Memoirs on Differential Equations and Mathematical Physics

VoLuME 79, 2020, 93—-105

Ridha Selmi, Mounia Zaabi

MATHEMATICAL STUDY
TO A REGULARIZED 3D-BOUSSINESQ SYSTEM



Abstract. We prove existence of weak solution to a regularized Boussinesq system in Sobolev spaces
under the minimal regularity to the initial data. Continuous dependence on initial data (and then
uniqueness) is proved provided that the initial fluid velocity is mean free. If the temperature is also
mean free, we prove that the solution decays exponentially fast, as time goes to infinity. Moreover,
we show that the unique solution converges to a Leray—Hopf solution of the three-dimensional Boussi-
nesq system, as the regularizing parameter alpha vanishes. The mean free technical condition appears
because the nonlinear part of the fluid equation is subject to regularization. The main tools are the en-
ergy methods, the compactness method, the Poincaré inequality and some Gronwall type inequalities.
To handle the long time behaviour, a time dependent change of function is used.
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1 Introduction
We consider the following system denoted by (Bg,):

00 — A0+ (u-V)I =0, (t,x) e Ry x T3,
O — Av+ (v-V)u=—Vp+0es, (t,r)€Ry xT?,
v=u—a’Au, (t,z)€ Ry x T3,
divu = dive =0, (t,z) € Ry x T?,
(u,9)|t=0 = (u% 8", €T3,

where the unknown vector field u, the scalars p and 6 denote, respectively, the velocity, the pressure
and the temperature of the fluid at the point (t,2) € Ry x T3. Here, T? is the three-dimensional torus
and a > 0 is a real parameter that has to go to zero. The data 6° and u° are initial temperature and
initial divergence free velocity. In [[q], the author explained motivations behind considering regularized
systems such as (Bq, ), and he gave a wide review of related literature. Here, we just recall that alpha-
regularization consists in replacing the velocity u in some of its occurrences by the most regular field
v = u—a?Au. So, contrarily to the non-regularized fluid mechanic equation, we have the existence of a
unique three-dimensional solution that depends continuously on initial data. Moreover, as explained in
[2], these models can be implemented in a relatively simple way in numerical computation of the three-
dimensional fluid equations. Thus, they are to be known as regularization stimulated by numerical
motivations. In the framework of computational fluid dynamics, for zero valued temperature, it
was proved in [4] that the model we are actually considering, provides a computationally sound
analytical subgrid scale model for large eddy simulation of turbulence. More important is that when
the regularizing parameter « tends to zero, the solution of (Bg,) coincides with the solution of
Boussinesq system (Bga—o). Furthermore, as time tends to infinity, the system (Bgss0) behaves like
(BQa=O)'

In this paper, we will investigate the weak solution to the modified Leray-alpha model for the
Boussinesq system. More than the linear part, the nonlinear part of the fluid equation is to be
regularized as well. This is one of the main differences between systems we considered in [[7] and [3],
where we regularized only the linear part and studied, respectively, the weak and the strong solutions.

Our first result is the existence of the weak solution to the system (Bg,) in the context of the
minimal regularity to the initial data.

Theorem 1.1. Let ° € L*(T3) and let u® € HY(T3) be a divergence-free vector field. Then there
ezists a unique weak solution (uq,0.) of system (Bq.) such that u, belongs to C(Ry, H(T?)) N
L3Ry, H?(T?)) and 6, belongs to C(Ry, L*(T?)) N L*(Ry, HY(T®)). Moreover, this solution satisfies
the energy estimate

t
16allZ2 + luallZ> + ol Vuall7s + 2/ IV0alZ2 (s, dr
0

t
+ 2/ (IVualliz + o AuallZz) dr < 116°]Z: + [[u’ll72 + @[ Vul|[Z2 + oa(t), (1.1)
0

where
oa(t) = (e = 1)([0°7> + [ul72 + o[ Vu°||F2).

If the initial velocity is mean free, the solution is continuously dependent on the initial data on any
bounded interval [0,T]. In particular, it is unique.

