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Abstract. The paper deals with the three-dimensional boundary-contact problems of couple-stress
viscoelasticity for inhomogeneous anisotropic bodies with friction. The uniqueness theorem is proved
by using the corresponding Green’s formulas and positive definiteness of the potential energy. To
analyze the existence of solutions, the problem under consideration is reduced equivalently to a spatial
variational inequality. A special parameter-dependent regularization of this variational inequality is
considered, which is equivalent to the relevant regularized variational equation depending on a real
parameter, and its solvability is studied by the Faedo—Galerkin method. Some a priori estimates for
solutions of the regularized variational equation are established and with the help of an appropriate
limiting procedure the existence theorem for the original contact problem with friction is proved.
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1 Introduction

The general and widespread use of the linear theory of viscoelasticity has been observed since the
early seventies of the past century. Activity in this area is associated with a wide application of
polymeric materials with properties that can obviously be described neither by elastic nor by viscous
models, but combine the features of both models. Mathematical strictly grounded theory of linear
viscoelasticity with numerous practical applications is contained in the monographs of D. R. Bland
and R. M. Christensen (see [I,2] and the references therein).

Viscoelastic materials are those supplied with the “memory” in the sense that the state at time
t depends on all the deformations that the material undergoes. A particularly important class of
“viscoelastic equations of state” is associated with materials for which there is a linear relationship
between the time derivatives of the stress and strain tensors. We will consider viscoelastic materials
with short-term memory, i.e., when the stress of the moment at time ¢ depends only on the defor-
mations, the moment at time ¢t and the nearest previous moments of time. In the considered model
of the theory of elasticity, as distinct from the classical theory, every elementary medium particle
undergoes both displacement and rotation. In this case, all mechanical values are expressed in terms
of the displacement and rotation vectors. In their work [4], E. Cosserat and F. Cosserat created and
presented the model of a solid medium in which every material point has six degrees of freedom,
three of which are defined by the displacement components and the other three by the components
of rotation (for the history of the model of elasticity see [6,24,27,B1] and the references therein).
The main equations of that model are interrelated and generate a matrix second order differential
operator of dimension 6 x 6. The basic boundary value problems and also the transmission problems
of the hemitropic theory of elasticity for smooth and non-smooth Lipschitz domains were studied
in [28]. The one-sided contact problems of statics of the hemitropic theory of elasticity, free from
friction, were investigated in [11,12.16,18,21], and the contact problems of statics and dynamics with
a friction were considered in [9,[10,13-15,117,19,20]. Analogous, one-sided problems of classical linear
theory of elasticity have been considered in many works and monographs (see [, [1,8,22.23] and the
references therein). Particular problems of the viscoelasticity theory are considered in [[l|,2]. As for
the dynamical and quasistatical boundary-contact problems of viscoelasticity with friction, we have
considered them in [f].

The paper is organized as follows. First, we present general field equations of the linear theory of
couple-stress viscoelasticity and formulate the boundary-contact problem of dynamics with regard to
the friction. We prove the uniqueness theorem by using Green’s formulas and positive definiteness of
the potential energy. Afterwards, the contact problem is equivalently reduced to a spacial variational
inequality. The latter is in its turn replaced by the relevant regularized equation depending on a
real positive parameter ¢, and its solvability is studied by the Faedo—Galerkin method in appropriate
approximate function spaces of dimension m. Furthermore, some a priori estimates are established,
which allow us to pass to the limit with respect to dimension m as m — oo and to parameter ¢ as
€ — 0. As a result, we prove that the limiting function is a solution of the variational inequality and,
consequently, the limiting function solves the original contact problem.

2 Field equations and Green’s formulas

2.1 Basic equations

Let © C R? be a bounded, simply connected domain with C> smooth boundary S := 9Q, Q = QU S.
Throughout the paper, n(z) = (n1(x), n2(x), n3(x)) denotes the outward unit normal vector at a point
xeS.

The basic equilibrium equations of dynamics of couple-stress viscoelasticity for inhomogeneous
anisotropic bodies read as

0%u;j(z,t)
otz
2.1
82wj (z,t) (2.1)
otz 7’

8io'ij(xat) + QFj(xat) =0

8iﬁbij($,t) + 5ikj0'ik($7t) + QGj(.’E,t) =J
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where ¢ is the time variable, 0 = (01, 02, 03) with 9; = 8%1_, 0 is the mass density of the elastic material,
J is the moment of inertia per unit volume, F = (Fy, Fp, F3) " and G = (G1, G2, G3) " are, respectively,
the body force and body couple vectors per unit mass, u = (u1, uz,us)' is the displacement vector,
w = (w1, w2,ws) " is the micro-rotation vector, e;;; is the permutation (Levi-Civita) symbol;

Here and in what follows, the symbol (-)T denotes transposition and the repetition of the index
means summation over this index from 1 to 3. For the force stress tensor {o;;} and the couple-stress
tensor {p;;}, we have

oij(x,t) == 035 (U ( )

- az]l

k
pig(w,t) == pi; (U(t)
= b0 () (U (1)) + 00 (@) (U (1)) + b ()8 (U (2)) + €11, (@)D (U (1)),

where U(t) == U(,t) = (u(@,t),w(z,t))", (u(U(t)) = Ouk(x,t) — Erpmwm(@,t) and mk(U(t)) =

Ojwi(x,t) are the so-called strain and torsion (curvature) tensors; the real-valued functions al ; lk, bz(?l)k,

cgjl)k (respectively, agjl)k, bgjll)k, Ejll)k), called the elastic constants (respectively, viscosity constants),

satisfy certain smoothness and symmetry conditions

)
2 (@)G (U (1)) + b5 (@)mie(U (1)) + ay ()0 (U (1)) + b33, (@)D (U (1)),
)

(i) g Difhes i € C1 (@),
sy ( ) (
(11) az;ll)k - al(lgzﬁ Cz;ll)k = Cl(kzﬁ

(iii) there exists ap > 0 such that Vz € Q and V&;;,m:; € R:
Ulk( )& + 2bwlk( )&k + CEJz)k( Mijnue > ao(&i€ig +nijnig) (¢ =0,1).

