(t) = 2

�

2t(t� 1)�

1

Z

0

p(s)�(s; t)s(1� s)ds

�

;

�(s; t)s(1� s) =

(

s(t� 1); if 0 � s � t � 1;

t(s� 1); if 0 � t < s � 1:

Since

�

1

Z

0

�(s; t)s(1� s)ds =

1

2

t(1� t);

we have

�

1

Z

0

p(s)�(s; t)s(1� s)ds � 2t(1� t):

Consequently, (Lv)(t) � 0. �

We observe that using the inequality (10.12) to the case on the hand,

we get the estimate vraisup

t2[0;1]

p(t) � 1 to guarantee the existence of

a unique point of minimum. A more exact estimate was obtained at the

expense of the choice of the function v with regard to the speci�c character

of the problem.

Going back now to the last two examples, we will suppose h = g and

refuse from the condition p(t) � 0. Let further p = p

+

�p

�

, where p

+

(t) � 0,

p

�

(t) � 0 and denote by I

+

the functional obtained from I by replacing

p by p

+

. It is obvious that Ix � I

+

x for each x 2 D. Therefore the

boundedness from below of I

+

implies the boundedness of I. Consequently,

the inequalities (10.9),(10.12) and (10.13) under the assumption that h = g

and p is replaced by p

+

guarantee the existence of the minimum of I. We

can not guarantee the uniqueness of the point of minimum in this case.
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