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Abstract. When the nonlinearities satisfy the growth conditions on a finite interval, some existence
results of solutions to the boundary value problems of fractional differential equations are established
via comparison theorem, upper and lower solutions method and fixed point theorems. An example is
presented to illustrate the applications of the obtained results.
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ÒÄÆÉÖÌÄ. ÛÄÃÀÒÄÁÉÓ ÈÄÏÒÄÌÉÓ, ÆÄÃÀ ÃÀ ØÅÄÃÀ ÀÌÏÍÀáÓÍÄÁÉÓ ÌÄÈÏÃÉÓÀ ÃÀ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ
ÈÄÏÒÄÌÄÁÉÓ ÓÀÛÖÀËÄÁÉÈ ÃÀÃÂÄÍÉËÉÀ ÒÀÌÃÄÍÉÌÄ ÛÄÃÄÂÉ ×ÒÀØÝÉÖËÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍ-
ÔÏËÄÁÉÓÈÅÉÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ ÛÄÓÀáÄÁ, ÒÏÃÄÓÀÝ ÀÒÀßÒ×ÉÅÏÁÀ
ÀÊÌÀÚÏ×ÉËÄÁÓ ÆÒÃÉÓ ÐÉÒÏÁÄÁÓ ÓÀÓÒÖË ÉÍÔÄÒÅÀËÆÄ. ÌÉÙÄÁÖËÉ ÛÄÃÄÂÄÁÉÓ ÂÀÌÏÚÄÍÄÁÉÓ ÓÀ-
ÉËÖÓÔÒÀÝÉÏÃ ÌÏÚÅÀÍÉËÉÀ ÌÀÂÀËÉÈÉ.
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1 Introduction
Fractional calculus has played a significant role in engineering, science, economy, and other fields. Most
of papers and books on fractional calculus are devoted to the solvability of linear initial fractional
differential equations in terms of special functions. Recently, there appeared some papers dealing
with the existence of solutions (or positive solutions) of nonlinear initial value problems of fractional
differential equation using the techniques of nonlinear analysis (see [2, 9] and the references therein).

In the literature, cDα
0+u(t) + f(t, u(t)) = 0 is known as a single-term equation. This kind of frac-

tional differential equation has many applications and has been studied widely. Equations containing
more than one fractional differential terms are called multi-term fractional differential equations; they
have some concrete applications in many fields. Due to the complexity of such a kind of equations,
it seems that there has been no result for a general multi-term fractional differential equation. Only
some special cases have been investigated. A classical example is the so-called Bagley–Torvik equation
(B-T equation for short) [12],

Au′′(t) +BcD
3
2
0+u(t) + Cu(t) = f(t),

where A, B and C are certain constants, cDα
0+ is the Caputo fractional derivative and f is a given

function. This equation arises from the mathematical model of the motion of a thin plate in a
Newtonian fluid. The B-T equation, as well as various generalizations, have wide applications in fluid
dynamics and hence attracted much attention. The analytic solution and the numerical solution for
the B-T equation were studied in [4] and [5], respectively.

J. Cermak et al. [3] investigated the two-term fractional differential equation

u′′(t) +BcDβ
0+u(t) + bu(t) = 0

with coefficients a, b ∈ R and positive real orders 0 < β < 2. It contains the important case such as
the B-T equation for β = 3

2 . Qualitative properties of the true and numerical solutions were described
and numerical stability regions for the classical and fractional models were compared.

In [14], S. Zhang discussed the following boundary-value problems for two-point nonlinear fractional
differential equation:{

Dα
0+u(t) + q(t)f

(
u(t), u′(t), u′′(t), . . . , u(n−2)(t)

)
= 0, t ∈ (0, 1),

u(0) = u′(1) = u′′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0,

where α is a positive number, Dα
0+ is the Riemann–Liouville’s fractional derivative, q may be singular

at t = 0 and f(x0, x1, . . . , xn−2) may be singular at x0 = 0, x1 = 0, x2 = 0, . . . , x(n−2) = 0. The
existence of positive solutions to the problem is obtained by the fixed point theorem for the mixed
monotone operator.