The proof is done in the frequency space and uses the compactness method. To close the energy
estimates, the buoyancy force presents some difficulties that we have overcome by Grénwall’ s lemma,
without useless sharpness. More than the uniqueness, we have continuous dependence of the weak
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solution on the initial data. This is the main advantage provided by alpha regularization, since such
dependence plays an important role in numerical schemes.

To prove continuous dependence with respect to the initial data, we consider the system satisfied
by the difference of two solutions and apply energy methods. The Young product inequalities and
suitable Sobolev products allow to estimate the nonlinear terms. Gronwall’s type differential inequality
finishes the proof. In particular, we infer the uniqueness of solution. Compared to [[7] and [3], the
mean free condition is compulsory, since we are regularizing the nonlinear term and thus the Poincaré
inequality turns to be a necessary tool to run the argument of the continuous dependence to initial
data.

Our next result asserts that for long time, the regularized temperature and the regularized velocity
fields vanish exponentially fast as time tends to infinity. This convergence is uniform with respect to
«. One recovers, for a > 0, a similar property of the long time behavior to the Leray—Hopf solution
of the non-regularized system.

Theorem 1.2. Let a € (0,1). Let 6, and uy be the family of solutions from Theorem EI If 6° and

u® are both mean free and satisfy the inequality

16°11Z2 + [u®ll72 + o®[[ V|72 < 1 —a,

then 0, and u, decay exponentially fast to zero as time tends to infinity as soon as the initial data
(hence the solution) are mean free:

10a(t)ll22 + [ua(®)llm < (1—a)e™ Vit >0.

To prove this result, we use a change of the function that depends explicitly on time. This
leads to an energy estimate that is sharper than the one of the existence result. For zero-mean
valued temperature and velocity, this estimation allows to derive the vanishing limit and the rate of
convergence, as time tends to infinity.

Our last result describes the weak and strong convergence, as @ — 0, of the unique weak solution
of the regularized system (Bgq,) to the Leray—Hopf solution of the system (Bgqg). This convergence
asserts that as smaller is alpha, as better we describe reality.

Theorem 1.3. Let T > 0, (uq,0s) be the unique solution of system (Bqy). Then there exist the
subsequences uq,,, Vo, and by, , a scalar function 0, and a divergence-free vector field u, both belonging
to L>=([0,T), L3(T?)) N L%([0,T], H'(T?)), such that as oy, — 0F, we have:

1. The sequence u,, converges tou and 8, converges to 0 weakly in L?([0,T), H*(T?)) and strongly
in L2((0, T), L2(1%)).

2. The sequence vy, converges to u weakly in L*([0,T], L?(T?)) and strongly in L*([0,T], H=1(T3)).

3. The sequence u,, converges to u and 0, converges to 0 weakly in L*(T3) and uniformly over
[0,T]. Furthermore, (u,0) is the weak solution of the Boussinesq system (Bqo) on [0, T] associated
with the initial data (u®,0°) satisfying for all t € [0,T] the energy inequality

t
10122 + llullzz + [IIVOlZ2 + [VulZa dr < [16°122 + [u®]1Z2 + 00 (t). (1.2)
0

Here, (Bqo) and og denote, respectively, (Bqs) and o4 for a=0.

The purpose of the proof is to extract subsequences that converge to the solution of (Bgq) as
a — 0F. First, we derive a uniform bound independent of the parameter «. This gives the weak
convergence. Then, following the lines of the existence proof, we establish strong convergence of such
subsequences in suitable spaces. This strong convergence allows to take the limit in the quadratic
terms, and hence a weak convergence of the unique weak solution of (Bq) to a weak solution of (Bq)
is proved and the associated energy estimate is derived.

