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Abstract. In the paper, is consider a three-dimensional model of fluid-solid acoustic interaction when
an electro-magneto-elastic body occupying a bounded region Q7 is embedded in an unbounded fluid
domain Q~ = R3\ QF. In this case in the domain Q7 is a five-dimensional electro-magneto-elastic
field (the displacement vector with three components, electric potential and magnetic potential), while
in the unbounded domain 2~ is a scalar acoustic pressure field. The physical kinematic and dynamic
relations mathematically are described by appropriate boundary and transmission conditions. In the
paper, less restrictions are considered on matrix differential operator of electro-magneto-elasticity and
asymptotic classes are introduced. In particular, corresponding characteristic polynomial of the matrix
differential operator can have multiple real zeros. With the help of the potential method and theory
of pseudodifferential equations, for above mentioned fluid-solid acoustic interaction mathematical
problems the uniqueness and existence theorems are proved in Sobolev—Slobodetskii spaces.
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1 Formulation of the problems

1.1 Introduction

Interaction problems of different dimensional fields of this type appear in mathematical models of
electro-magneto transducers. Further examples of similar models are related to phased array micro-
phones, ultrasound equipment, inkjet droplet actuators, sonar transducers, bioimaging, immunochem-
istry, and acousto-biotherapeutics (see [38,89]).

Due to the rapidly increasing use of composite materials in modern industrial and technological
processes on the one hand, and in biology and medicine on the other hand, mathematical modeling
related to complex composite structures and their mathematical analysis became very important from
the theoretical and practical points of view in recent years.

The Dirichlet, Neumann and mixed type interaction problems of acoustic waves and piezoelectric
structures are studied in [g,11,12].

Similar interaction problems for the classical model of elasticity has been investigated by a number
of authors. An exhaustive information concerning theoretical and numerical results, for the case
when the both interacting media are isotropic, can be found in [[I-4,[15, 17-19,26,27,81]. The cases
when the elastic body is homogeneous and anisotropic, and the fluid is isotropic, has been considered
in [25,85,36]. In this case, one has a three-dimensional elastic field, the displacement vector with three
components in the bounded domain O, and a scalar pressure field in the unbounded domain Q.

In our case, in the domain QF we have an additional electric and magnetic fields which essentially
complicate the investigation of the transmission problems in question. In contrast to the classical
elasticity, the differential operator of electro-magneto-elasticity is not self-adjoint and is not positive-
definite.

We consider less restrictions on the matrix differential operator of electro-magneto-elasticity by in-
troducing asymptotic classes My, my,ms (P), where P is determinant of the electro-magneto-elasticity
matrix operator, in particular, we allow for the corresponding characteristic polynomial of the matrix
differential operator to have multiple real zeros. This class is generalization of the Sommerfeld-
Kupradze class.

We investigate the above problems with the use of the boundary integral equations method and the
theory of pseudodifferential equations on manifolds and prove the existence and uniqueness theorems
in Sobolev—-Slobodetskii spaces.

1.2 Piezoelectric field

Let Q% be a bounded three-dimensional domain in R? with a compact C*°-smooth boundary S = 9"
and let Q= := R?®\ QF. Assume that the domain Q% is filled with an anisotropic homogeneous
piezoelectro-magnetic material.

The basic equations of steady state oscillations of piezoelectro-magneticity for anisotropic homo-
geneous media are written as follows:

Cijr100ug + prw®Spuy + €1;0,0i0 + qij0;0 + F; =0, j=1,2,3,
—ei110;01uy, + €10;010 + 050;01 + Fy = 0,
— Qi1 0i01uy, + a4 0;010 + 1310;01 + F5 = 0,

or in the matrix form
A(0,w)U + F =0 in QT
where U = (u, 0,%) ", u = (u1,us,u3)" is the displacement vector, ¢ = uy is the electric potential,

1) = uy is the magnetic potential and F' = (Fy, Fy, F3, Fy, F5)T is a given vector-function. The three-
dimensional vector (Fy, Fy, F3) is the mass force density, while —F) is the electric charge density, —Fs
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is the electric current density, and A(9,w) is the matrix differential operator,

A(a,w) = [Ajk(a7w)]5x5, (1.1)
Aj(0,w) = cijidi0 + prw?djn,  Aju(0,w) = e1;;00i,  Ajs(0,w) = qi;010;,
Ask(0,w) = —€i10;0;,  Aaa(0,w) = €10;0), As5(0,w) = a;10;0,
As(0,w) = —qir10:0y,  Asa(0,w) = a0;0;,  Ass(0,w) = pa0;0,
7.k = 1,2,3, where w € R is a frequency parameter, p; is the density of the piezoelectro-magnetic
material, cijik, €iri, Qiri, €i, Mil, ay are elastic, piezoelectric, piezomagnetic, dielectric, magnetic
permeability and electromagnetic coupling constants, respectively, d; is the Kronecker symbol and

summation over repeated indices is meant from 1 to 3, if not stated otherwise. These constants satisfy
the standard symmetry conditions

Cijkl = Cjikl = Cklijs Cijk = Cikj, Qijk = Qikj> E€ij = Ejis MHjk = Hkj, Qjk = Akj, %, J,k,1=1,2,3.

Moreover, from physical considerations related to positiveness of the internal energy, it follows that
the quadratic forms ¢;;1:1€:;&k and €;;1;m; are positive definite:

Cijri§izrl > coij&iy V&ij = &5 €R, (1.2)
eigming = canl®, qining = esnl?, pagmim; > caln* Y = (n1,m2,m3) € R?, (1.3)

where cg, c¢1, co and c3 are positive constants.
More careful analysis related to the positive definiteness of the potential energy insures that the

matrix
Ao [[Erilaxs okl
[akjlsxs  [1njlzys 6x6
is positive definite, i.e.,
e ChCl + ars (GRS + ¢l ) + G Sy = ea(IC1? + [¢"%) V¢ ¢" e CP, (1.4)

where ¢4 some positive constant.
The principal homogeneous symbol matrix of the operator A(9,w) has the following form:

[—cijin€ililsng  [—€1ij&i&ilssy [~ @ii&il5,
A = | [eirbi&),xs —ea&i& —a1&:&
[Giri&i&)1 <3 —a & —wa&i& ) 5.5

With the help of inequalities () and (@) it can be easily shown that
—Re AO(E)¢C - ¢ > ¢|¢2E)? V¢ e T, VEER?, ¢=const >0,
implying that A(9,w) is a strongly elliptic, formally nonselfadjoint differential operator.