In [7], the authors have investigated the existence of solutions for two-point boundary value prob-
lems 

Dα
0+u(t) + f

(
t, u(t), Dα−2

0+ u(t)
)
= 0, t ∈ (0, 1),

u(k)(0) = 0, k = 0, 1, . . . , n− 3, n = [α] + 1,

Dα−2
0+ u(1) = Dα−1

0+ u(0) = 0,

for fractional differential equations of arbitrary order α > 2, by applying upper and lower solutions
method together with Schauder’s fixed point theorem. First, they transformed the posed problem to
an ordinary first order initial value problem that they modified to prove the existence of solutions
for the problem. Moreover, they gave the explicit expression of the upper and lower solutions of the
problem.

Recently, in [13], the authors considered the existence of solutions of the boundary-value problem
for two-term three-point nonlinear fractional differential equation:{

λDα
0+u(t) +Dβ

0+u(t) = f(t, u(t)), t ∈ [0, T ],

u(0) = 0, µDγ1

0+u(T ) +Dγ2

0+u(η) = γ3,
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where 1 < α ≤ 2, 1 ≤ β < α, 0 < λ ≤ 1, 0 ≤ µ ≤ 1, 0 ≤ γ1 ≤ α − β, γ2 ≥ 0, 0 < η < T are
the constants, Dα

0+, Dβ
0+ are the Riemann–Liouville fractional derivative, and f : [0, T ] × R → R is

continuous. By means of the fixed point theorems and Gronwall type inequality, some results on the
existence of solutions and the Hyers–Ulam stability are obtained. (For more results see [1, 6, 10, 11]
and the references therein.)

Motivated by the above results, in this paper we deal with the boundary value problem of the
two-term fractional differential equation:{

D2+α
0+ u(t) + f

(
t, u(t), Dα

0+u(t)
)
= 0, t ∈ (0, 1),

u(0) = 0, Dα
0+u(t)

∣∣
t=0

= Dα
0+u(t)

∣∣
t=1

= 0,
(1.1)

where 0 < α ≤ 1 is a real number and Dα
0+ is the standard Riemann–Liouville fractional derivative,

f : [0, 1] × R2 → R is continuous. We prove a new comparison theorem, and then establish the
existence of solutions for the above-given problem using the comparison theorem, fixed point theory
and the method of upper and lower solutions. By these methods, we can obtain the iterative scheme
for this problem, which implies that the solutions are computable.

The paper is organized as follows. In Section 2, a new comparison theorem is proved. The existence
results for problem (1.1) are established in Section 3. In the same section, we give the proof of the
main result. An example is presented in the last section to illustrate the application of our results.

2 Preliminaries and comparison theorem
In this section, we first recall some standard definitions and notation.

Let α > 0 be a constant.

Definition 2.1 ([8]). The Riemann–Liouville fractional integral Iαa+f of order α is defined by

Iαa+f(t) =
1

Γ(α)

t∫
a

f(x)

(t− x)1−α
dx, t > a,

provided that the right-hand side is defined point-wisely, where Γ is the Gamma function.

Definition 2.2 ([8]). The Riemann–Liouville fractional derivatives Dα
a+f of order α are defined by

Dα
a+f(t) =

( d

dx

)n

(In−α
a+ f)(t) =

( d

dx

)n 1

Γ(n− α)

t∫
a

f(x)

(t− x)α−n+1
dx, n = [α] + 1, t > a,

provided that the right-hand side is defined point-wisely, where [α] denotes the integer part of α.

Lemma 2.3 ([8]). Let m ∈ N+ and D = d/dt. If the fractional derivatives (Dα
a+f)(t) and (Dα+m

a+ f)(t)
exist, then

(DmDα
a+f)(t) = (Dα+m

a+ f)(t).

Remark 2.4.

(1) The Riemann–Liouville fractional integral satisfies the equality

Iα0+t
β =

Γ(β + 1)

Γ(β + α+ 1)
tβ+α, α > 0, β > −1, t > 0.