The remainder of the paper is organized as follows. We start with recalling some useful background.
Section B is devoted to the proof of the existence result and the continuous dependence of the weak
solution on the initial data, in particular, uniqueness. In Section {, we investigate the long time
behaviour of the regularized temperature and the regularized velocity. Section f is devoted to proving
several convergence results, as the regularizing parameter o vanishes.
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2 Preliminary results

For n € N, let P, denote the projection into the Fourier modes of order up to n, that is,

Pn( Z ake““'“) = Z ake“f'”.

kez3 |k|<n
We define for s > 0 the operator A® acting on H*(T?) by

Au(z) = D [k|*Tre™” € L*(T?).

kez3
Moreover, we denote by || - || . the seminorm || - || 2. This is, of course, compatible with the definition
of the Sobolev norm that || - ||z is equivalent to || - |2+ - || z-- We will also make use of the fact

that ||ul| z. < [lull 4. if 0 < s <t and A% = —A. Moreover, if divu = 0, we have (v - Vu,u) 2y = 0
and (u-V0,0)r2(s) = 0. Finally, we recall the version of the Aubin-Lions Theorem that will be used.

Lemma 2.1. Let Xy, X and Xy be three Banach spaces with Xog C X C Xi. Suppose that Xq is
compactly embedded in X and X is continuously embedded in X,. For 1 <p, ¢ < o0, let

W= {u e L7([0, 7], Xo) : ‘%‘ c Lq([O,T},Xl)}.

o If p < +o00, then the embedding of W into LP([0,T); X) is compact.
e If p=+00 and q¢ > 1, then the embedding of W into C([0,T]; X) is compact.

Also, we need the following inequalities:

19]lzs < [9I}52 1990155, (2.1)
1/2 1/2

190l < 1912101122, (2.2)

19 s < VI L. (2.3)

3 Existence and uniqueness results

Let u, = P,u. One approximates the continuous problem (Bg,) by the following problem denoted
by (Bga)n:

00, — A0, + P, div(fpuy) =0, (3.1)
3
Opvyn, — Avy, + Py div(vauy,) — Ope3 = PnVAfl( Z 0;0; (v;uﬁl) - 33971), (3.2)
ij=1
Up = U — o Ay, (3.3)
divu, = dive, =0, (3.
(tn, 0p) =0 = (u,6°) = (P,u°, P,6°).

The ordinary differential equation theory implies that there exists some maximal T > 0 and a unique
local solution u,, € C°([0,T) x T?) to (Bqa),. Taking the inner product of (@) by 6,, and (@)
by u,, applying the Cauchy—Schwarz inequality to the forcing term < 6,,e3,u,, >r2 and dropping the
viscous term, we obtain

d
= UIBnllZe + llunlZz + @[ VunlZz) < 2(10all7: + llunllZe + o[ Vun|Zz).

Let
¢(t) = 0nl72 + unlZz + | Vg7,
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then the above equation reads ¢'(t) < 2¢(t). Applying Gronwall’ s inequality and integrating over
[0,t], we obtain ¢(t) < ¢(0)e?!. Thus,

16 ()72 + llun (172 + [ Vun(®)ll72 < (105172 + lluplze + o®([Vup [172)e.

This implies that

t
10 (ONZ> + lun (N> + [ Vua (O]1Z2 + 2/ IV 0 (7)I[72 ) dT
0

t
+ 2/(\\Vun(7)l\%2 + (| Aun (1) [Z2) dr < 03172 + lunllZe + o®([VupllZe + oa(?),
0

where
oa(t) = (e =) (60172 + llupll7= + ®[Vuy|72)-

So, the maximal solution to problem (@)7(@) is global and T} = +oc0.
Using the product laws and interpolation inequality, we obtain

. 1/2 1/2
| div(vn @ un)ll -2 < l[vallze a5 a7

Hence, 4 v, € L*([0,T], H=2). We denote by W the set of functions defined by

) dt
W = {un : w, € L2([0,T), H(T?)), %n € LQ([O,T],Lz(T3))}.