We introduce a matrix differential operator corresponding to the left-hand side of system (@)

MO (z,0) M) (z,0) )
M(x,0) = . M (@0) = [ MP(w,0)| , p=T1,

MO (z,0) M@ (x,0) bt 3x3
where
M) (@,0) = 0;([af . (x) + ally (2)04]Br),
M (2,0) = 0; ([B0), (x) + b1} (2)84)01) — e1rn0; [al)), (x) + Ejfr (2)0];
M (,0) = 0; ([biy), (x) + bl ()0:]01) + einj [aloh (x) + afyiy, (2)0:) 0
M) (@,0) = 0; ([l (@) + 1), (2)06)O1) — e1rd; [b}2 () + b§:2j< )]
+ Eirj [bggl)k( ) + b( ('r)at] 81 - g’LP]ElTk?[ Epl)r( ) + a’zplr( )at]

Denote by N (9,n) the generalized 6 x 6 matrix differential stress operator

N (9, N®@ (9,
Nom =[N O O o = (WP o], p=T

/\/(3)(3’ n) N(4)(8, n) ot 3x3

where
'A/j(li)(87 n) = [ g)z)k zylkat]nlal’
j\/j(]f)(a, n) = [b(;)z)k + bijl)kat} 101 — €1k [agffr + agjll)rat]m; (2.2)
NP (@.m) = [bfg); + b)) midh: |
N (@.m) = [elgh, + el midn — eupi [biy); + by 0:]mi



Dynamical Contact Problems with Regard to Friction of Couple-Stress Viscoelasticity 73

Here 0,, = 0/0n denotes the directional derivative along the vector n (normal derivative). In the
sequel, for the force stress and couple-stress vectors we use the following notation:

TU=NOu+ Ny, MU =NOy+ NDy,

where N, p = 1,2,3,4, is defined by formula (2.9).
The system of equations (R.1]) can be rewritten in the matrix form

02U (z,1)
ot?

where T is an arbitrary positive number, U = (u,w)", G = (oF, 0G)", P = [pijlexs, pii = 0, when
i=1,2,3, p;i = J, when i = 4,5,6, and p;; =0, when i # j.

Throughout the paper, L,(Q) (1 < p < c0), Lo(Q) = H°(Q) and H*(Q) = H5(Q), s € R, denote
the Lebesgue and Bessel potential spaces (see, e.g., [25,82]). We denote the corresponding norms by
the symbols || - ||z (o) and || - |+ (), respectively. Denote by D(2) the class of C°°(§2) functions with
a support in the domain Q. If M is an open proper part of the manifold 02, i.e., M C 9Q, M # 9Q:
then we denote by H*(M) the restriction of the space H*(92) on M,

M(z,0)U(z,t) + G(z,t) = P , 2€Q, 0<t<T, (2.3)

H*(M) :={r,¢: ¢ € H(0Q)},
where r,, stands for the restriction operator on the set M. Further, let
H*(M) :={p € H*(0Q) : suppyp C M}.
The total strain energy of the respective media has the form

BOW.Y) = [ (a6 )06n(V) + 0, @) @ (V)
Q

+ bggl)k(x)Cij(V)nlk(U) + cggl)k(x)nij(U)nlk(V)} dz,

where ¢ = 1,2, U = (u,w) ", V = (v,w) " and ¢;(U) = diuj — &ijrwr, 0i;(U) = Oiw;.

From properties (ii) and (iii), it is clear that B (U, V) = B@(V,U) and B@ (U, U) > 0. Moreover,
there exist positive constants C7 and Cs, depending only on the material parameters, such that Korn’s
type inequality (cf., [8, Part I, §12], [3, §6.3])

BOU,U) > Ci||U | ays — Coll U,y ¢ = 1,2, (2.4)
holds for an arbitrary real-valued vector function U € [H'(£2)]5.

Remark 2.1. If U € [H'(©2)]° and on some open part S* C 9Q the trace {U}T vanishes, i.e.,
7. {U}" =0, then we have the strict Korn’s inequality

BOU,U) > c|U|fy e

with some positive constant ¢ > 0 which does not depend on the vector U. This follows from (@)
and the fact that in this case B(9)(U,U) > 0 for U # 0 (see [29], [26, Ch. 2, Exercise 2.17]).

2.2 Green’s formulas

For the real-valued vector functions U(t) = (u(t),w(t))T and U(t) = (u(t),&(t)) T of the class [C2(Q)]°
and for an arbitrary ¢ € [0; T, the following Green’s formula (see [[13])

/ M(z,0)U(t) - U(t) da
Q

- / N@mUMY - {TW} ds - {BOW),T) +aBOUE),T(1)} (25)
S
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holds, where { -} T denotes the trace operator on S from Q.
By the standard limiting arguments, Green’s formula (2.5) can be extended to the Lipschitz do-
mains and to vector functions U, U € [H1(Q)]® with M (x,d)U(t) € [La(Q)]° (see [25,29)),

S

/M(a:,a)U(t) CU(t)do = <{N(a, OUOIAE {ﬁ(t)}+> ds
Q
—{BOW ), T(1) +aBVU®,TE)}, teO:T), (26)

where (-, -)g denotes the duality between the spaces [H~1/%(S)]® and [H'/2(S)]%, which generalizes
the usual inner product in the space [Lo(9€)]°. By this relation, the generalized trace of the stress
operator {N(9,n)UY*t € [H=/2(8)]¢ is well defined.

The following assertion describes the null space of the energy quadratic form B (U(t),U(t))
(see [13)).

Lemma 2.2. Let for an arbitrary t € (0;T), U(t) = (u(t),w(t))T € [C*(Q)]® and BD(U(t),U(t)) =0
in Q. Then
u(t) = [a'? x 2] + 0D, w(t)=a?, 2z e,

where a'? and b are arbitrary three-dimensional constant vectors and the symbol [ x -] denotes the
cross product of two vectors.

The vectors of type ([a? x ] +bD, a D) are called generalized rigid displacement vectors. Observe
that a generalized rigid displacement vector vanishes, i.e., a{? = b(@) = 0, if it is zero at a single point.