(2) The equality Dα
0+I

α
0+u(t) = u(t) holds for u ∈ L(0, 1).

(3) If α ∈ (0, 1], then for u ∈ L(0, 1), Dα
a+u ∈ L(0, 1) and arbitrary c ∈ R, the equality

Iα0+D
α
0+u(t) = u(t) + ctα−1

holds.
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The following comparison theorem is crucial in this paper.

Lemma 2.5. Let λ1, λ2 be two nonnegative numbers, r > 0 be a constant. If m(t) ∈ C2[0, 1] satisfies

m′′(t) ≥ λ1

Γ(r)

t∫
0

(t− s)
r−1

m(s) ds+ λ2m(t), 0 < t < 1, m(0) ≤ 0, m(1) ≤ 0,

then m(t) ≤ 0, ∀ t ∈ [0, 1], provided that 0 ≤ λ1 + λ2Γ(r + 1) ≤ 2Γ(r + 1).

Proof. We will verify the assertion in the following cases.

Case 1. If λ1 = λ2 = 0, then we have m′′(t) ≥ 0, which implies that m(t) is a convex function on
[0, 1]. Hence, we have m(t) ≤ min{m(0),m(1)} ≤ 0, t ∈ [0, 1].

Case 2. Let λ1 = 0, 0 < λ2 < 2.
Conversely, suppose there exists t0 ∈ (0, 1) such that m0 = m(t0) = maxm(t) > 0, then m′(t0) = 0,

m′′(t0) ≤ 0. But m′′(t0) ≥ λ2m(t0) implies m′′(t0) > 0, which is a contradiction.

Case 3. Let λ1 > 0, λ2 ≥ 0 and 0 < λ1 + λ2Γ(r + 1) ≤ 2Γ(r + 1).
Assume that there exists t0 ∈ (0, 1) such that m0 = m(t0) = max

0≤t≤1
m(t) > 0, then m′(t0) = 0,

m′′(t0) ≤ 0. Hence, by

0 ≥ m′′(t0) ≥
λ1

Γ(r)

t0∫
0

(t0 − s)r−1m(s) ds+ λ2m(t0),

we have
t0∫
0

(t0 − s)
r−1

m(s) ds < 0.

This implies that there is t1 ∈ [0, t0) such that m1 = m(t1) = min
t∈[0,t0]

m(t) < 0. According to

Taylor’s formula, there is λ ∈ (t1, t0) such that

m1 = m(t1) = m(t0) +m′(t0)(t1 − t0) +
m′′(λ)

2
(t1 − t0)

2
.

Since m1 < 0, we have
m′′(λ) =

2(m1 −m0)

(t1 − t0)
2 <

2m1

(t1 − t0)
2 .

Hence

2m1 > m′′(λ) ≥ λ1

Γ(r)

λ∫
0

(λ− s)r−1m(s) ds+ λ2m(λ) ≥ λ1

Γ(r)

λ∫
0

(λ− s)
r−1

m1 ds+ λ2m1

=
λ1

Γ(r + 1)
λrm1 + λ2m1 >

λ1

Γ(r + 1)
m1 + λ2m1.

This implies that λ1+λ2Γ(r+1) > 2Γ(r+1), which contradicts the assumption that 0 ≤ λ1+λ2Γ(r+
1) ≤ 2Γ(r + 1).

This ends the proof.

Corollary 2.6. Let λ1, λ2 be two nonnegative numbers, 0 < α ≤ 1 be a constant. If h(t) ∈ C3[0, 1]
satisfies {

D2+α
0+ h(t) ≥ λ1h(t) + λ2D

α
0+h(t), 0 < t < 1,

h(0) = 0, Dα
0+h(t)

∣∣
t=0

≤ 0, Dα
0+h(t)

∣∣
t=1

≤ 0,

then h(t) ≤ 0, ∀ t ∈ [0, 1] provided that 0 ≤ λ1 + λ2Γ(α+ 1) ≤ 2Γ(α+ 1).
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Proof. Let m(t) = Dα
0+h(t). Since h(0) = 0, we have

h(t) =
1

Γ(α)

t∫
0

(t− s)
α−1

m(s) ds, m′′(t) = D2+α
0+ h(t)

and

m′′(t) ≥ λ1

Γ(α)

t∫
0

(t− s)
α−1

m(s) ds+ λ2m(t), 0 < t < 1, m(0) ≤ 0, m(1) ≤ 0.

