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Abstract. The boundary value problem is considered for the abstract
functional differential equation Lz = f, where L : D — B is a linear
operator, B is a Banach space, and D is isomorphic to the direct product
B x R™. The Green operator is constructed, continuous dependence on
parameters is studied. The obtained results are applied to ordinary, impulse
and singular equations.
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PREFACE

The equation Lz = f with a linear operator £ acting from the space
D™ of absolutely continuous functions z : [a,b] — R™ into the space L™
of summable functions f : [a,b] — R™ has been thoroughly studied in the
works of the Perm Seminar. The results of these investigations are system-
atized in the book [1]. Such a generalization of the ordinary differential
equation

(L2)(®) € i) + P@)2(t) = f(1), t€ [ab)], (0.1)
covers many classes of equations containing the derivative of the unknown
function, for instance, integro-differential equations and equations with de-
viated argument as well as their hybrids and so on. The theory of the
equation Lx = f with the linear operator £ : D™ — L™ is based upon the
isomorphism between the space D™ and the direct product L™ x R™. The
isomorphism may be defined by

t
x(t) = /z(s)ds +8, zeD" {z(8}eL”xR"
a
As it turned out, the replacement of the space L™ by an arbitrary Banach
space B does not violate validity of the fundamental theorems. Thus, a

further generalization arises in the form of the theory of abstract functional
differential equation

Lx=f (0.2)

with a linear operator £ : D — B, where B is a Banach space and D is
isomorphic to the direct product B x R™ (D ~ B x R™).

The space W™ of the functions z : [a,b] — R! with absolutely contin-
uous derivative 21 is isomorphic to the direct product L! x R™. The
isomorphism may be defined on the base of the representation

t

t— )t nt t—a)k
x(t) = / ﬁz(")(s)ds + kZ:O %z(k) (a)

a

of the element = € W™. Thus, the equation of the n-th order

(L)1) L 2 (1) + 3 pe(a® (0] = (1), t € a,b],

k=0
™€) =0, if €¢[a,b], k=0,1,...,n—1,

as well as its generalization of the form

(L) (1) L 2™ (1) + g()2 ™ [g(1)] +



n—1 b
+> / 2 ®) (s)dgri(t,8) = f(t), t € [a,b],
k=0 a

2™(€) =0, if ¢¢lab],

are the equations (0.2) in the space W™.

The space DS™(m) of the functions z : [a,b] — R™ permitting finite
discontinuity at the fixed points t1, ..., ¢, € (a,b) and absolutely continuous
on the intervals [a,t,), [t1,%2),..., [tm,b] is isomorphic to L x R™(m+1),
The isomorphism is defined by

t m
o) = [ =+ 8+ 3y, 05
. i=1

zeL”, {8°p',...,8") e R*mHD),

where x, denotes the characteristic function of the set e.

Any space D isomorphic to B x R™ forms its own proper class of equa-
tions. Some examples of nontraditional spaces isomorphic to the product
B x R™ are provided in [2]. It is shown there in particular that the space
of functions = : [a,b] — R! which have “quasi-derivatives” up to the n-th
order inclusively is isomorphic to L' x R™. Thus, the linear equation with
quasi-derivatives is one of the form (0.2).

The theory of abstract functional differential equations considers wide
classes of equations from a single point of view. During the last ten-year
period, this theory found various applications in studying old and new prob-
lems due to possibility of choosing proper space D ~ B x R" for each class
of problems. A successful choice of the space permits in virtue of the general
theory direct using of standard schemes and theorems of analysis in such
cases, where we have been forced before to invent special devices and put
severe restrictions connected with application of these devices.

It is relevant to emphasize the principal difference between the gener-
alization of the ordinary differential equation in the form of the abstract
functional differential equation and the “ordinary differential equation in
Banach spaces”. The equation (0.1) is defined by the operator £ : D™ — L™
belonging to the class of the so called “local operators” [3, 4]. An operator £
in a functional space is called local, if the value of the image f(t) = (Lz)(¢)
in a neighborhood of each point ¢ depends only on the value of the preim-
age z(-) in the neighborhood of the same point ¢. The generalization in
the theory of ordinary differential equations in Banach spaces consists in
replacement of the finite dimensional space R™ of the values z(t) of the
unknown function x by an arbitrary Banach space. In this connection, the
property of £ to be a local operator keeps. In the theory of abstract func-
tional differential equation the generalization consists in replacement of the



space L™ by an arbitrary Banach space B and in replacement of the local
operator £ : D™ — L™ by an arbitrary linear operator £ : D — B.

The main notation.
n

Il llx
1Al x v

A*
R(A)
D(A)
dim M
ker A
ind A

[A1, As]

{41, A2}

~

<@, T >, pr
Sr

Xe (")

space of n-dimensional real vectors with the norm |-|.
norm of an element of the normed space X.

norm of an operator A : X — Y. Usually the symbol
“X — Y” is ommited.

operator adjoint to the operator A.

range of values of the operator A.

domain of definition of the operator A.

dimension of the linear set M.

null-set (the kernel) of the operator A.

index of the operator A : indA = dimker A —
dim ker A*.

linear operator acting from the space X into the
product Y3 x Y5 by [41, Ao]z = {A1z, Asz}, z € X,
Alil',' € Yi, AQZ‘ S }/2

linear operator acting from the product of the spaces
X1 x Xs into Y by {Al, AQ}{zl,fEQ} = Az + Asxs,
x1 € X4, 22 € Xs.

identity operator.

identity matrix or F,, under the necessity to empha-
size the dimension of the identity n x n-matrix.
value of the functional ¢ on the element z.
composition operator defined by

z[r()], if r(t) € [a,b],
0, if r(t)¢][a,b].

characteristic function of the set e :
1, if t€e,

(Sra)(t) =

Xe =
0, if tde.
L if i=j,

0, if i+#j.

Kronecker symbol: 6;; =



CHAPTER I
LINEAR ABCTRACT
FUNCTIONAL DIFFERENTIAL EQUATIONS

§ 1. PRELIMINARY KNOWLEDGE FROM THE THEORY OF LINEAR
EQUATIONS IN BANACH SPACES

The main assertions of the theory of linear abstract functional-differential
equations are based on the theorems about linear equations in Banach
spaces. We give here without proofs certain results of the book [5] which
we will need below. We formulate some of these assertions not in the most
general form, but in the form satisfying our aims. The enumeration of
the theorems in brackets means that the assertion either coincides with the
corresponding result of the book [5] or is only an extraction from this result.

We will use the following notation.

X, Y, Z are Banach spaces; A, B are linear operators; D(A) is a domain
of definition of A; R(A) is a range of values of A; A* is an operator adjoined
to A. The set of solutions of the equation Az = 0 is said to be a null space
or a kernel of A and is denoted by ker A. The dimension of a linear set M
is denoted by dim M .

Let A be acting from X into Y. The equation

Az =y (1.1)

(the operator A) is said to be normal solvable, if the set R(A) is closed;
(1.1) the operator A is said to be a Noether equation, if it is a normal
solvable one and besides dimker A < co and dimker A* < co. The number
ind A = dimker A — dim ker A* is said to be an index of the operator A (the
equation (1.1)). If A is a Noether operator and ind A = 0, the equation
(1.1) (the operator A) is said to be a Fredholm one. The equation A*¢p = g
is said to be an equation, adjoined to (1.1).

Theorem 1.1 (Theorem 3.2). An operator A is normal solvable if and
only if the equation (1.1) is solvable for such and only such right hand side y
which is orthogonal to all the solutions of the homogenous adjoined equation
A*p =0.

Theorem 1.2 (Theorem 16.4). The property of being Noether operator is
stable in respect to completely continuous perturbations. By such perturba-
tions, the index of the operator does not change.

Theorem 1.3 (Theorem 12.2). Let A be acting from X into Y and D(B)
be dense in Y. If A and B are Noether operators, BA is also a Noether one
and ind(BA) = ind A + ind B.

Theorem 1.4 (Theorem 15.1). Let BA be a Noether operator and D(B) C
R(A). Then B is a Noether operator.



Theorem 1.5 (Theorem 2.4 and Lemma 8.1). Let A be defined on X and
acting into Y. A is normal solvable and dimker A* = n if and only if the
space Y is representable in the form of a direct sum 'Y = R(A) ® M, where
M, is a finite-dimensional subspace of the dimension n.

Theorem 1.6 (Theorem 12.2). Let D(A) C X, M, be a n-dimensional
subspace of X and D(A) N M, = {0}. If A is a Noether operator, then
its linear extension A on D(A) @ M, is also a Noether operator. Besides
indA =ind A + n.

Theorem 1.7. Let a Noether operator A be defined on X and acting into
Y, D(B) =Y, BA: X — Z is a Noether operator. Then B is also a
Noether operator.

Proof. Thanks to Theorem 1.4, we are in need only of the proof of the case
R(A) # Y. From this Theorem 1.4 we obtain also that restriction B of B
on R(A) is a Noether operator.

Let dimker A* = n. Then we have from Theorem 1.5 that

Y = R(A) & M, = D(B) & M,,

where dim M,, = n.
From Theorem 1.6 we see that B is a Noether operator as a linear ex-
tensionof Bon Y. H

Let a linear operator A acting from a direct product X; x X5 into Y be
defined by a pair of operators A; : X; — Y and 4> : Xs — Y in such a
way, that

Af{z1, 20} = A1z + Asza, @1 € X4, 22 € Xo,

where A2y = A{z1,0}, Aszo = A{0,z2}. We will denote such an operator
by A = {Al,AQ}.

Let a linear operator A acting from X into a direct product Y; x Y5 be
defined by a pair of operators A; : X — Y; and 45 : X — Y5 in such a
way, that Az = {4z, A>z}, x € X. We will denote such an operator by
A=Ay, Al

The theory of linear abstract functional differential equation is using
some operators defined on a product B x R™ or acting in such a product.
We will formulate here certain assertions about such operators, reserving as
far as possible the notations from [1].

A linear operator {A,1} acting from a direct product B x R™ of the
Banach spaces B and R"™ into a Banach space D is defined by a pair of
linear operators A : B —+ D and Y : R” — D in such a way that

(A Yz,  =Az+YB, z€B, BeR"



A linear operator [d, r] acting from a space D into a direct product BxR"
is defined by a pair of linear operators § : D — B and r : D — R" in such
a way that

[0,r]z = {éz,rz}, x € D.

If the norm in the space B x R™ is defined in an appropriate way, for
instance by

{2, B}l g g = lllls + 181,

the space B x R"™ will be a Banach one.
If a bounded operator {A,Y} : B x R® — D is an inverse to a bounded
operator [§,7] : D — B x R"™, then

z=Az+Yrz, zeD, (1.2)

d(Az+Yp) ==z, r(Az + YPB) = beta, {z,5} € B x R".
Hence

AS+Yr=1, 6A=1, Y =0, rA=0, rY =1

We will identify the finite-dimensional operator Y : R™ — D with such
a vector (y1,-..,Yn), ¥; € D, that

YB=> i, B=col{p',....5"}.

i=1
We denote the components of a vector-functional r by r!, ... r".
If I ={'...,l™} : D - R™ is a linear vector-functional and X =
(z1,...,25) is a vector with components xz; € D, then [X denotes the

m X n-matrix whose columns are the values of the vector-functional [ on the
components of X : [X = (I'z;),i=1,...,m;j=1,...,n.

The operators A, Y, 8, r for the spaces suggested above in the Introduc-
tion have the following forms.

For the space D",

(A2)(t) = /z(s)ds, Y=E, dx=1&, rz=uz(a),

a

where F is the identical n X n-matrix.
For the space W™,

t

(Az)(t):/%z(s)ds, y = <l,t—a,...,%>,

a

br =2, rz= {z(a),3(a),... ,a:("_l)(a)}.



For the space DS"™(m),

)0 = [, ¥ = (BB x, (0 B, (0),

bz =i, re={z(a),Az(t1),...,Ax(tn)},
Aa?(t,) = a:(tl) - :L‘(ti - 0)

Theorem 1.8. A linear bounded operator {A,Y} : B x R™ — D has the
bounded inverse if and only if the following conditions are satisfied.

a) The operator A : B — D is a Noether one and ind A = —n.

b) dimker A = 0.

c) If AL, ..., \" is a basis for ker A* and A\ = [A\!, ..., \"], thendet \Y # 0.

Proof. Sufficiency. From a) and b) it follows that dim ker A* = n. By virtue
of Theorem 1.5, D = R(A) @ M,,, where dim M,, = n. It follows from c) that
any nontrivial linear combination of the elements y, ..., y, does not belong
to R(A), therefore M, = R(Y'). Thus D = R(A) ® R(Y") and consequently
the operator {A, Y} has its inverse by virtue of Banach theorem.

Necessity. From invertibility of {A, Y}, we have D = R(A)® R(Y'). Con-
sequently the operator A is normally solvable by virtue of Theorem 1.5 and
dim ker A* = n. Besides dimker A = 0. Therefore ind A = —n. Assumption
det A\Y = 0 leads to the conclusion that a nontrivial combination of the
elements y1,...,y, belongs to R(A). W

Theorem 1.9. A linear bounded operator [6,r] : D — B x R" has a
bounded inverse if and only if the following conditions are satisfied.

a) The operator § : D — B is a Noether one and ind 6 = n.

b) dim kerd = n.

c) Ifxy,...,x, is a basis of kerd and X = (xy,...,x,), then detrX # 0.

Proof. Sufficiency. From a) and b) it follows that dimkerd* = 0. Thus
R(6) = B. Each solution of the equation dz = z has the form

n
T = E CiTi + 0,
i=1

where ¢; = const, ¢ = 1,...,n, and v is any solution of this equation. By
virtue of ¢), the system

bxr=z, rr=p0
has a unique solution for each pair z € B, g8 € R™ Consequently the
operator [, 7] has the bounded inverse.
Necessity. Let [§,r]71 = {A,Y}. From the equality A = I, by virtue
of Theorem 1.7 it follows that ¢ is a Noether operator and by virtue of
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Theorem 1.3, ind§ = n. As far as R(0) = B, we have dimker §* = 0 and
consequently dimkerd = n. If det rX = 0, then the homogeneous system

ox =0, re=0

has a nontrivial solution. This gives a contradiction to the invertibility of
the operator [§,7]. W

§ 2. LINEAR EQUATION AND LINEAR BOUNDARY VALUE PROBLEM

The Cauchy problem

(ca)(t) < i) - PM(t) = f(1), 2(a) =0, t€a,b],
is uniquely solvable for a € R™ and any summable f if the elements of the
n X n-matrix P are summable. Thus, the representation of the solution

z(t) = X(t) /Xfl(s)f(s)ds + X(t)a

of the problem (the Cauchy formula), where X is a fundamental matrix
such that X (a) is the identity matrix, is also a representation of the general
solution of the equation Lz = f. The Cauchy formula is the base for
investigations on various problems in the theory of ordinary differential
equations. The Cauchy problem for functional differential equation is not
solvable generally speaking, but some boundary value problems may be
solvable. Therefore the boundary value problem plays the same role in the
theory of functional differential equations as the Cauchy problem does in
the theory of ordinary differential equations.
We will call the equation

Lx=f (2.1)

a linear abstract functional-differential equation if £ : D — B is a linear
operator, D and B are Banach spaces and the space D is isomorphic to the
direct product B x R" (D ~ B x R").

Let 7 = {A,Y}: BxR" — D be a linear isomorphism and 7 ! = [§, r].
Everywhere below the norms in the spaces B x R™ and D are defined by

{2 B g xre = Nelle + 181, llzlls = l16z]l5 + |-

By such a definition of the norms, the isomorphism 7 is an isometrical one.
Therefore

||{A’Y}||B><R"AD =1 ”[5’ r]||D—>B><R" =1L

Since

[Az]l, = [{A, Y }{z,0}

IA

A Y {2, 0}l g gn = 21l
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[Alls—p = 1. Analogously it is established that ||Y||r»—p = 1. Next we
have

10z]]g < llzllp
and, if rx =0,
10]|5 = [zl

Therefore ||0||p—B = 1. Analogously ||r||por~ = 1.
We will assume that the operator £ : D — B is bounded. Applying £ to
the both parts of (1.2), we get the decomposition

Lz = Qdx + Arz. (2.2)

Here @ = LA : B — B is a principal part, and A = LY : R® — B is a
finite-dimensional part of L.

As examples of (2.1) in the case where D is a space D™ of absolutely
continuous functions z : [a,b] — R™ and B is a space L™ of summable
functions z : [a,b] — R™, we can take an ordinary differential equation

©(t) — P(t)z(t) = f(t), t€la,b], (2.3)

where the columns of the matrix P belong to L™, or an integro-differential
equation

b b
(1) —/Hl(t,s)ab(s)ds—/H(t,s)w(s)ds — ), telab. (24)

We will assume the elements h;;(t, s) of the matrix H(¢, s) to be measurable
on [a,b] x [a,b], the functions f; hi;j(t,s)ds to be summable on [a,b], and
the integral operator

b
(H1z)(t) = /Hl(t,s)z(s)ds

on L" into L™ to be completely continuous. The corresponding operators
L for these equations have the representation in the form (2.2)

(La)(t) = i(t) — P(t) / i(s)ds — P(t)z(a)

for (2.3), and
b b b

(Lx)(t) = i(t) — {Hl(t,s) +/H(t,¢)d¢}a’:(s)ds —/H(t,s)ds z(a)

a S a

for (2.4).
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Theorem 2.1. An operator £ : D — B is a Noether one if and only if
the principal part Q : B — B of L is a Noether operator. In this case,
indL =indQ + n.

Proof. 1f L is a Noether operator, Q = LA is also Noether as the product
of Noether operators and ind £ = ind @ + n (Theorems 1.8 and 1.3).

If Q) is a Noether operator, Q4 is also Noether. Consequently £ = Q4+ Ar
is also Noether (Theorem 1.9 and 1.2). W

Due to Theorem 2.1, the equality ind £ = n is equivalent to the fact that
@ is a Fredholm operator. The operator ) : B — B is a Fredholm one if
and only if it is representable in the form Q = P~' +V (Q = P, * + 1),
where P~! is an inverse to a bounded operator P and V is a completely
continuous operator (P;"" is an inverse to the bounded P; and V; is a finite-
dimensional operator) [6]. An operator @ = (I +V) : B — B is a Fredholm
one, if a certain degree V™ of V' is completely continuous [6]. If the operator
V' itself is completely continuous, the operator Q = I + V is said to be a
canonical Fredholm operator.

In the above given examples ) = I — K, where K is an integral operator.
For (2.3),

(K2)(t) = /P(t)z(s)ds

and it is a completely continuous operator. For (2.4),

(K2)(t) :/b{Hl(t,s) +/bH(t,7')dT}z(s)ds.

a

Here K? is a completely continuous operator. The property of being com-
pletely continuous of these operators may be established by V. Maksimov’s
Theorem 6.1 [7, 1] which is given below.

Theorem 2.2. Let £ : D — B be a Noether operator, ind L = n. Then
dimker £ > n and dimker £ = n if and only if the equation (2.1) is solvable
for each f € B.

Proof. Recall that dim ker £ —dim ker £* = n. Besides the equation Lz = f
is solvable for each f € B if and only if dimker £* = 0 (Theorem 1.1). W

We call the vector X = (z1,...,2,) whose components constitute a basis
for the kernel of £ the fundamental vector of the equation Lz = 0 and the
components zi,-..,x, we call the fundamental system of solutions of this
equation.

Let [ = [I',...,I™] : D — R™ be a linear bounded vector-functional,
a=col{a!,...,a™} € R™. The system

Lr=Ff lr=«a (2.5)
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is called a linear boundary value problem.

If R(L) = B and dimker £ = n, the question of solvability of (2.5) is the
one of solvability of a linear system of algebraic equations with the matrix
IX = (I'z;),i=1,...,m; j = 1,...,n. Indeed, since the general solution
of the equation Lx = f has the form

n
T = E CjT; + v,
j=1

where v is any solution of this equation, ¢y, ..., ¢, are arbitrary constants,
the problem (2.5) is solvable if and only if the algebraic system

n

i _ i i -
E l'zje; =a" —1"v, i=1,...,m,
Jj=1

in respect of ¢1,...,c, is solvable. In such a way the problem (2.5) has a
unique solution for each f € B, @ € R™ if and only if m = n and det X # 0.
The determinant det [.X is said to be the determinant of the problem (2.5).

By applying the operator [ to the two parts of the equality (1.2), we get
the decomposition

lx = ®éz + ¥rz, (2.6)

where ® : B — R™ is a linear bounded vector-functional. We will denote
the matrix defined by the linear operator ¥ : R™ — R™ also by V.

Using the representations (2.2) and (2.6), we can rewrite the problem
(2.5) in the form of the equation

(%) ()= () o5

R -

The operator

is adjoint to the operator

Q A . n m
<<I> o :BxR"—= BxR™.

Taking into account the isomorphism between the spaces B* x (R™)" and
D*, we therefore call the equation

Q* @* w . g
A ) \~v) T \n
to be adjoint to the problem (2.5).

Lemma 2.1. The operator [0,]] : D — B x R™ is a Noether one with
ind[0,l] =n —m.
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Proof. We have [§,1] = [4,0] + [0,1], where the symbol “0” denotes a null-
operator on the corresponding space. The operator [0,/] : D — B x R™ is
compact because the finite-dimensional operator [ : D — R™ is compact.
Compact perturbations does not change the index of the operator (Theorem
1.2). Therefore it is sufficient to prove Lemma only for the operator [4, 0].