3 Contact problems with friction

3.1 Coulomb’s law

Let the boundary S of the domain €2 be divided into two open, connected and non-overlapping parts Sy
and Sy of positive measure, S = S; U Sy, S; NSy = @. Assume that the viscoelastic body occupying
the domain € is in a contact with another rigid body along the subsurface S;. Denote by F(z,t)
the force stress vector by which the hemitropic body acts upon the rigid body at the point x € Ss.
Throughout the paper, F;,, and Fy stand for the normal and tangential components of the vector F,
respectively: F,, = F -n and Fy = F — (F - n)n. Further, let F(z) be the friction coefficient at the
point x € S,. It is a nonnegative scalar function which depends on the geometry of the contacting
surfaces and also on the physical properties of the interacting materials.

Coulomb’s law describing the contact interaction of materials with friction reads as follows (for
details see [4]):

If the contact of two bodies is described by the force vector F', then

[Fs(a,t)] < F(a)[Fu(x,2)]

Moreover, if
|Fs(x, )| < F(x)|Fu(z,1)],
then Bu(a.®)
Us\T,
o
and if
|Fs(, )| = F ()| Fu(z,1)],

then there exist nonnegative functions A1 and Ao not vanish simultaneously such that

A1(z,t) W = —Xo(z,t)Fs(z, ).
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3.2 Pointwise and variational formulation of the contact problem

Let X be a Banach space with the norm || - || x. We denote by L,(0,7;X) (1 < p < o) the space of
measurable functions ¢ — f(¢) defined on the interval (0;7") with values in the space X such that

z 1/p
1l 0.1y = { JALCIE dt} <oo for 1<p<oo
0

and
[l Lo 0.7:x) = esssup { || f(t)[[x } < oo for p=oco.
te(0;T)

Definition 3.1. The vector-function U : (0; T) — [H*(£2)]° is said to be a weak solution of equation
(2.3 for G : (0:T) — [La(Q)F it
U(t),U'(t) € Loo (0, T35 [H()]°), U"(t) € Loo(0, T3 [L2()]°),
and for every ® € [D(Q)]°,
(PU"(1),®) +BOU(1), ®) + BY(U' (1), ®) = ((t), ®).

Here and in what follows, the symbol (-, -) denotes the scalar product in the space Lo ().
Further, let

G:(0,T) = [La(D)°,  : (0:7) = [HV2(S2)P, f:(0:T) = Loo(S2),

and set
g:=Ff| 0. (3.1)
Consider the following contact problem of dynamics with friction.
Problem (A). Find a weak solution U : (0;T') — [H*()]® of the equation
p 0?U (z,t)
ot?
satisfying the inclusion 7y {(TU)}" € [Loo(S2 x (0;T))]%, the initial conditions

M(z,0)U (z,t) + G(z,t) = L 2eQ, te(0:7T), (3.2)

U(z,0)=0, z€Q, (3.3)
U'(z,0) =0, z€Q, (3.4)
and the boundary contact conditions

ro {U}T =0 on S1 x (0;7), (3.5)
rSZ{(TU)n}+ =f on Sp x (0;T), (3.6)
ro, {MU}Y" = ¢ on Sy x (0;T), (3.7)

dus\ .
ro {5} =0 i [ {(TU)Y | < g on S x (0:T), (3.8)

and if ry {(TU)s}*| = g, then there exist nonnegative functions A; and )z do not vanishing simultane-
ously, such that

Oug
ot

Mg, { 1T = Aoty r, ((TU)YF on S5 x (0:T). (3.9)

is problem can be reformulated in terms of a variational inequality. To this end, on the space
Thi bl be ref lated in t f iational i lity. To this end th
[H()]% we introduce the continuous convex functional

V) = /g|{vs}+|d5a V= (v,w)" :(0;T) = [H ()] (3.10)
Sa
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and the closed convex sets K and Ky:

K= {V | VO).V(1) € Loo (0,73 [H'()]°),
V(t) € Loo(0, T3 [La()]°), 75, {V}T =0, V(0) = V'(0) = 0};

Ko = {v | Ve [H\Q)F, ro {V}T = o}.
Consider the following variational inequality: Find a (u,w)" € K such that the variational inequality

(PU"(t),V =U'(t)) + BOU(t),V - U'(t)) + BOU'(t),V = U'()) + §(V) — j(U'(t))
> (G(t),V —-U'(t) + / F@®){vn —up ()} dS + (p(t), 7o, fw =o' ()} )y (3.11)
Sa

holds for all V = (v,w)" € Ko.

Here and in what follows, the symbol (-, -) denotes the duality relation between the corresponding
dual pairs X*(M) and X (M). In particular, (-, -)g, in () denotes the duality relation between
the spaces [H~1/2(Sy))? and [H'/2(S5)]>.

4 Equivalence theorem
Here we prove the following equivalence result.

Theorem 4.1. If U :&T) — [HY(Q)]® is a solution of problem (Ag), then U is a solution of the

variational inequality (B.11]), and vice versa.

Proof. Let U = (u,w)" : (0;T) — [H*(92)]® be a solution of problem (Ay), and V = (v,w)" € Ko. By
virtue of the interior regularity theorems (see [§]), we have U(t) € [H?(Q)')]% for every domain ¥ C Q.
Hence the equation

82U (z, 1)

M(z,0)U(z,t) +G(x,t) = P —3

, €, te(0;7T)
holds almost everywhere in the domain Q. By virtue of Green’s formula (@), we get

(PU"(t),V =U'(t)) = ({TU}" {v —u' (1)} ) g — ({MU}T {w — ' (1)} 7)
+BOW(@),V =U' (1) + BOWU' ),V —U'®) = (G@1),V -U'(t). (4.1)

Taking into account the boundary conditions (B.5), (@), (@) and the form of the functional (),
we deduce that for all V = (v,w)" € Ko from (4.1)), we have

(PU"(t),V =U'()) + BOU®),V = U'(t) + BY(U' (), V = U'(t)) +5(V) — (U (¢))
=(G(1),V-U'(t) + /f(t){vn —up (1)} dS + (p(t), 15, {w — ' (1)} )4
Sa

2

+ [ [{T0LY o= O + ({0} - (w0} )] ds.