N _
Here and in the sequel, a - b denotes the scalar product of two vectors a,b € CV, a-b:= > azby.
k=1

In the theory of electro-magneto-elasticity, the components of the three-dimensional mechanical
stress vector acting on a surface element with a normal n = (n1,ng,ng) have the form

03N 1= Cijipni Qg + eijni0ip + quijni 01y, j=1,2,3,

while the normal component of the electric displacement vector D = (Dj, Dy, D3)" and the normal
component of the magnetic induction vector B = (By, B, B3) " read as

—Din; = —ejpniOiug + €401 + ayn; O,
—Bin; = —qirniOug + ayn;Oip + pin; 0.
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Let us introduce the boundary matrix differential operator

T(a’ n) = [Tjk(a’ n)]5><57
Tk (0,n) = cijieniO;, Tja(0,n) = eni0;,  Tj5(0,n) = quijniol,
Tye(0,n) = —einiOl,  Tua(0,n) = egni0;,  Ty5(9,n) = ayn;dy,
Ts5x(0,n) = —qiraniOy,  T54(0,n) = auni0y, Tss5(0,n) = pyn,;oy,

4,k =1,2,3. For a vector U = (u,p,%) ", we have
T(@, n)U = (aljnj,agjnj,agjnj, —Dini, —Bmi)T. (15)

The components of the vector TU given by (@) have the following physical sense: the first three
components correspond to the mechanical stress vector in the theory of electro-magneto-elasticity,
while the fourth one is the normal component of the electric displacement vector and the fifth one is
the normal component of the magnetic induction vector.

In Green’s formulae, one also has the following boundary operator associated with the adjoint
differential operator A*(9,w) = AT (-0,w) = AT(9,w),

f(av ’I’L) = [Tjk(av ﬂ)}5><5,

where
Tji(0,n) = Tjx(d,n), Tja(d,n) = ~Tja(d,n), Tj5(0,n) = —Tj5(9,n),
Tur(0,n) = —Tur(d,n), Taa(d,n) = Tua(d,n), Tus(d,n) = Tu5(9, n),
Tsr(0,n) = —Tsr(0,n), Tsa(d,n) = Tsa(8,n), Ts5(,n) = Ts5(,n),
g, k=1,2,3.

1.3 Green’s formulae for electro-magneto-elastic vector fields

For arbitrary vector-functions U = (w1, ug, uz, ug,us) " € [C*(QT)]° and V = (v1,ve,v3,v4,05)" €
[C2(Q1)]5, we have the following Green’s formulae (see [(]):

/ [A(0,0)U -V + B(U, V)] da = /{TU}+ (VY as,

Qt S
/ [A(8,w)U -V —U - A*(8,w)V] dz = / [{TU} (VT —{U}+ {TV}T]ds,
Qt S

where

E(U,V) = ¢;ju0iu;ony, — prwu - v + €13 (0us0iv; — ju;0,04)

+ quij (81u58ﬁj - @-ujal%) + EjlajU4al@4 + ajl(alumj% — 8ju58ﬁ4) + ,ujlaju58ﬁ5
with u = (u1,us2,u3) " and v = (vy,vs,v3) . The symbol {-}* denotes the one-sided limits (the trace
operator) on S from QF. Note that by the standard limiting procedure, the above Green’s formulae can
be generalized to the vector-functions U € [H*(Q21)]® and V € [HY(Q1)]® with A(9,w)U € [Lo(Q7)]°
and A*(0,w)V € [Lo(Q27)]5.

With the help of these Green’s formulae, we can define a generalized trace vector {T(9,n)U}T €
[H~1/2(8))° for a function U € [H*(Q1)]® with A(9,w)U € [L2(Q7)]%:

({T@, U} (V}*), = / [A(0,w)U -V + E(U, V)] da,

O+

where V € [H(Q7)]® is an arbitrary vector-function.
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Here and in what follows, the symbol (-, -)g denotes the duality between the mutually adjoint
function spaces [H~1/2(S)|N and [H'/?(S)]N, which extends the usual Ly scalar product

N
(hg)s = [ 31,948 tfor fg [La(S)™.
5 =1

1.4 Scalar acoustic pressure field and Green’s formulae

We assume that the exterior domain 2~ is filled with a homogeneous isotropic inviscid fluid medium
with the constant density ps. Further, let the propagation of acoustic wave in 2~ be described by
a complex-valued scalar function (scalar field) w, being a solution of the homogeneous Helmholtz
equation

AW + pow’w =0 in Q7 (1.6)

3
where A = Y 8‘9722 is the Laplace operator and w > 0. The function w(z) = P*¢(x) is the pressure of
=7

a scattered acoustic wave.
We say that a solution w to the Helmholtz equation (@) belongs to the class Som,(27), p = 1,2,
if w satisfies the classical Sommerfeld radiation condition

Ow(z)

o] +i(=1)P/prww(z) = O(|z|72) as |z| — oc. (1.7)

Note that if a solution w of the Helmholtz equation (@) in Q7 satisfies the Sommerfeld radiation
condition (@), then (see [43])
w(z) = O(Jz|™) as |z| — oo.

Let Q be a domain in R? with a compact simply connected boundary 9Q € C'°.

We denote by H*(Q) (H}.(2)) and H*(0N2) s € R, the Ly based Sobolev—Slobodetskii (Bessel
potential) spaces in © and on the closed manifold 99).

Respectively, we denote by HZ,,,,(2) the subspace of H*(Q) (H}, (2)) consisting of functions with
compact supports.

If M is a smooth proper submanifold of a manifold 052, then we denote by H 5(M) the following
subspace of H*(0Q):

H*(M) := {g : g€ H?(09), suppg C M},

while H*(M) denotes the space of restrictions to M of functions from H*(0),
H*(M):={ruf: feH09Q)},

where r); is the restriction operator to M. o
Let wi € H. (Q7)NSomy,(27), p=1,2,, Awy € Lo 0c(Q7), wa € H.,,,,,(€27), then the following
Green’s first formula holds:

/(A + k2)W1W2 dxr + / VwiVWws dx — k2 / WiWo dx = —<{6nw1}_, {Wg}_>s, (18)
Q- Q- Q-

where n = (ny,ng,n3) is the exterior unit normal vector to S directed outward with respect to the
domain Q7, and 8,, = % denotes the normal derivative.

1.5 Formulation of the Dirichlet and Neumann type
interaction problems for steady state oscillation equations

Now we formulate the fluid-solid interaction problems. We assume that S = Q1 = 9Q~ € C*°.
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Dirichlet type problem (D,,): Find a vector-function U = (u,u4,us)" = (u,9,¥)" € [HY(Q1)]® and
a scalar function w € H} (27) N Som, (Q7) satisfying the differential equations

A(0,w)U =0 in O, (1.9)
AW + pow?w = 0in Q7 (1.10)
the transmission conditions

{u-n}" =b{0,w}~ + fo on S, (1.11)
{[T(0,n)U);}" = bo{w} " nj+ f; on S, j=1,2,3, (1.12)

and the Dirichlet boundary conditions
{o}t =) on S, (1.13)
{1t =P on S, (1.14)

where by and by are the given complex constants satisfying the conditions
b1b2 ?é 0 and Im[glbg] = 07 (1.15)

and fo € HV2(S), f; € H-V2(S), j =1,2,3, f{P) e HY2(S), f{P) € HV/2(S).