The direct product B x {0} is the range of values of [§,0]. The homo-
geneous adjoint equation to the problem [§, 0]z = {f,0} is reducible to one
equation w = 0 in the space B* x (R™)*. The solutions of this equation are
the pairs {0,~}. Therefore dim ker[d, 0]* = m.

Thus [4,0] : D — BxR™ is a Noether operator with ind[4,0] = n—m. R

Rewrite the problem (2.5) in the form of one equation
.0 = {f, a}. (2.5)

Theorem 2.3. The problem (2.5) is a Noether one if and only if the prin-
cipal part Q : B — B of L is a Noether operator and also ind[L,l] =
ind@Q+n—m.

Proof. The operator [£,[] has the representation

1£,1] = (‘g ?) [6,1] + [Ar, 0],

where I : R™ — R™ is an identical operator, and the symbol “0” denotes
the null operator on the corresponding space. Indeed,

<§ ?) [6,1]z + [Ar, 0]z = (%2 ?) col{dz,lz} + col{Arz,0} =
= col{Qdzx + Arz,lz}.

The operator ) : B — B is Noether if and only if the operator

(0 7 :BxR"—=BxR

ind (%2 ?) =ind Q.

(Cg ?) 5,]]: D= B x R™

is Noether with

Therefore the operator

is a Noether one if and only if () is a Noether operator and also

. Q 0 . Q 0\ . .
1nd<0 I)[é,l]—lnd<0 I>+1nd[5,l]—1ndQ+n—m

(Theorems 1.3 and 1.7). The product Ar : D — B is compact. Hence the
operator [Ar,0] : D — B x R™ is also compact. Now we get the conclusion
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of the Theorem from the fact that compact perturbation does not violate
the property of being Noether operator and does not change the index. H

It should be noted the following Corollaries from Theorem 2.3 under the
assumption of £ being a Noether operator.

Corollary 2.1. The problem (2.5) is a Fredholm one if and only if ind ) =
m—mn.

Corollary 2.2. The problem (2.5) is solvable if and only if the right hand
side {f,a} is orthogonal to all the solutions {w,~} of the homogeneous ad-
joint equation

Q*w + "y =0,
A*w 4+ Ty = 0.
The condition of being orthogonal has the form

(w, f) + (7v,a) = 0.

Everywhere below we assume that the operator £ is Noether with ind £ =
n which means that @ is a Fredholm operator. Under such an assumption,
by virtue of Corollary 2.1 the problem (2.5) is a Fredholm one if and only
if m =n.

The functionals {1, ...,I™ are assumed to be linear independent.

We will call the special case of (2.5) when | = r a principal boundary
value problem. The equation [§,r|z = {f,a} is just the problem which is
the base of the isomorphism J~' = [4,r] between D and B x R™.

Theorem 2.4. The principal boundary value problem
Lx=f rr=a«a (2.7)

is uniquely solvable if and only if the principal part Q : B — B of L has
the bounded inverse Q=1 : B — B. The solution = of (2.7) admits the
representation

r=AQ 'f+ (Y —AQ 'A)a. (2.8)
Proof. Using the decomposition (2.2), we can rewrite (2.7) in the form
Qéx + Arx = f, rx=q.
If Q is invertible, then
dr=Q 'f —Q 'Aa.

An application to this equality of the operator A yields (2.8) because Ad =
I-Yr.

If @ is not invertible and y is a nontrivial solution of the equation Qy = 0,
the homogeneous problem

Lr=0, re=0
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has a nontrivial solution z, for instance z = Ay. W

From (2.8) one can see that the vector X =Y — AQ 14 is fundamental
and also rX = E (Here A denotes the vector defying the finite-dimensional
operator A : R" — B).

Theorem 2.5. The following assertions are equivalent.

a) R(L) =B.

b) dim ker £ = n.

c) There exists a vector-functional | : D — R™ such that the problem
(2.5) is uniquely solvable for each f € B, a € R™.

Proof. The equivalence of the assertions a) and b) was established while
proving Theorem 2.2.

Let dimker £ = n and [ = [I!,...,I"], the system [!,...,I™ be biorthogo-
nal to the basis z1,..., 2, of the kernel of £ : I'z; = §;;,i,j = 1,...,n and
di; be the Kronecker symbol. Then the problem (2.5) with such [ has the
unique solution

z=X(a—-1v)+uv,

where X = (z1,...,2,) and v is any solution of Lz = f. This is seen by
taking into account that {X = E. Conversely, if (2.5) is uniquely solvable
for each f and «, then the solutions of the problems

Lxr=0, lz=«a;, o €R", i=1,...,n,

can be taken as the basis z1,...,z, provided the matrix (ai,...,q,) is
invertible. Thus the equivalence of the assertions b) and c) is proved. B

§ 3. GREEN OPERATOR

We will consider here the boundary value problem
Lx=f lr=a (3.1)

under the assumption that the dimension m of I (the number of the bound-
ary conditions) is equal to n. By virtue of Corollary 2.2, such a condition
is necessary for unique solvability of the problem (3.1). Recall that we as-
sume L to be a Noether operator with ind £ = n (ind @ = 0). If m = n,
then the problem (3.1) is Fredholm ([£,]] : D — B x R" is a Fredholm
operator). Consequently, for this problem the assertions “the problem has
a unique solution for some right hand side {f,a} (the problem is uniquely
solvable)”, “the problem is solvable for each {f,a} (the problem is solv-
able everywhere)”, “the problem is everywhere and uniquely solvable” are
equivalent.

Let (3.1) be uniquely solvable and denote [£,1]”! = {G,X}. Then the
solution z of the problem ( 3.1) has the representation

r=Gf + Xa.
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The operator G : B — D is called the Green operator of the problem (3.1),
the vector X = (z1,...,z,) is a fundamental vector for the equation Lz = 0
and also [X = E.

It should be noted that A is the Green operator of the problem dxz = f,
rr = a.

Theorem 3.1. A linear bounded operator G : B — D is Green operator of
the boundary value problem (3.1) if and only if the following conditions are
fulfilled.

a) G is a Noether operator with ind G = —n.

b) ker G = {0}.

Proof. {G,X} : B x R™ — D is a one-to-one mapping if G is the Green
operator of (3.1). So a) and b) are fulfilled by virtue of Theorem 1.8.
Conversely, let G be such that a) and b) are fulfilled. Then dim ker G* = n.
If I*,...,I" constitute a basis of ker G* and [ = [I,...,I"], then R(G) =
kerl. G is the Green operator of (3.1), where

Lx =G 'z —Ulx)+ Vi,

G~ is the inverse to G : B — kerl, U = (uy,...,u,) with u; € D is a
vector such that IU = E, and V = (vq,...,v,) with v; € B is an arbitrary
vector. H

Theorem 3.2. Let the problem (3.1) be uniquely solvable and G be the
Green operator of this problem. Let further U = (u1,...,up), u; € D,
U = FE. Then the vector

X=U-GLU

is a fundamental one to the equation Lz = 0.

Proof. dimker £ = n by virtue of Theorem 2.5 and the unique solvability of
(3.1). The components of X are linear independent because [X = E. The
equality £X = 0 can be checked immediately. H

Theorem 3.3. Let G and G, be the Green operators of the problems
Lrz=Ff lr=a«a

and
Lz=Ff lLz=a.

Let further X be the fundamental vector of Lx = 0. Then

G=G, - X(IX)"G;.
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Proof. The general solution of Lz = f has the representation
zr=Xc+ G:f,

where ¢ € R is an arbitrary vector. Define ¢ in such a way that iz = 0.
We have

0=Ilx=I1Xc+I1G.f.

Hence
c= —(lX)’llGlf

and the solution z of the half homogeneous problem Lz = f, [z = 0 has the
form

r= (G - X(IX)""NG)f=Gf. 1

In the investigation of particular boundary value problems and some
properties of Green operator, it is useful to employ the “elementary Green
operator” W; which is possible to construct for any boundary condition
lz = a. Beforehand we will prove the following proposition.

Lemma 3.1. For any linear bounded vector-functional I = [I%,...,1"] :
D — R”™ with linear independent components, there exists a vector U =
(uy,...,up) with u; € D such that det rU # 0 and detlU # 0.

Proof. Let Uy and Uy be n-dimensional vectors such that det rU; # 0 and
U, = E. Let further

U=U+ pU,
where p is a numerical parameter. The function ¢ (u) = det rU is continuous
and ¥(0) # 0. Hence v(u) # 0 on an interval (—pug, pg). The polynomial
P(u) = detlU = det(IU; + pE) has no more than n roots. Consequently,

there exists such a 1 € (—po, po) that P(u1) # 0. For U = Uy + iUy we
have: detrU # 0 and det{U #0. W

Let U = (u1,...,un), u; € D, detrU # 0, [U = E. Define the operator
W;:B — D by:

W, =A-U®, (3.2)

where U : R™ — D is a finite-dimensional operator corresponding to U and
® : B — R" is the principal part of the vector-functional [ (see the equality
(2.6)). Let further Lo : D — B be defined by

Lox = 6z — U (rU) 'ra. (3.3)
Theorem 3.4. W, is the Green operator of the boundary value problem

Loz =f, lz=oqa. (3.4)
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Proof. The principal boundary value problem for the equation Loz = f is
uniquely solvable. Consequently, the dimension of the fundamental vector
for Loz = 0 is equal to n. By immediate substitution, we get LoU = 0. The
problem (3.4) is solvable because U = E. We have
LoW,f =8(Af —U®f) —sUU) 'r(Af —URS) =
=f—6UDf +oU(rU)"rURSf = f,
Wi f=®5(Af —URf)+Tr(Af —UDSf) =
=¢f—-IUPf=0. 1

The collection of all Green operators corresponding to a given vector-
functional [ : D — R™ is of the form

G =W, (3.5)

where T is a linear homeomorphism of B into B. Indeed, if ' : B - B is a
homeomorphism, then by virtue of Theorem 3.1 W;I" is a Green operator of
(3.1). Conversely, any Green operator G : B — kerl may be represented by
(3.5), where I = W;'G, W' : kerl — B is the inverse to W; : B — ker!.

Theorem 3.5. The collection of all Green operators G : B — D is defined
by
G=(A-Uv)T,
where U = (u1,...,uy), u; € D, detrU # 0, v : B = R" is a linear
bounded vector-functional, and T is a linear homeomorphism of the space B
into B.

Proof. W = A — Uv is the Green operator of the problem (3.4), where
lz = véx + [E — voU](rU) ‘rz. Indeed,

LoWf=8A—-Uv)f —o0UU) " 'r(A=Uv)f =
= f—6Uvf+oU(rU) rUvf = f,
IWf=v5(A—Uv)f+[E—vU|(rU) " 'r(A = Uv)f =
=vf —véUvf — [E —vdUJvf =0.
Now the assertion of the Theorem follows from the representation (3.5). W

In the investigation of boundary value problems, an important part be-
longs to the so called “W-method” [8] which is based on an expedient choice
of an auxiliary “model” equation £z = f. The foundation to this method
is laid by the following assertion.

Theorem 3.6. Let a model boundary value problem
Liz=f, lr=0

be uniquely solvable and W : B — D be the Green operator of this problem.
The problem (3.1) is uniquely solvable, if and only if the operator LW : B —
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B has the continuous inverse [CW]~1. In this case, the Green operator G
of the problem (3.1) has the representation

G=WI[LW] .
Proof. There is a one-to-one correspondence between the set of solutions z €
B of the equation LWz = f and the set of solutions z € D of the problem
(3.1) with homogeneous boundary conditions Iz = 0 the correspondence
is defined by x = Wz and z = Lyz. Consequently the problem (3.1) is

uniquely solvable and also the solution z of the problem (3.1) for & = 0 has
the representation x = W[LW]~'f. Thus G = W[LW]~'. R

In the applications of Theorem 3.6 one may put W = W;, where W, is
defined by (3.2). Let the operator U : R™ — D be defined as above by
the vector U = (u1,...,uy), u; € D, detrU # 0, [U = E. Let further
® : B — R" be the principal part of [ : D — R"™. Define the operator
F:B—Bby F=_LUd.

Corollary 3.1. The boundary value problem (3.1) is uniquely solvable if
and only if the operator (Q — F) : B — B has the bounded inverse. The
Green operator of this problem has the representation

G=mW(Q-F)" (3.6)

The proof follows from the fact that W, is the Green operator of the
model problem Loz = z, lz = 0, where L, is defined by (3.3) and

LW =LA -LU® =Q0N—-ArA - LU =Q-LU®=Q - F.

The following assertions characterize some properties of the Green op-
erator of the problem (3.1) connected with the properties of the principal
part @) of L.

Theorem 3.7. Assume that a boundary value problem (3.1) is uniquely
solvable. Let P : B — B be a linear bounded operator with bounded inverse
P~1. The Green operator of this problem has the representation

G =W,(P + H), (3.7)

where H : B — B is compact, if and only if the principal part Q of L may
be represented in the form Q = P~' +V, where V : B — B is compact.

Proof. Let G = W;(Q—F)™" (see (3.6)), Q = P~' +V. Define V;, =V —F.
Then

Q-F)'=P'+Wv)'=I+PV)'P=(I+H)P=P+H,

where H : B — B and H; : B — B are compact operators.
Conversely, if (Q — F)™' = P + H then

Q=F+(P+H) '=F+(I+P'H)'P'=
=F+(I+WV)P'=P"+V,



21

where V : B — B and V; : B — B are compact operators. H

Theorem 3.8. A linear bounded operator G : B — D is the Green operator
of the problem (3.1), where Q = P~* +V, if and only if ker G = {0} and

G=AP+T (3.8)
with a compact operator T : B — D.

Proof. If G is the Green operator and Q = P~! 4V then (3.8) immediately
follows from (3.7) and (3.2).

Conversely, if G has the form (3.8), then G is a Noether operator with
indG = —n. By virtue of Theorem 3.1, G is the Green operator of the
problem (3.1). From LG = I it follows that QP + LT = I. Hence @ =
P14V, whereV=-LTP ' 1

We now state two Corollaries of Theorem 3.8.

Corollary 3.2. The representation 0G = P + H, where H : B — B is
a compact operator and P : B — B is a linear bounded operator with a
bounded inverse P~' is possible if and only if G is the Green operator of
the problem (3.1), where @ = P~* +V, V is a compact operator.

Proof. If §G = P + H, then
G=AP+AH+YrG

and due to Theorem 3.8, Q = P~! + V.
Conversely, if Q = P! +V, then G = AP + T and, consequently,
0G=P+46T. N

Corollary 3.3. The operator G is canonical Fredholm if and only if the
principal part Q of L is canonical Fredholm.

8 4. BOUNDARY VALUE PROBLEMS WHICH ARE NOT EVERYWHERE AND
UNIQUELY SOLVABLE

We assume as above that ind £ = n (ind @) = 0) and, in addition, that the
equation Lz = 0 has an n-dimensional fundamental vector X. By Theorem
2.5, the equation Lz = f is solvable for each f € B.

We will consider the boundary value problem

Lx=f lr=a (4.1)

without the assumption that the number m of boundary conditions is equal
to n.

Denote p = rank/X. In the case p > 0, we may assume without loss of
generality that the determinant of the rank p composed of the elements in
the left top of the matrix /X does not vanish. Let us choose a fundamental
vector as follows. In the case p > 0, the elements z1, ..., z, are selected such
that l'z; = 85,4, = 1,...,p (d;; is the symbol of Kronecker). If 0 < p < n,
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the homogeneous problem Lz = 0, [x = 0 has n — p linearly independent
solutions uy,...,un—,. In the capacity of fundamental vector, everywhere
below we will take X = (u1,...,u,) if p=0, X = (@1,...,Zp,U1,...,Un—p)
if0<p<mn,and X = (z1,...,z,) if p=n.

Recall that the problem (4.1) can not be Fredholm if m # n (Corollary
2.1) and the question on solvability of the problem (4.1) is the question on
solvability of a linear algebraic system with the matrix X .

Consider the cases corresponding to all possible relations between the
numbers n, m and p.

The case n = m = p was investigated in the previous sections.

If p = m < n, the problem is solvable (but not uniquely) for any f € B,
a = {at,...,a™} € R™. To obtain the representation of the solution in
this case, we can supplement the functionals I',... ,I™ by such additional
[m+l 1™ that

det (1™ ;)7 " #0.
The determinant of the problem
Lx=f, Iz=a,...,I",z=a"

does not vanish and therefore this problem is uniquely solvable. Using the
Green operator G of this problem, we can represent the solutions of (4.1)

in the form
m n—m
T :Gf—l-Za’a:i + Z Cills,
i=1 i=1

where ¢y, ..., ¢, _, are arbitrary constants.

In all the other cases (4.1) is not everywhere solvable. The conditions
of solvability can be obtained by using the Green operator of any uniquely
solvable boundary value problem for the equation Lz = f. Such a problem
exists by virtue of Theorem 2.5.

Let p = n < m. In this case, the homogeneous problem Lz =0, Iz =0
has only the trivial solution. Thus if the problem (4.1) is solvable, the
solution is unique and is a solution of the problem

Lx=f lz=a' i=1,...,n

(recall our convention (Iz;);;—, = E). If G is the Green operator of the
latter problem, the solution of the problem (4.1) in the cases of its solvability
has the representation

n
r=Gf +Zaiwi,
i=1

and the necessary and sufficient condition of solvability of the problem (4.1)
obtains the form

n
o’ leGf+Zailja;i, j=n+1,...,m.
i=1
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If p <n <morp<m <n, the solution of the problem (4.1) can not be
unique. Let us choose functionals (7', ..., 1" such that det(I”T*u;);' 72, # 0.
Then the problem

Lx=f lz=da', i=1,...,n
for p = 0 or the problem
Lx=f lez=da', i=1,....,p, IPig=a", j=1,....n—p

for p > 0 is uniquely solvable. Using the Green operator G of this problem,
we may write the solutions of (4.1) in the case of its solvability in the form

a::Gf-i—Zciui
i=1

for p =0, and in the form

P n—p
T = Gf—i—Zaia:i + Zciui
i=1 i=1

for p > 0. Here ci,...,c,—, are arbitrary constants. The necessary and
sufficient condition of solvability of (4.1) obtains the form

o =VUGf, j=1,...,m

for p =0, and

p
o =VUGF+Y alliz;, j=p+1,...,m
i=1
for p > 0.

In the theory of ordinary differential equation, it is widely used the so
called “generalized Green function” for representation of solutions of the lin-
ear boundary value problem in the case, where the solution is not unique.
The construction of such a function (the kernel of the integral operator,
the generalized Green operator) is based on a well known structure of E.
Schmidt [9]. This structure permits to construct for an irreversible opera-
tor H a finite-dimensional operator F° such that there exists the bounded
inverse (H + F°)~!. The classical scheme of the construction of generalized
Green operators for differential equations is entirely extended for abstract
functional-differential equations. We will dwell here on this scheme.

Due to Corollary 3.1, the Fredholm operator Q — F = LW; : B — B is
irreversible if p < m = n. In this case, the half homogeneous problem

Lr=f Ilx=0 (4.2)

is solvable if and only if the function f is orthogonal to all the elements of
the basis of the kernel of (@) — F')*. Using the procedure which will be given
below, we will construct an operator F° such that the operator Q — F + F°
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will have the inverse I' = (Q — F + F°)~!. The product G® = W, has the
property: if the problem (4.2) is solvable, then the solutions of this problem
may be represented in the form

n—p
r=Gf + Z ci, (4.3)

i=1
where u; = Wiy, y1, ..., Yn—, is the basis of the kernel of the operator @) —F
and ci,...,¢,_, are arbitrary constants. This operator G° : B — kerl is
said to be the generalized Green operator of the problem (4.2). By virtue of
(3.5), GV is an ordinary Green operator of a certain boundary value problem

L7 =f lr=a. (4.4)

To construct the operator F°, let us choose any system ¢1,...,¢p,_, of
functionals from the space B* biorthogonal to y1,...,yn—p ({(©i,y;) = dij,
i,j =1,...,n —p) and a system z1,...,2,—p,% € B, biorthogonal to the
basis wi,...,wn—, of the kernel of (Q — F)*. Schmidt’s structure defines
the operator F° : B — B by

n—p

Foy = (pi,y)ai-

i=1

By virtue of Schmidt’s Lemma [9], there exists a bounded inverse I' =
(Q — F + F°) 1. Also, if y satisfies the equation (Q — F + F%)y = f and
conditions of orthogonality (w;, f} =0,i=1,...,n—p, then (Q — F)y = f.
Indeed, in this case we get from (Q — F)y = f — F%y that

(i, [ —F°) =0, i=1,....,n—p.

Hence
n—p
<wi,f>_<w7j,F0y>:—<wi,ZCij>:0, izla"'an_pa
j=1

where ¢; are some arbitrary constants. But the latter equality is possi-
ble only if ¢; = -+ = ¢,_, = 0. Therefore F°y = 0 and consequently
(Q—F)y = f and z = W;I'f is a solution of (4.2). Hence we get the
representation (4.3).

Remark 4.1. In the construction of a generalized Green operator one, can
use instead of W; defined by (3.6) the Green operator of any model problem
Lyxz = f,lz =0 (see Theorem 3.6).