Due to Lemma 2.5, we have m(t) ≤ 0, ∀ t ∈ [0, 1]. Hence

h(t) =
1

Γ(α)

t∫
0

(t− s)
α−1

m(s) ds ≤ 0, ∀ t ∈ [0, 1].

This ends the proof.

3 The existence criteria
Throughout this section, we assume that f : [0, 1]×R2 → R is continuous and there exist non-negative
numbers λ1, λ2 such that

(H1) for t ∈ [0, 1], z ∈ R, x1 ≥ x2, y1 ≥ y2

f(t, x1, y1)− f(t, x2, y2) ≥ −λ1(x1 − x2)− λ2(y1 − y2).

(H2) 0 ≤ λ1 + λ2Γ(α+ 1) ≤ 2Γ(α+ 1).

Definition 3.1. A function u ∈ C[0, 1] is called a solution of problem (1.1) if Dα
0+u ∈ C[0, 1], and u

satisfies the equation in (1.1) for t ∈ [0, 1] and the boundary condition in (1.1).

Lemma 3.2. If u ∈ C[0, 1] is a solution of the following boundary value problem{
(Dα

0+u(t))
′′ + f

(
t, u(t), Dα

0+u(t)
)
= 0, t ∈ (0, 1),

u(0) = 0, Dα
0+u(t)

∣∣
t=0

= Dα
0+u(t)

∣∣
t=1

= 0,
(3.1)

then u is a solution of (1.1).

Proof. According to Lemma 2.3, we have

(D2Dα
a+u)(t) = (Dα+2

a+ u)(t),

i.e.,
(Dα

0+u)
′′(t) = (Dα+2

0+ u)(t).

So, if u ∈ C[0, 1] is a solution of (3.1), it is a solution of (1.1).

The main result reads as follows.

Theorem 3.3. If min
0≤t≤1

f(t, 0, 0) ≥ 0 and there exists c > 0 such that

max
{
f(t, x, y) | (t, x, y) ∈ [0, 1]×

[
0,

c

Γ(3 + α)
(
1 + α

2
)
1+α]

×
[
0,

c

4

]}
≤ 2c,

then (1.1) has a solution u∗ satisfying

0 ≤ u∗(t) ≤ c
( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
.
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Proof. Let X = C[0, 1], the norm on X be ∥ · ∥ : ∥x∥ = max
0≤t≤1

|x(t)| for x ∈ X. Let K = {x ∈

X | x(t) ≥ 0, 0 ≤ t ≤ 1} and the partial order “≤” on X be induced by K: for x, y ∈ X,
y ≤ x ⇐⇒ x− y ∈ K, then (X,K) is an ordered Banach space.

Having in mind (3.1) (with Dα
0+u replaced by h), we discuss the problem{

−h′′(t) = f
(
t, Iα0+h(t), h(t)

)
,

h(0) = h(1) = 0,
(3.2)

Let D = {h ∈ X | h′′ ∈ X, h(0) = h(1) = 0}. Define L : D ⊂ X → X and N : X → X as follows:

Lh = −h′′(t) + λ1I
α
0+h(t) + λ2h(t),

Nh = f
(
t, Iα0+h(t), h(t)

)
+ λ1I

α
0+h(t) + λ2h(t).

By the definition of L and N , (3.2) can be rewritten as

Lh = Nh. (3.3)

Step 1. L : D ⊂ X → X is a reversible mapping.
Given η ∈ X, we consider the following boundary value problem:{

−h′′(t) + λ1I
α
0+h(t) + λ2h(t) = η(t),

h(0) = h(1) = 0.