Sa

It is easy to see that if conditions (@) and (@) hold, then

re, {(TU) 3 g, {vs — (O} + g(Irs, {va} T = s, {us (O} ) 2 0.
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Hence we have
(PU"(t),V = U'(t)) + BOW®),V —=U'(t)) + BYU'(t),V = U'(t)) + §(V) - j(U'(t))
> (G, V —U'(t /f Yom — u, (O} dS + (), o, w0 — ' (O} )

for all V. = (v.w)" € Kog. Thus U = (u,w)" : (0;T) — [H*(Q)]% is a solution of the variational
inequality (@)

Let now U = (u.w)" € K be a solution of the variational inequality () Substituting U’ (¢) &+ @
instead of V in (@) with an arbitrary ® € [D(Q)]°, we obtain

(PU"(1),®) + BO(U(1), @) + BV (U'(1), @) = (6(1),®) V€ [D(Q)]°,

which implies that U is a weak solution of equation (@) Again, by virtue of the interior regularity
theorem (see [E]), equation (@) is satisfied almost everywhere in the domain . Thus, taking into
account the fact that rg {V —U'(t)}* =0 for all V = (v,w)" € Ko, Green’s formula (@) yields
(PU"(t),V = U'(t)) + BOU(t ) V- U’(t)) +BOU ),V - U'(t))
= (g(t),V P, TV} g, o — (0} )

+ (o, ((TU)) sz{vs—u<t>}> + (re (MUY SQ{w—w<>}+>S YV € K.

2

Subtracting the above equality from (), we obtain

(AT oy o= 0F )+ [ ool | = 1o} 1) ds

Sa

(e, (TOYY T = J O, fon = (0}) 4 (o, (MUY = o(t). v, fw = o/ (0}) >0 (42)

for all V = (v,w)" € Ko. For an arbitrary ¢ from the interval (0;7), we choose V = (v,w)" € Ko
such that 7y {w}t =7, {&'(t)}F, 7o, {vs}t =1y {ul()} 1, and rg {v,} 1 =7y [{ur,(t)} T £4], where

¢ € HY2(S,) is an arbitrary scalar function. Then from (4.9) we infer

re, {(TU)n}" = f (1), (4.3)
i.e., condition (@) is fulfilled. Taking into account (@)7 from (@) we find that

(AT sy o= ) )+ [ a0 | = 1o} 1) ds

Sa
+ <r52{MU}+ — o(t), g, {w — w’(t)}+>sz >0 VYV =(v,w) €Ky (44)

Let now the vector-function V = (v,w)" € Ko be such that ro {vi}t =7  {ul ()} and rg {w}t =
g, [{W' (1)} £ 9], where ¢ € [H1/2(S,)]? is an arbitrary vector-function. Then (Q) yields

ro (MUY = o(0). (4.5)

Consequently, condition (@) is satisfied. Note that conditions (% (@) and (B.4)) are automatically
(8.9) )

fulfilled, since U = (u,w)' € K. Taking into account condition , from ( we obtain

(AT o= O )+ [ oo} = O} D dS 20 ¥V = (0.0)T € Ko, (46)

Sa
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whence
(re (T g, fos =l (O} ) /g|{us}+ — (Ul ()}F]dS =0 YV = (0,w)" € Koo (4.7)
Sa

Further, let us choose the vector-function V = (v,w)" € Ko such that ro {w}™ = ry {&/'(t)},

ro {vn} T = 1o {u, ()}, and r, {v}t =1y {ul(t)}T £rg s, where ¢ € [H'/2(S,)]3 is an arbitrary
vector-function. Then from (@) we obtain

£ AT b, + [ ol s 2o, (48)
Sa

For an arbitrary ¢ € [H/2(S3)]3, we have rs, ¥s| < |rg, | and

(re, {(TU) Y ro,vs) g, = (e, {(TU) g ),

2

Therefore, from (@) we derive

(ro, ((TU)Y re, ),

< [alvlas wo e (@S (4.9)
Sa

Let t € (0;T) and consider in the space [H/2(S5)]? the linear functional
(I)t(w) = <TSQ{(TU)S}+vr52 >527 Y e [ﬁ1/2(32)]3'

Due to inequality (@), this functional is continuous on the space [I;' 1/2(85)]% with respect to the
topology induced by the space [L;(S2)]3. Since the space [H/2(S,)]? is dense in [L;(S5)]3, the
functional ®; can be continuously extended to the whole space [L;(S2)]® preserving the norm. Since
the dual of [L;(S2)]? is isomorphic to [Le(S2)]?, there exists a function @} € [Loo(S2)]® such that

<I>t<w>=/<1>r~¢ds Vi € [Li(So)P

Sa

Hence
ro, {(TU)s}" = @ € [Loo(S2)].

Using again inequality (@) we derive

/ [+ {(TU) ) - —gl|]dS <0 Vo € [HY2(S), (4.10)

Sa
whence the inequality

re, {(TU)s}*| < g almost everywhere on Sy x (0;7)

follows. Indeed, it is well known that for an arbitrary essentially bounded function 7:/; € Lo (S2) there
is a sequence ¢; € C°°(S2) with supports in Sy for which (see [B0, Lemma 1.4.2])

lim &(z) = ¢(z) for almost all z € Sy and |@(x)] < esssup |4 (y)]
l—o0 yESy

for almost all x € S5. Therefore, from inequality (), by the Lebesque dominated convergence
theorem, it follows that

J ATV 6= glvl]dS <0 Vi€ [La(S)

Sa
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whence we get

£r, {(TU)s} - =gl <0

on Sy for every ¢ € [Loo(S2)]?. Substituting v = 75, {(TU)s} T in the above inequality, we finally get
the inequality

Ire, {(TU):}F| < g (4.11)

Now let us set
Osi=rg {va}t, os i=rg {ul(t)}. (4.12)

Clearly, 9,905 € [H'/?(52)]>. Due to the inclusion
re, {(TU)} € [La(S2 % (0;T))]7,

from (@) we get

(o ATOI00) g, + [ al0u]dS = (o ((TV)N b0), — [ oldoulds =0 (4.13)

SQ SZ

Let o € [H'/2(S5)]? be an arbitrary vector-function. Substitute in () 95 = qp for a nonnegative
number ¢ > 0, and take into consideration that [¢s| < [¢| and ro {(TU)s}* -5 = rs {(TU)s}t -9
to obtain

q/ H(TU)}" v +glv]] dS — / {(TU)s}* - Dos + gldos| ] dS > 0.