The not everywhere solvable problem (4.1) may become everywhere solv-
able by some generalization of the notion of the solution. For instance,
the solution of (4.4) for the equation L%z = f constructed on the base of
Schmidt’s structure may be considered as a kind of such a generalization.
A generalization of the notion of solution of (4.1) was used in [10, 11] by
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extending of the space D. In this connection, the construction of a gen-
eralized (extended) everywhere solvable boundary value problem requires
sometimes additional boundary conditions. So, the problem

&(t) = f(t), z(a) —=z(b) =0

has absolutely continuous solutions not for any summable f. If we declare
the solution to be a function admitting a finite discontinuity at a fixed point
7 € (a,b), then the extended problem

y(t) = f(t), yla)—y®)=a, y() =8, £€(ab),

has a unique solution for each f, @ and 3. Indeed, in this case the funda-
mental system of solutions of the equation y(t) = 0 consists of two functions
y1 =1l and y, = Xprp) (t) (X[‘r,b] (t) is a characteristic function of [r,b]). The
determinant of the problem

A= 0 ! 0
- ‘_1 X[T,b] (E)‘ ;é '

Next we will prove under the assumption that the space D admits a
finite-dimensional extension that for any not everywhere solvable problem
(4.1), it is possible to construct an extended problem which is uniquely
solvable.

The problem (4.1) is not everywhere solvable, if p=n <m, p<n <m
or p < m < n. These cases are characterized by the inequality m — p > 0.
_ Let the space D be embedded into a Banach space D in such a way that
D =D ® M*, where M* is a finite-dimensional subspace of the dimension
p.  Any linear extension £ : D — B of £ is a Noether operator with
ind =indL +p = n+ p. (Theorem 1.6). As far as R(L) = B, also
R(L) = B, therefore dimker £ = n + p.

Let £:D — Band [ : D — R™ be a linear extension of £ and [.
Consider the boundary value problem

Ly=f, ly=a (4.5)

in the space D. Since dimker £ = n + 1, this problem can be uniquely and
everywhere solvable only if y = m —n. If 4 > m —n, it is necessary to add
to m boundary conditions some more p + n — m conditions.

The problem (4.5) if 4 +n —m = 0, and the problem

Ly=f ly=a, hy=a, (4.6)

if m +n —p > 0is called an extended boundary wvalue problem. Here
[, : D — RAT™ g any bounded vector-functional.

As it was noted above, the inequality p > m — n is necessary for unique
solvability of the extended problem.

Everywhere below y1,...,y, are such elements of a fundamental system

of the equation Zy = 0 which do not belong to D.
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For the beginning, consider an extended problem for a uniquely solvable
problem (4.1).

Theorem 4.1. Let m = n, the problem (4.1) be uniquely solvable and D=
D @& M*. For any linear extensions L£:D— B, [: ]~)~—> R"of L:D — B
and | : D — R"™, there exists a vector-functional I, : D = R* such that the
problem (4.6) is uniquely solvable.

Proof. For any linear extension [ of vector-functional I, we have IX =1X.
Therefore det!X # 0. Let us choose yi,...,y, such that ly; = 0, i =
1,..., . This is possible since letting

n
Yi =Yi— E CjTj
=1

for a fundamental system x1,...,2y,¥1,.-., ¥, of the solutions of the equa-
tion Ly = 0, we get for constants ¢y, ..., ¢, the system

n
chlka:j = lkgi, k=1,...,n
j=1
with the determinant not equal to zero. Let us take now a system of func-
tionals ("t : D — R', i =1,..., 1, such that
A = det(I"tiy;)l . #0.

Then the determinant of the problem (4.6) with I} = [I"*1, ... [""#] is
equal to A -det!X #0. N

Any element y € D has the representation

o
y=my+ Z 2\, (4.7)
i=1
where 7 : D — D s a projector, z1,...,2, is abasisof M¥, A = [AL, ... ) \H]:
D — R* is a vector-functional such that Az = 0 for each z € D and
Nz = 6y, 4, = 1,...,p. From (4.7) it follows that any linear extension
L£:D — B of the operator £ : D — B has the representation

m
Ly = Ly + Z a; Ny, (4.8)
i=1

where a; = Zzi, and also for any a; € B, i_ = 1,...,u, the last equality
defines a linear extension of £ on the space D. Analogously, the represen-
tation

ly = lry + Ty, (4.9)
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where I' = (v;;) is a numerical m x n-matrix, defines the general form of
the linear extension | : D — R™ of the vector-functional [ : D — R™.

In what follows, m — p > 0. The next assertion recommends for uniquely
solvable problem a more precise estimate of the number p then the above
given inequality u > m — n.

Theorem 4.2. Let D = D & M*". If the problem (4.1) has a uniquely
solvable extended problem, then p > m — p.

Proof. Let p < m — p. If p =n, then p < m — n. Therefore only the case
p < n needs the proof. N

Let £ and [ be any linear extensions on the spaces D of £ and [, re-
spectively. If u = m — n, then the determinant of the problem (4.5), the
determinant of the order m, is equal to zero because it has non-zero ele-
ments only at the columns corresponding to x1,...,Z,,y1,...,yu, if p>0
Or y1,...,Yy, if p=0. The number of such columns is equal to p + p < m.

Let u > m—n. Then the determinant of the problem (4.6) is equal to zero.
Indeed, the cofactors of the minors of the (u + n — m)-th order composed
of the elements of the rows corresponding to the vector-functional I; are
determinants of the m-th order. These determinants are equal to zero. H

Theorem 4.3. Let D =D & M™ *. For any linear emtensionNE: DB
of the operator L : D — B there ezists a linear extension [ : D — R™ of
the vector-functional I : D — R™, and in the case p < n a vector-functional
Iy : D — R"* such that the extended problem (4.5) if p = n or the extended
problem (4.6) if p < n is uniquely solvable.

Proof. The operator £ admits the representation (4.8), where y = m — p.
Denote by v; any solution of the equation

Lr = —a;,

and let y; = v; + 25, i =1,...,m —p. Thus uy,..., U, Y1,.-.,ym if p =0,
Tlyee ey Tpy ULy ey Un—p, Y1, Ym—pif0<p<mand zi,...,Zn,Y1,.. -, Ym—n
if p = n is a fundamental system of solutions of the equation

Ly=0
Let 0 < p < n. Denote Y = (z1,...,%5,Y1,---,Ym—p). We will show
that it is possible to choose a m x (m — p)-matrix T for the corresponding
extension (4.9) of the vector-functional I such that detlY # 0. Due to
special choice of zi,...,z,, we have l~ia:j = di, 4,§ = 1,...,p for any
extension [. Further, 7YV = (z1,... s Lo, Uiy Um—p); AT = 0,0 =1,...,p;
Ny =8ij,4,5 =1,...,m — p. Therefore

IV =IxY +T)\Y =
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1 0 0 S Y A
0 1 0 Popo oo Pog,
= 0 0 1 1Py, Pvm—p +
e R L Y L P [tV R [ N,
™ Mz, mx, L A T
0 0 Y11 Wl,m—p
0o ... 0 Ymi v Ymym—p
The matrix I' may be chosen, for instance, as follows. Let v;; = —l‘v; for

t=1,...,p,j=1,...,m— p, and the numbers v,1;;, ¢, =1,...,m — p,
be chosen such that
. m—p
A =det (I°7'vj + Yptig); oy #0-

Then det Y = A # 0.

If p = n, the theorem is proved because the problem (4.5) with the
constructed extension [ is uniquely solvable.

If 0 < p < n, we choose in addition a vector-functional

L= [, I B o R
such that o
A; = det (lm“uj)?;:pl # 0.
The determinant of the problem (4.6) with the above constructed extension
[ and the vector-functional [; is equal to A; - detlY # 0.
Ifp=0,let Y = (y1,...,Ym). In this case,
Yy = (livj + ')/ij)

m
i,j=1"
Let us choose +;; such that det ly # 0 and further, as above, take a vector-
functional . . R B
I, = [lm“,...,lm“‘] :D - R"

such that o

A1 = det (Z"“L’uj):.lj:1 # 0.
Then the determinant of the problem (4.6) will be equal to A; - detY
#0. N

Denote by G the Green operator of the extended problem (the problem
(4.5) if p =n or (4.6) if p < n). Then the solution of the problem admits
the representation B

y=Gf+2(1,2) 'a,,
where Z is a fundamental vector of the equation Zy =0; l~p =1, a, = a if
p=nandl, =[I,I], a, = {a,a,}, if p < n.
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Theorems 4.2. and 4.3 provide the minimal number y = m — p for which
there exists a uniquely solvable extended problem to the problem (4.1). If
> m — p, the uniquely solvable extended problem also exists by virtue of
Theorem 4.1. If the rank of the matrix /X is unknown, then we can take
i = m for the construction of uniquely solvable extended problem. It will
demand n additional boundary conditions. The inequality p > m — p could
be used for the estimation of the rank of the matrix [X : if for a certain p
there exists a uniquely solvable extended problem, then rank (X > m — u.

§ 5. CONTINUOUS DEPENDENCE ON PARAMETERS OF SOLUTION OF THE
BoOUNDARY VALUE PROBLEM

One of the central places in the theory of differential equations belongs
to the question on conditions guaranteeing continuous dependence on the
parameters A, « of the solution of the Cauchy problem

z(t) = f(t,z(1), ), =z(a) =a.

J. Kurzweil [12] has approached this question in the following generalized
formulation: under which conditions does the sequence {z } of the solutions
of the problems

z(t) = fe(t,z(t)), z(a)=ar, k=1,2,...

converge to the solution g of the “limiting case”
&(t) = fo(t,z(t), z(a) =ao
of the problems? The general linear boundary value problem
Lx=Ff lr=a«a

was studied in [1]. Here £ : D™ — L™ and [ : D™ — R" are linear operators,
D™ and L™ are Banach spaces of n-dimensional vector functions defined on
[a, b], absolutely continuous and summable, respectively. The conditions of
convergence to the solution zq of the limiting case

£0£IT = fO) le = Qp
of the solutions z; of the problems
L= fr, hr=ar, k=1,2,...

are formulated.

An analogous question for linear abstract functional differential equation
was considered by A. V. Anokhin on the base of general theory of G. M.
Vainikko [13]. Each operator £ and vector-functional I;, are defined on
their own space in Anokhin’s setting of the question. Anokhin’s theorem
was published in [14] without proof. We offer below the thorough proof of
this theorem.



30

We will formulate here the definitions and propositions of Vainikko’s
paper [13] which are required for the proof of the main theorem. We provide
these results of G. M. Vainikko in the form we are in need of. In the brackets
there are indicated those general propositions of the paper [13] on the base
of which the theorems stated below are formulated.

Let Eg and Ei, K =1,2,..., be Banach spaces.

Definition 5.1. A system P = (Py), k =1,2,..., of linear bounded oper-
ators Py : Eg — Ey is said to be connecting for Eq and Eg, k£ = 1,2,...,
if

Tim [[Pyul, = [lulls,
for any u € Ey.

Observe that the norms of the operators P, are bounded in common
(sup || Pr ||< o) due to the principle of uniform boundedness.
k

Definition 5.2. The sequence {uy}, ur € Ey, is said to be P-convergent
to up € Eg (this fact is denoted by uy, guo) if

lim ||uk - 'PkuoHE’e =0.
k—o00

Observe that from the P-convergence ukfmo follows, in particular, that
limy o0 [[urllE, = [luollE,-

Definition 5.3. The sequence {u;}, up € Eyg, is said to be P-compact if
any of its subsequences includes a P-convergent subsequence.

Let further Fg and Fy, & = 1,2,..., be Banach spaces; P = (Pi),
k=1,2,..., be a connecting system for Eq and E;; Q@ = (Qx), k=1,2,...,
be a connecting system for Fg and Fy; Ay : Ej, = Fy; k=0,1,..., be linear
bounded operators.

Definition 5.4. A sequence {Aj} is said to be PQ-convergent to Ay (this

fact is denoted by Ak@AO) if the sequence {Ajuy,} is Q-convergent to Agug
for any P-convergent to ug € Eq sequence {u}, up € Ey.

Theorem 5.1 (Proposition 2.1). If A 28 Ao, then sup | A < co.
k

If a sequence {7} of the elements of a Banach space converges to vy by
the norm, we will denote this fact henceforth by v, — 7o.

Theorem 5.2 (Proposition 3.5 and Theorem 4.1). Let the sequences { By}
and {Cy} of linear bounded operators By : Ex — Fy, Cr : E — Fy,
k=1,2,..., be PQ-convergent to By and Cy, respectively. Let further the
following conditions be fulfilled.

1. R(Bo) = Fy, there exist continuous inverses B,;l, k=1,2,..., and
sipllBilll < 0.
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2. The sequence {Crur} is Q-compact for any bounded sequence {uy},
wk € By (sup [Jug[m, < o).

3. The operators Ay, = Brp+Cy, k= 0,1,..., are Fredholm, ker Ay = {0}.

Then for k = 0 and aoll sufficiently large k, there exist bounded inverses
A,;l and

_ Poa— . _19QP
ATy B A e if peSy (41 AY.

Remark 5.1. Condition 1 of Theorem 5.2 is equivalent to Condition 1*.
There exist bounded inverses B,;l Fr > Ep, k=0,1,...,and B,;lc”)—I;Bal.

The implication 1* = 1 is obvious. Let us prove the implication 1 = 1*.

As it was shown in [13] (Proposition 3.3), conditions imposed on the
operators By guarantee the existence of a v > 0 such that

|1Boulle, = ¥l|ulls,

for any u € Ep, and from R(Bg) = Fy it follows the existence of bounded
inverse B L

Let yk%yo, yr € Fr. We have
1B yi = PeBy ol g, < 1By vk — By ' Quyollg, +
+ B Qryo — PkBO_IZUOHEk-
I1B: i — By Quyoll, < 1B [lye — Qioll, — 0.

Denote Bglyo = ug. Then
| B Qryo — PkB(;ly0||Ek < 1B, M| || @k Bouo — BkPkUO||Fk =0

since ’Pkuo—P) ug and By, 4% By. 1
Let Dy and B be Banach spaces, Dy, be isomorphic to the direct product
B x Rn,

{Ak,Yk} :By x R® — Dy, ([6k,rk] = {Ak,Yk}_l)
be isomorphisms, and
lullp, = lloxulls, +[rrul, k=0,1,....

Let further H = (Hy) be a connecting system for Bg, By and P = (Py) be
a connectig system for Dg, Dy, k =1,2,.... By Ho and Py we denote the
identical operators in the spaces Bg and Dy, respectively.

Consider sequences { Ly, }, {l} of bounded linearly Noether operators Ly, :
D; — By, ind £, = n, and bounded linear vector-functionals Iy, : Dy — R™
with linear independent components, £ = 0,1,.... We will assume that
L2 Lo and Trug — louo provided ur S uo.

Let the boundary value problem

Lor=Ff lox=a (5.1)
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be uniquely solvable. Consider the question on conditions which guarantee
unique solvability for all sufficiently large k of the problems
Lrx=f, lxx =« (5.2)

as well as the convergence zx D for any sequences {fr} and {ay} with
fkif[) and ap — ag. Here z is the solution of the problem

Lrr = fr, ez = oy, (5.3)
xo is the solution of the problem

[,017 = f(), l()w = Qyp. (54)

We will assume the spaces By, £ =1,2,..., to be isomorphic to By and
the operators Hy : By — By, of the connecting system for By and By to be
isomorphisms and sup ||H; || < co.

k

Define the connecting system Q = (Q) of the isomorphisms of the spaces
By x R™ and B x R™ by

Qk{faa}:{r}{kfaa}a {faa}EBOXRna
Qi ' {f,a} = {H;'f,a}, {fa}eBrxR"
Thus if fkif[) and ap — ag, then {f, ak}%{fo,ao}. It is easy to see that
|Qkll = max {[|Hl|, 1}, [1Q; I = max {[|# ||, 1}

We will choose the connecting system P = (Py,) for the spaces Do and Dy,
in such a way that the operators P have bounded inverses and sup ||P; || <
k

0o. For instance,
Pr = ApHibo + Yiro = {Ag, Y } Qx[do, 70]-
Then
Pt = AoH, Mok + Yore = {Ao, Yo} QM [0k, 7k],
1Pell = 1Qell, 1P =12 I
This system is a connecting one for Dy and Dy,. Really,
O Pru = Hidou, 7rPru = rou
for any u € Dy. Therefore
IPrullp, = [Hrdoulls, + [roul = lldoulls, + |roul = |lully, -

(The possibility of choosing of P}, will be considered more extensive in the
end of this section).
We will prove the following Theorem 5.3 under the assumptions:
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a) There exists a connecting system H = (Hj) of isomorphisms for the
spaces Bg and By, such that
Sup 1745 ]] < 0.
b) The connecting system P = (Py,) for Do and Dy, is chosen such that
the operators Py, : Bg — By, are isomorphisms and

sgpllpzilll < 0.

c) Lk iy Lo and lpup, — lgug, if ukfmo.
Theorem 5.3. Let the problem (5.1) be uniquely solvable. Then the prob-
lems (5.2) are uniquely solvable for all sufficiently large k. For any sequences

{fr}, {ar} with fkifo, ar — ap, the solutions xy, of the problems (5.3)
are P-convergent to the solution xqo of the problem (5.4) if and only if there
exists a vector-functional I : Dg — R™ such that the problems

’H,;lﬁk’sz =f lr=« (5.5)

are uniquely solvable for k = 0 and all sufficiently large k by any right hand
side {f,a} € Bg x R"™ and vy — vy, where vy, € Dg are the solutions of the
problems (5.5) holds.

Let us rewrite the problems (5.1) - (5.4) in the form

[Eo,lo]z = {f,a}, (5.1)
[Ek,lk]a: = {f,a}, (5.2)
[Li, k) = {fr,om} (5.3)
[Eo,lg]a: = {fo,ao}. (5.4)

Then the Theorem 5.3 may be stated as follows.

Let the operator [Lo,lo] : Do — Bo xR™ be continuously invertiple. Then
the operators [Li,l] : Dy — Br x R™ are continuously invertiply for all
sufficiently large k and also

(L, U] ' (Lo, 0] -

if and only if there exists a vector-functional | : Dy — R™ such that the
operators

[H, ' LiPr,1] : Dy = By x R"

are continuously invertiply for k = 0 and all sufficiently large k and

[Hi ' LiPe, 0] {foa} = [Lo, 1] { [}

for any {f,a} € By x R".
Beforehand we will prove two lemmas.

Denote My, = H;lﬁkPk.
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Lemma 5.1. Myu — Lou for any u € Dy if and only if Ly, Y Ly.

Proof. Let Ly 23 £o. Since Pru u and sup |H, || < oo, we have
k

Myu — Lou =Hi " (LyPru — HyLou) — 0.
Conversely, let Mpu — Lou for any u € Dg and ukg ug. We have
Liug — HiLowyg = HiMy Py ug — Hi Loy =
= Hk{/\/lk(’Pk_luk —up) + (Myuo — £0u0)} — 0,

since Pk_luk — ug, Myruo = Loug, sup ||Hi|| < oo, sup [Mil] < co. R
k k

Denote
@), = [Li, 1P, '] : D, = By x R,
Fy = [H; 'Lk Pi,1] : Dy — By x R" (8 = Fp).
Lemma 5.2. The operators @ and F}, are (or are not) continuously in-

vertible simultaneously; <I>,;1Q—I>D<I>51 if and only if F,;ly — Fofly for any
y € Bp x R".

Proof. Simultaneous invertipility follows from the representation
d;, = QkaPk_l. Let Fk_ly — Fo_ly for any y € Bg x R™ and ykgyo,
yr € Bry x R™. We have

O 'y — Pe®y 'yo = PrFy Q! (yk — Qikwo) + Pr(Fy 'yo — Fy 'yo)-
Hence it follows that <I>,ZIQ—I>J(I>O_1.
Conversely, let <I>,;1Q—I>D<I>g '. We have
Foly—Fyly =P (27 Quy — Pi®y 'y).
Hence F,;ly — Fofly. ]

The proof of Theorem 5.3. Sufficiency. Let us represent the operator [Ly, [x]
in the form

[Lr, k] = [Lr, 1P + [0,0 — 1P, 1]
Since L}, [y Lo and lPk_luk — lug if ukfmo, we have:
o), = [L, 1P'] B9 (Lo, 1] = Bo.

By virtue of Lemma 5.2, for all sufficiently large k there exist continuous
inverses L
@, ' =[Ly, P, :BrxR"—> Dy

and <I>,;1 °r <I>51. Thus, taking into account Theorem 5.1, Condition 1 is
fulfilled for the sequence {®y}.
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Next consider the sequence of the operators

Crp=1[0,ly =P, "] : Dy > By xR", k=1,2,....

Let ukzmo. Then lpur — loup due to the assumption c) of Theorem, and
lP,:luk — lug — 0 since ’P,;luk — ug. Therefore
Ce 28 Co = 0,10 — 1.
If the sequence {uy}, up € Dy, is bounded, from the estimate
|k = 1P k| < Ml — 1P | k],

and the boundedness in common of the norms ||l — [P} || it follows bound-
edness in R™ and consequently compactness of the sequence {(lx—IP, Bug}.
So the sequence {Cjuy} is Q-compact. Thus Condition 2 of Theorem 5.2 is
fulfilled for the operators Cj.