It is known that h is the solution of the above problem if and only if h is the fixed point of the
operator Aη : X → X, where

Aηh(t) =

1∫
0

G(t, s)
[
η(s)− λ1I

α
0+h(s)− λ2h(s)

]
ds

and

G(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1.

Since max
t∈[0,1]

1∫
0

G(t, s) ds = 1
8 , we have

|Aηx(t)−Aηy(t)| =
1∫

0

G(t, s)
[
λ1I

α
0+(y(s)− x(s)) + λ2(y(s)− x(s))

]
ds

≤
1∫

0

G(t, s)
[
λ1I

α
0+∥x− y∥+ λ2∥x− y∥

]
ds ≤ 1

8

[ λ1

Γ(α+ 1)
+ λ2

]
∥x− y∥ ≤ 1

4
∥x− y∥

for all t ∈ [0, 1], x, y ∈ X, which implies that Aη : X → X is contractive.
By the completeness of X and an application of the Banach contraction principle, there exists a

unique h ∈ X such that Aηh = h, i.e., Lh = η. In fact, h ∈ D. Hence L : D ⊂ X → X is reversible.
Step 2. L−1 : X → D is continuous.

Let η ∈ X, {ηn} ⊂ X, ηn → η, L−1η = x, L−1ηn = xn, then

xn(t) =

1∫
0

G(t, s)
[
ηn(s)− λ1I

α
0+xn(s)− λ2xn(s)

]
ds,

x(t) =

1∫
0

G(t, s)
[
η(s)− λ1I

α
0+x(s)− λ2x(s)

]
ds.
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As a result,

|xn(t)− x(t)| =
∣∣∣∣

1∫
0

G(t, s)
[
ηn(s)− η(s) + λ1I

α
0+(x− xn)(s) + λ2(x(s)− xn(s))

]
ds

∣∣∣∣
≤

1∫
0

G(t, s)
[
|ηn(s)− η(s)|+ λ1I

α
0+|x− xn|(s) + λ2|x(s)− xn(s)|

]
ds

≤ 1

8

[
∥ηn − η∥+

( λ1

Γ(α+ 1)
+ λ2

)
∥x− xn∥

]
≤ 1

8
∥ηn − η∥+ 1

4
∥x− xn∥.

We have
∥xn − x∥ ≤ 1

6
∥ηn − η∥.

Consequently, xn → x, when ηn → η. Therefore, L−1 : X → D is continuous.
Step 3. L−1 : X → D is compact.

Let S ⊂ X be a bounded subset, i.e., there exists a constant M > 0 such that ∥η∥ ≤ M for any
η ∈ S.

Let η ∈ S,L−1η = x, then

x(t) =

1∫
0

G(t, s)
[
η(s)− λ1I

α
0+x(s)− λ2x(s)

]
ds.

As a result,
∥x∥ ≤ 1

8
∥η∥+ 1

8

( λ1

Γ(α+ 1)
+ λ2

)
∥x∥ ≤ 1

8
∥η∥+ 1

4
∥x∥,

hence
∥x∥ ≤ 1

6
∥η∥ ≤ 1

6
M,

which implies that L−1(S) is bounded.
Furthermore, let t1, t2 ∈ [0, 1], t1 < t2, then for any x ∈ L−1(S), there exists η ∈ D such that

L−1η = x and

|x(t1)− x(t2)| = |Aηx(t1)−Aηx(t2)|

=

∣∣∣∣
1∫

0

(G(t1, s)−G(t2, s))
[
η(s)− λ1I

α
0+x(s)− λ2x(s)

]
ds

∣∣∣∣
≤

1∫
0

|G(t1, s)−G(t2, s)| |η(s)− λ1I
α
0+x(s)− λ2x(s)| ds

≤
1∫

0

|G(t1, s)−G(t2, s)| ds
[
∥η∥+

( λ1

Γ(α+ 1)
+ λ2

)
∥x∥

]

≤ 4M

3

1∫
0

|G(t1, s)−G(t2, s)| ds.