Neumann type problem (N,,): Find a vector-function U = (u, uy,us) = (u, p, )" H1 and
a scalar function w € H} _(Q7) N Som;(Q7) satisfying the differential equations ( , the
transmission conditions ([L.11)), (1.12) and the Neumann boundary conditions

{[r(@,n)U)} " = £ on 8, (1.16)
{IT@,n)U]5}" = i) on S, (1.17)

=

where b; and by are the given complex constants satisfying conditions (), and fo € H-/2(9),
fie HV2(S), j=1,2,3, (V) e H-V2(S), 1§V e H-V/2(S).

The transmission conditions (), () are called the kinematic and dynamic conditions. For
an interaction problem of fluid and electro-magneto-elastic body

by = [png]ilv by = _1a fO(x) = 6nc(x) = [png]ilaanc(x)v

fi = —P™(z)n;(z), j=1,2,3, (1.18)

where P is an incident plane wave,

Pznc(m) _ eid-o:’ d= W\/EW, ne R3’ ‘77| =1.

2 The uniqueness of solutions of the problems (D,) and (N,)

2.1 Jones modes and Jones eigenfrequencies

We denote by Jp(Q2T) the set of values of the frequency parameter w > 0 for which the following
boundary value problem

A(0,w)U =0 in QF, (2.1)
{u-n}t =0 on S, (2.2)
{IT(®,n)U);}" =0 on S, j=1,2,3, (2.3)
{¢}T =0 on S, (2.4)

{}* =0 on S, (2.5)
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has a nontrivial solution U = (u, p,%) " € [H*(QT)]® (cf. [25]).
We denote by Jy(£27) the set of values of the frequency parameter w > 0 for which the following
boundary value problem

A(0,w)U =0 in QF, (2.6)
{u-n}t =0 on S,
{IT(,m)U]}" =0 on S, (2.8)

has a nontrivial solution U = (u, p,%) " € [H*(QF)]° (cf. [25

Nontrivial solutions of problems ( )7(‘@) and (@)%ﬁ) will be referred as Jones modes, while
the corresponding values of w are called Jones eigenfrequencies, as they were first discussed by
D. S. Jones [29] in a related context (a thin layer of ideal fluid between an elastic body and a sur-
rounding elastic exterior). For example, Jones eigenfrequencies exist for any axisymmetric body, such
bodies can sustain torsional oscillations in which only the azimuthal component of displacement is
nonzero. However, we do not expect Jones eigenfrequencies to exist for an arbitrary body. The spaces
of Jones modes corresponding to w we denote by Xp .,(Q2") and Xx ,(2F), respectively.

Let J5,(21) be the set of values of the frequency parameter w > 0 for which the following boundary
value problem

A*(0,w)V =0 in QF, (2.9)
{v-n}" =0 onsS, (2.10)
{IT@,n)V];}" =0 on 5, j=1,2,3, (2.11)
{vg}T =0 on S, (2.12)

{vs}T =0 on S (2.13)

has a nontrivial solution V = (v,v4,vs5) " € [HY(QF)]5.
Let J5 (1) be the set of values of the frequency parameter w > 0 for which the following boundary
value problem

A*(0,w)V =0 in QF, (2.14)
{v-n}t =0 on S, (2.15)
{IT@,n)V]} =0 on S (2.16)

has a nontrivial solution V = (v,v4,vs5) " € [HY(QF)]5.

The spaces of Jones modes corresponding to w for the differential operator A*(9,w) we denote by
X5 (), and X3 (%), respectively.

It can be shown that Jp(Q1) is at most countable, while Jy (Q27) = R, since for an arbitrary non-
zero constants ¢; and cg, the vector (0,0,0,c1,c2) " is a Jones eigenvector: (0,0,0,¢1,¢2)" € Xy o(QF)
for arbitrary w. The same is true for J5,(27) and J3 (21). Note that for each w the corresponding
spaces of Jones modes Xp (), Xy o(QF), X} ,(QF) and X3 ,(Q7) are of a finite dimension.

2.2 The uniqueness theorems for the problems (D,) and (N,)

Theorem 2.1. Let a pair (U,w) be a solution of the homogeneous problem (D) and w > 0. Then
w=01in Q" and either U=0in Q" ifw & Jp(QF) or U € Xp ,(QF) ifw € Jp(QT).

Proof. Let us write Green’s formula for the Helmholtz equation in the domain Qr := Q™ N B(0, R),
where O+ C B(0, R) with B(0, R) being the ball of radius R and centered at the origin,

/ [(A + pow?®)ww — w(A + p2w2)W] dx
Qg

_ / DywiwdS — / BpwwdS — ({0aw) ™ (W} )y + ({87} (7)) (217)

S(0,R) S(0,R)
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where S(0, R) = 0B(0, R) is the boundary of the ball B(0, R).
We have also the following Green’s formula for the operator A(d,w) in the domain QF:

[ (@i, + A0 + @@ )sus + EU.0)] de
O+
= <{TU};_’ {uj}+>s + <{ﬁ}z_v {64}+>S + Hﬁ};—a {ﬂ5}+>sv (2'18)

where E(U,U) = ¢;ju0iujOty, — prw?ul? + £10;u40ita + pj105us0yus. Clearly, InE(U,U) = 0 for an
arbitrary vector-function U.

With the help of (@), (), ()7 and (), we obtain from () and () the following

equalities:

Oyww dS — / B ww dS — ({B,w) ™~ {w} g + ({0nw)~, (W) ") = 0, (2.19)
5(0,R) S(0,R)
Im ({[TU;}*, {u;} ") = 0. (2.20)
The homogeneous transmission conditions yield
{TU1 T {ui} ) g = (bW} ™ ng, {us} ") g = b2b1 {0,W}, {W} 7). (2.21)
Since Im[b1bs] = 0, from () and () it follows that
Im ({0, W}~ {W} 7 )g =0,
and from () we derive that
Im / OpwwdS = 0. (2.22)
5(0,R)
Taking into account the Sommerfeld radiation condition, from () we conclude that
lim lw|?dS = 0.
R—o0
S(0,R)

Using the Rellich-Vekua lemma, we find that w = 0 in the domain Q= (see [13,43]). Then from the
homogeneous boundary conditions it follows that the vector-function U = (u, ¢, )" solves problem
(@)7(@), ie., either U=0in QT ifw & Jp(QF) or U € Xp ,(Q") if w € Jp(27T), which completes
the proof. O

The following assertions can be proved quite analogously.

Theorem 2.2. Let a pair (U, w) be a solution of the homogeneous problem (N,). ThenU € Xy ,(27)
and w=0 in Q.