Further, since Ay = [Ly,lx] = Pr + Cy are Fredholm operators, the
equality ker 49 = {0} follows from the unique solvability of the problem

(5.1). Thus by virtue of Theorem 5.2, continuous inverses A; " = [Ly, lx]
exist, and

(L, 1] (Lo, 0] 7"

Necessity. Let us show that we can take [y as of the vector-functional [.
In other words, the operators

Fy = [H;, ' Li Py, lo] : Dy = By x R”

have continuous inverses F} ' for all sufficiently large k and F, 'y — Fy 'y
for any y € By x R™. By virtue of Lemma 5.2, it is sufficient to verify that
for all sufficiently large k, the operators

d), = [ﬁk,lo’P,gl] :Dp = B x R"

have continuous inverses with &' ¢ ®5'. We have
@ = (L, k] + [0,10P, " — 1]

Under the condition
By, =[x, 1] 2% [Lo,1o] = Bo,

for k = 0 and all sufficiently large k there exist continuous inverses Bk_1 and
-1 2P -1

B, = By .
Further we have

Cr = [0,10P7" — 1] 25 [0,0] = Co.

Indeed, if ukf)uo, then

(lopk_l - lk)uk = lng_l(uk - Pka) - (lkuk - loUo) — 0.
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Q-compactness of the sequence {Cjuy} can be proved like it was done while
proving the sufficiency.

oy = [Ly, lOP,;l] = By, + C}, are Fredholm operators and ker &5 = {0}.
Thus there for all sufficiently large k& continuous inverses <I>,;1 exist with

o' Lol m

The condition v, — vg in the statement of Theorem 5.3 may be changed
by another equivalent one due to the following Theorem 5.4.

Let My : Dy — By, £k = 0,1,..., be linear bounded operators, Mpu —
Myu for any u € Dy, and let there exist a linear bounded vector-functional
[:Dg — R"™ such that for each £ =0,1,..., the boundary value problem

Myz=f, lz=q« (5.6)

is uniquely and everywhere solvable. Denote by v the solution of this
problem and by zj the solution of the half homogeneous problem

Mpz=f, lz=0
Let G, be the Green operator of the latter problem.

Theorem 5.4. The following assertions are equivalent.
a) v — vg for any {f,a} € Bg x R".
b) sup||2k o, < oo for any f € By.

k

c) Grf = Gof for any f € By.

Proof. The implication a) = b) is obvious.
The implication b) = ¢). The Green operator Gy, : By — kerl is an
inverse to My : kerl — Bg. From b) it follows that sup ||G|| < oo. Thus
k

by virtue of Remark 5.1, we have c).
Implication ¢) = a). The solution vy, has the representation

v = Grf + Xa,

where X}, is the fundamental vector of the equation Mpx = 0 and [ X, = E.
By virtue of Theorem 3.2,

Xj, = U — Gu MU,

where U = (u1,...,u,), u; € Do, IU = E. Thus Xya — Xoa for any
a € R”, and consequently vy, — vp. H

Next we dwell on the question of choosing the connecting systems of iso-
morphisms Hy : Bg = By and Py : Dg — Dy.. It is natural to subordinate
the operators P and Hy to the following request of agreement

ukfmg & 6kuk§50u0 and rpup — roug. (5.7)



37

Theorem 5.5. Let
||(’Hk50 — 5kPk)u||Bk =0 and (ro —rePr)u — 0 Yu € Dg. (5.8)
Then (5.7) holds.
Proof. The assertion follows from the inequalities
|0k — Hidouol| g, < |0k (ur — Pruo) ||, + ||(6kPr — Hido)uol|, ,
[P — rouo| < |k (ur — Pruo)| + | (re Pr — 70)uo),
i = Prtial, = (e — Pri) g, + s = Pre)] <
< ||okur — Hrdouo|| g, + [|(Hedo — 0k Pr)uol|g, +

+ |rruk — rouo| + |(r0 - rk’Pk)u0|. [ |

Conversley, if 6kuk7—{>60u0 and rpur — roug, where ukfmo, the limiting
relations (5.8) are fulfilled. This follows from Prutu.

Thus (5.7) are fulfilled if and only if the limiting relations (5.8) hold, in
particular, if 63 Py, = Hpdo and 7Py, = ro. Applying Ay to the first of these
relations, we get

(I — Ykrk)Pk = Ak/Hk(SO.

Hence, taking into account the second equality,

Pr = A Hibo + Yiro = {Ax, Yi } Qi [do, o).
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CHAPTER II
APPLICATIONS OF THE GENERAL THEORY

The theory of abstract functional differential equation Lx = f considers
wide classes of equations from a unified point of view. The unity of the
consideration is defined by the property of the principal part @ of £ being
Fredholm.

The ideas and methods of the general theory permit new approaches to
many problems and adoption of standard schemes and theorems to their
study. This is why the application of the abstract theory begins to play a
serious role in modern investigations connected with various equations, in
particular, with ordinary differential equations and systems with aftereffect.

The Chapter is devoted to some typical applications. In §§6,7, using a
uniform scheme, the fundamentals of the theory of equations on the space of
absolutely continuous and piecewise absolutely continuous vector-functions
are presented. In §8 by the same scheme a concise theory of the n-th order
scalar equations of the is presented. In §9, some singular equations are
considered. A special choice of the space D ~ B x R"™ ensures the principal
part @ : B — B of £ : D — B of being a Fredholm operator. In such a way,
the theorems of Chapter 1 became applicable to the equation. In §10, a new
approach to the minimization of square functionals is proposed. The role of
the choosing of the space for the existence of the minimum is emphasized.
Some efficient tests of existence of the unique point of minimum are given
in terms of parameters of the functional.

8 6. SYSTEMS OF ORDINARY FUNCTIONAL DIFFERENTIAL EQUATIONS
The equation
Lr=f (6.1)

with a linear operator £ acting from the space D™ of absolutely continuous
functions z : [a,b] — R™ into the space L™ of summable functions z :
[a,b] = R™ is called a linear ordinary functional differential equation

b
2l = llEllen + (@)l [zl = /|Z(S)|d8-
a
As examples of (6.1), we can present the equations (2.3), (2.4) and also

b
def .

o0 a0+ [ dRE2) = 0, 1t (62)
under the assumption that the elements 7;;(¢, s) of the n x n-matrix R(t, s)

are measurable on [a, b] X [a, b], the functions var,c(,,4 7i5(t, s) are summable
on [a,b] and R(t,b) = 0.
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If the isomorphism J : L™ x R®™ — D" is defined on the base of the
representation

x(t) Z/ti"(é’)d8+w(a) <(AZ)(t) Z/tZ(S)ds, ¥YB)(®) =ﬁ>,

a a

then the principal parts @) of the operators £ for the equations (2.3), (2.4)
and (6.2) have the forms

t

(&@@=z@—/Pwdmh

a

b

(Q22)(t) :z(t)—/b{Hl(t,s)+/H(t,¢)d¢}z(s)ds,

a 8§

b

(%@@=z@—/R@@dW&

a

respectively, and the equations may be represented as follows

() - [ Pwis)ds = Pta(a) = £(0),

b b b

i) {Hl(t,s)+/H(t,7‘)d7‘}i¢(s)ds—{/H(t,T)dT}z(a) = (),

b
() — /R(t,s)j:(s)ds — R(t,a)x(a) = f(1).

The principal parts of these equations have the form @Q = I — K, where
K : L™ — L™ is an integral operator. The compactness of K (of K? if Q5)
can be established by means of the following test.

Theorem 6.1 ([1]). Let the elements k;;(t,s), i,j =1,...,n, of the matriz
K(t,s) be measurable on [a,b] X [a,b], for almost every t € [a,b] the functions
k;j(t,-) have finite one sided limits at each point s € [a,b] and there exist
summable functions vy : [a,b] — R such that |k;;(-,s)| < vi;(-) for each
s € [a,b]. Then the integral operator

b
(K2)(t) = / K (t, 5)2(s)ds

acts in the space L™ and is compact.
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The equation with “deviated argument”
i(t) — B(t)z[g(t)] — P(H)x[h(t)] = v(t), t€a,b],
z(§) = (&), (&) =4(&), if §¢[ab],
is also an equation of the kind (6.1). The necessity of introduction of the
so called “initial functions” ¢ and v is due to the fact that the solution is

defined only on [a,b]. In order to rewrite (6.3) in the form (6.1), we must
use the linear operation of interior superposition defined by

ylr@®)], it r(t) € [a,0],
0, if r(t) & [a,b].

(6.3)

(S (t) = { (6.4)

Define also the function 8" by

s Jo. i et € fab)
o(t) = {H[T(t)], if r(t) & [a,b]. (6:5)

Using these notation, we can rewrite (6.3) in the form Lz = f defining £
and f by

(Lz)(t) = () — B(t)(Sy2)(t) — P(t)(Shz)(t)
and

() =v(t) + B! (t) + P(H)e" (1)
The linear operator Sj, : D™ — L™ can be represented in the form
b
(S12)(0) = [, (t.)(6)ds + x, (Ba)e(a),

where X, (t,s) is the characteristic function of the set
{@@emﬂxm¢yagsgmﬂg@.

Denoting
b

(52)(t) = B(8)(S,2) (1), (Kz)(t) = /P(t)xh(t,S)Z(S)ds,

a

we obtain the principal part @ of £ corresponding to (6.3) in the form
Q=I-5S-K.
By virtue of Theorem 6.1, the integral operator K : L™ — L™ with

K(t7 3) =X (ta S)P(t)

is compact. Thus if (6.3) can be solved in respect to the derivative & (Sz =0
for all z € L"), then @ is a canonical Fredholm operator. If that is not
the case, the question arises when S, : L™ — L” is continuous and @) =
I-S—K is Fredholm? During the last 20 years a large series of investigations
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necessary for completion of the general theory of the equation (6.3) was
devoted to these questions. The main results of these investigations are
thoroughly treated in [1]. Some of them will be stated below.

If the equation (6.3) is solved in respect to the derivative, (6.3) can be
written in the form (6.2) by denoting

R(t,s) = —o(t, s)P(t),

where o(t, s) is the characteristic function of the set
{(t,s) € [a,b]x[a,b] : a<s<h(t) < b}u{(t,s) € [a,b]x[a,b) : h(t) = b}.

A natural generalization of (6.3) is the equation

k b
i@—ZﬁMW%@@+/%MMW@=ﬂﬁ (6.6)

If g;(t) <t,i=1,...,k, and R(t,s) = 0 for t < s, then (6.6) is called the
equation with retarded argument.

The solution of the equation (6.3) was defined by many authors as a
continuous prolongation on [a,b] of the initial function ¢. In other words,
the conditions z(a) = ¢(a), (b) = p(b) of “continuous junction” was de-
manded. There is no need of such conditions from the point of view of
correctness of all the operations in the left side of (6.3). But these condi-
tions cause many complications in the conception of the equation and turn
out to be a serious obstacle in applying of the general theory of the equation

Lr=f

with the linear operator £ : D™ — L™ to the equation (6.3). Beginning from
the works [15, 16], the most part of authors refused from the necessity of the
continuous junction condition. It is relevant to note that the refusal from old
conceptions, connected with continuous junction, does not mean forbidding
the boundary conditions z(a) = ¢(a), z(b) = ¢(b) and the modern theory
generalizes the results of previous investigations but does not contradict
them.
In the book [17], the equation with “distributed retardation”

o(t)
i:(t)+/dsg(t,s)a:(t—s):v(t), tefabl, oft)>0,

z(§) = (&), if {<a
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was studied along with the necessary condition z(a) = p(a). We can write
this equation in the form

(t) + / dsR(t,s)z(s) = v(t), tE€ [a,b],

(6.7)
) =), if £<a.
Thus, (6.7) is a boundary value problem for the equation
t
(o0 a(0)+ [ d.R(t,9)a() = 110 (6.8)

a

with boundary condition z(a) = ¢(a) and
£ =o6) - [ dR(ts)00).

The equation (6.8) (without boundary conditions) under the assumption
of the mentioned book [17] turns out to be an equation Lz = f with the
linear operator £ : D™ — L"™. The principal part

«kﬂﬂzdﬂ—/Rde@%

of £ has a bounded inverse by virtue of the compactness of the integral
Volterra operator with the kernel R(t,s). Thus by virtue of Theorem 2.4,
the equation (6.8) with boundary conditions z(a) = a is uniquely solvable.
Consequently (Theorem 2.5) the dimension of the fundamental system of
the homogeneous equation Lx = 0 is equal to n. It is relevant to point
out that in the book [17], the “infinite-dimensional fundamental system”
of solutions of the homogeneous equation is determined. This does not
contradict to what has been said above because, due to A. D. Myshkis, the
homogeneous equation corresponding to (6.7) is said to be this equation
with v(t) =0.

The equation (6.6) arises some problems about properties of S, in the
spaces of summable functions. We will state here the main facts of the
theory of the operator S, : L™ — L". The thorough treatment of the
matter can be found in [1].

The values of the function g : [a,b] — R} which do not belong to [a, b]
have no effect on the construction of the operator S,. Thus this function
can be defined arbitrarily on the set

{telab]: o) ¢ la,b]}.
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Let mes be Lebesgue measure, e C [a, b],

g (e) = {t € la,b]: gt) € e}_

Theorem 6.2 ([18, 19]). The operator S, is continuous in the space L™ if
and only if

-1
sup mesg— (€) =M< 0 (6.9)
eCla,b] mese
mes e>0
and
| Sg [|= M.

It is useful to point out that the condition
mese =0 = mesg '(e) =0 (6.10)

is necessary for (6.9). The condition (6.10) (the so called condition of “non-
hovering”) does not hold, in particular, if g(¢t) = const on a set e C [a, b]
of positive measure. (6.10) is fulfilled, for instance, if g is piecewise strictly
monotonic and on each segment of monotonicity has an absolutely contin-
uous inverse function g~'. For a strictly monotonic g, we have

I1S,| = sup mes g~(e) _ vraisup ‘dg_l (s)‘.
cClop]  MESE selablng(fab]) 48
mes e

From this and Theorem 6.2 it follows, in particular, that the operator S,
with g(t) = ¢, [a,b] = [0, 1] is not continuous on L".
For the equation (6.6), the principal part @ of £ has the form

Q=I-5-K,
where K : L™ — L" is an integral operator and

k
(S2)(t) =Y Bi(t)(Sg,2)(2). (6.11)
i=1
The operator S : L™ — L™ defined by (6.11) is continuous if S,, : L" —
L™ are continuous and the elements of n x n-matrixes B; are bounded
in essential. For more sophistical conditions of continuity of the operator
S : L™ — L™, we refer to [20] .
It ought to be pointed out that the operator S : L™ — L" is never
compact (but in the case Sz =0 for all z € L™).

Theorem 6.3 ([21, 22]). Let S : L™ — L" be a bounded operator, and
K : L™ — L™ be a compact one. Then the operator I — S — K is Fredholm
if and only if there exists the bounded inverse (I —S)~!: L™ — L".
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In connection with this Theorem, it is interesting to point out the fol-
lowing.
Let
Lxr=(I-S5—-K)i+ Az(a)
and
P=(I-9""
be bounded. Then the equation Lz = f may be transformed to the form

d .
Liz éf (I — Kl)w + Alw(a) = f1,
where Ky = PK, Ay = PA, fi = Pf. If K : L™ — L" is compact, then the
principal part of £; is a Fredholm operator.
Equations with Volterra operator £ or, as it is called, “the equations with
aftereffect” represent a special allurement for some investigators.

Definition 6.1. Let X and Y be linear spaces of measurable functions z :
[a,b] = R™ and y : [a,b] = R™, respectively. A linear operator F: X - Y
is said to be the Volterra one if for each ¢ € (a,b), (Fz)(t) = 0 almost
everywhere on [a, ¢] for all such z € X that z(t) = 0 almost everywhere on
[a, c].

The Volterra property of £ permits to consider the solution z of the
equation Lz = f on every segment [a,c] C [a,b] disregarding the values of
z(t) and (Lz)(t) for t > ¢. Thus we can study the evolution of the process
described by the equation Lz = f with Volterra operator L.

A highly general representative of the equation with aftereffect is the
equation of the form

Lo ™ (1- 8- K)i+ Az(a) = f,

where S and K are Volterra operators. The equation (6.3) is of such a kind
if g(t) < t, h(t) <t.

Let us dwell on some results about equations with aftereffect.

By virtue of Theorem 2.4, the Cauchy problem

Lx=f z(a)=« (6.12)

is uniquely solvable if and only if there exists the bounded inverse Q! :
L™ — L™. In this case, the solution of (6.12) admits the representation

s =AQ 'f+ (E-AQ 'A)a.

Here (AQ™1f)(t) = f;’(Q_lf)(s)ds is the Green operator of the problem
(6.12), and X = E — AQ~'A is the fundamental matrix of solutions of the
homogeneous equation Lz = 0.
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If Q~"' is a Volterra operator, the product AQ~' of Volterra operators is
also Volterra. Any bounded operator C' : L™ — D™ is an integral one. Thus
in the case of Volterra Q~', we have

t t

() / Q1 f)(s)ds = / O(t, )£ (s)ds.

a

By analogy with the theory of differential equations, the operator C'is called
the Cauchy operator and C(t,s) is called the Cauchy matrix.

The following statement gives us a condition of Volterra invertibility of
Q=I-S-K.

Theorem 6.4 ([23, 1]). Let Q =1 — S — K. Assume that S : L™ — L" is
the Volterra operator defined by (6.11), K : L™ — L" is a compact Volterra
operator, the spectral radius p(S) of S is less then 1 (p(S) < 1). Then there
exists a bounded inverse Q1 : L™ — L™ and Q' is also Volterra.

Under the condition of Theorem 6.4, the general solution of the equation
Lz = f admits the representation

o(t) = / C(t,5)f(s)ds + X (t)z(a). (6.13)

By analogy with the theory of differential equations, this representation is
called the Cauchy formula.

Let us remark that only for differential equation the Cauchy matrix is
defined by the fundamental matrix, namely C'(¢,s) = X ()X ~1(s).

In order to formulate some estimates of the spectral radius p(S) of the
Volterra operator S : L™ — L™ defined by (6.11), let us fix the numbers
7; > 0 and denote

wi = {t €la,b]: t—gi(t) <, gi(t) € [a,b]}'
Let us stipulate also that

vraisupy(t) =0
tew

if w is an empty set. By | B| we denote the norm of the matrix B compatible
with the norm | - | in R™.

Theorem 6.5 ([23, 1]). Let gi(t) <t, M; = ||Sy,|[, i =1,...,k. Then

k
p(S) < Z M;vraisup | B(t)|.

i—1 tEw;
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Thus, in particular, the existence of such a number 7 > 0 that ¢t —
gi(t) > 7,1 =1,...,k, means that the sets w; are empty for 7; < 7 and,
consequently, p(S) = 0.

Let us return to the general linear boundary value problem

de

(Co)(t) < (Qi)(1) + A(t)a(a) = (), lz=a (6.14)

under the assumption that @ : L™ — L™ is a Fredholm operator.
The decomposition (2.6) of a bounded linear vector-functional
[=1*,...,I™] : D™ — R™ has the form
b
lx = /CI)(S)CE(S)dS + Pz(a),

where the elements of the m x n-matrix ® are measurable and bounded in
essential, and the m x n-matrix ¥ is constant. Rewrite the problem (6.14)

in the form
(& %) ()= () 624

defining the operators A : R™ — L™ and ¢ : L™ — R™ hy
b
(48)(t) = A()3, ¥y = [ @(s)y()ds.
The operator ¥ : R™ — R™ is defined by the matrix V.

Let w be a linear bounded functional on L™ and w(s) = {w(s),...,w"(s)}
be a row vector with measurable and bounded in essential components which
realizes this functional. Then

b
A*w = /w(s)A(s)ds.
Assume further
(@ y)(t) =~v®(1), ¥y =17,
whose 7 denotes a linear functional on R™ and simultaneously the row
vector which realizes this functional. Thus the equation

Q* @* w . g
A* T \yv) T \n

which is adjoint to the problem (6.14) is realized in the form of the system
(Q"w)(t) + (1) = g(t),

| 6.15
[ew)ayis + v = (6.15)
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The condition of orthogonality of the right-hand side {f, a} of the equation
(6.14) to the solution {w,~} of the homogeneous adjoint equation

(Q"w)(t) +y®(t) =0,

b
/w(s)A(s)ds +9¥ =0

obtains the form ,
/w(s)f(s)ds + va =0.

The substitution
t

y(0) = [w(s)ds +9

a

into (6.14) in the case m = n leads to the boundary value problem

(@79) () + y(a)®(t) = g(2),

b
[ #0415 + e =n,

a

(6.16)

This problem is naturally said to be the boundary value problem adjoined
to (6.14). The solution of this problem is a row vector y = {y*,...,y"} with
absolutely continuous components y* and bounded in essential derivatives
%yi. The condition of orthogonality of {f,a} to the solution y of the
homogeneous adjoint problem has the form

b

/Z)(S)f(S)ds +y(a)a = 0.

a

Consider, as an example, the “periodic” boundary value problem

b
(Qi)(t) + A(t)z(a) = f(t), /ﬂg@:w (6.17)

The problem
(6.18)

is homogeneous adjoint to (6.17). The problem (6.17) is uniquely solvable
if and only if (6.18) has only the trivial solution. Therefore the linear
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independence of the columns of the matrix A is a necessary condition for
unique solvability of (6.17). Thus the linear independence of the columns
of the matrices P(t), fab H(t,7)dr, R(t,a) and P(t)x, (t,a) is necessary for
unique solvability of the periodic problem for the equations (2.6), (2.4),
(6.2) and (6.3), respectively.