Due to the uniform continuity of G(t, s) on [0, 1]× [0, 1], for ∀ ε > 0, there exists σ > 0 such that
|t2 − t1| < σ implies

|G(t1, s)−G(t2, s)| <
3

4M
ε.
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At the same time, we have

|x(t1)− x(t2)| ≤
4M

3

1∫
0

|G(t1, s)−G(t2, s)| ds <
4M

3

3

4M
ε = ε.

Hence L−1(S) is equi-continuous.
Since L−1(S) is bounded and equi-continuous, L−1 : X → D is compact.

Step 4. L−1N : X → D is continuous and increasing.
Since f is continuous, by the definition of N and Step 3, N : X → X and L−1N : X → D are

continuous.
Moreover, for arbitrary η1, η2 ∈ X, η1 ≤ η2, (H1) implies Nη1 ≤ Nη2. Let v1 = L−1Nη1,

v2 = L−1Nη2, then Lv1 = Nη1 ≤ Nη2 = Lv2. Hence we have L(v1 − v2) ≤ 0, i.e.,

−(v1 − v2)
′′(t) +

λ1

Γ(r)

t∫
0

(t− s)r−1(v1(s)− v2(s)) ds+ λ2(v1(t)− v2(t)), 0 < t < 1,

(v1 − v2)(0) = (v1 − v2)(1) = 0.

By Lemma 2.5, we obtain (v1 − v2)(t) ≤ 0 for t ∈ [0, 1], i.e., v1 ≤ v2. Hence L−1N : X → D is
increasing.

Step 5. There exist x, y ∈ D, x ≤ y such that Lx ≤ Nx and Ly ≥ Ny.
Let v(t) = 0. Since

min
0≤t≤1

f(t, 0, 0) ≥ 0,

we have {
D2+α

0+ v(t) + f(t, v(t), Dα
0+v(t)) ≥ 0, t ∈ (0, 1)

v(0) = 0, Dα
0+v(t)

∣∣
t=0

≤ 0, Dα
0+v(t)

∣∣
t=1

≤ 0.

Let
w(t) = c

( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
.

Noting that for t ∈ [0, 1],

D2+α
0+ w(t) = 2c, w(t) ∈

[
0,

c

Γ(3 + α)

(1 + α

2

)1+α]
, Dα

0+w(t) ∈
[
0,

c

4

]
and

max
{
f(t, x, y) | (t, x, y) ∈ [0, 1]×

[
0,

c

Γ(3 + α)

(1 + α

2

)1+α]
×
[
0,

c

4

]}
≤ 2c,

we get {
D2+α

0+ w(t) + f
(
t, w(t), Dα

0+w(t)
)
≤ 0, t ∈ (0, 1),

w(0) = 0, Dα
0+w(t)

∣∣
t=0

≥ 0, Dα
0+w(t)

∣∣
t=1

≥ 0.

By Step 1, there exist x, y ∈ D such that

Lx = N(Dα
0+v(t)), Ly = N(Dα

0+w(t)).

Next, we assert that

(1) x ≤ y;

(2) Dα
0+v(t) ≤ x and Lx ≤ Nx;

(3) y ≤ Dα
0+w(t) and Ly ≥ Ny.
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Since N is nondecreasing, we have N(Dα
0+v(t)) ≤ N(Dα

0+w(t)), hence Lx ≤ Ly. Lemma 2.5
implies x ≤ y. Assertion (1) is verified.

Next, we verify assertion (2).
In fact, by the definition of x, we have{

−x′′(t) + λ1I
α
0+x(t) + λ2x(t) = f

(
t, v(t), Dα

0+v(t)
)
+ λ1v(t) + λ2D

α
0+v(t),

x(0) = x(1) = 0.
(3.4)

Let ϕ(t) = Dα
0+v(t). Then{
−ϕ′′(t) + λ1I

α
0+ϕ(t) + λ2ϕ(t) ≤ f

(
t, v(t), Dα

0+v(t)
)
+ λ1v(t) + λ2D

α
0+v(t),

ϕ(0) ≤ 0, ϕ(1) ≤ 0.
(3.5)

(3.4), (3.5) together with the assumption (H2) lead to{
−(x(t)− ϕ(t))′′ + λ1I

α
0+(x− ϕ)(t) + λ2(x(t)− ϕ(t)) ≥ 0,

(x(0)− ϕ(0)) ≥ 0, (x(1)− ϕ(1)) ≥ 0.