S2 SZ

Sending ¢ to 0, we arrive at the inequality

/ {(TU) 3} - os + glos| | dS <0,

Sa
whence by () and () we arrive at the equation
re, {(TU)} T -1, {ul (0} + g[r, {ui(®)} ] = 0. (4.14)

Clearly, iﬁ(z {(TU),}*|<g, then it follows from (}1.14) that ro, {us ()} = 0. Butif [ {(TU)s} | =

g, then ( ) can be rewritten in the form
glrs, {us(t)} " |(cosa+1) =0 on S5 x (0;7),

where o is the angle lying between the vectors r; {ui(t)}* and r, {(TU)s}" at the point z € Ss.
Consequently, there exist the functions A; and Ag such that A\ (z,t) + A2(z,t) > 0 and

A (z,t)rg {uy ()} = =Xa(a, t)rs {(TU)}" on Sy x (0; 7).

Moreover, we may assume that A; belongs to the same class as {(TU)s}", while Ay belongs to the
same class as {u/(¢)}". This completes the proof. O

5 The uniqueness theorem

We start the investigation of the variational inequality () with the following uniqueness result.

Theorem 5.1. The variational inequality () and hence Problem (Ag) have at most one weak
solution.
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Proof. Let U = (u,w)” € K and U = (&,&)" € K be two solutions of inequality () Substituting
in (B.11) U’(t) instead of V', we obtain

(PU"(t),U'(t)—=U'(1)) +BO(U(t), U (t)~U" (1)) + B (U’ (1), U’ (t)~U" () +5(U' (£)) — (U’ (¢))
> (G000 - U'(0) + [ FO{E,0) ~ w0} 45+ (ol0). 7, (&0 -/ O} ), (51
Sa

Analogously, substituting U(t) = U(t) and V = U’(t) in (), we get

(PU" (1), U (1) =U" (1)) +BO (U (1), U'(t) =T (£)) +BD (U’ (¢), U’ (6) = U' (1)) +5(U" (£)) =3 (U" (1))
> (G(),U'(t) - U'(t) + /f(t){ué(t) — (1)} dS + (p(t), e, (' () & (O} )y . (5.2)
Sa

Combining (@) and () and denoting the difference U(t) — U(t) by W (t), we obtain
— (PW"(8), W'(8)) = BO(W (), W' (1)) = B (W' (1), W'()) = 0, (5.3)
Note that

(PW (), W) = < vewaor,

o]

Q“Q‘
l\D\»—t

S (VEW . VEW) =

and

BOW (t), W' (t)) = 4 5o (W (t), W(t)),

2 dt
where VP = [1/%6><6 with \/pi; = (/o for i =1,2,3, \/pii = VT for i =4,5,6, and p;; = 0 if i # j.

Then, from (5.3) we get

1d 2

57 {Hﬁw’(t)H[LZ(Q)]G +BO(W (1), W(t))} +BO(W' (), W'(t)) < 0. (5.4)
Since B (W' (t), W'(t)) is nonnegative, (@) can be rewritten as

2 dt {”\FW ol +B(O)(W(t)’W(t))} <0. (5.5)

On the basis of (@), we can conclude that the scalar function
VW (1), e + BOOV (@), W)

decreases on the interval (0;7). Since B(O)(W(t),W(t)) >0 VYte (0;7) and W(0) = W/(0) =0, we
see that BO) (W (t), W(t)) = 0. Hence, by virtue of Lemma P.9, we conclude that W(t) = 0, which
completes the proof. O

6 The existence results

The existence of a solution to the variational inequality () is obtained by the following scheme.
First, we reduce the variational inequality (B.11)) to an equivalent regularized variational equation
depending on a small parameter & whose solvability is studied by the Faedo—Galerkin approximation
method. Then we establish some a priori estimates which allow us to pass to the limit with respect
to the dimension m of the approximation space of test functions as m — 400 and with respect to
the parameter as ¢ — 0. We will show that the limiting function solves the variational inequality
(m)) and, consequently, by virtue of Theorem ({.1], it will be a solution of problem (Ag), as well. The
assumptions which are to be satisfied by the data of problem (Ag) will be given below in the course
of discussions and, finally, we will formulate the basic existence theorem.
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6.1 Reduction to regularized variational equation

To reduce the variational inequality () to the regularized variational equation, we consider on the
space Ky the convex differentiable functional

Je(V) = /g(w)ws(l{vs}ﬂ)d& V= (v,w)" € Ko, (6.1)
5,

where € is an arbitrary positive number, ¢, : R — (0; 00) is defined by

Ye(A) = VA2 42,

g is defined by (@) and, in what follows, we assume that it does not depend on the time variable t.
Denote by K|, the dual space to Ko and by j. the Gateaux derivative of the functional (@) It is easy
to show that for almost all ¢ from the interval (0;7T),

]2K0—>IC6

is given by

Mds VV = (v,w)" € Ko, YU = (u,w)" € Ko. (6.2)

<jé(V),U>52 :é{g(x) [{vs } T2 + 2

Consider the following regularized variational equation: Find U, € K satisfying for almost all ¢ from
the interval (0;T), the equation

(PUL(1), V) + BOU(t), V) + BOUL®), V) + (GLUL®E), V) g, = (T(E), V)kgs  (63)

where V = (v,w)" € Ko and the linear functional W (t) is defined as

(Ve Vi, i= (G0 V) + [ v} dS+ (o0, ) ), (6.0
Sa

with G, f, and ¢ involved in the formulation of Problem (Ay).