Let @ =1 — S — K, where S is defined by (6.11) and K is an integral
compact operator. Then

b

(K*y)(t) = / y()K (s, 1)ds,

a

k b
500 =3 5 [ v Bt

where o;(t, s) is the characteristic function of the set [1]
{(t,s) € [a,b] x [a,b] : a <gi(s) < t}.

If the problem (6.14) is uniquely solvable, then m = n (Corollary 2.1)
and z = G f is the solution of this problem for & = 0. Here G : L™ — D"
is the Green operator of the considered problem. This operator as every
bounded operator acting from L™ into D™ is an integral one:

b
G = / G(t,5) f(s)ds.

The kernel G(, s) of this operator is called Green matrix.
By virtue of Theorem 3.2, the matrix X defined by

b
X(t)=U(t) — / G(t,s)(LU)(s)ds

is a fundamental matrix of the solutions of the homogeneous equation
Lx = 0 provided n x n-matrix U with columns from D™ satisfies the
condition (U = E.

Thus, the Green matrix of any problem for the equation Lz = f being
available, we may write the general solution of this equation in explicit form

r=Gf+ Xe, ceR™

It follows from Theorem 3.3 that the Green functions G(t, s) and G (¢, s)
of various boundary value problems for the same equation Lz = f with
different vector-functionals [ and [; are connected by the relation

G(t,s) = Gi(t,s) — X(2) (ZX)ilv(s)a
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where X is a fundamental matrix of Lx = 0, n X n-matrix V is the kernel
of the integral representation

b
G f = / V(s)/(s)ds

of the vector-functional [G¢ : L™ — R".

Denote by U an n x n-matrix with columns from D" such that det U(a)
#0,lU = E. By virtue of Lemma 3.1, such a matrix exists for any bounded
vector-functional [ : D™ — R™ with linearly independent components.

The Green matrix W;(¢, s) of the problem

#(t) — UD[U ()] z(a) = f(t), lz=a (6.19)

is defined by
Wilt, ) = Exg, , () = U()®(s)

due to Theorem 3.4. Using the representation (3.6), one may investigate
some properties of Green functions by means of the “primary” Green func-
tion W,(t,s) of the problem (6.19).

Theorem 6.6 (1]). Let the problem (6.14) be uniquely solvable, Q = - K,

- /b K(t,5)2(s)ds

be a compact operator in the space L™. Then the Green matriz G(t,s) of
the problem (6.14) possesses the properties:

a) for almost every s € (a,b), G(-,s) is absolutely continuous on [a,s)
and (s,b], and besides

G(s+0,s) —G(s—0,s) = E.

b)
b

/Gts / (s)ds + /(1)
for each f € L™.

c) for almost every s € (a,b), G(-,s) satisfies
b

%G(t s) — /K(t,’l’)% G(r,s)dr + A(t)G(a,s) = K(t,s),

a

b
/(I)(T)% G(r,s)dr + UG(a,s) = —P(s).
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The Green matrix has a much more complicated structureif Q =1 —S5 —
K, with S defined by (6.11). The results of studying of such matrices have
only fragmentary character as yet.

§ 7. SysTEMS WiTH IMPULSE EFFECT
Denote by DS™(m) = DS"[a,t1,...,tm,b] the space of piecewise abso-
lutely continuous functions y : [a,b] — R™ representable in the form
t m
() = [3ds +y(@) + 3 x;, , O2u(E).
a i=1
Here t; are fixed points, a < t; < -+ < t,, < b, Ay(t;) = y(t;) — y(t; — 0),
Xii: 1) (t) is the characteristic function of the segment [t;,b]. Thus, the
elements © € DS™(m) are the functions absolutely continuous on each
[a,t1), [tistiv1), i =1,...,m — 1, [t;,, b] and right-continuous at the points
t1,..,tm. The space DS"(m) is isomorphic to the product L™ x R*»*"m
the isomorphism
J ={A,Y}:L" x R*™"™ — DS"(m)

is defined by

(A1) = [ 2(ds, V(0 = (Buvxg, yOFns-.x,

a

L (OE),

ms

E, is identical n x n-matrix. The inverse
Jt=[6r]: DS"(m) = L" x R""™
is defined by

sy=9, ry= (y(a),Ay(t1),...,Ay(tm)).
If
Yl gem) = 9l + 117Ul gnsnm

then DS™(m) is a Banach space.
The space D™ is continuously imbedded into DS"(m), and also

DS"(m) = D" & M"™,
where M™" is a finite-dimensional subspace with dimension nm. Thus any
linear operator on DS™(m) is a linear extension on this space of a linear
operator £ defined on D”. To emphasize this fact, we will denote by L
the linear operator defined on DS™(m). If £ : D" — L™ is a Noether
operator, ind £ = n (which is always supposed), then the linear extension
£ :DS™(m) — L™ is as well a Noether operator, and also

ind £ = ind £ + nm = n + nm.
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A linear bounded operator £ : DS™(m) — L™ has the representation

m

(Ly)(8) = (@)(6) + Ao(t)y(a) + Y As(D)Ay(t:), (7.1)
i=1
where ) = £~A, Ag = Z(En), A; = Z(X[t, b]E”)’ i =1,...,m. Hence any
operator defined by (7.1) is a linear extension on DS™(m) of an operator
L : D" — L™ such that

(Lz)(t) = (Q2)(t) + Ao(t)2(a)

for any matrices Aq,..., A, with columns from L".
All the assertions of the theory of abstract functional differential equa-
tions are valid for the equation

Ly=f (7.2)

with Noether operator L: DS™(m) — L™, ind £ =n +nm. In particular,
it is necessary for unique solvability of a boundary value problem that the
number of boundary conditions be equal to n + nm.

The studying of the equation (7.2) and boundary value problems for such
an equation was started by A. V. Anokhin [24].

The solution of the principal boundary value problem

Ly=f ry=a

(in the case of its unique solvability) has the form

t

y(t) = /t(Qlf)(S)ds + [Y(t) - /(QlA)(S)dS] a,

a

where A = (4, A1,..., A ). The matrix
t

X®=Y®—/@”@@%

a

is a fundamental one of the solutions of the homogeneous equation Zy =0.
For this matrix, rX = E,inm (Engnm is an unity (n + nm) x (n + nm)-
matrix).

If the boundary value problem

Ly=f ly=a (7.3)
is uniquely solvable, its solution has the form

y(t) = (GH() + X (D)
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Here X is such a fundamental matrix of ENy = 0 that [X = Entmn, G :
L™ — DS"(m) is the Green operator of this problem. This operator is an
integral one. This follows from the fact that the equality

y(t) = (F2)(t)

for the linear bounded operator F' : L™ — DS"(m) defines at every point
t € [a,b] a bounded linear vector-functional on the space L".
Let B B
L:DS"*(m) - L" and [:DS"(m) —» R"
be linear extensions of
L:D"—-L" and [:D"™ — R".
Theorem 7.1. If one of the boundary value problems
Lr=Ff lIlr=a« (7.4)
and

is uniquely solvable, then the other one is also solvable. If these problems are
uniquely solvable then the Green operator of (7.4) is also the Green operator

of (7.5).
Proof. The problem
Ly=f ly=a, Ay(t)=0i=1...m,

and (7.4) are equivalent. The problems (7.4) and (7.5) are both Fredholm.
Consequently, the unique solvability of (7.4) or (7.5) for any right-hand side
implies the unique solvability of the other one for each right-hand side. If
x = Gf is the unique solution of (7.4) for a = 0, this z is also the unique
solution of (7.5) for « = 0, v; = 0,4 = 1,...,m. Thus G is the Green
operator of (7.5). W

Assume that the principal part @ of £ : D™ — L™ has the form @ =
I — K, where K : L™ — L" is a compact operator. In this event (Theorem
6.6) for almost every s € (a, b) the Green matrix G(-, s) of (7.4) satisfies the
matrix equations

b
(LZ)(t) s Z(t) - /K(t,T)Z(T)dT + Ao(t)Z(a) — K(t,s)AZ(s) =0,

b
iz% /@(T)Z(T)dT +UZ(a) + B(s)AZ(s) = 0,

where
AZ(s) = Z(s) — Z(s —0),
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and besides the condition
G(s,s) —G(s—0,s) = E,

is fulfilled (we may assume that G(-,s) is right-continuous at the point
s). Thus, the Green matrix G(-,s) of (7.4) is the solution of the matrix
boundary value problem

LZ=0, 1Z=0, AZ(s)=E,

for almost every s € (a,b) if the linear extensions of £ and [ on the space
DS"[a, s,b] are constructed as follows

b

(Ey)(t) = §(t) — / K(t,7)i(r)dr +
+ Ao(t)y(a) — K(t,5)Ay(s), (7.6)
b

Ty = / B(7)j(r)dr + Ty(a) + B(s)Ay(s). (7.7)

In respect of extensions (7.6) and (7.7), observe the following. Let
(La)(t) Y &) + P(t)(Sha)(t) =
b
= (1) + / P(t)x, (t, 7)i(r)dr + P(t)y, (t. a)z(a),

where x, (¢,7) is the characteristic function of the set
{(t,T) € [a,b] x [a,b] 1 T < h(t) < b}.

Then the extension (7.6) preserves its original form

(Ly)() = 9(t) + P(£)(Sny)(2)-

This follows from the representation

b
(Sny)(t) = / X, (b, )i()dr + y(a) + x, (1, 5)Ay(s).

a

Analogously, for the vector-functional

b
de f

18 XO) = [ xjuq (0 +50) (€€ fa,8])

a
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the original form preserves after the extension (7.7):

b

Iy = [ X0 (i + 30) + 3y, ()20() = ©).

In the general case, the form of the operators £ and I may be changed after
extension. Let

def

(Lz)(t) = z(t) +/d-,—R(t,7’)a?(7’) =

— () — / R(t,7)é(7)dr — R(t, a)z(a).

a

Without loss of generality one may assume that R(t,-) is left-continuous at
any point s € (a,b). Then the extension (7.6) can be written in the form

S

b
(&mwzmw+/mRmﬂMﬂ+/mﬂmﬂMﬂ

a

Indeed,

S S

a

b b
/ 4 R(t, 7)y(r) = —R(t, s)y(s) — / R(t, )i (r)dr.

From this

s b
/d-,—R(t,T)y(T) —{—/d.,-R(t,T):U(T) =

b
=—/RmﬂMﬂM—Rm@mw—Rm@AM@

Let us consider by using Theorem 5.3 the conditions which guarantee the
continuous dependence of the solution of the problem (7.3) with respect to
parameters of the problem, in particular, with respect to the arrangement
of the points a, tq,...,tm,b.

For each k = 0,1,..., let us choose such a system of points a* = t§ <
th <o <tk | =0bF that

lim t¥ =4 i=0,1,....,m+1.

k—o00
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Denote
Dj = DS"[a", ¢}, ... t5 b¥], By = L"[a*,bF).
The element y € Dy, has the representation

t

() = [ i()ds +y(a +thk pmcEvCe

ak

The space Dy, is isomorphic to the direct product B;, x R**"™ the isomor-
phism J; = {Ag, Vi } : By x R — Dy, being defined by

(Ap2)(t) = / s, Vilt) = (B g (0B (D).
6ky =9, ThY= (y(a'k)v Ay(tllc)a SRR Ay(tfn))a

j]c—l = [6k,7’k],
19llo, = 19lla, + 17kl i -

Define the functions wy, : [a*, b¥] — [a®, b°] by

m tO | 0
wolt) = t, w(t)zZ[t’,j—_tk (t—t’“)+t°]x[tk PR
; i Uit

k=1,2,....
This function has the inverse
1 AN 1 t
wk_ (t) :Z [ﬁ (t—t0)+tk]Xt0 tO (t)7 te [aoabo]‘
i—0 il T [ i+1

Define Hk : BO — Bk by
(Hi2)(t) = 2[wr(t)].

Then
(Mt 2)(t) = 2wy (1)
We have
k
m ti+1 t0+1 t() )
0
Hrzlls, = / Ht; o (E—t) + 0] |at =
i=0 o i+1 Y
0
Ttk —th fep
= tg tf) |z(T)|dT
i=0 i+l z 20
We have from this that
ti, — ] th ¢k
i+1 i
[Pizlln, < max g llellag, Il = mase 20—
¢ i+1 7 i1 — 4
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dm [[Hezlls, = [lzlls,
—00
for all z € By.
Quite similarly
0. 40
| = max e =
vty
Define (Pry)(t) = ylwi(t)], y € Do. We have
wk(t) m
Pt) = [ dle)ds-+u(a) + Y X0 o DAY =
2 =1 Lo

t

~ [ 4 o) ds + (a® +thkbk] Ay(#).

ak

Thus Py € Dy, rePry = roy, (P 'y)(t) = y[w; ' (1)]. Further we have

d
IPeyllo, = HamH FPY e =
0
’“ t—ﬁ)+#]5ﬂ——im+nr|| -
Y tk tk oY Rn+nm
z+1 z i+1 i

0
tiq

m
-3 / () dr + vl s = ol
=0 p

0
i

Hence the systems {#} and {P;} are connecting systems of isomorphisms
for the spaces Bg, By and Dy, Dy, satisfying the conditions of Theorem
5.3.

Let Ly, : DS™[a*,tk ... br] — L"[a k. b*] be a linear bounded Noether

) m7
operator with ind £, = n + nm and [ : DS"[ak ¢tk .tk pk] - RoFmm
be a linear bounded vector-functional, £k = 0,1,.... Under the assumption

that ZJ’—’?EO, l~kuk — l~0u0 whenever uy, fmo, the following assertion is valid.
Theorem 7.2. Let the boundary value problem
Loy=f, loy=a

be uniquely solvable.
The problems

Lyy=f, hy=a
are uniquely solvable for all sufficiently large k, and for all fkgfo and
a — ao, the sequence {yr} of solutions yy of the problems

Lry = fr, Ly =ay
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has the property ykgyo, where yo is the solution of
Loy = fo, loy = ao
if and only if

a) there exists a vector-functional

»'m?

1:DS"[a’, 1), ..., 10, "] — R
such that the problems
H,ZIZ;Pky =f, ly=« (7.8)

are uniquely solvable for k = 0 and all sufficiently large k,

b) for any right-hand side {f,a} € L™[a°,b°] x R"*"™ the convergence
vk — vo holds, where v, € DS™[a®,t9,...,t 1°] are the solutions of the
problem (7.8).

§ 8. EQUATIONS OF THE n-TH ORDER

Denote by W™ the space of the functions z : [a,b] — R! with absolutely
continuous derivative of the (n — 1)-th order. Such a space is isomorphic
to L x R", where L is the space of summable functions z : [a,b] - R
The isomorphism 7 = {A,Y} : L x R” - W" may be constructed on the
ground of the equality

[ H-ay
__S n —a)' i
/ T 2™ (s)ds + ;:[):Tx()(a)

for any element z € W™. Then

! n—1 ”_1

a0 = [ %z@)ds, )’ g,

a i=0

g={p"....8"}; J'=[6r:W"—>LxR"

(6z)(t) = 2™ (t), rz = col {z(a),... ,z(”fl)(a)},
2/l = l2]]1, + | col {z(a), ..., 2" "D (a) }.

The decomposition (2.2) of a linear operator £ : W™ — L under such a
choice of isomorphism has the form

n—1

(L2)(t) = (Qe™)(t) + D pi(t)z' (). (8.1)

=0
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The decomposition of the component [* : W” — R! of the vector-functional
[=[I%...,I™ : W" — R™ has the form
b
liz :/ i(s)z™( ds+2¢’ ) (a
where ¢! are measurable and bounded in essential functions, 1/J§ are con-
stants.

A sufficiently general representative of the equation Lz = f with the
linear operator £ : W™ — L has the form

k
(La)(®) < ™) = D bit) (Sgie™) (0) +
n—1 b o
+ 3 [ a0 dari(e.s) = 160 82)

We will assume below that the coefficients b; are measurable and essentially

bounded on [a,b], the functions g; satisfy the conditions of Theorem 6.2

about continuity of S, : L — L, r;(t,s) are measurable on the square

la,b] x [a,b], varscpq,5 7i(t, s) are summable on [a, b], and r;(t,b) = 0.
Using (8.1), rewrite (8.2) in the form

0+ 3 e (a) = £(0)
i=0

Here the principal part Q@ = LA of the operator L is defined by Q = T —
S — K, where

k

(Sz)(t) = Z bi(t)(Sg;2)(t), (8.3)

nlb i
(Kz)(t):Z/zsl(Az)( Ydgri(t, s) = /Kts )2(s)ds,

n-2 b (7_ _ S)n—i—2
Kto)= 3 [Tt 4 o (ts), it 02
. (n—i—2)!
1=0
K(t,s) =ro(t,s), if n=1.
The coefficients p;(t) = (Ly;)(t) of the finite-dimensional part LY, where
t _ k3
yi(t) = ( .'a) are the components of the vector Y = (yo,...,yn—1), are

defined by

po(t) = —ro(t,a),
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7,]1

pi(t) = —ri(t,a) — Z/ Z:j—l ri(t,7)dr, i=1,...,n—1.
=0

Under the above assumption, S : L — L is continuous and K : L — L is
compact by virtue of Theorem 6.1. Hence @@ = I — S — K is Fredholm if and
only if there exists the continuous inverse (I — S)~! (Theorem 6.3). The
condition [|S]| < 1 or p(S) < 1 guarantee such invertibility.

Under the chosen isomorphism between W™ and L x R"™, the principal
boundary value problem turns out to be the Cauchy one

L:w:fa w(i)(a):aia ’L:Oal:’n_l (84)

This problem is uniquely solvable if and only if there exists the bounded
inverse Q1.

If £ is a Volterra operator, then the equation (8.2) possesses some spe-
cific properties which put it into a special position among other equations
from the point of view of theory and application. Theorem 6.4 permits to
formulate the following conditions of Volterra invertibility of the operator
@ of the equation (8.2) with Volterra operator L.

Theorem 8.1. Let g;(t) <t,i=1,...,k; ri(t,s) =0 fora <t <s <b,
1=0,...,n— 1. Suppose that the spectral radius of the operator S : L — L
defined by (8.3) is less than 1. Then the Cauchy problem

E.’L’:f, ,’L‘(Z)(a)zo, Z’:O,_‘_,n_l,

for the equation (8.2) is uniquely solvable and the solution admits the rep-
resentation

20 < (P t) = / C(t, 5)f(5)ds. (8.5)

Under the assumptions of Theorem 8.1, the representation (2.8) of the
solution of the Cauchy problem (8.4) for (8.2) obtains the form

:jo(t,s ds-l-Z[ /Ctspl( )ds}a

where po(s) = —ro(s, a),

z]l

pi(s) = (s,a) Z/ Tz:j—l rij(s,m)dr, i=1,...,n—1.

The integral Volterra operator defined by (8.5) is said to be the Cauchy
operator and the function C(¢,s) is said to be the Cauchy function of the
equation (8.2).
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Let £ : W™ — L be a linear bounded Noether operator of the index n.
Consider the boundary value problem

Lx=f, llz=d', i=1,...,n, (8.6)
with linearly independent functionals I',...,{". If the problem is uniquely
solvable, then the solution in the case a! = --- = @™ = 0 admits the integral

representation

b
() (Gh) = / G(t, 5) f(s)ds.

The kernel G(t,s) of the operator G (the Green operator) is called to be
the Green function.

By virtue of Theorem 3.6, the problem (8.6) is uniquely solvable if and
only if there exists the bounded inverse [CW]™!, where W : L — W™ is the
Green operator of any model problem

Liz=2z llz=0, i=1,...,n.

As a model equation £y2 = f, it is possible to take the one with

u(a) . un(a) z(a)
dif 1 . . e e _
L)) = T V@ o V@) e ()] T
() N O () B QI 0

=2 (t) + i:pi(t)a:(i) (a),

provided the system ug,...,u, is chosen such that
uy(a) up(a) Muy ... luy,
w(a) = #0, ... ... ... |#0.
ugn_l)(a) PR (a) Mup oo My

Such a system exists due to Lemma 3.1.
As an example, consider the two-point boundary value problem

(La)(t) < &) + p(t) (Shz) (H) = £(8),

z(a) =o', z(b) =a’.

As a model problem, we may use
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The Green function W (¢, s) in this case may be constructed in the explicit

form
_(S_ba)&’ if a<s<t<b,
W(t,s) = Ay
—(t;)&, if a<t<s<b.
—a

(8.9)

Assuming W (¢, s) = 0 outside the square [a, b] X [a, b], we have LW =T —Q,

where
b

(©2)(1) = — / POYWIR(E), s](s)ds,

b
190 < [ pe)] mas. [W(b(e) ot

For every ¢ € [a, ], the function |IW (¢, s)| achieves its maximum at the point

s =t. Thus b
W, < L2020
Consequently,
b
o) < / (ol O =l = 1O 5,
where

1, i h() € [ab]
”@_{m it h(t) ¢ [a,0].

Hence the problem (8.7) is uniquely solvable if

b
(/mwwmmMﬂ—ﬂw—h@mh<b—m

This inequality holds, in particular, if

b
t/mm%mmgbfm

(8.10)

In the theory of differential equations, the last condition is known as the

inequality of Lyapunov and Zhukovski.