Remark 2.3. Let a pair (V,w) € [H(Q1)]® x [H].(27) N Somz(227)] be a solution of the homoge-
neous problem

A*(0,w)V =0 in QF,
(A + pow®)w =0 in Q7
{v-n}t +52_1{8nw}* =0 onS,
{[T(a, n)V]j}+ —&—El_l{w}*nj =0onsS, j=1,2,3,
{vg}T =0 on S,
{vs}T =0 on S,

where by and by are the given complex constants satisfying the conditions ()
Then w =0 in @~ and either V =01in Q% if w & J5(QF) or V € X}, (QF) if w e JH(QF).
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Remark 2.4. Let a pair (V,w) € [HY(QT)]° x [HL_.(27) N Soma(Q27)] be a solution of the homoge-
neous problem

A*(0,w)V =0 in QF,
(A + pow?)w =0 in Q,
{v-n}t +b, {8,w}~ =0 on S,
{[T(E)JL)V]]-}+ +5;1{w}*nj =0onsS, j=1,2,3,
{[T@,n)V]s}" =0 on 8,
{IT(8,7)V]5}" =0 on 5,

where by and by are the given complex constants satisfying conditions ()
Then V € X3 ,(27) and w =0 in Q.

3 Layer potentials

3.1 Potentials associated with the Helmholtz equation

Let us introduce the single and double layer potentials,

Vo(g)(z) = /v(x —y,w)g(y)d,S, =¢S5,

S
Wo(f)(z) = / By — 1.0) [ (¥) dyS, = ¢S,
S

where

exp(i/p, wlz|)
) =~

is the fundamental solution of the Helmholtz equation (E) These potentials satisfy the Sommerfeld
radiation condition, i.e., belong to the class Som(Q27).
For these potentials the following theorems are valid (see [13,87]).

Theorem 3.1. Let g € H-'/2(S), f € H'/?(S). Then on the manifold S the following jump relations
hold:

(Vo)) =Hulg), {(Wu(H)}F =x271f + K5(f),
{&sz(g)}i = :F2_1g + /Cw(g), {3nWw(f)}+ = {anWw(f)}_ = ﬁw(f)a

where H,,, IC5 and ICy, are integral operators with the weakly singular kernels,

Hao(9)(2) == /W(Z —y,w)g(y)dyS, z€S8,
S

K5(f)(2) = / Bty 1(z — ) f(y) dyS, =€ S,
S

Ku(g)(2) = / Bniey(z — 1 w)g(y) dyS, 2 € 8,
S

while L, is a singular integro-differential operator (pseudodifferential operator) of order 1.
Theorem 3.2. The operators
N =27 + K + pH, - HY?(S) — HY?(S), (3.1)
M= Lo+ p(27 L + Ky) - HY2(S) — HY2(S), (3.2)

are invertible provided that Im pu % 0. Here Iy is the scalar identity operator.
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The mapping properties of the above potentials and the boundary integral operators are described
in Appendix.

3.2 Fundamental solution and potentials of the steady state
oscillation equations of electro-magneto-elasticity

Let us consider the equation
[ciji&i& — p1w®djn)axs  [ew;&iilsny  [@ii&i&ilsny
P4 (&, w) = det A(i§, w) = det [—eiri&i&il1x3 eu&i&l au&i&i =0, (3.3)
[~ airi&i&ilxs ai&i&i wa&i&l ) 5os
EeR\{0}, weR, i,j,kl=123,

where ® 4 (&, w) is the characteristic polynomial of the operator A(9,w). The origin is an isolated zero

of (B.d).

We are interested in the real zeros of the function ®4 (&, w), € € R3\ {0}.
Denote

2
)\::p|g|u2 , E::éfor €] # 0,
leijm€i&t — Mjlaxs  [Aja(E)laxt [Aj5()]ax1
B(\€) = [_Aj4(g>]1><3 eubify an&i&
[~ Aj5()]1xs ai&& paki&t /o
Then (@) can be rewritten as R R
T(N &) :=det B(\,§) =0. (3.4)

This is a cubic equation in A with real coefficients.
Theorem 3.3. Equation (@) possesses three real positive roots A1 (€), Aa(€), As(E).

Proof. Let € € $y = {zx € R®: |z|] = 1} and \I'()\,E) = 0. Then there is a non-trivial vector
n € C°\ {0} such that B(\,€) n =0, i.e.,

(Cijklgigl — M)k + em@@m + QZijglgiU5 =0, 7=1,2,3, (3.5)
—eim&i&imy + e + auki&ms =0, (3.6)
_Qiklgiglnk + aiz@@m + Milgigl% =0, (3.7)

Multiply the first three equations by 7;, the complex conjugate of the fourth equation by 74, the
complex conjugate of the fifth equation by 75 and sum them to obtain
Cijr&&mal; — ANn'1? + ew;&&inam; + i &&ins,

— €i;1&&Mna + ea&ililnal® + aa&i&imMsna — G j&&imms + an&&imans + pa&&ilns|> =0, (3.8)

where ' = (11, 12,13).
Due to the symmetry property of the coefficients e;;; and g5,
€15 §i&inaml; = €ij&i&inas  Qii&i&insm,; = ¢ij1&iSim;ns-
Therefore, we derive from (@) that
cijr&&mialy — M’ 12+ ea&i&lmal® + pa&i&ilns|” + 2Re aui&msna = 0. (3.9)

Next, we note that Cijklgiglnkﬁj = CijklHij ki > 50%k17kl > 0 with »”, = 271(&7]1C + fknl)

Moreover, due to the strict inequalities 61‘121‘21 > 41 >0, Ml@@ > 99 > 0, and (@), it follows that
|n'| # 0, since otherwise from (@) we get ny = 0, which contradicts the inclusion n = (0, n4,75) €
C®\ {0}. Therefore, from (@) we finally conclude that A > 0. O
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Denote the roots of equation (@) by A1, A2, As. Clearly, the equation of the surface S, ;,
7 =1,2,3, in the spherical coordinates reads as

V1w
X (€)

where & = rcospsinf, &, = rsinpsing, £&5 =rcosf with 0 < ¢ <27, 0 <0 <7, r = [¢|.
We also have the following identity:

r:Tj(aaSD) =

3

(r? = r2(€)) = @a(€,0)r* T[] P ()

j=1 j=1

B A(€,w) = det A(i€,w) = Ba(E,0)7

'.’:lw

It can easily be shown that the vector

n(é) = (=1)|VeA(& w)| "' VOA(E,w), €€ Sy,

is an external unit normal vector to S, ; at the point .
Further, we assume that the following conditions are fulfilled (cf. [10,83,41,42]):

(1) if a(E,) = BA(E,0) FAPUEPAE) P (€), then Ve(P(€)Pa(€)Py(£)) # 0 at real zeros € € R? |
{0} of the polynomial (@1), or

if @ 4(€,w) = D 4(E,0) 4 PE(E) Py(€), then Ve(Pi(€)Py(€)) # 0 at real zeros £ € R3\ {0} of the
polynomial (B.3), or

if @4 (€,w) = Ba(E,0)r4P3(€), then Ve Pi(€) # 0 at real zeros € € R3\ {0} of the polynomial
(ii) the Gaussian curvature of the surface, defined by the real zeros of the polynomial ®4(&,w),
¢ € R3\ {0}, does not vanish anywhere.