It can be easily shown that the variational inequality (), in which U and j are replaced,
respectively, by U, and j., is equivalent to the regularized variational equation (§.3). Therefore, we
investigate the regularized variational equation (@)

Since the space Kg is separable, there exists a countable basis Wi, Wa, ..., W,,,... in the sense
that for every m the system of vectors Wi, Wa, ..., W,, is linearly independent and the space of all
finite linear combinations is dense in ICy. We denote by W, := [W1, Ws, ..., W,,] the linear span of
elements Wy, Wo, ..., W,,.

Consider the auxiliary problem: Find a vector-function U.,, : (0;T) — W, such that U, U.,,,
Ul € Loo(0,T;W,,) and the variational equation

(PUL,(8), V) + BO Uem (1), V) + BO(UL,, (8), V) + (GLULL (1)), Vg, = (¥(1), VI,  (6.5)

and the initial conditions

Uem(0) =0, (6.6)

are satisfied for almost all ¢ from the interval (0;7) and YV € W,,.
Let us look for a solution of the above problem in the form of a linear combination with unknown
coefficients Cjep, (2):

Uena(t) = 3 Com )WV, (6.8)

m
j=1
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Replace in (@) the test vector-function V' by W and instead of U,,, substitute the above linear
combination to obtain

> (PW;, W) Ol (8) + D BO (W, Wi) Cem( +ZB< (Wi, W) Ol (1)
j=1

j=1

<35(Z e (W) Wi) = ((0). Wiy, k=1.2.....m. (6.9)
Introduce the notation:

(I)k(cisnw i msm . <]6(Z jsm ) Wk> ) Q= ((1)17 ) q)m)T7
Pk(t) = <\I/( )’Wk>)CU’ k=1,m, P:= (P1,P2,. .. ,'Pm)T’
B:=[(PW;,Wy)] . . D= [BOW; W) |

DO = [BOW,, )] Com(t) 1= (Crem(t), Cozm (), ..., Conem ()

mxm’

System (B.9) can be then rewritten as
BC” (t)+DW ! (t)+ DO C.,.(t) + (C., (1) = P(t). (6.10)
The initial conditions (@) and (@) result in
Cem(0) = C",,(0) = 0. (6.11)

Note that det B # 0, since the system of vectors Wi, Ws, ..., W,, is linearly independent, and hence

from () we get
o’ () +BDMC! (1) + B1DO C,,, (t) + B71o(CL,, (1) = B~P(t). (6.12)

To reduce system () to the normal type, we introduce the notation

Sem(t) i= CLon(t)y Yemn(t) := (Sem(t), Com ()"

e fyy o [FPO B8 — 5 DeL, —BD0C,
Sem 2mx1
Then equation () and the initial conditions () take the form
0
Vi (t) = L(t,Yem), Yem(0) = | : : (6.13)
01 5mx1

Let us show that the matrix function £ is continuous with respect to the first argument ¢. To this
end, we estimate the difference

|Prlt + At) = Pi(t)| = [((t + At) — W (t), Wi) . |
= ’(g(t + At)-G(t), Wk)+/(f(t + A= f(0)) {(E)n} T dS+(p(t + At) —p(t), 75, {m} ) g,
Sa

< (llg¢ + a6 = GO)l 1o + 17+ 20 = 7O

+ [t + A1) = Ol -2 50 ) IV 211 e
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where Wy, = (&x,m1) " € Ko.
In what follows, we assume that

G.G,G" € Ly(0,T;[La(Q)]%),  f € Loo(Sa), 0, ¢, ¢" € La(0,T; [H™?(S5)]%). (6.14)

Note that the further analysis of the problem shows that g cannot be dependent on ¢, and hence f
also cannot be dependent on t. Assumptions G, f, and ¢ are continuously differentiable with respect
to ¢ almost everywhere in the interval (0;7"), and hence | Py (¢t + At) — Pi(t)] — 0 as At — 0, implying
that the function £ is continuous with respect to the first argument.

To prove the continuity of the function £ with respect to Yz,,, it suffices to consider only the term
®(Sem ). By formula (@), we have

m

" (2 Siem{(€)s1) {60}
Dp(S, —< (Z iem ) > — ds.
= WZSW{ )| +e

It is easily seen that ®; is continuous and continuously differentiable with respect to the variables
Sjem. Moreover, ®;, and its derivatives with respect to Sj.n are bounded by an absolute constant
depending on e. Therefore, the function £ satisfies the Lipschitz condition in the second argument.
Consequently, system () possesses at most one solution.

Any vector function Y., that is a solution to problem () possesses second_order continuous
derivatives with respect to ¢._The same is valid for Ug,,(t) defined by formula (@) with Cjepm (2),
being a solution of problem () It can be shown that U.,,(t) possesses actually continuous third
order derivatives with respect to ¢ and solves problem (.5)—(p.1).

In the next subsections we derive some a priori estimates which we need to perform the limiting
procedure with respect to the dimension m.

6.2 A priori estimates I

Insert the solution of system () in (@) and then substitute U.,,(t) instead of V into (@) to
obtain

(PULL(6), UL (8)) + B (Uein(t), UL (£)
+ BO(UL, (1), Ul (1)) + (G (UL (1), Ul (1)) g, = (W (2), UL (1)) -

e (OO
(UL (0), UL (0) s, = / @) el as 20

and BW(UL, (t),U.,.(t)) > 0, from the preceding equality we have

Since

%{HﬁUg’m(t)llsz(Q)]ﬁB (U (), Uz () }<2<xp UL (1)) .-

Consequently, due to the homogeneous initial conditions, we arrive at the inequality
t
VPO e + B Wm0 U ®) < 2 [ (0(0). 0L (0))., do
0
By virtue of (@), we get

t
VPO Ol + CollUm OlFirsae < CallUam Ol qape +2 [ (¥0). V(@) , dor (6.5
0
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with C; and C5 from (@) Since U, (0) = 0, we can write

t
Uan®) = [ Uty(o) do
0
whence .
[Uem (8 1P (e S/”Us/m(o—)”[sz(Q)]G do. (6.16)
0

For the last term in () we have

t t

2/ <\IJ(U)’ Uém(g)>’C0 do = 2<\Ij(t)’ Usm(t)>lCo B 2/<\P,(0)7 Uem(g)>lco do
0 0
1 2 2 / ’ 2 9
< S IO, + 01U=m )i e +/ (1" (@)1, + [Uem (@) Farr.0yye) do