Various estimates of Green function G(t, s) is one of the central questions
in the theory of boundary value problem. The conditions which guarantee
the property G(t,s) > 0 (G(t, s) < 0) call a special interest of many authors.
Under such conditions the famous Theorem of Chaplygin is valid. This
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theorem guarantees for the solution z of the problem (8.6) the estimate of
the form z(t) < y(t) (z(t) > y(t)) if y satisfies the inequality

(Ly)(t) = f(t) = () >0, l'y=a', i=1,...,n
Really, the difference n = y — = satisfies
Lyn=¢, lin=0, i=1,...,n,

and consequently
b
) = [ Glto)p(s)ds.

This difference n = y — z is positive (negative) if the Green function does
not assume negative (positive) values on the square [a, b] X [a, b].

An operator A : L — L is called isotone (antitone) if (Az)(t) > 0
((Az)(t) < 0) almost everywhere on [a, b] for each z € L such that z(t) > 0
almost everywhere on [a, b].

The criterion for the Green operator to be isotone or antitone may be
formulated as follows.

Theorem 8.2. The problem (8.6) is uniquely solvable and its Green oper-
ator is isotone (antitone) if and only if
a) There ezists a model problem

Lix=2z, l'e=0, i=1,...,n,

with isotone (antitone) Green operator W.

b) The operator (I — LW) =Q :L — L is isotone.

c) The successive approzimations for the equation LWz = f are conver-
gent in L.

Proof. Sufficiency. Unique solvability of (8.6) follows from c) by virtue of
Theorem 3.6. The solution z of (8.6) and the solution z of the equation
z = Qz + f are connected by x = Wz, z = £12. Under the assumption c),
z2=f+Qf + Q2f +---. Thus for every f € L, f(t) > 0, the inequality
z(t) > f(t) holds. Hence

(t) 2 (Gt = (W) (1) >0 (GF)(t) <0).
The necessity follows if we put £, = L. R

Remark 8.1. It follows from the proof of Theorem 8.2 that the differ-
ence G — W is an isotone (antitone) operator because (Wz)(t) > (W f)(t)
(W2)(t) < (W)(H)
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To exemplify Theorem 8.2, consider the problem (8.7) under the assump-
tion p(t) > 0. The Green operator W of the model problem (8.8) is antitone,
2 is isotone and if (8.10) holds, all the conditions of Theorem 8.2 are ful-
filled. Consequently, the Green operator G of the problem (8.7) is antitone.
Since W (t,s) < 0 on the open square (a,b) x (a,b), the Green function
G(t,s) < 0in (a,b) x (a,b) due to Remark 8.1.

On the basis of the representation (3.6) of the Green operator, the fol-
lowing assertion is proved in [1].

Theorem 8.3. Let the principal part Q of the operator L : W™ — L be of
the form QQ = I — K with a compact operator K : L - L

b
= /K(t,s)z(s)ds. (8.11)

Let further the boundary value problem

(Lo)(t) < /K £, )™ (s)ds + Zpk — 1),

8.12
lz=a', i=1,...,n, ( )

be uniquely solvable. Then the Green function G(t,s) of this problem pos-
sesses the following properties.

a) For almost every s € (a,b), the function G(-,s) has absolutely contin-
uous derivative of the (n — 1)-th order on [a,s) and (s,b], and also

6”*1 anfl
otn—1 G(t,5)|t:s+0 T Bt G(t,s)|t:s—0 =1.
b)
b on
& / Gt ds = 10+ [ 2 Glt, 0151
for any f € L.

c) For almost every s € (a,b), the function G(-, s) satisfies the equalities

G(t,s) /KtT G(r,s)dr +

+2pk DrGs)| =K,

t=a

n—1 k

b
[0 g G+ X vh g 669 =0 i=1on

T t=a
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n [10], it is suggested a detailed scheme of investigation of the linear
functional-differential equation of the n-th order in the space of functions
y : [a,b] — R} with possible discontinuity of derivatives of various order at
finite number of fixed points of the interval (a,b). Theorem 8.3 permits to
consider the section G(-, s) as a solution of the proper boundary value prob-
lem in the space of functions with possible discontinuity of the derivative of
the (n — 1)-th order at the point s € (a,b). We confine ourselves below to
this special case.

Let s be a fixed point of the interval (a,b). Denote by WS"[a, s, ] the
space of functions y : [a,b] — R! which are representable in the form

(n—1)!

t
/ C_D" oy +
a
n—

1
t— .
+ % y(l) (a) +
=0 :

(t—s)nt

DT Ve 020 s),

where Ay (s) = y(»=D(s) — y(»=D(s - 0), X[, i the characteristic
function of the segment [s,b]. On the ground of this representation, the

isomorphism 7 = {A,Y} : L x R"*! — WS"[a, s, b] might be constructed:

p t
/ T:i ol (r)dr,
n— 1 t— g)n—1 .
-3¢ ((n e X 0"
= {50 51 LSS

Under the norm

9 llwsnaresy = 1™ + [ col {y(a), .., y" (@), Ay D () } | g

the space WS"[a, s,b] will be a Banach one.

Let £ : WS™[a, s,b] = L and I’ : WS™[a, 5,b] = R! be linear extensions
of £L: W™ — L and I' : W™ — R!, respectively. Analogously to the case
of systems with impulse perturbation (Theorem 7.1), it may be established
that the problem (8.6) as well as the problem

Zy:f, lNiy:ai, i1=1,...,n, Ay(nfl)(s):anﬂ

are (or are not) uniquely solvable simultaneously. In the case of their unique
solvability, the Green functions of both problems coincide.



65

The section G(:,s) of the Green function of the problem (8.12) is an
element of WS"[a, s,b]. Defining £ and I* by

b
(Ly)() = y™ (1) - / K(t, 7y ™ (r)dr +

+ 3 pely® (@) — K (1, )™ (), (8.13)
k=0
b

n—1
Tiy = / Sy (dr + 3 wiy® (@) +
a k=0

+¢'(s) Ay (s), (8.14)

we may rephrase Theorem 8.3 as follows.

Let the principal part QQ of the operator L : W™ — L be of the form
Q =1 - K with a compact K : L — L defined by (8.11). Let further
the problem (8.12) be uniquely solvable. Then for almost every s € (a,b),
the section G(-, s) of the Green function is a solution of the boundary value
problem

(Ly)t) =0, l'y=0, i=1,...,n, Ay»D(s)=1.  (8.15)

Thus the question on unique solvability of the problem (8.12) and on
the Green function having a fixed sign can be reduced to the question on
unique solvability and the solution of the problem (8.15) having a fixed sign
for each s € (a,b). In this connection, we will understand the Green function
G(t,s) as a function which is a solution of (8.15) for each s € (a,b). Let us
remind that the Green function G(¢,s) as a kernel of the integral operator
G : L — W permits for each fixed ¢ € [a,b] a deliberate change on the set
of measure zero.

The fact of the Green function having a fixed sign sometimes might be
established on the ground of the following Theorem 8.4.

Let us fix a point @ € [a, b] such that the functionals I!,... 1" [""! where
["*lz = x(0), are linearly independent. Define the linear extensions £ and
I by (8.13) and (8.14).

Theorem 8.4. Let the problem (8.12) be uniquely solvable. The Green
function of this problem possesses the property G(6,s) # 0 if and only if the
boundary value problem

Ly=0, l'y=0, i=1,...,n, y(@) =0 (8.16)

has only the trivial solution.
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Proof. Let x1,...,x, be a fundamental system of solutions of the equation
Lz =0 and
Nay o0 1z,
A=|... ... .
"z, ... ["x,
be the determinant of the problem (8.12). Due to the assumption, A # 0.
Denote g5(t) = G(t,s). The functions zy,...,z,,gs form a fundamental

system of solutions of the equation Zy = 0. The determinant of the problem
(8.16) obtains the form

Moy ... Dz, 0
A= "xy ... [z, 0 |~ G(0,5)A.
z1(0) ... z,(0) gs(0)

Hence it follows the conclusion of the Theorem. W

Let us return to the problem (8.7) under the assumption p(t)op(t) < 0,
t € [a,b]. This problem is uniquely solvable if and only if the problem

(Ly)(®) Z (1) + p()(Sy)(®) = (), y(a) = y(b) = Ay(s) =0

is uniquely solvable in the space WS?[a, s,b]. If both these problems are
uniquely solvable, then they have the same Green function G~ (¢,s), and
besides for each s € (a,b), the section G~ (-, s) of the Green function is the
solution of the problem

Ly=0, y(a)=y(b)=0, Aj(s)=1

The last problem is equivalent to the equation

b
y@z—/WwﬂMW&wmm+%@, (8.17)

where W (t, s) is the Green function of the problem

i=1f wyla)=y(b) =Ag(s) =0

in the space WS?[a, s,b], ws(-) = W(-,s) (W(t,s) is the Green function of
the problem (8.8) in the space W?). The equation (8.17) may be considered
in the space C of continuous functions because all the continuous solutions of
this equation belong to WS?[a, s, b]. Thus the question on unique solvability
and the Green function of the problem (8.7) having a fixed sign is reducible
to the question on unique solvability and the solution of the equation (8.17)
in the space C having a fixed sign.

Denoting
b

wwwz—/wmﬂmm&wmm,

a
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rewrite (8.17) in the form
y— Hy = w,. (8.17)

H is an antitone operator. Applying to both parts of the last equation the
operator I + H, we obtain the equation

y—Hy=¢ (p=ws+ Huw,) (8.18)

with the isotone operator H2. If ||[H||c—c < 1, then both equations (8.17)
and (8.18) are equivalent and besides the successive approximations for these
equations converge. Consequently, under the condition ||H||c»c < 1 the
inequality ¢(t) <0, t € [a,b], guarantees the estimate

gs=p+Hp+--<op.

for the solution gs(-) = G~ (-, s) of the equation (8.17). From this estimate
and (8.17), we have

W(t,s) <G (t,s) <0, (t8)€]a,b]x (a,b).

Thus, assuming W (t, s) = 0 outside the square [a, b] X [a, b], we may formu-
late.

Lemma 8.1. Let the following conditions be fulfilled.
8) p(t)on(t) <0, t € [a,]

b) [[Hl[c»e < 1.

c) For each fized s € (a,b),

b
o(t) =W(t,s) — /W(t,T)p(T)W[h(T),S]dT <0, te€la,b].

Then the problem (8.7) is uniquely solvable and the Green function of
this problem does not assume positive values in the square [a,b] X (a,b).

Following [25], we will show that the inequality

b
[ piontrdr < 2

guarantees the fulfilment of the conditions b) and c) of Lemma 8.1. Since

b b
1Hllcmc = max [ W) plon(r)dr < (b= a) [ Ipolan(r)dr

a

b) is fulfilled.
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For verification of the fulfilment of the condition c), we will use the
estimates

L e L O B =

following from (8.9).
Let a <t <s. Then

plt) = - L0 =) /|WtT ()]

|Wh(r), s]|ldr <

b
< [CEE D iy =) gy =002

a

<=0l=y {(b—a)/bm(ﬂwh(r)dr—l} <.

Analogously it may be shown that ¢(t) <0, ¢ € [s, b].

Next consider the problem (8.7) in the general case, where the coefficient
p may change the sign. Let p = p* —p—, p™(¢) > 0, p~(¢) > 0. Then the
equation Lz = f can be rewritten in the form

#(t) —p~ (t)(Sha)(t) = —p" (£)(Shx) (1) + F(1).

Let us assume that for the auxiliary problem

E(t) —p (1) (Sn)(t) = 2(t), z(a) = z(b) =0,
the conditions of Lemma 8.1 are fulfilled. Under these conditions the Green
operator (G~ z)(t) = fab G~ (t, s)z(s)ds of the auxiliary problem is antitone.
For the problem (8.7), LG~ =1 — 2, where

(Qz)(t / G™[h(t), s]z(s)ds

is an isotone operator. Thus, by virtue of Theorem 8.2, the inequality
|- < 1 guarantees unique solvability of the problem (8.7) and anti-
tonicity of the Green operator of this problem. Since

b—a
G~ (t < |[W (¢t d W (t =
G W) and | max (W) = 27,
we have
b
b—a
191, < / P (B)on(t)dt

So we can formulate the following test.
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Theorem 8.5. The problem (8.7) is uniquely solvable and the Green oper-
ator of this problem is antitone if

b b
[r @<= [pronn<

a a

We will illustrate the application of Theorem 8.4 on the example of the
following periodic problem

b
def .. _
(o0 a0+ [ ar)dort,r) = 100 510)

z(b) —x(a) =0, z(b) —(a)=0

under the assumption that r(¢,7) is measurable on the square [a, b] x [a, b],
var,c[q,p (-, 7) is summable on [a,b] and r(t,b) = 0.
Theorem 8.6. Let the problem (8.19) be uniquely solvable and

b
/varTe[mb]r(t,T)dt < 5 1

—Q

a

Then the Green function G(t,s) of this problem has the same sign at each
point of the square [a,b] X (a,b).

Here we give only a scheme of the proof of this Theorem. The thorough
proof for a more general equation is produced in [26].
By virtue of Theorem 8.4, unique solvability of the problem

b
(Ly)(t) = §i(t) + / y(r)der(t,7) = f(t), (8.20)

y(b) —y(a) =0, y(b) —y(a) =0, y(6)=0

in the space WS?[a, s, b] for each s € (a,b) and any 0 € [a, b] guarantees that
G(t,s) does not have zeros at any point of the square [a,b] X (a,b). In [1]
(Theorem 3.4.5), conditions are formulated which guarantee continuity of
the function G(t,-) on the interval (a,b) for each t € [a, b]. These conditions
are fulfilled for the problem (8.19). Thus, from unique solvability of (8.20)
it follows that the sign of G(t,s) is the same at each point of the square
[a,b] % (a,b). The unique solvability of (8.20) may be established on the
base of Theorem 3.6. As a model problem, we will use the following one

=z yb)-yl@) =0, §b)-ya)=0, y@®)=0.  (8.21)
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The functions 1, ¢ and (¢ — s)x[s7b] (t) compose a fundamental system of
solutions of the equation § = 0 in the space WS?[a, s,b]. The determinant
of the problem (8.21)

0 b—a b—s

0 0 1 = —(b—a) £0.

16 (0-s)x,, 0

Consequently, the problem (8.21) is uniquely solvable. The Green function
of this problem was constructed in [26]:

We,s(t7 T) = X[mt] (r)(t—1)— X[a,G] ()@ —1)—

= Xy (D = 8) + 1,y (0)8 = 5) + ; — s

(t—9).

In [1] it was derived the estimate
Wy s(t,7)| <b—a, (t,7)€[a,b]x][a,b], s€ (a,b), € ]Ja,b].

We have ENWg,s =1 — ), where Wj ; is the Green operator of the problem
(8.21),

b

(Qz)() 2/{ bWe,s(f,T)Z(T)dT} der(t,€) =

a a
b

:/{ bwg,s(g,r) dgr(t,f)}z(r)dr,

a a
b

19— < (b —a) /varge[mb] r(t,&)dt < 1.

a

From this it follows the unique solvability of the problem (8.20). W

§ 9. SINGULAR EQUATIONS

The set of functions to which solutions of an equation belong sometimes
is chosen without proper reason: the space of continuous or summable func-
tions, or some other well known space is often used. But an unsuccessful
choice of the set may cause much trouble in utilizing traditional schemes
and standard theorems. Below we will discuss some reasons and examples
connected with the question of choosing the proper Banach space in which
it would be advisable to seek the solution of a given equation.

Let Lz = f be an equation with the linear operator £ : Dy — By, Dy
be isomorphic to By x R"™, and Jy = {Ag, Yo} : Bo x R® — Dy be the
isomorphism. If the principal part LAg : Bg — Bg of the operator L is
not Fredholm, we have not available standard schemes for investigation of
the equation. In this case, it is reasonable to call the equation “singular”.
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Yet one may try to find or construct another space D ~ B x R™ with the
isomorphism 7 = {A, Y} : BxR" — D so that the principal part LA of the
operator £ : D — B would be a Fredholm or even an invertible operator.
Then the equation ceases to be singular and one may apply to this equation
the theorems of the above developed general theory.

Let us note that the property of the principal part being Fredholm char-
acterizes many intrinsic specifics of the equation. For instance, this property
is necessary for unique solvability of any boundary value problem

Lz=Ff lr=a

for each {f,a} € B x R".

Considering the same equation in various spaces, we change correspond-
ingly the notion of this equation. The classical theory of differential equa-
tions does not use the notions of spaces and operators in these spaces and
in that theory the investigation of singular equations begins with the defini-
tion of the notion of solution as a function satisfying in one sense or another
the equation and possessing certain properties. Thus the set is chosen to
which solutions belong. In our reasoning, we act analogously by choosing a
Banach space on which the operator £ is defined. In addition, we offer some
recommendation about construction of the spaces D on which the operator
L possesses necessary properties.

A. 1. Shindyapin [27] has considered the equation

(Ca)(t) = i (t) - (Si)(t) — (Ki)(t) - A(t)z(a) = F(2) (9.1)
with unbounded composition operator S : L — L (defined by (6.11)) and
unbounded integral operator K : L — L. Thus the equation (9.1) in the
space of absolutely continuous functions = : [a,b] — R! is singular. A.
I. Shindyapin has constructed a special space B, more narrow than L, so
that both operators S and K are bounded in this space, and has considered
the equation (9.1) in the space D ~ B x R!, where the isomorphism J =
{A,Y}:B x R! = D is defined by

t

(A9)(0) = [ =()ds, (YB)() =B, {0} e BxR"
Under some natural conditions, the principal part @ = LA of the operator
L : D — B has the bounded inverse. Therefore under these conditions

the equation (9.1) has a one-dimensional fundamental vector X (¢) and the
general solution of this equation has the form

z(t) = /(Qflf)(s)ds +c¢X(t), c¢=const.
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It is relevant to observe that severe constraints are needed for the com-
position operator S : L — L to be bounded. Therefore some works arose
[28] concerning the operator in special spaces, where this operator could be
bounded without some constraints necessary for boundedness in Lebesque
spaces.

E. I. Bravi [29, 30] has been studying the equation

(Lx)(t) < (t +2pk (Sn, 2™ () = f(1), t€ [a,b],

with summable coefficients py. Here the singularity arises due to zeros of
the coefficient 7 (7 has finite numbers of zeros, the multiplicity of each
is not greater than n — 1). The results of E. I. Bravi are a far-reaching
generalization of those of S. M. Labovskii [31] concerning the equation

def
(La)(t) = #(1 = 0)F(t) +p(t)(Swz) (1) = f(), t€[0,1],  (92)
with measurable h and summable p,f. We will dwell on this equation.
The principal part Q = LA : L — L of the operator £ : W2 — L, where
W? is a traditional space for the second order equation is not a Fredholm
operator. Really, let Jo = {Ao, Yo} : L x R? — W? be the isomorphism,

t
(Ao2)(t / (t—s)
0
Then

Qo= LAo=P+V, (P2)(t) =t(1-1)z(t), (Vz)(t) =p(t)(Snloz)(?).

The operator V : L — L is compact, but the range of values R(P) of the
operator P : L — L is not closed. Thus the principal part ¢y : L — L of
L : W? = L is not even Noether. Therefore we will consider the equation
(9.2) in another space D = AL & YR? defined by

= /A(t,S)Z(S)dS, YB)(t) = (1 —-t)8" +16°, B =col{B', 5},

- i <s<t<
At 5) = Folbos) Go(t,S):{s(t 1, if 0<s<t<l,

s(1—s)’ t(s—1), if 0<t<s<1,

(Go(t, s) is the Green function of the boundary value problem #(t) = z(t),
2(0) = x(1) = 0). The space D is isomorphic to L x R?, J = {A,Y} :
L x R?> - D is an isomorphism, the inverse 7=' = [d,r] : D = L x R? is
defined by

(0z)(t) = #(1 = 1)@(t), ro={z(0),z(1)};
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2]l = [162]l, + [2(0)] + [z (1)].

The element & € D is defined by £ = Az + Y3 and consequently is
characterized by the following properties.

a) The function z is continuous on [0, 1].

b) The derivative & is absolutely continuous on the interval (0, 1).

c) The product t(1 — t)&(t) is summable on [0, 1].

Under such a choice of the space D, the operator £ : D — L is Noether,
and

(Q2)(t) E (LAZ)(1) = 2(t) — (K2)(t) = / A[A(t), s]2(s)ds.
0

Here and below we suppose A(t, s) = 0 outside the square [0, 1] x [0,1]. The
operator K : L — L is compact (Theorem 6.1) and therefore @ : L — L is
canonical Fredholm.

If || K||L—L < 1, then there exists the bounded @ . Due to theorem 2.4,
in this case the principal boundary value problem

Lxr=f, x(0)=0, z(1)=0 (9.3)

is uniquely solvable and the general solution of the equation Lz = f has
the form

/G t,s)f(s)ds + c1z1(t) + caxa2(t),

where G(t, s) is the Green function of (9.3), 1, x> constitute a fundamental
system of solutions of the homogeneous equation Lz = 0 in the space D,
and ¢y, ¢y are constants.

Since |A(t, s)| < 1, the estimate ||K || < 1 follows from the inequality

1
[ plonsyis < 1.
0
where

0, if h(s)&[0,1].