By the AubinfLions'Theorem, we conclude that there is a subsequence w,/ such that w, — uq
weakly in L2([0,T], H*(T?)), and w,, — u, strongly in L*([0,T], H'(T?)), moreover, u,s — u, in
C([0,T), L*(T?)). Likewise, if we denote
) do .
W = {on 0, € L(0,T), H'(T?), e L2([O,T],H*1(T3))},

then there exists 6, such that 6, — 6, weakly in L?([0,T], H'(T%)), and 6,, — 6, strongly in
L2([0,T], L*(T?)), moreover, 6,, — 6 in C([0,T], H~*(T?)). Further, we relabel u,, v, and 6,
by un, v, and 6, and note that the strong convergence is compulsory when taking the limit in the
nonlinear term. Let us begin with proving that

lim  Po[(unV)bn] = [(1aV)ba]

n—-+4oo

in D'(R% x T%). Let ¥ € H? be a vector divergence-free test function, ® € H' be a scalar test
function, and Vt € R,

t

I3 = /((Pn — 1) (uaV)bo, ®) , dr.
0

Using, respectively, the Cauchy—Schwarz inequality and Sobolev product laws, we obtain
|I’rlz| < lun — “aHL?([o,T],Hl)Hen”m([o,T],Hl)H‘I)HHM

112] < Nluall g2 0,71, 2) 10 = Oallz2o,17,22) 191l 1
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As for I3, first, we estimate the term

(P = D(aV)00:®) o = [ 3 (arV)bare @ do
T3 |k|>n

/ Z (Uq, kV o, Oy 12D dr < = /A (div(uaby))® dx.

T3 |k|>n

Then, by inequality () and Holder’s inequality, we obtain

t
1 . 1
19 < [ 1AV a0)) 21200 47 < el o, 100 2 o, @1

Now, let us prove that
lim P,(v, - V)u, = (Vg - V)ug

in D'(R% x T?). Let

As for J!, we have
7 s/||<vnfva>~wnuf-,_2||\1/||g2 dr

< C/ [vn = vall -1 | Vunl| gase [ g= d7 < cfjvn — Ua”L?([o,T],H—l)||Un||L2([0,T],H2)H\IIHH2~
0

Since u,, is bounded in L?([0, T}, H?) and v,, — v, in L2([0,T], H™'), we get lirf J! = 0. Applying
n—-+oo

the Cauchy—Schwarz inequality and Sobolev product laws, we have
t
212 [ low 9 = wa)l -l Wl dr
0

< / ”UQHH—U2 ||V(un - ua)”pn\I/”H? dr < ||Ua||L2([O,T],L2)||Un - ua||L2([o,T],H1)H\IIHH2~

Since vq is bounded in L2([0,T], L?) and u, — uq strongly in L2([0,T], H'), we get grf J2 = 0.

As for J32, at a first step, we estimate the term

((Pn—I)(va - V)uaq, \IJ>L2 = /(Pn — D (va - V)ua¥der < %/A(div(va ® uq))Vde,

T3 T3
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where we have used the divergence-free condition and a standard calculation. Then, by the Cauchy—
Schwarz inequality and Sobolev product laws, we get

t

[Tl < %/<A(div<va ® ua)), ) 1, d7
0

1 . 1
< n / ||A(d1V(Ua ®ua))||H—2H\I/HH2 dr < n Hva||L2([O,T],L2)||ua||L2([o,T],H2)H\I/HH%

To prove the continuity of the solution, it suffices to prove at a first step that for all £ € Ry,
10a(t) = Oa(to)llL2(rsy — 0 as t — to.

Towards this end, we have to prove that the function ¢ — ||6,(t)||r2 is continuous and the func-
tion t — 0,(t) is weakly continuous with value in L?*(T3). We have 6, € L>®(Ry,L?(T3))N
L2(R,., HY(T?)), so, 4 10,(t)]|2. belongs to L'([0,T]). Hence, ||04(t)||2. belongs to C([0,T]). Since
0o € L>(Ry, HY(T?)) and ® € H', we find that as t tends to to, the inequality

¢ 12 , ¢ 1/2
< ( J G df) ( vz dT)
to tO

tends to zero. Using inequality (@) and the Cauchy—Schwarz and Holder inequalities, we find that