0

t
< Cs + 6| Uem () 1|71 (00 +/\|Usm(a)|\fH1(Q)]6 do. (6.17)
0

Taking_into account estimates (6.16) and () and choosing § in inequality (6.17) smaller than Cy
from @), we finally get

t

”(/e/m(t)”Z[z(Q)ﬁ ||L€m(t)H[2H1(Q)]6 <0y (Hl/ém(o)H[z[Q(Q)]ﬁ Hbem(o)Hle(Q)]G)dO Cs
[ ]
0

with some constants Cy and C5 independent of m and €. Now, by using Gronwall’s lemma, we obtain
10 1P @yjs + 1 Uem )11 ye < C (6.18)

with the constant C' independent of m and ¢.

6.3 A priori estimates 11
Differentiating (@) with respect to t and replacing V' with the vector-function U/  (t), we obtain

(PULL(8), UL (8) + BO (UL, (1), UL, (1))
+B<1><U;;n<t>,U;;1<t>>+<%j;<U;m<t)>7U;;1(t>>S = (W), UL(t), (6:19)

2

Due to formula (@), for every W = (&,1)T € Ko and V = (v,w)" € Ko, we have

(V@) Vs, = [ 9()Qu(Eu(t) - {02} " as. (6.20)
S
where {f (t)}+
Qs §S(t) = LS .
) VIrs, {6} + &2

Equality () yields
(G V) = [ o) in 3 Q6+ ) - Que®)] - (v} ds.

Sa
Sa
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Replace here V' by the vector-function W'(t), then

(GEWEWO) = [ o fim 3 [Q6(+ 1) - Qu(e(0)] - § {&(t+ W) — &0} s,

dt So h—0
Sa

Since j. is a convex differentiable functional on Ky, the operator j. : Ky — Kf, is monotone and we
have

0 < (JLOW(t+h)) = SL(W (). Wt -+ h) = W (D))

- /g(x)Qa(is(t+h))'{és(t+h)—€s(t)}+ds+ / (@)Q-(6(1) - {&(t) — &t + 1)} T ds

Sa Sa
— [ @) [Quleult+ 1) = Qul ()] - {&ule+ W)~ €0} ds.
Sa
Thus we obtain p
(G2 @). W) >0, (6.21)
Taking into account (), it follows from () that
(PUL (), UL (1)) + BO (UL, (8), UL, () + BY (UL, (8), UL (5) < (W (1), ULy (8)) ., »

whence, since B(l)(U”m(t), UZ . (t)) is nonnegative, we have

s S AIVPUL O+ BOWEn(0),Un (1) } < (W0, UL (1) .,

Using (@) and the homogeneous initial condition (@), by the integration of the foregoing formula
we get

2
IVP UL O] 0ppe + CLIULm (Ol 0o
t
2
< o\ ULp Do @pe + VP UL O], e + 2 / ). UL (0)), do (6.22)
0

with C; and Cy from (@) Since

t

/ (W(0), Ut (o)), dor = (W(1), ULy (1)), / (W(0), UL,y (o)), do, (6.23)
0

0

using the inclusions (), we infer that U” € Ly(0,T;K(), and hence for an arbitrary positive § it
follows from () that

t

)
[0 U0, 0 < 2 I OI + 5 100

0
+03/|\\1/” ¥, da+C4/H () 1Pe1. (e do- - (6.24)

Taking now into account the inequality

WOl <2 [ 19l do -+ 2 O)l, < G,
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from () we get
/ 1)
/(qn(g),U;’m(a»KO do < Cs + §||UE’ Ol ys + Ca / UL ()1 (aype do- (6.25)
0

Choosing § sufficiently small and taking into account estimates () and

UL () 1Fr s </|| o)tz (e o

from () we derive

VP UL O sage + 10 @)1 e

t

S C7H\/]3Us/lm(0)||[2[/2(g)]6 + OS/ [H\/IEU! || 2(92)]6 + || (J)H[zHl(Q)]e} do + Cg. (626)
0

Let us now estimate ||v/PU,(0)|/(r,(oys- Substituting ¢ =0 in (@)7 we obtain

(PU,(0),V) = (¥(0),V),. VYV eEW,, (6.27)

Ko

where, in view of (@)7

(WO V), = GOLV) + [ FO .} dS + (0(0). s, (w0} ),
Sa

Here we formulate one more restriction on the data of the problem: we assume that there exists a
vector-function Uy € [Lo(2)]% such that

(2(0), V), = U0, V) YV € Ko. (6.28)

Note that if ¢ € Ly (0, T; [L(S2)]?), then (b.28) holds.
Since U/, (0) € W,,, we can take U/ (0) instead of V in () and, using (), we arrive at the

inequality

2
IVPUL )7, s = Wor Ulin(0)) < 100l 001 10250 (0) gy

whence

VP UL 0]z, e < Cro

with Cjo independent of € and m. Therefore () takes the form
2
H\/FUé{rn(t)H[LQ(Q)]G + HUém(t)H[QHl(Q)]G

t
<Cn+ 012/ [|\\/1?Ué%z(0’)|\[2L2(Q)]e + ||U5/m(0)||[2H1(Q)]5} do.

0

Using again Gronwall’s lemma, we find

U5 (DL, e + UL Ol ye < Cs (6.29)

where C' does not depend on ¢ and m.
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6.4 The basic existence theorem

First, we pass to the limit with respect to the dimension m. The estimates () and () show that
Uem and U.,, (respectively, U/ ) are bounded by the constants independent of e and m in the space
Loo(0,T;Ko) (respectively, in the space Lo (0,T;[L2(€)]%). Thus we can choose from the sequence
U.m a subsequence, which we again denote by U.,,, such that

Uerm — Ue x-weakly in Lo (0,T;Kg) as m — oo,
Ul — Ul xweakly in Lo (0,T;Kg) as m — oo, (6.30)
Ul — U s-weakly in Lo (0,T; [L2(2)]%) as m — oo.