If |K|lL»L < 1 and besides p(t) > 0, G(t,s) < 0 in the square [0,1] x
[0,1]. Really, in this case 2 = f + Kf + K2f 4+ --- is the solution of the
equation )z = f. From this and the isotonical property of K, we have
z(t) > f(t) if f(¢t) > 0. Consequently, for the solution

1
0
>0

ah(s):{l’ if h(s) € ]0,1],

of (9.3), we have z(t) < 0 if f(¢) € [0,1].
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To the conclusion, we observe that the properties a), b), c) were laid to
the ground of the definition of the solution of (9.2) in the works of I. T.
Kiguradze [32, 33].

The case where the coefficient 7 has zeros inside [a,b] demands a more
complicated construction. We will illustrate the situation on the example
of the equation

(Lo)(t) Y ti(t) + p(t) (Swz)(t) = F(1), t€ [a,b],

a<0<b,p,f €L, his ameasurable function.

As in the previous example, the principal part of £: W2 — L is not a
Fredholm operator. As the space D on which it is reasonable to consider
the operator £ we will take the space of solutions of the three-point impulse
model boundary value problem

ti(t) = 2(t), z(a)=p4" z(b) =4, =(0)=p" (9-4)

We will suppose that the solution of this problem is a function z : [a, b] — R!
such that # is absolutely continuous on [a, 0) and [0, b] and ¢Z(t) is summable
on [a,b]. Thus the homogeneous equation tZ(t) = 0 has three linearly
independent solutions

t a—t b—t
251 (t) = EX[mO) (t)a u2(t) = TX[Q,O) (t) + TX[O,b] (t)a
t

UB(t) = EX[UJJ] (t)7

and the nonhomogeneous equation ¢ (t) = z(t) has solutions for any z € L,
for instance

b
z(t) = (A2)(t) = /A(t,s)z(s)ds,

where
4 t _
_H5Za) oy acs<i<o,
t -4
— , if a<t<s<O0,
Alt,s) = t%g f 0<s<t<b,
Hs=b) i g<t<s<b
bs
0 at all other points.

Since the determinant of the model problem

ui(a) wu2(a)
(5% (b) U2 (b) us (b
(5% (0) U2 (0)
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this problem has for any {z, 3} € L x R? the unique solution z = Az + Y §3,
where 3 = col{3', 32, 3%},

(YB)(t) = Blur (t) + Bus(t) + FPus(t).

Let us take D = AL ® YR3, where J = {A,Y} : L x R® — D is the

isomorphism, the inverse 7 ! = [4, ] being defined by

(0z)(t) = ti(t), rz={z(a),z(b),z(0)}.
The principal part of £: D — L has the form @ = I + K, where

b

()0 = [ pOABD), 1z(5)ds.

a

If the operator @ : L — L has the bounded inverse, then the principal
boundary value problem

Lx=f, z(a)=a', z(b)=da> z(0)=ad?

is uniquely solvable (Theorem 2.4), and the general solution of the equation
Lz = f admits the representation

b
o(t) = / G(t, 5)f(s)ds + eran (£) + cama(t) + csms(8),

where G(t, s) is the Green function of this problem, z;, x2, z3 constitute a
fundamental system of solutions of Lz = 0, ¢; are constants.
Consider an example of singularity of the other kind. Define the operation

0 by
(), if tell,2],

(62)(t) = {0, it ¢elo,1),

and let us study the equation

(L2)(t) D (B2)() +3(0) + (T2)(®) = F(1), t€0,2,  (95)

with a linear operator T : W2 — L.

The principal part of the operator £ : W2 — L is not Fredholm even
under the assumption that T : W2 — L is a compact operator. We will
define the operator £ on a more wide space D, assuming that 7" allows an
extension onto this space. We will construct the space D as follows.

Let us take as a model the problem

(Lom)(t) "E (B)(1) + X ,, (D3 (H) = 2(1), t€[0,2)],

(9.6)
2(0)=p', =(1) =74 (1) =0
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This problem splits up into two ones which are integrable in the explicit
form

z<t>=z<t>, efo,1), =(0)= 4",
#(t) = 2(), tell, 2] 2(1) = B2, #(1) = 4.

As a solution of the model problem, we may take the function

x(t) = X[0,1)(t){ /tz(s)ds + 51} +
0

X2 {j%m s)2(s)ds + B + B°(t — %.

Denote (Az)(t) = f02 A(t, s)z(s)ds, where

1, if 0<s<t<1,
Alt,s)=Lt—s, if 1<s<t<2,
0 at all other points.

Let further

(YB)(t) =
ui (t) = x

The solution of the model problem has the form x = Az + Y 3.

Next, define the space D by D = AL ® YR3. This space consists of
the functions z : [0,2] — R! with possible discontinuity at + = 1. These
functions are absolutely continuous on [0, 1) and have absolutely continuous
derivatives on [1,2]. J = {A,Y} : L x R®> — D is the isomorphism,
J 1t =[4,r], where

tur(t) + BPua(t) + BPus(t), B =col {878},
( ) U'?(t) = X[172] (t)v U,3(t) = X[172] (t)(t - 1)

bx = Loz, re = {z(0),z(1),2(1)}.
The norm may be defined by
2]l = ILozl, + [2(0)] + |=(1)] + |2(1)].

Since Lx = Loz + X, ., &+ Tz,

(1,2]

(Q2)() = 2(t) + x;, /X 1.7 (8)2(8)ds + (TA2)(2).
0



7

If the product TA : L — L is compact, the principal part @ : L — L will
be canonical Fredholm. If || K|l < 1, where

(K2)(0) = (A1) + 3 1) [ x5 ()20
0

then the principal boundary value problem
Lx=f z(0)=a', z(1)=ad? z(1)=a

is uniquely solvable. In this case (Theorem 2.5), the homogeneous equation
Lz = 0 has a three-dimensional fundamental system of solutions x1, x5, x3,
and the general solution of the equation Lz = f in the space D has the
representation

o(t) = / G(t, 5)f(s)ds + eran (£) + cama(t) + csms(8),

where G(t, s) is the Green function of the principal boundary value problem,
c; = const.

Denote Az(t) = x(t)—x(t—0). The subspace Dy = {z € D : Az(1) =0}
of the space D is constituted only of continuous functions. The homogeneous
equation Loz = 0 has two linearly independent solutions

b (t) = 1= Xy (D= 1), wa(t) =, (Dt = 1)

in the space Dg. The equation Lox = z has for any z € L solutions belonging
to Dy, for instance,

t

X[01) /z )ds +

0

+ X[ (t){/x[m] (s)(t — ds—l—/lz }
0 0

Thus the general solution of the model equation Loz = z in the space Dg
may be represented in the form

z(t) = v(t) + c1y1 (t) + cay2(t), (9.7)
where ¢y, ¢y are constants.
Since
91(0) Z/2(0)‘ _ ‘1 0‘ #0

y1(2) 2(2)] |0 1
the two-point boundary value problem

Loz =2, z(0)=0, z(2)=0
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is uniquely solvable in the space Dg. The Green function W (¢,s) of this
problem can be constructed by finding the constants ¢, ¢z in (9.7) such
that z(0) = 2(2) = 0. We have

o) " (W2)) = / W(t, 5)2(s)ds,

where
1, if 0<s<t<1,
2—t, if 1<t<2, 0<s<1,
Wi(t,s) =< —(2-t)(s—1), if 1<s<t<2,
—(2-s)(t—1), if 1<t<s<?2,
0 at all other points.

Notice that it is possible to construct W (t, s) on the ground of the rep-
resentation

a(t) = (A2)(t) + Brui(t) + B2uz(t) + Bus(t)

of the solution (9.6) by demanding the fulfillment of the conditions z(0) =
Ax(l) =z(2) =0.
Thus the space Dy is defined by Dy = WL @ YyR2, where

(a8)(0) = [1 = x,y () = D]F +x,, (B¢ — DB,
B = col {86},

Jo = {W,Yy} : L x R? — Dy is the isomorphism, jo_l = [Lo, 0], ror =
{z(0),2(2)}. The two-point boundary value problem

Lr=f z(0)=a', z(2)=a’

is the principal boundary value problem for the equation £Lx = f in the
space Dg. This problem is uniquely solvable if and only if the operator
@ = LW : L — L has the bounded inverse.

§ 10. MINIMIZATION OF SQUARE FUNCTIONALS

The problem of minimization of functionals is unsolvable in the frame of
classical calculus of variations if the given functional has not a minimum
on the traditional sets of functions. The question on the expedient choice
of the set on which the functional must be defined was put up by Hilbert
and, as it was emphasized by the authors of the book [34], each class of
functionals must be studied in the proper “own” space.

The scheme proposed below permits to approach in a new fashion the
problem of minimization, expands the possibility of the calculus of variations
and leads to tests for the existence of the minimum for some classes of
problems in terms of the problem.
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The scheme has been developing on the base of the theory of abstract
functional differential equations in the works of the Perm Seminar [35-38].
Let D be a Banach space of functions z : [a, b] — R isomorphic to the direct
product Ly x R™, Ly be the Banach space of square summable functions
z:[a,0] = R, |Izll, = {[f) 2%(s)ds}?. Denote by Tj; : D — Lo, j = 1,2;
it =1,...,u, To : D — Ly linear bounded operators. Let further [ =
[1Y,...,i"] : D — R" be a bounded linear vector-functional with linearly
independent components, N > n, w € L.

Consider the problem on existence of an element x € D on which the
square functional

b

1) = [ { 3 (Thu) (8) Do) (s) + (Toz)(s) + () s

P i=1

with additional conditions I’z = o, i = 1,..., N, has the minimum.
The problem on the minimum of the functional Z on the set D, = {x €
D:l'z=a',...,I"z = oV} contains the problems of classical calculus of

variations and many other new ones.
The approach to this problem is based on the substitution

z=Tz+u, (10.1)

where u € D, is a fixed element and I" : Ly, — D is a linear operator
such that D, = 'Ly + {u}. By means of this substitution, the considered
problem may be reduced to the well-known problem of the unconditional
minimum of the functional Z; (z) = Z(I'z 4+ u) on the space L.

Beforehand we will note the following. The isomorphism 7 : L, x R" —
D for the given space D may be defined on the base of any uniquely solvable
boundary value problem in this space. In particular, it might be constructed
on the base of the problem

Lix=z lxz=p, i=1,...,n (10.2)

with boundary conditions defined by any n components of the given vector-
functional [ = [I',... I"V]. Theorem 3.4 guarantees the existence of a linear
operator £1 : D — Ly such that the problem (10.2) is uniquely solvable.

Let A be the Green operator for the problem (10.2) and Y = (y1,...,¥n
be a fundamental vector of the equation L1z = 0, i.e., l'y; = &;j, i,j =
1,...,n. Then we can set J = {A,Y}, J~' = [§,r], where § = L,
r=1[rl...,r"] = [I*,...,I"]. Therefore we may suppose without loss of
generality that r = [I*,... "].

If N =n, we will suppose I' = A and v = Y in (10.1). In the case
N > n, we will use the following construction.
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Let a system of elements vy,...,vny € D be biorthogonal to the system

of functionals ', ..., IV (l'v; = &, 4,7 =1,...,N). Let further

N

N
I'z=Az— Z vplFAz, u= Zvio/.
i=1

k=n+1

We will show that 'Ly + {u} = D,.

It is sufficient to see that 'L = Dy s {z € D : Iz = 0}. The inclusion
'Ly C Dy is verifying immediately. Let us show that Dy C I'Ls, that is,

for each x € Dy there exists a z € Ly such that 'z = .
Define the degenerate operator F': Dy — Dg by

N

FE= > wlhe

k=n+1

Let us fix z € Dy and consider the equation

E—F¢=ux.

The unit is an eigen-value of F' because the functions v,41, ..

(10.3)

.,un are solu-

tions to the equation £ = F¢. Due to definition of the set Dg, any x € Dy
is orthogonal to the functionals ["+1,... IV, This system is a basis of the
kernel of the operator (I — F')* adjoint to I — F. Thus the equation (10.3)

has solutions. Let & be one of them and z = d&,. Then

Tz =Ad(z+ F&) — FAS(x + F&) =z + Fé& — Fx — F?¢ =z,

because from (10.3) it follows that Fx = F& — F?&,.
Denote

QRji =Tyl Qo =Tl
Due to the substitution (10.1), we have:

b

@) =TTz +u) Y Ty(2) = / 3 (@ui2)(s) (@ui2) (s)ds +

a i=1

b
+ /Z(TM“)(S)(TMU)(S)ds +

ab - b
+/{(QOZ)(5)+(T0’Ul)(8)}ds+/w(s)ds‘

b
+/’ {(Quiz)(5)(T2iu)(s) + (Q2:2)(s)(Triu) () }ds +
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Using the equality
b b
/(Az)(s)(Bz)(s)ds = /(A*Bz)(s)z(s)ds
and denoting

b
<o >= / o(s)(s)ds,

we may write

Il(z):%<Hz,z>—<f,z>+g, (10.4)
where
N
H =" (Q1,Q2 + Q5Qu), (10.5)
=1
N
f==> Q5T + Q3 Tui)u — Q3(1),
=1

b

/{3

a 2

(Thiu)(s)(Tou)(s) + (Tou)(s) + w(s)}ds.

Thus H : Ly — Ly is a self-adjoint operator, f € Ls, g = const.

Following the adopted terminology, we will call the operator H : Ly — Lo
positive definite if < Hz,z >> 0 for all z € Ls. The positive definite
operator H is called to be strictly positive definite if < Hz,z >= 0 only for
z=0.

In order to formulate and prove the main result about the problem in
consideration, we will use the following definitions.

A point xo € D (z9 € Ly) is called the point of local minimum of func-
tional T (Iv), if there exists an ¢ > 0 such that Z(z) > Z(xo) (Za(2z) >
T1(z0)) for all x € D, (2 € La) satisfying ||z — zo|lp < € (|2 — 20||L, < €)-
If I(z) > I(xo) (Z1(2) > Z1(20)) holds for all z € D, (z € Ly), xo (20) is
called the point of global minimum. The value Z(xg) (Z1(20)) is called local
or correspondingly global minimum of the functional.

From the equality Z(z) — Z(zo) = Z1(2) — Z1(20) for zg = I'zg +u and for
x = I'z+u, it immediately follows that g is the point of the global minimum
of the functional 7 if and only if 2y is the point of global minimum of the
functional Z; .

Theorem 10.1. Any local minimum of the functional T is the global one.
. The functional T has a point of minimum xy on the set D, = {x € D :
l'z =a',i=1,...,N} if and only if the operator H : Lo — Lo defined by
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(10.5) is positive definite and the equation Hz = f has a solution zy € L.
In this case, xg = I'zg + u.

The proof follows from the next two Lemmas.

Lemma 10.1. Any local minimum of the functional I, on the space Ly is
the global one.

The element zy € Lo is the point of minimum of I, if and only if the
operator H : Lo — Lo defined by (10.5) is positive definite and zo is a
solution to the equation Hz = f.

Proof. Let zy be a point of local minimum. It means that there exists an
e > 0 such that Z;(2) — Z1(z0) > 0 if ||z — 20]|L, < €. Let us fix £ € Ly and
let 7o > 0 be a number such that ||yo€||L, < €. From (10.4), we have

2
Zi(20 + 7€) — Ti(20) = 77 <HEE> +y < Hz— f,6>. (10.6)

The quadratic binomial %2 < HE E > +v < Hzy — f,& > takes no negative
values if v € (—70,70). It means that this binomial takes no negative values
for any 7. Consequently, z is a point of global minimum. Besides, due to
the arbitrary choice of ¢, we deduce that Hzg — f = 0 and < H{, € >> 0
for any £ € Ls.

The converse assertion follows from (10.6). W

Lemma 10.2. If zy is the point of a local minimum of the functional T
on the set D, and xo = I'zg + u, then zy is the point of minimum of the
functional I .

Proof. Let € > 0besuch that Z(z)—Z(xo) > 0if ||x—20||p < €. Anyz € D,
has the representation z = I'z + u. Since ||z — zo||p < |T'||lL,—DI|2 — 20|L2»
€

1N PR

Consequently, zg is a point of minimum of the functional Z;. B

Ti(2) = Ti(20) = Z(x) = L(wo) 2 0, if ||z = 20ll,, <

It is known that a self-adjoint H : Lo — Lo is positive definite if and
only if its spectrum o(H) does not contain negative numbers: o(H) C
[0,400), and it is strictly positive definite if o(H) C (0,+00). Therefore
if H=2(I — K), then H is positive (strictly positive) definite if and only
if 0(K) C (—o00,1], (6(K) C (—o00,1)). If K is isotonic and p(K) is the
spectral radius of K, then o(K) C [-p(K),p(K)]. Consequently, in the
case of isotonic K, the operator H = 2(I — K)) is strictly positive definite
if and only if p(K) < 1. Thus, from the said and taking into account that
p(K) = ||K]||L,, we are in a position to state the following
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Corollary 10.1. Let the operator H : Ly — Lo be defined by (10.5) and
H = 2(I — K). For the ezistence of unique point ©o € D, of minimum
of the functional T it is sufficient, and in the case of isotonic K it is also
necessary that || K||p,—1L, < 1.

Denote fo = —Q§(1) and define £ : D — Ly by

m
L= (QT+ Q3,Tv;).
i—1
Theorem 10.2. 2y € D, is the point of minimum of the functional T if
and only if
a) xo is a solution to the boundary value problem

Lx = fo, lz=a, (10.7)
where a = col{a!,...,aV}.

Remark 10.1. b) The operator H : Ly — Ly defined by (10.5) is positive
definite.

Proof. Let zy € D, be a solution to (10.6). There exists zg € Lo such that
xo = I'zg + u, besides

Hzy=LTzg=L(xo—u)=fo+f—fo=1.

Consequently, zg is a solution to Hz = f. By virtue of Theorem 10.1, z is
the point of minimum of the functional Z.

Conversely, if zg is a solution to Hz = f, then xy = ['zg+w is the point of
minimum of 7 and satisfies to (10.6). Really, lzo = o, Lxo = L(Tzp + u) =
Hzo—f+fo=fo. W

Remark 10.2. Tt is natural to call the equation Lz = f; Euler’s equa-
tion and the boundary condition /2 = a corresponds to “natural boundary
condition” in the classical calculus of variations.

Corollary 10.1 permits sometimes to reduce the problem on the minimum
of a functional to proper estimation of the spectral radius (the norm) of the
operator K : Ly — La. Such an estimation meets a good deal of difficulty
in many cases. But sometimes it is possible to construct an operator in the
space C of continuous functions with the same spectral radius as the one
of K.

We give below a well-known Lemma 10.3 and an addition to the results
of [39, 40] in the form of Lemma 10.4.

Lemma 10.3. The spectral radius of a linear bounded isotonic operator
A:C — C is less than 1 if and only if there exists a continuous function v
such that

v(t) >0, r(t) = v(t)— (Av)(t) >0, tEla,b].
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Proof. Necessity is obvious: as the function v one can take the solution of
the equation x — Az = 1.

Sufficiency. Define the isotonic operator F' : C — C by Fz = %A(vx).
We have

(Av)(t)
F) <||F = max [F(1)](t) = max ————
p(F) < 1Pl = max [F(](t) = max 278
For each A there exists a one-to-one mapping between the set of solutions
z to the equation Ax = Az + f and the set of solutions y to the equation

Ay = Fy + %f tx =y, Yy = %a: Therefore the spectrums of F' and A
coincide. Thus p(4) <1. N

The condition of Lemma 10.3 about strong positiveness of r and v meets
some difficulties in application of this Lemma. But some additional requests
on the properties of the operator A permit to weaken this condition.

Lemma 10.4. Let a linear bounded isotonic operator A : C — C have the
property (A)(a) = (A&)(b) = 0 for each & € C. Let further a continuous
function v satisfy the inequalities

v(t) >0, r(t) = v(t)— (Av)(t) >0, tE€ (a,b).
Then p(A) < 1.
Proof. Denote
E=1-AQ1), ve=v+e& 7. défvE—Avg =r+ ey,

where € > 0, ¢ = £ — A Tt follows from £(¢) > 0 that v.(t) > 0 on [a,b],
and from ¢(t) > 0 that r-(¢) > 0 on [a, b]. If both inequalities £(¢) > 0 and
¥ (t) > 0 are fulfilled, p(4) < 1 by virtue of Lemma 10.3.

Let ¢ change its sign on [a,b]. Denote w = {t € [a,b] : ¥(t) < 0}. The
inequality r.(t) > 0 is fulfilled on [a,b] \ w. Denote by 7 the first zero of ¢
to the right of a and denote by 6 the first zero of ¢ to the left of b (7 > a
and 0 < b since 9(a) = (b) = 1). Denote

= min (¢ = min o(t).
my tg[liflo]r()’ mo trer[lgle]@b()

For 1 € (0, Z71-), we have the inequality

r(t) + e1(t) > r(t) + -2

t) >r(t) — >0
P p(e) 2 r(t) - 2
on w. Consequently, r(t) + e19(t) > 0 on the whole segment [a, b].

If ¢ changes its sign, we can analogously choose €5 > 0 such that v(t) +
£2€(t) > 0 on [a,b]. Thus we obtain the inequalities v (t) > 0 and r.(¢t) > 0
on [a,b]if e = min{ey,e2}. Therefore p(A) < 1 by virtue of Lemma 10.3. W
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Below we will apply to thee examples the above scheme of investigation
of functionals in the space D ~ Ly x R"™. For the first example, a simplest
functional is taken making possible to construct the point of minimum in
the explicit form. This example illustrates also the possibility of choosing
various spaces on which the functional has a minimum. In this connection,
it is emphasized that minimums on different spaces may differ. For the
second example, the functional is taken which was investigated in partic-
ular cases in [41] on the base of the classical calculus of variations. This
example illustrates the advantage of our scheme before classical methods.
The Euler’s equation for the third example turned out to be singular by
using traditional spaces. A particular case of this functional was investi-
gated in [42], where a special minimizing sequence was constructed and its
convergence was proved. The space D ~ Ly x R? for this functional was
constructed using the above scheme of investigation of the singular equation
(9.2).