L 12 , ¢ 1/2
<(J1eatear) ([ luatar) ol
to to

tends to zero as t tends to to. Therefore langlefy (t), ®) 2 — (0(to), @) as t — to for every & € H'.
In particular, 6, (t) € L? and ® € H' C L?. Since the Sobolev space H! is dense in L?, we have for
t €[0,T), (0a(t), @) 1> — (O(to), @) 12 as t — to for every ® € L2. Hence, 0, € C([0,T), L?). Similarly,
we obtain [|[Vua(t) — Vua(to)||2. — 0 as t — to.
To prove continuous dependence of solutions on initial data, we assumer that (u, ) and (%, ) are
0

t
' / (V0,,V®),, dr
to

t
’/<div(9aua),<l> >r2 dT

any two solutions of the system (Bgq) on the interval [0, 7], with initial values (u°,6°) and (u ?0),

respectively. Let us denote v = u — a?Au, v = U — a?Au, du = u —u, v =v — 7, 60 = § — 0, and by
0p = p —p. Then

0p08 — AdO + (du - V)0 + (- V)d0 = 0,
0rdv — Adv + (0v - V)u+ (T- V)ou = —=Vép + dbes,
dv = du — a?Adu,
divdu = divdv = 0,

(6u,80)i—0 = (u° —7°,0° —9°

~7%.

We have 4 66 € LQ([O T),H= ') and 66 € L*([0,T), H'). Moreover, 2 < 5 belongs to L*([0,T7, H?)
and du € L?([0,T], H?). By appropriate duality action, for almost every time ¢ in [0, 7] we have

<dt 30,00) .+ V0l + (bu-V0,58) =0,

d
<£ 50,5U>H_2 + (IIVoul|2s + a2[|Adul|22) + (6v - Vu, u) ;o = (50, 5u) 5

Using the fact that (see, e.g., [R, Chapter 3, p. 169])

<% 69’59>H*1(T3)

1
2
<% ov, 6U>H72(1r3) - %

d

T 166117 2 7).
d 2
i (||6UHL2(’]I‘3) ta ||V5U||L2(T3))
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and summing up, we obtain

1d
BT (||5u||2L2(T3) + OZZHV(SU”iz(W) + ||59||2L2(T3))
+ (||V6UH%2(’]I‘3) + 042||A5U||2L2(T3)) + ||V59||2L2(T3)

= (60, 6u) g1 (pay =0V - VU, 0U) g sy —(0u - VO, 00) g1 (s -

Iz 13
Using, respectively, the Cauchy—Schwarz and Young’s inequalities, we obtain
(86, 0u) 71 (ps)] < 5 (H5u||L2 + 1166]122).
For I, we note that
|<(51} - Vu, 5u)H_2(T3) | = |<(5U - Vu, 5U>L2(T3)| < H5u||Loo(T3) ||Vu||L2(T3) ||5U||L2(T3)~
Using inequality (@), we obtain
1/2 1/2
‘12| < C||5U||L2(T3)||quL2(T3) H5u”h{1(Ts) ||(S ||H/2 (T3)"
The velocity has zero average for positive times, thus we have
||(5’U||L2(T3) < (C =+ (JéQ)HA(SuHLQ(Ta),
using (@) and Young’s inequality, we obtain

1/2 3/2
2| < Cle+a®)[Vullaers) 1ull 7 oy 150l

C a?
< glet )V IV ull 2 o) IV Ul Z2 sy + > AU 2 (ps)-
To estimate I3, we use the Cauchy—Schwarz inequality twice to obtain

(8w - N0, 80) 1 (psy| < N|0ul| s [ VO] 2| 66]| s -
Next, inequalities (@)7 (E) and Sobolev’s norm definition imply that

(- V0, 80) g1 o | < 100l 2210wl 21900 21100 0 < (180l 22 V8wl 22 V0] 2] V66 2

Using twice the Young product inequality, we obtain
sl < o~ (||5UHL2 +a?||VoulZ:) [VOll7- + 5 HV59||L2