Let us show that the limiting function U, satisfies the regularized variational equation (@) with the
homogeneous initial conditions for ¢ = 0. We proceed as follows. Let ¥; € C*([0;T]), ¥;(T) = 0,

mo
j = 1,00, be smooth scalar functions and consider the vector-function ®(t) = 3 ¥;(t)W; with
=1

a natural number m@ It is easy to see that ® € W,, for every m > mg and V¢ € [0;7)] and,
)

consequently, from ( we have

(PUL,(8), (1)) + B (Uana (1), ©(1))
+ BO (UL, (1), ®(1)) + (UL, (1)), @(1)) g, = (1), ®(1)), - (6.31)

2

Integrate () with respect to ¢ from 0 to T,
T
[ [(Puz o). 20) + B (U (0). 2(0)
0

T
+BOUL,(0,2(0) + (0L, (0. 8(0) | ¢t = [ (00 8(0),., dt

Taking now into account () and passing to the limit in the last equality as m — oo, we get

/ PU”(t),0(t)) + BOUL(t), d(#))
0

+ BO(UL(t), d(t)) + <j;(UE’(t)),<I>(t)>SZ] dt = /(\I’(t),(b(t))Ko dt. (6.32)
0

Since the finite linear combinations Y ¥;(¢)W; are dense in Ky for every t € [0;T], equality ()
J
allows us to conclude that

/ PUZ(1),V) + BO(U.(1), V)

+BOWLL). V) + (GLULE), Vs, = ({8, @) [ dt =0 vV e Ko, (6.33)

To obtain equality (@), it remains to derive a pointwise equation from the integral equality ()
To this end, we take an arbitrary fixed number 7 € (0;T) and an arbitrary vector-function W € KCy.
Consider the family of neighborhoods of the point 7,

Fk:<7—%, T+%),



88 Roland Gachechiladze

and define the function V'(¢) as follows:

if t¢TI
W, if t eIy

Denoting the measure of T'y by |T'x|, from () we find that

(|Fk|/PU” t)dt W)+B°)(|Pk|/ g(t)dt,W)+Bl)(|Pk|/ ;(t)dt,W)
+ (L Fl UL(t)dt ), —F— (W(t), W), dt
| | S | k'rk

According to the Lebesgue theorem, since

0. (6.34)

1
wl/w(t)dtﬁw(ﬂ as k — 0o

for almost all 7, it follows from () that
(PUL(7), W) + BOUL(7), W) + BO(UL(r), W) + (GLULT)), W)y, = (¥(r), W), YW € K,

that is, the limiting function U, satisfies the regularized variational equation (@) As for the initial
conditions for ¢ = 0, we notice that the conditions () allow us to conclude that U, (t) and U.(t)
are the continuous mappings of the interval [0;7] onto Ky. Thus U.(0) and U.(0) are well defined
and, in view of (), we see that U (0) and U.,,(0) converge weakly in Ky to U.(0) and U.(0),
respectively. Since U, (0) = 0 and U/,,(0) = 0, we can show that U.(0) = 0 and U/(0) = 0, i.e., the
initial conditions are fulfilled.

It remains to pass to the limit in equality (@) with respect to the parameter €. Repeating the
arguments applied above, we can derive the estimate

U=l @ + ITZO iz @pe + 1UZ ()l za@ye < C

with the constant C' independent of €. Thus from the sequence {U(t)} we can choose a subsequence,
which we denote again by {U.}, such that

Us —» U *weakly in Lo(0,T;Kp) as € — 0,
Ul - U’ xweakly in Lo (0,T;Kg) as & — 0,
U/ — U" s-weakly in Lo (0,T;[L2(Q)]%) as ¢ — 0.

Let us show that the limiting function U satisfies the variational inequality () Replacing in (@)
V by the vector-function W — U.(t), where W € Ky is arbitrary, we have

(PUL(t),W = UL()) + BO(U.(t), W — UL(t))
+BWUL(1), W - UL(1)) +JE(W) Je(UL(t) <¢ ), W = UL(t)),,
=Jj:(W) — j(U, <j€ L), W =ULt)g, YW eKo (635)

The right-hand side of the above inequality is non-negative. Indeed, since the functional j. is convex,
we find that

Jo(W) = e (UL) = GLUL0), W = UL(D)
= 5o = G (UL() — Jim - [ (AW + (1~ WUL(H) — o (U4(0))] > 0.
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Taking into account the last inequality, from () we have

T
[ [Pz w) + BO 0. W)+ BOWL@,W) + 32W) (¥, W ~ UL(t), | de
0

/ PU"(t),U.(t)) + B(O)( U.(t), UL(t)) +B(1)(U£(t),UE'(t)) +]'5(Ué(t))} dt.
0

On the other hand, the equality
T
[ [(puzie.vze) + BO@.0,0200) + B0, ULt) + (VL)
0

T
= 5 [ VPO, e + BO W) 00)] + [ [BO@0).U20) + 5020 a
0

with the help of the inequality
lim inf BO(U(T), U.(T)) > BO(U(T),U(T))

e—0

leads to the inequality

[(PU”(t), W —U'(t)) + BOW), W — U'(t)) + BOW (1), W — U'(t))

St~

+ (W) = (U () — (W(t), W — U’(t)>,CO} dt>0 YW eKo. (6.36)
From the integral relation () we can derive as above the pointwise inequality

(PU"(t),W = U'(t)) + BOW @), W —U'(t))
+BOU (), W = U'(t) + j(W) — §(U'(t) — (T(t), W — U'(t), 20 VW € Ko,

and by an analogous reasoning we conclude that the homogeneous initial conditions are fulfilled. Thus
we have proved the following existence theorem.

Theorem 6.1. Let conditions () be fulfilled, g be independent of t, and let there exist a vector-
function Uy € [L2(Q)]® such that

(Up, V) = (Q(O),V) + /f(O) {v,}TdS + <<p(0),r52 {w}+>s2 YV = (v,w)" € K.
Sa

Then there exists one and only one function U € K which is a solution of the variational inequality
() and, according to Theorem W1, it is a solution of problem (Ao), as well.
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