Example 10.1. Consider the functional
1
1) = [ {8 = a(6)i(s) - plo)a(s) s
0

with conditions z(0) = o, (1) = o?.
If ¢ is absolutely continuous, then the classical methods from elementary
textbooks are applicable. The classical Euler’s equation in this case has the

form 1
() = 51a(t) —p(t)],

and consequently the point of minimum is defined by
1 . 1 2
=3 W (t,s)[d(s) — p(s)]ds + a (1 — t) + a°t,

where
—s(1—t if 0<s<t<1
Witys) = {500, 0 0Ss<isl
—t(l—ys), if 0<t<s<l,
is the Green function of the problem Z = z, z(0) = 0, (1) = 0. Thus

t

t 1
[/q ds—t/q )ds — ( t—l/sp Yds —
0 0

0
1

t/s—l ]+a1(1—t)+a2t.

t

Thus Z(z9) = if a' = a? =0, p = const, ¢ = const.

48’
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Next consider the same problem using the above scheme and various
spaces D ~ Lo x R".

. d . .
Since Ti11x = To1x ef Tr =&, Tox = —qi — px, we have Q11 = Q12 =

r @, H = 2Q*Q. In any case of D, the operator H : Ly — Lo is
pos1t1ve definite since

<Hz,2z>=2<Q*Qz,2>=2<Qz,Qz>.
1). Let D = W3 be the space of the functions z : [a,b] — R! with

absolutely continuous derivative £ and & € Ls. Define the isomorphism
J ={A,Y}:Ly x R? - W2 by

(Az)(t) = /W(tas)Z(S)dsa (YB)(t) = B' (1 —t) + 5%,
0

B = col{B", *}.

In this case, [ = A, u = a! (1 — t) + a?t, and

(1-35)z

W\H

t
(Az)(t t—I/sz )ds —t
0

After direct calculations we have:

1

(Q2)(t) = - / 2(s)ds + / s2(s)ds, (Q*2)(t) = — / 2(s)ds +t / 2(s)ds,
0 0 0

1 1
(Qoz)(t /z )ds — q(t) /sz )ds +
t 0
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1 t
+t/s—1 ds-l-t—l/sp
t 0

Next, £ = 2Q*T and the equation Lz = fy obtains the form

2[—z(t) + z(0) + tz(1) — tx(0)] =

t
= /q ds+t/q ds+t/s—1)()ds+t—1/sp
0

0

By virtue of Theorem 10.2, the unique point of minimum is again the func-

tion
) t
25{/q Yds —t
0

1
t—l/sp ]+a1(1—t)+a2t.
0

q(s)ds —t | (s — 1)p(s)ds —

O\H
w\H

Direct differentiation shows that zo € W if and only if p, ¢ € Ly. Therefore,
without this condition, the functional Z has no minimum on the space W3.
Let us note that the double differentiation of the equation leads to the
classical Euler’s equation #(t) = 1[4(t) — p(t)].
2). Supposing p,q € Lo, we may look for the minimum of the functional
7 in the space D = W1 ~ Ly x R! of the absolutely continuous functions
with & € Ly which is larger than W3. Each element of this space has the

representation

2(t) = (A2)(®) + (V) (1) < / 2(s)ds+ B, {zP} €Ly xR,

In the case under consideration, N = 2 > n = 1, and therefore we suppose
in the substitution (10.1)

(T2)(t) = /z(s)ds - t/z(s)ds, u(t) = o' (1 —t) + o’t.
0 0

We have

1 1
Qz=Q"z2=2— [ 2(s)ds, Hz=2 {z - z(s)ds} ,
/ /
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(Qo2)(t) = )+ [ la(s) + sp(s)lz(s)ds — [ p(s)z(s)ds,

W\H

folt) = )+ sp(s)]ds + [ p(s)ds.

o o
- o

W\H

Any solution of Hz = f has the form

1
20:§f+c, c = const .

Nevertheless, the point zg = ['zg + « of minimum is unique since I'ec = 0.
The uniqueness of the point z( follows also from the consideration of the
problem (10.7) which has the form

def

wmwziw—/ﬂmkzmm

z(0) =o', z(1) =’
The functions 1 = 1, z2 =t constitute a fundamental system of solutions

of Lx = 0 and the determinant

z1(0) (0 _[1 0
21(1) x2(1)‘_‘1 1

‘:L

Since for the given fy the equation Lx = fp has a solution, the problem has
a unique solution for any o', o2.

Direct computation shows that the functional 7 has the minimum at the
same point x( as in previous case.

3). Finally consider the problem on the minimum of the functional Z in
the space D ~ Ly x R? of the functions z : [0,1] — R! which are absolutely
continuous on [0, ¢) and [c, 1] and & € L2. The isomorphism between D and
L, x R? may be constructed on the basis of the impulse boundary value

problem
#(t) = 2(1), =(0)=p", 2(1)=p"
in the space D. The solution of this problem has the form

£(t) = (A2)(t) + WW)é/mm—

1
X ® [ 200+ Bl ) (04 P 0
0
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Let us put I' = A. Then Qz = Q*2 =2, Hz = 2z,

(Qo2)(t) = —q(t)z(t) + /p(S)Z(S)ds,

1

The solution of Hz = f is 29 = %f In the case a' = a? = 0, the point of

the minimum has the form

{fq ds+/ p(s)ds -
—tjp() - {/q ds+/ (s)ds—/1p<s>ds]}.
) /

c

zo(t) =

l\:Jlr—A

If p and ¢ are constants,

foe i e —es )]

Thus the minimum depends on the position of the point ¢ of discontinuity.
2

If ¢ = 0, then Z(xo) = —ip2(c2 —c+ %) T(xo) = —L5 for ¢ = % Ifc—0

or ¢ — 1, then Z(zg) — —%.

Example 10.2. Next consider the functional

I(z) = / {# + 2% (s) — p(s)z[h(s)]z[g(s)] + p(s)i(s) + V(S)CE(S)}dS,
0

z(§) = (&), if £&[0,u]

with “periodic” condition [z = z(0) —z(w) = a. Suppose that p, u,v € Lo,
the functions h, g are measurable, and the initial function ¢ : (—o0, +00) \
[0,w] — R! is piecewise continuous.

In the case, where h(t) = ¢(t) = t and the coefficients are sufficiently
smooth, the problem on the existence — uniqueness of the point of minimum
of the functional Z was investigated in [41]. In this connection, the methods
of classical calculus of variations were used. We will consider the problem
following the general scheme given above.

Using the notation (6.4) and (6.5), rewrite the functional in the form

w

= [ {44209 - ) Sha) 615216 s -

0
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w

/ ) 10%(5)(Sh)(5) + ©(5) (So)(5) +

+¢"(8)¢? (5) + p(s)i(s) + v(s)x(s) }ds.

It is natural to look for the point of minimum of this functional in the space
D = W1 of absolutely continuous functions z : [0,w] — R! with & € L.
The isomorphism 7 = {A,Y} : Ly, x Rt — W1 will be constructed on the
basis of the general solution z = Az + Y3 of the model boundary value
problem

def

(Lox)(t) E a(t) + == e

=z(t), rz = z(0) —z(w) = 0.

One can see directly that the solution of this problem with z € Ly is defined

by
VO = (2- 2)8, (120 = [ Atts)z(s)ds

where
t .
2——, if 0<s<t<uw,
¥
At,s)=91- 2, if 0<t<s<uw,
w

0 outside the square [0,w] x [0,w].

Let us dwell beforehand on the problem about the minimum of the “cur-
tailed” functional

w

%x:Zz p(s) (S)(5)(,2) () + L L

with condition z(0) — z(w) = 0. We have
(Tz)(t) = (Tua)(t) = &(t), (Tr2w)(t) = —p(t)(Saz)(D),

(T22£L‘)(t) = (Sga:)(t), T13£L' = nga: = a:(w)

1
NG
Let us set I' = A. Thus

1 w
Quz=0Q71z2=Quz=0Q3z2=2— ” /z(s)ds,

(Qu22)(t) = —p(t)(SA2)(t /A ds,
0



91
Qo)1) = — / p(5)A[h(s), £ 2(s)ds,
(Q222)(t) = S Az)( /A ), s]z(s)ds,
0

(Q52)(t) = / Alg(s), t)z(s)ds,
0

) w
Q132 = Q232 = QI3Z = Q;?,Z = EO/Z(S)dS

ft) = f (t) =
(Lx)(t) = 2i(t) + 22(w) —
/p ), t](Shx)(s) + [h(s),t](sgx)(s)}ds_
0

Let us represent £ in the form

Lz =2(Lox — Px),

where
1 w
(P2)(t) = 5 /p(S){A[g(S),t](Shw)(S) + Afh(s), ](Syx)(s) }ds +
+ o(w) (é -1).

The operator P : W} — Ly is completely continuous. This follows from
the complete continuity in the space Lo of the integral operator with the
kernel p(s)Afg(s),t] and the boundedness of S, as the operator acting from
W1 into L. Let us represent the operator H : Ly — Ly in the form

Hz= LAz =2(z— Kz),

where K = PA.

The operator H : Ly — Ly is Fredholm because of the complete con-
tinuity of K : Ly — Ls. Therefore the existence-uniqueness of the point
of minimum of the functional Z does not depend on its linear summands
and the number . The summands and « define the right-hand side of the
equation Hz = f and does not influence the construction of H. Thus it
is sufficient to consider the problem of existence-uniqueness of the point of
minimum of the functional Z only for the curtailed functional Zy. Besides,
the condition p(K) < 1 is sufficient, and in the case of isotonicity of K, is
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also necessary (Corollary 10.1) for the existence of unique point of minimum
of the functional 7.
The problem (10.7) for Zy has the form

Lxr =0, lz=0. (10.8)

Denote
A=AP.

The problem is equivalent to the equation z = Az in the space Wi. Any
continuous solution of the equation z = Ax belongs to W} by virtue of the
property of A. For each A, there is the one-to-one mapping z = Loz, x = Az
between the set of solutions x € C of the equation Az = Az and the set
of solutions z € Ly of the equation Az = Kz. Thus the spectrums of the
compact operators A : C — C and K : Ly — L» coincide.

The inequalities p(t) > 0 and w < 1 guarantee the isotonicy of P, K and
A since A(t,s) > 0 on the square [0,w] x [0,w]. Under the assumptions of
these inequalities, the following Vallée-Poussin-like [43, 44] theorem is valid.

Theorem 10.3. Let p(t) > 0, t € [0,w], w < 1. Then the following asser-
tions are equivalent.

a) There exists the unique point xo € W1 of minimum of functional .

b) The spectral radius of K : Lo — Ly is less than 1.

c) The spectral radius of A: C — C is less than 1.

d) There exists v € W) such that

o(t) >0, )Y (co)t) >0, telouw],

besides
w

9 v(0) —v(w) >0, 6+ /n(S)dS > 0.

0
e) The problem (10.8) is uniquely solvable and the Green operator G of
the problem is isotonic.

f) There exists a solution & of the homogeneous equation Lx = 0 such
that £(0) — {(w) > 0, &(t) >0, t € [0,w].

Proof. The implication a)=-b) follows from Corollary 10.1.

The implication b)< c¢) was established above.

The implication d)=-c). The function v satisfies to Lz = 7, lx = 6.
Consequently, v — Av = r, where

1 t
r(t) = 5(An)(®) + (2 - ;)o >0, te0,uw]
From this v(t) > (Av)(t) > 0, ¢t € [0,w]. Therefore p(4) < 1 by virtue of
Lemma 10.3.
The implication ¢)=-d) (c¢)=f)) can be proved by taking the solution z
of the half homogeneous problem Lz = 0, Iz = 1 in the capacity of v (the
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solution ). Really, the last problem is equivalent to the equation z = Az+y,
where y = 2 — % The solution of the equation is strictly positive:

x(t) = y(t) + (Ay)(t) + (A°) (1) + - > y(t) >0, t€[0,w].

The implication c¢)=-e) follows from the fact that the solution of the
problem Lz = f, lx =0

z(t) = (Gf)(t) =r(t) + (Ar)(t) + (A%r) () + - -~ Ow:%Af)

is strictly positive on [0,w], if f(t) > 0, f(t) # 0.
The implication e)=>d) ( f)=-d)) can be obtained by taking

o(#) :/G(t,s)ds (w(t) = u(t)). m

Remark 10.3. The significance of Theorem 10.3 can be seen, in particular,
in the possibility of reducing the problem of minimum of the functional
T to establishing of some properties of Euler’s equation: the existence of
a positive solution of the homogeneous equation (the assertion f)) or the
validity of the assertion d) for a functional differential inequality like the
theorem of Vallée-Poussin [43] for the ordinary differential equation of the
second order. The rational choice of the function v in the assertion d) leads
to tests of the existence of minimum in the terms of parameters of the
functional 7.

Denoting

1, if h@t)elo,w],
on(t) = {0’ if h(t) ¢ [0,w],

we can formulate the following test derived from Theorem 10.3.

Corollary 10.2. Let p(t) > 0, t € [0,w], w < 1. Then the inequality

w

/w paon(s)a, ()[4 - LI < (10.9)

guarantees the existence of a unique point of minimum in the space Wi of
the functional T.

Proof. Let us set v(t) = 1 in the assertion d) of Theorem 10.3. Then

L) = 2[1 - %/p(s){A[g(s),t]O'h(s) +A[h(s),t]ag(s)}ds} >
> 2 [1 — %/wp(s)ah(s)ag(s){4 - M}da’] >0



94

if (10.9) holds. W

Remark 10.4. A special case of the functional 7y, where p(¢t) = 1 and
h(t) = g(t) = t was thoroughly investigated in [41]. It was shown there, in
particular, that the inequality

4
w < arcsin R (10.10)

guarantees the existence of a unique point of minimum. For this case, we
derive from (10.9) only w < Z. The inequality (10.10) follows from Theorem
10.3 if we choose in the assertion d)

1—cosw

v(t) = cost + sint
sin w

Then for t € [0,w], we have

) (1 — cosw)?
t) >0, (Lv)(t)=2(1- - 0
o) >0, (Lo)(t) =2(1—sinw - ——) >
if (10.10) holds.
In the case w = arcsin 7, the homogeneous problem (10.8) has the non-
trivial solution

. 1—cosw 1 .
v(t) = cost +sint———— = cost + —sint.
sin w 2

Thus the estimate (10.10) which guarantees the existence of a unique point
of minimum is best possible.

Example 10.3. Consider the functional

/ (151 — 8)E()]® — p(5)(Saz) (5)(S,)(s) b ds
0

with boundary conditions z(0) = o', z(1) = @*. Assume that p € Ly and

the functions h,g : [0,1] — R! are measurable. Using the space W2, we
meet the fact that the Euler’s equation £z = f turns out to be singular.
Therefore, as in the case of the equation (9.2), we introduce the space D
whose elements x have the properties:

a) The function z is continuous on [0, 1].

b) The derivative & is absolutely continuous in the interval (0, 1).

c¢) The product #(1 — ¢)&(t) is square integrable on [0, 1].

Such a space is defined by D = ALy ® YR?, where
1
/ At

YP)(t) = (1-1)8" +157, B =col{B', 3},
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t—1
L if 0<s<t<l,
—s
Ats) =3t i g<t<s<i,
s
0 outside the square [0, 1] x [0, 1].

We observe that A(t, s) is the Green function of the singular problem

t(1 - 1)i(t) = 2(t), «(0)=4", (1) =75
The space D is isomorphic to the product Ly x RZ, 7 = {A, Y} : Ly x R —
D is the isomorphism and the inverse 7! = [§,7] : D — Ly x R? is defined
by

(6z)(t) = t(1 —)i(t), re = {z(0),z(1)}.

Following the general scheme, we have
F_A u()—(l—t)a1+ta2 T11:T21:(5
Q11 = Q21 = Q11 = Q3 =1, (Th2z)(t) = —p(t)(Shz)(t),

(To2z)(t) = (Sga)(t), (Qr22)(t /1/\ s,
(Q@222)(t /IA s,
(QT22)(t O/p z(s)ds,

1

(Q52)(t) = / Alg(s), Hlz()ds, fo(t) =0

0
Hz = 2(2’ + QI2Q222’ + Q;2Q122’) = 2(Z — KZ),

where

(K2)(t) = / K(t, 5)2(s)ds,
0

K(t5) = 5 [ Do) {Ab(),0Alg(r), 5] + Alg(r), AIA(r). o],

0
2
Lz Z:(QMTQZ + Q5 Thi)x = 2(6x — Px)
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and

DN | =

(Pz)(t) = /p(S){A[h(S),t](Sgaf)(S) + Alg(s), t](Snz)(s) }ds.
0

The problem (10.7) has the form
Lz =0, z(0)=a", z(1)=da (10.11)

It is equivalent to the equation

ALz Y 2(z — Az) =u
in the space C. Here A = AP. Thus the problem (10.11) is uniquely
solvable if and only if I — A has the inverse.

The equalities z = dz, x = Az establish a one-to-one mapping between
the sets of solutions z € C of equation Az = Az and of the solutions z € L»
of the equation Az = K z. Therefore the spectrums of the compact operators
A:C — C and K : Ly — L» coincide.

The inequality p(K) < 1 guarantees by virtue of Corollary 10.1 the ex-
istence of a unique point of minimum. We have p(K) = p(A4) < ||4|lc=c-
Since |A(t, s)] <1, p(A) < 1if

1

/|p(s)|{ah(s) + ag(s)}ds < 2. (10.12)

0

Theorem 10.4. Let p(t) > 0, t € [0,1]. Then the following assertions are
equivalent.

a) The functional Z has a unique point xo € D of minimum.

b) The spectral radius of K : Lo — Ly is less than 1.

c) The spectral radius of A: C — C is less than 1.

d) There exists v € C such that for any t € [0,1], the inequalities

v(t) >0, n(t) Y (co)t) <o,

hold; besides
1
v(0) +v(1) — /n(S)dS > 0.
0

e) The problem (10.11) is uniquely solvable and the Green operator G of
the problem is antitonic.

f) There exists a positive on [0,1] solution y € D of the homogeneous
equation Lz = 0.
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Proof. If p(t) > 0, the operators K and A are isotonic.
The implication a)<b) follows directly from Corollary 10.1.
The implication b)<c) was established above.
The implication d)=>c). The function v is a solution of the problem

Lz =n, =(0)=0v(0), =(1)=0(1),

and consequently satisfies the equation v — Av = r, where
1
r(t) = §(An)(t) + (1 = ¢)v(0) + tv(1) > 0.

The operator A satisfies the conditions of Lemma 10.4. By virtue of the
Lemma, we obtain p(A4) < 1.

The implication ¢)=>d) (c)=-f)) may be obtained by taking in the capacity
of the function v (the solution y) the solution z of the half homogeneous
problem

Lz=0, z(0)=1, z(1)=1,
which is equivalent to the equation
z(t) — (Az)(t) = (1 —t)+t=1.
The solution of the last equation
r=1+A)+A*t)+ -

is strictly positive on [0,1].
The implication c¢)=>e) follows from the fact that the solution of the
problem

Lx=f x(0)=0, z(1)=0
has the representation
2(t) = (GF)(t) = r(t) + (Ar) (1) + (A%r)(t) + -+,

where r = %Af. This solution is strictly positive in (0,1) if f(¢) > 0,
f(&) £0.
The implication e)=>d) (f)=d)) can be obtained by taking

v(t) = —/G(t,s)ds, (v(t) = y(t)). A
0

Corollary 10.3. Let h(t) = g(t) = t, p(t) > 0, t € [0,1]. Then the func-
tional T has a unique point of minimum in the space D if

vraisup;eo 1) p(t) < 4. (10.13)
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Proof. Let us take v(t) = t(1 — t) in the assertion d) of Theorem 10.3. We
have

(Lo)(t) = 2{2t(t _1y - /p(s)A(s,t)s(l _ s)ds},
0
_)s(t—-1), if 0<s<t<1,
Als,t)s(1—5) = {t(s —1), if 0<t<s<l.
Since )
_ /A(s,t)s(l _ s)ds = %t(l b,
we have '

- /p(s)A(s,t)s(l —s)ds < 2t(1 —t).
0

Consequently, (Lv)(t) <0. W

We observe that using the inequality (10.12) to the case on the hand,
we get the estimate vraisupte[oﬁl]p(t) < 1 to guarantee the existence of
a unique point of minimum. A more exact estimate was obtained at the
expense of the choice of the function v with regard to the specific character
of the problem.

Going back now to the last two examples, we will suppose h = g and
refuse from the condition p() > 0. Let further p = p*—p~, where p*(t) > 0,
p~(t) > 0 and denote by Z* the functional obtained from Z by replacing
p by pt. It is obvious that Zz > ZTz for each z € D. Therefore the
boundedness from below of ZT implies the boundedness of Z. Consequently,
the inequalities (10.9),(10.12) and (10.13) under the assumption that h = g
and p is replaced by p* guarantee the existence of the minimum of Z. We
can not guarantee the uniqueness of the point of minimum in this case.
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