Summing up estimates (@)7 (@) and (@), we infer that

d
= (IoullZz + a®[VoullZ: + [100]72) + (IVOullZz + o®[|AdullZz) + (V0]

< g(®) (10ull72(psy + ®[VoullF2(ps) + 106072 (1s)),

where
9(t) = (14 (5 + 1) IVullds + o= 1V8]32).
Dropping the dissipative positive term from the left-hand Slde, we obtain
d

- (||5UH%2(’H‘3) + 042||V5U||%2(1r3) + ||59H%2(1r3)) < g(t)(”5u||2L2(’]I‘3) + 042HV5U||%2(T3) + ||5‘9||2L2(1r3))-

Since 8 L2([0,T], H') and w€ L>°([0,T], H'), Gronwall’s lemma, (cf. [5, Appendix A, p. 377}) leads to

(”(Su”%?('ﬂ‘?’)"_ 042||V5u||2L2(T3) + ||59||%2(1r3 ) (H5UO||L2(11‘3 + a2||V5“O||L2 (r3)t ||590||L2 'ﬂ‘S))

This implies the continuous dependence of the weak solution on the initial data in any bounded

interval of time [0, 7]. In particular, the solution is unique.
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4 Decay results

Following [1], we introduce the change of functions ¢, := F~(e*19,) and w, := F~1(evl¥7,).
Applying Fourier transform to (EI) and to (@)7 we obtain

0i@n + |K|(|k] = a)@n + e*FI F(Py (uy - VO,)) =0, (4.1)

(1+ &®[k|?) (0@, + |[E|(|k] — a)By) — Pnes + e FIF(P, (v, - VO,)) = 0. (4.2)

We note that under the divergence free condition, the pressure term vanishes. The Plancherel identity
implies that the trilinear expressions vanish as (v - Vu,u)r2 = 0 and (u - V6,0)r> = 0. Taking the
combinations (B0)@, + (E1)p,, and (E2)w,, + (E2)W,, using the Cauchy—-Schwarz inequality and the
fact that

(1 —a)lk]* < [k[(|k] —a) VkeZ®,

one obtains
Bulnl® +2(1 — a)|k[*1@nl> = 0 (4.3)
and
(1 + o®[k) 0| @0 * + 2(1 = @) |k[* (1 + &2 [k[*) @0 * < B |- (4.4)
Integrating (@) with respect to time and summing up over k € Z3, we obtain

t
le(t, 7 + (1 —a) / IV(n)lZ2 dr < 116°]2-. (4.5)
0

Integrating (Q) with respect to time and summing up over k € Z3, we obtain

t
w72 + o Vw(®)||Z2 + (1 - a) / IVw(s)ll7z + o[ Aw(s)|Z- ds
0

t
< [ulllfe + o[Vl |22 + 116°] 2 / [w(7)] L2 dr.
0

Since 0|y, | < |Pn||Wn|, we can deduce that

t
lwo(®)IIZ2 + o[V ®)]|Z: + (1 - a) / IVw(s)IZ: + o Aw(s)|7- ds
0

< ([l13z + 0Vl |32 + #]6°]]2)°.  (4.6)
Summing up estimates (@) and (@)7 one obtains

t
leI1Z + [w®lZe + o®|[ V()72 + (1 - a) / IVe®lZ2 + IVw(b)Z + o[ Aw(t)|Z-
0

< (16°1132 + [1u01132 + o[ VuP[[32 + £]16°]|z2) .
As for the existence result, this energy estimate allows to run a standard compactness argument and to
obtain the existence of (p, w) such that ¢ € C(R*, L2)NL*(RT, H!) and w € C(RT, HY)NL?*(R*, H?).
In particular,
2

> M0 R+ (L4 QPR ult,k)[P) < (10°072 + [0®l72 + @® [Vl 72 +¢|6°] =) (47)

kez3
For zero-mean valued (6, u), multiplying by exp(—2at), we deduce that 8 and u vanish, respectively,

in the L? and H'! norm as time tends to infinity. Note that estimation (@) does not allow to deduce
the decay result, so a sharper estimation is needed.
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5 Convergence results