It follows from the above conditions (i) and (ii) that the real zeros € € R?\ {0} of the polynomial
® 4 (&, w) form non-self-intersecting, closed, convex two-dimensional surfaces Sy, 1, Sw,2, Sw,3, enclosing
the origin. For an arbitrary unit vector n = x/|z| with € R\ {0}, there exists only one point on
each S, j, namely, & = (¢ {2,53) € S,,; such that the outward unit normal vector n(¢’) to S, w,j
at the point &7 has the same direction as 7, i.e., n(¢) = n. In this case, we say that the points &7,
7 =1,2,3, correspond to the vector 7.

From (i), we see that the surfaces S,, ; j = 1,2, 3, might have multiplicities.

We say that a vector-function U = (u1,us,us,us,us)’ belongs to the class M, my.m,(P) if
U € [C>(Q7)]° and the relation

5
=) w(@)
p=1

holds, where u? has the following uniform asymptotic expansion as r = |z| — oo:

~ Ze—"f]{ o, (™2 (n)rmJ‘Q‘q}, p=12,3, (3.10)
qg=1

ut(z) = O(T’l), Oput(z) = O(r™?), w’(x) =007, Owu’(x) =0(7?%), k=123,

here P = det A(i0;,w) and df,, € C>, j=1,2,3 (see [L0]).

These conditions are generalization of Sommerfeld-Kupradze type radiation conditions in the an-
isotropic elasticity (cf. [28,83]).

From condition (i) it follows that our class M, my,ms(P) is M7 11(P) (when there is no multi-
plicity, i.e., surfaces do not coincide) or M 1(P) (when two surfaces coincide) or M3(P) (when all
three surfaces coincide).

The class M 1 1(P) is a subset of the generalized Sommerfeld-Kupradze class.

We can show the following uniqueness theorems.
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Theorem 3.4. The homogeneous exterior Dirichlet boundary value problem
AQ,w)U =0 inQ~, {U} =0 onS,
has only the trivial solution in the class [H} . (Q27)]% N My, mo,ms (P)-

Theorem 3.5. The homogeneous exterior Dirichlet boundary value problem
A*(Q,w)V =0 inQ~, {V}==0 onsS,

has only the trivial solution in the class [HL .(27)]° N M, sy .ms (P*), where P* = det A*(9,w).

If surfaces S, ; 7 = 1,2,3, have no multiplicity, Theorems @ and @ are valid in generalized the
Sommerfeld-Kupradze class (cf. [2§]).

Denote by I'(xz,w) the fundamental matrix of the operator A(9,w). By means of the Fourier
transform method and the limiting absorption principle, we can construct this matrix explicitly (see
Ch. 1, Section 1, also see [42])

[(z,w)= lm F! [A7'(i& w +ig)], (3.11)

et §7F

where F~! is the inverse Fourier transform. The columns of the matrix I'(z,w) are infinitely differ-
entiable in R? \ {0} and belong to the class My, my.ms(P).
Further, we introduce the single and double layer potentials associated with the differential operator

A0, w),

Vo(9)(z) = / Iz - y,w)g(y) d,S, = e 0*,
S
W (f)(a) = / [0y, n)TT (z — y.)] " f(y)dyS, @ € O,

.., f1) T are density vector-functions.
o the homogeneous equation ([.9) in QF we have the integral

where g = (g1,...,94) " and f =
For a solution U € Hl((ﬁ)

representation

rF\.

U=W,{U}") - V,{TU}*") in QF.
For these potentials the following theorem holds (see [0, []).
Theorem 3.6. Let g € [H175(9)]* and f € [H*(S)]*, s > 0. Then
{Vu(9)(2)}F =Hu(9)(2), 2 €8,
{(Wo (N =427 f(2) + Ku(f)(2), z €S,
(@, n)Vale) ()} =F27'9(:) + Kul9)(2), 2 €5,
{T(0.,n(2)Wu(f)(2)} " = {T(0.,n(z ))Ww(f)(z)} = Lu(f)(2), z€5,

where H,, is a weakly singular integral operator, Kw and K, are singular integral operators, while L,
is a pseudodifferential operator of order 1,

H,(g)(2) = / T(z - y,w)g(y) dyS, 2 €8,

S

Ru(1)(:) = [ [T, (e = )] 10,5, 2 €5
S

K.(9)(z) := /T(@Z,n(z))I‘(z —y,w)g(y)dyS, z€S.
S

The mapping properties of these potentials and boundary integral operators are described in
Appendix.
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4 The Dirichlet and Neumann type interaction problems
for pseudo-oscillation equations

In this section, we consider the Dirichlet and Neumann type interaction problems for the so-called
pseudo-oscillation equations. These problems are intermediate auxiliary problems for investigation of
interaction problems for the steady state oscillation equations.

4.1 Formulation of the problems

The matrix differential operator corresponding to the basic pseudo-oscillation equations of the electro-
magneto-elasticity for anisotropic homogeneous media is written as follows:

A(a7 T) = [A]k(av T)]5><57
Aj(0,7) = cijra0iO + p1736k,  Aja(0,7) = €13;0,0;,  Ajs(0,7) = qi;010;,
Ayr(0,7) = —€i110i0;, Aus(0,7) = €40;0;, Au5(0,7) = a;0;0,,
Asi(0,7) = =i 0;01,  As4(0,7) = ayy0;0y,  Ass(0,T) = pa0;0l,
7,k =1,2,3, where 7 is a purely imaginary complex parameter: 7 =140, 0 # 0, 0 € R.

Dirichlet type problem (D,): Find a vector-function U = (u,us,us)’ € [HY(Q1)]® and a scalar
function w € H} (27) N Som, (27) satisfying the differential equations

A(0,7)U =0 in Qr, (4.1)
Aw + pow?w =0 in Q~,
the transmission conditions

fu-n}* = by {0}~ + fo on S, (43)
{[TU);}" =ba{w} nj+ fj on S, j=1,2,3,

and the Dirichlet boundary conditions

{us}™ = £ on s, (4.5)

{us}* = f3" on s, (4.6)
where b; and by are the given complex constants satisfying conditions (), fo € H1/2(S), fi €
HY2(S), j=1,2,3, f\7) e HY2(S), fi7) € HY/*(S).

Neumann type problem (N,): Find a vector-function U = (u,uy,us)'_€ [H'(21)]° and a scalar
function w € H: _(Q7) N Som; @_) satisfying the differential equations (@) and (4.2), respectively,
)

loc
transmission conditions (@), (f.4), and the Neumann boundary conditions

(TU] T = £ on S with fV) e H-1/2(9), (4.7)
{(TU]53 = £ on S with £V € H-1/2(9). (4.8)

4.2 Uniqueness theorems for problems (D,) and (V)

Theorem 4.1. Let 7 = io, 0 # 0, 0 € R. The homogeneous problem (D;) has only the trivial
solution, while the general solution of the homogeneous problem (N;) is the vector (0,0,0,cq,ca),
where ¢1 and co are an arbitrary complexr scalar constants.