By virtue of Lemma 2.5, we have x(t) − ϕ(t) ≥ 0 i.e., x(t) ≥ ϕ(t). The nondecreasing of N gives
Nx ≥ Nϕ, hence Lx = Nϕ ≤ Nx.

y ≤ Dα
0+w(t), Ny ≤ Ly can be verified similarly.

Step 6. Problem (1.1) has a solution u∗(t) satisfying v(t) ≤ u∗(t) ≤ w(t).
Step 4 and Step 5 implies that the operator L−1N maps [x, y]∩D into [x, y]∩D. Since [x, y]∩D

is convex, closed and bounded and L−1N is completely continuous, an application of Schauder’s fixed
point theorem implies that Lh = Nh has a solution h∗ in [x, y]. Let

u∗(t) =
1

Γ(α)

t∫
0

(t− s)
α−1

h∗(s) ds,

then u∗(t) is a solution of problem (1.1) satisfying v(t) ≤ u∗(t) ≤ w(t).

Theorem 3.4. If max
0≤t≤1

f(t, 0, 0) ≤ 0 and there exists c > 0 such that

min
{
f(t, x, y) | (t, u, v) ∈ [0, 1]×

[
− c

Γ(3 + α)

(1 + α

2

)1+α

, 0
]
×

[
− c

4
, 0
]}

≥ −2c,

then (1.1) has a solution u∗ satisfying

0 ≥ u∗(t) ≥ −c
( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
.

Proof. In Step 5 of the proof of Theorem 3.3, let

v(t) = −c
( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
, w(t) ≡ 0.

Then the conclusion of Theorem 3.4 can be verified in a similar way.

Theorem 3.5. If there exists c > 0 such that

max
{
f(t, x, y) | (t, x, y) ∈ [0, 1]×

[
0,

c

Γ(3 + α)

(1 + α

2

)1+α]
×
[
0,

c

4

]}
≤ 2c,

min
{
f(t, x, y) | (t, u, v) ∈ [0, 1]×

[
− c

Γ(3 + α)

(1 + α

2

)1+α

, 0
]
×

[
− c

4
, 0
]}

≥ −2c,

then (1.1) has a solution u∗ satisfying

−c
( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
≤ u∗(t) ≤ c

( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
.
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Proof. In Step 5 of the proof of Theorem 3.3, let

v(t) = −c
( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
, w(t) = c

( tα

Γ(1 + α)
− 2t2+α

Γ(3 + α)

)
.

Then the conclusion of Theorem 3.5 can be verified in a similar way.

4 Example and remark
Example 4.1. Consider the following boundary value problem for the fractional differential equation:D

5
2
0+u(t) + cosu(t) + arctan(D

1
2
0+u(t)) = 0,

u(0) = 0, D
1
2
0+u(t)

∣∣
t=0

= D
1
2
0+u(t)

∣∣
t=1

= 0.

Let
f(t, x, y) = cosx+ arctan y.

Then f(t, 0, 0) > 0 and f satisfies (H1 −H2) with λ1 = 1, λ2 = 0, α = 1
2 .

Furthermore, let c = 4, we have

max
{
f(x, y) | (x, y) ∈

[
0,

c

Γ(3 + α)

(1 + α

2

)1+α]
×

[
0,

c

4

]}
= 1 +

π

4
≤ 2c.

Then Theorem 3.3 assures the above problem has a solution between 0 and

8t
1
2

√
π

(
1− 8t2

15

)
.

Remark 4.2. By the proof of Theorem 3.3, we know that the solution of problem (3.3) can be
obtained by iterative sequence {xn} or {yn}, where

Lxn+1 = N(xn), x0 = x, n = 0, 1, 2, . . . ;

Lyn+1 = N(yn), y0 = y, n = 0, 1, 2, . . . .

This implies that the solution of problem (1.1) is computable.
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