As «a is destined to vanish, we can suppose that there exists a fixed ag such that 0 < o < «ag. It
follows that

t
16alZ2 + luallZ> + o[ Vuall7: + 2/ IV6all72 sy dr

t
+ 2/ (IVuallzz + o?[|AuallZz) dr < (16°]7: + [[u°[|72 + g Vu’l[Z2 + aq (). (5.1)
0

This implies that 6, and u, are uniformly bounded in L2([0,T], H'(T?)) and v, is uniformly bounded
in L%([0,7],L?(T?)), then the Banach-Alaoglu theorem [f] allows to extract subsequences (ug),
(va), and (0y) such that (04, us) — (6,u) weakly in L2([0,T], H(T?)) and v, — u weakly in
L2([0,T],L?(T3)) as a — 0. Using the energy estimate, we infer that (uq,0,) converges to (u,)
weakly in L?(T3) and uniformly over [0,7]. At this step. we have proved the two first results of
statements 1 and 2 and the third statement of Theorem @

About tlme derlvatives, since 6, is uniformly bounded independently on « in the space
L2([0,T].H'(T?)), we find that A, belongs to L2([0,T], H~(T?)). Furthermore, the energy es-
tlmate EI 1mphes that

A

/ | div Bty < 1603w oz 2y 100 oo 211

IN
DN | =

2
(16°11Z2 + 1122 + ag V'l + 0an (1)

Then we obtain

< Kj,

@ ga‘
H dt L2([0,T],H—3/2)

where K7 is a real positive constant. To handle the velocity derivatives, we apply the operator
(I —a?A)~! to the equation (@) and obtain

d

7 Ua = Aug — (I = ?A) v - Vg + (I — a?A) " Vpy + (I — a?A) 104e3. (5.2)

We have that ug is uniformly bounded independently of o in L*([0,T7, H'(T?3)), and it follows that
Auy, belongs to L2([0,T], H1(T?)). First, we note that

I = a22)7 | < 1.

Then we use the Sobolev norms definition and product laws to get

T
_ . 2 . 2
/H(I—ORA) ! div(ve ® )|y _oyo g/”dlv(va@ua)HH,s/z
0
T
< / a2 a2 < Nt e o 1.2 19l 2 0,712
0

Thus, estimate (EI) allows to bound the convective term. The linear terms are not problematic.
Equation (b.2) implies that || % uq, 20,77, F1-5/2(13)) < K, where K is a real positive constant, and
so on for 2v,, in the space L*([0, 77, H92(T3)).

At this step, using Aubin’s compactness theorem, we can extract subsequences of 6, u, that con-
verge strongly in L?([0, 7], L?(T?)) and subsequence of v, converging strongly in L2([0, T, H~1(T?)).
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Thus, as in the existence section, using Aubin’s compactness theorem, we can take the weak limit
in the variational formulation associated to the system (Bq,). For ¢ € [0; 7] one obtains

t t
O(t), ) — /9 AD) d7+/ (uV)8, ®) dr =0,
0 0
t t t
0/

(u(t),¥) — (u(0),¥) — / u, AV dr + [ (uV)u, V) dr — /(963,\1') dr=0

0 0

for all ® and ¥ belonging to the space of infinitely differentiable functions with a compact support
D(T? x [0,T)).

On the other hand, 6, converges weakly to 6 and u,, converges weakly to u in L2([0,T], L*(T?)) N
L2([0,T], H'(T?)), which are Hilbert spaces. So, for all non-negative time ¢, we have

16132 + lull3 < limint ([6a]3 + luall3 + 02 Vual32),

and
2/||v9||2m(?3) dT+2/||Vu||iQ dr
0 0

t
g1i£n_>ié1f2/||V0a||iz(1r3)dr+2/(||Vua||2L2 10 Aug) dr
0 0

Taking the lower limit as « tends to zero in the energy inequality (EI), we obtain (@)
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