Proof. Let (U, w) be a solution of the homogeneous problem (D).
Let us write Green’s formula for the Helmholtz equation (%.2) in the domain Qg := Q™ N B(0, R),
where Q+ C B(0, R),
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/ (A + pow?)WW — (A + pow®)W] da
Qr

_ / Oywiw dS — / B ww dS — ({B,w) ™ (W} g + ({0n), (W) )y (4.9)

S(0,R) S(0,R)
Now write Green’s formula for the operator A(9,7) in the domain Q%
/ (1A, 7)01; + [A@, 7)Uua + [A(0, ) Usus + E(U,T)] do

= {10} {w;} ) g + {TUN {a} *) g + ({TUN {us} ) g (4.10)

where @U, U) = cfgkaiuj(?lﬂk + p1o?|ul? + £40;us0yUy + pj10;us0,us. Using (@), (@), and (@),

from (4.9) and (4.10) we obtain the following equalities:
/ Oyw dS — / O, ww dS — ({B,w) ™ {w} g + ({0n)~, (W) ) = 0, (4.11)
5(0,R) S(0,R)
Im ({[TU];}", {u;}") g =0, j=1,2,3. (4.12)

In view of the homogeneous transmission conditions, we get
{ITU1F {3 ) g = (ba{w} ny, {ui} ) g = babi ({0, W} {W} 7). (4.13)
Since Im[b1bs] = 0, from () and () we get
Im ({9,w} ™, {w} ), =0,
and from (.11)) we derive that
Im / OpwwdS = 0. (4.14)

5(0,R)

By the Sommerfeld radiation condition, from (4.14) we conclude that

lim lw|?dS = 0.
R—o0
S(0,R)

Using the Rellich—Vekua lemma, we find that w = 0 in the domain Q.
Then from Green’s formula () it follows that

/5(U,U) dr = 0. (4.15)
O+

Using (@) and (B), it is easy to see that for a complex vector v = (uy,us,u3)' and a complex
functions uy4, us,

Cijlkaiu]'alﬂk >0, 5j181u48jﬁ4 >0, /lealU5ajﬂ5 > 0. (4.16)
Taking into account (), from () we obtain
/ [Cijlkaiuj'alﬂk + p102|u\2 + €jlﬁlU46jﬂ4 + ujlﬁlu56ﬂ5 dr =0, (4.17)

ot

implying that v = 0 in Q7 and uy = c1, us = ¢z in QT, where c;, ¢y are arbitrary constants. Since
{ug}™ ={us}* =0 on S, we deduce that uy = us = 0 in the domain Q7.

Applying the same arguments, we can show that the general solution of the homogeneous problem
(N,) is a vector (0,0,0,c1,c2) ", where ¢; and ¢ are arbitrary complex scalar constants. O
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4.3 Fundamental solution and potentials for the pseudo-oscillation
equations of piezoelectro-magneto-elasticity

The full symbol of the pseudo-oscillation operator A(9, 7) is elliptic provided 7 = io, o # 0, 0 € R, i.e.,
det A(—i&, ) #0 V¢ € R*\ {0}.

Moreover, the entries of the inverse matrix A~!(—i&, 1) are locally integrable functions decaying at
infinity as O(]¢|72). Therefore, we can construct the fundamental matrix I'(z,7) = [[y;(x, 7)]5x5 of
the operator A(9,7) by the Fourier transform technique,

D(w,7) = F, [ATH (i€, 7). (4.18)

Note that in a neighbourhood of the origin the following estimates hold (0 < |z| < 1):

T (2, 7) w)| <e (4.19)
|8;[ k(@ 7) = Tjr(z,w H <ec ln|x| v (4.20)
’60‘ [F]k(x 7) = Djp(z,w ” Y|~ ‘O‘l, j, k=15, (4.21)

where a = (a1, a2, ar3) is a multi-index with || = a1 + a2+ a3 > 2, while ¢(7,w) is a positive constant
depending on 7 = io and w with o,w € R\ {0} (cf. [B3]).
Let us introduce the single and double layer pseudo-oscillation potentials

V() = / T(x -y, 7)h(y) d, S,
S

W, (h) = / 7@y ()T (@ — 7)) h(y) dy S,
S

where h = (hi, ha, hs, hy, hs) T is a density vector-function.
These pseudo-oscillation potentials have the following jump properties (see [G]).

Theorem 4.2. Let hY) € [H=1+5(9)]°, h®) € [H*(9)]°, s > 0. Then the following jump relations
hold on S':

(V@) = [T nw)d,s.
S

(W (12)(2)}E = 22710 (2) + / 70, n(w)TT (2 - 9.7)] Th) (y) dy 5,
S

[TV, (WD) ()} = 727 00 (2) + / (0., ()T (= — y, YAV () dy S,

{TW,(h?)(z) } = {TW,(h?)(2)} .

Further, we introduce the boundary operators

H, (h)(2) = / P(z — y, 7)h(y) dy S,

S
K., (h)(z) = / T(0.,n(2)L (= — g 7)h(y) dy S,
S
R, (h)(z) = / 70y n()TT (2 - y.7)] "hy) dy S,

S
L, (h)(z) = {TW.(h)(2)} " = {TW.(h)(2)} .
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Note that H, is a weakly singular integral operator (pseudodifferential operator of order —1), K, and
K. are singular integral operators (pseudodifferential operator of order 0), and L. is a pseudodiffer-
ential operator of order 1.

The mapping properties of these potentials are described in Appendix.

4.4 Existence of solutions of problem (D,)

By Theorem @ (see Appendix) the operator H, : [H*(S)]> — [H*T1(S)]® is invertible for all s € R
and we can look for a solution of problem (D, ) in the following form

U=V,H '¢g inQ", w=W,+uV,)h inQ", pucC, ITmpu#0,

where ¢ = (§,q4.95)" € [HV*(S)]®, § = (91,92,93) ", h € HY?(S) are unknown densities. From

Theorems ﬁ and .4 (see_Appendix) it follows that U € [H}(Q1)]® and w € HL (7).
Transmission conditions (4.3), ({.4) and the Dirichlet type conditions ({.5), (@) lead to the

following system of pseudodifferential equations with respect to the unknowns g, g4, g5 and h:

g-n—bM(h)=fo on S, (4.22)

[(—27'I + KT)H;lg]j —byn;N(h) = f; on S, j=1,2,3, (4.23)
g4 = fl(D) on S, (4.24)

g5 = fQ(D) on S, (4.25)

where N = =271 + K + pHy, M = Ly, + (2711 + Ky).
Here and in what follows, I,,, stands for the m x m unit matrix.
The matrix operator generated by the left-hand side expressions in system (Y .2)7() reads as

[n]1x3 0 0 —bM
Py o= [-A]rk]3x3 [-AJT4]3x1 ['AJT5]3><1 [_b2an]3><1 jk=1,2,3
T, [0]1><3 Il O 0 ) 9 9 Ay Dy
[0]1x3 0 I 0 66
where ‘
Ar = (-2 L+ K )H = [AMsxs, 5,k =15, (4.26)

is the Steklov—Poincaré type operator on S. This operator is a strongly elliptic pseudodifferential
operator of order 1 (see [6] for details).
By Theorems and (see Appendix), the operator P, p possesses the following mapping

property:
Prp: [HY?(S)) — [HY2(9)]° x HY?(S). (4.27)

In view of () and (), equations () and () can be rewritten in the following equivalent

form as a system with respect to g and h:

g' n— b1./\/l(h) = f() on S, (428)
[-/47—(570, O)T]j - anJN(h’) = Fj on S7 J=12,3, (429)

where Fj := f; — Ajffl(D) - Al5f2(D), j=1,2,3.
Denote by R, p the operator corresponding to system (), ()

([n]1x3 —biM )
7?"r,D = ~ 5
AT [—bQTLkN]le Ax4

where A, := [A9¥]5.3, j.k =1,2,3.
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Clearly, the operator
Rop: [HY?(8)* — [HV2(S))* (4.30)

is bounded.
Let us represent the operator R, p as the sum of two operators

R =R} + RO,

R _ 0153 —1iM R@) _ ()13 0
T,.D — e ’ T,.D — 0 —b N’] .
A- 0151 Axd 055 [=bonaN]5,, axd

It is easy to see that the operator N : H/2(S) — H~'/2(S) is compact due to Theorem @ and
Rellich compact embedding theorem. Therefore, the operator R(sz D [HY2(S)E — [HY2(S)* is

T)

where

compact. Further, we show that the operator .ZT is Fredholm. Indeed,
Ar [HYP(S)P — [HV2(8))°
is strongly elliptic pseudodifferential operator of order 1 (see [6]), i.e.,

Re&(A;2, )¢ - ¢ > clé] [¢)?,

where c is a positive constant and &(A,;z, &) with z € S, ¢ € R?\ {0}, is the principal homogeneous
symbol of the operator A, in some local coordinate system. Therefore, V¢ € R?\ {0}, V(' € C3 the
following estimate holds:

ReG(A,;7,6)¢ - ¢ =ReS(Ay;7,6)(¢,0)7 - (¢,0)T > ¢l¢]|¢'|*

Thus A, is a strongly elliptic pseudodifferential operator of order 1. Therefore, by virtue of the general
theory of elliptic pseudodifferential operators on a compact manifold without boundary (see [16,
Ch. 19], [14, Ch. 5]), we conclude that

Ao (HYAS)P - [HV(5)P

is a Fredholm operator. From the strong ellipticity property it also follows that the index of the
operator A; is zero (see [L6, Ch. 6], [14, Ch. 2]). Taking into account Theorem @, we find that the

operator R(T% is Fredholm with index zero. Therefore, operators () and, consequently, () are
Fredholm with index zero.

Now we show that the operator R, p is injective. Let (g,h)" with g € [H'/2(S))? and h € H/?(S)
be some solution of the homogeneous system

RT,D(ﬁ) h)T = Oa

and set

U = (@,14,1u5) = V,H;1(3,0,0), W= (W, + uV,)h, Impu # 0.

Evidently, U and W solve the homogeneous problem (D, ).
It follows from the uniqueness result for problem (D;) (see Theorem @) that U = 0 in QT and
W =0in Q™. Then {U}* = (3,0,0)T =0on S. Since {Ww}~ = N (h) = 0 and N is invertible operator,
we obtain h = 0 on S. Consequently, the operators
Rep : [H2(S) = [H2(S)]*,
Prp: [HY?(S)]® — [HV2(S)]° x HY?(S)

are invertible.
Therefore, system (Y .2)7() is uniquely solvable. Thus the following assertion holds.
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Theorem 4.3. Let 7 = io, 0 # 0, 0 € R, and let fo € HY%(S), f; € H7Y/2(S), j = 1,2,3, and
fP) e HY2(S). Then problem (D) has a unique solution (U,w), U € [H'(Q)]°, w € H. (Q7) N
Somq(27), which can be represented as

U=V, H'g inQ", w=W,+uV,)h inQ",
where the densities g € [HY2(S)]> and h € H'Y?(S) are defined from the uniquely solvable system

(1-22) - (1-29).

4.5 Existence of solutions of problem (V)

As in the previous subsection, we can look for a solution of problem (N, ) in the following form:
U=V,H '¢g inQ", w=W,+uV,)h inQ", pcC, Tmpu#0,

where ¢ = (§,94,95)" € [H'/?(S)]° and h € H'/?(S) are unknown densities. From Theorems EI, @
and p.4 of Appendix it follows that U € [H'(QT)]° and w € H} (Q7).

Transmission conditions (@), (f.4), and the Neumann type condition (@) lead to the following
system of pseudodifferential equations with respect to the unknowns g and h:

g-n—bM(h)=fo on S, (4.31)
[ATg]j - bgnJN(h) = fj on S, ] = 1,2,3, (432)
[Argla = f) on S, (4.33)
[Argls = £ on 8, (4.34)
where N and M are defined in (@) and (@)7 while A, is defined in ({.20).
The operator generated by the left-hand side of the system ()f( 33) reads as
[(n,0,0)]1x5 M
(A5 [=baniNsxa ,
P, N = 23%5 , j=1,2,3 k=15
N [AY]1x4 [0]1x2 g
[A¥]1 x4 [0]1x2 66
The operator P, y possesses the following mapping property:
Prn : [HY2(S)]° — [HV2(5)]°.
From equation (), we define h,
h=b"M(g-n) b7 ' M fo,
and substitute this into equation () We obtain the system
[Arglj — boby ' NM™HG-n)=F; on S, j=1,2,3, (4.35)
[Argla = ) on 8, (4.36)
[Argls = £V on S, (4.37)

where Fj = fj — bl_lbganMilfo.
Denote by R n the operator generated by the left-hand side of system ()7()7

[CT}3X3 [Ag;4]3><1 [A15]3><1
Ron = | [A¥]1x3 AR AP ,
[A]1xs AR A

5X5



46 George Chkadua

where
[Crlaxs = [AZ¥]3x5 — boby [0 jN]3x1 M ng)ixs, d,k=1,2,3.

Note that the difference A, — R, x : [H'/2(S)]> — [H~'/2(S)]® is a compact operator.
Since the Steklov—Poincaré type operator A, is strongly elliptic pseudodifferential operator of order
1, it follows that the operator A, : [H'/2(S)]° — [H~Y/?(S)]° is Fredholm with index zero. Hence the
operators
Row i [HP(S) = [HTV2(S), Prn: [HV2(S))° = [H2(9)]°

are Fredholm with index zero.
Now let us investigate the null space of the operator P, n. Let g € [HY/2(S)]® and h € HY/?(S)
be solutions of the homogeneous system ()7()

,PﬂN(g7 h’)T = 07

and put _
U= (u,ts,us) =V,H lg, w=W,+ uV,)h.

Evidently, U and W solve the homogeneous problem (N,).
From the structure of a solution to the homogeneous problem (N.) (see Theorem @) we have

5’:(0,0,0,01,02)—'— inQt, w=0inQ",

where c¢; and ¢y are arbitrary constants. Then {U}+ (0,0,0,¢1,c0) T =gonS,ie g =go=g3=0,
g4 = c¢1 and g5 = co. Since {w}~ = Nh =0 on S, the invertibility of the operator A/ yields that h = 0
on S. Whence we obtain that if P, n(g,h)" =0, then g = (0,0,0,c1,c2)" and h = 0.

Therefore, the dimension of the null space of the operator P, nx equals to 2, dimKer P, v = 2.
Thus dim Ker P} y = 2, where P; : [HY%(9)]¢ — [HY/2(8)]° is the operator adjoint to Py y :
[H'2(9)]° — [H~ 1/2(5)]

Now we can formulate the following existence theorem.

Theorem 4.4. Let 7 = io, 0 # 0, 0 € R, and let fo € H-Y2(S), f; € H Y%(S), j = 1,2,3, and
fl(N) € H™Y/2(9), f2(N) € H=Y2(S). Then problem (N,) is solvable if and only if the condition

3
(fo,d1)s Z Findis)s + (A ds)s + (Y, d6)s (4.38)

is fulfilled, where ¢ = (& , 03, Pa, b5, B6) | is a montrivial solution of the homogeneous equation
Pr n¢ = 0. If condition (.38) holds, then solutions of problem (N-) are represented by the potentials

U=V,H 'g inQ", w=W,+uV,)h in Q"
where the densities g € [HY/?(S)]> and h € HY?(S) are defined from system ()7(), and they

are defined modulo the addend vector (0,0,0, ¢y, cz)T with arbitrary complex constants c¢1 and cs.

5 Existence results for the steady state oscillation
problems (D) and (V,)

5.1 Existence of solution of the Dirichlet type problem (D,)
We look for a solution of problem (D,,) in the form
U=V,g nQ", w=W,+uV,)h inQ", peC, Impu#0,

where g € [H~1/2(S5)]° and h € H'/2(S) are unknown densities, and w € R\ {0}. From Theorems @
and .3 of Appendix it follows that U € [H1(2F)]5 and w € HlloC(Q_)
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Transmission conditions ([L.11]), () and the Dirichlet boundary conditions ([L.13), () lead to
the following system of pseudodifferential equations with respect to the unknowns g and h:

[ng]ml —byM(h) = fo on S, (5.1)

[(—27'L +Kw)g}j —bonN(h) = f; on S, j=1,2,3, (5.2)
[Hgls = £{”) on 8, (5.3)

[Hg]s = fs”) on . (5.4)

The operator generated by the left-hand side of system (@)7(@) reads as

[ H) 5 —b M
[(—2715 + K, )] [—ban;N]sx1
Qu,p = ), e 35 0 , j=1,3, k=15
5k
[Hw h><5 0 6X6

By Theorem @, the operator
Qu,p : [HTV2(S) x HY2(S) — [HV2(S)]* x [H'2(9))?

is bounded.
In view of estimates ()—() it follows that the main parts of the operators H,, and H, (as
well as the main parts of the operators K, and K, ) are the same, implying that the operators

H, —H, : [HY2(8)]° — [HY?(5)], (5.5)
K, - K, : [HY2(8)° = [H V9P (5.6)
are compact. Hence the operator
Qu,p = Qrp : [HY2(S)]P x HYA(S) — [H™Y2(S)]* x [H'?(5)]?

is compact, where @, p := P, p7, with

L H‘r [0}4><1
T = ([O]M . ) 67

Therefore, from the invertibility of the operators P, p : [HY/2(S)]® — [H~Y/2(9)]> x H'/?(S) and
T, [H7Y2(S))° x HY2(S) — [HY?(S)]® (see Section {) the invertibility of the operator Q. p :
[H=1/2(S)]° x HY2(S) — [H~Y/2(8)]> x H/?(S) follows. In turn, this implies that the operator

Qu,p : [HT2(S)]P x HY2(S) — [HV2(S)]* x [HY2(9))? (5-8)

is Fredholm with index zero.
Let us show that for w & Jp(Q7F) the operator Q,, p is injective. Indeed, let g € [H~/%(S)]® and
h € HY?(S) be solutions of the homogeneous system

Q%D(g,h)T =0 on S.

Construct a vector-function U = V¢ and a scalar function w = (W,, + uV,,)h with p € C, Im p1 # 0:
Clearly, the pair (U, w) solves the homogeneous problem (D). Since w ¢ Jp(Q"), from Theorem E]
we have that

U=V,g=0inQ", w=(W,+uV,)h=0 in Q.

In view of the equation {w}~ = N(h) = 0 on S and the invertibility of the operator " we deduce
that h =0 on S. From continuity of a single layer potential we have {U}* ={U}~ =0 on S.
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Thus U = Vg solves the exterior homogeneous Dirichlet problem
AQ,w)U =0 onQ~, {U} =0 onS. (5.9)

U =V,9 € Mu, myms(P) and, by Theorem @, U=V,g=0 in Q. Using the jump formula
{TU}~ —{TU}* =gon S, we get g =0 on S. Thus the null space of the Fredholm operator (E) is
trivial and since the index equals to zero we conclude that (@l)j is invertible.

These results imply the following assertion.

Theorem 5.1. If w & Jp(2T), then problem (D,,) is uniquely solvable.

Now let us consider the case where w is Jones’s frequency, w € Jp ().
The operator adjoint to ), p has the following form:

o (E s (2T LA KON H s [H . a
= < b M* [—b2N*n;]1x3 e 0 0 6x67 i=13 k=15,
where
i) = [T 2a) o) S, 25,
S
K (g)(2) = / 70y n(s) T — 7.0))] 9(w)d,S. =€ 5,
S
N*(h)(2) = (=27 I + Ku) (h)(2) + BHE (W) (2), =z €S,
Me(h)(=) = L) (=) + B2 T + K5)(h)(2), =€ S,
while

Ko(h)(2) = / D1z — 7 Ih(y) dyS, = € S,
S

(1) (2) = / O 7z — . )h(y) dy S, = € S,
S

HE(h)(2) = / T = g)h(y)d,S, =€ 5,
S
L5 (h)(2) = {Oney W (h)(2)} 5, 2 €8,

W (h)(x) = / Oniy 1@ — 5 )h(y) dyS, = ¢ S,
S

V(b)) = [T gahw)d,S. = ¢S,
S

The adjoint operator possesses the following mapping property:
Qup  [HP(S))* x [HTVA(S) — [H(S)] x HTV2(S).

Let U := (11, %9, 03, %4, Vs, 106) | € [HY?(S)]* x [H~1/2(S)]? be a solution of the homogeneous adjoint
system

Q:pl =0. (5.10)
Construct the potentials

U=V, 00+ W, u® 4+ v, o6 inq-, (5.11)

W= —by Wby — bV, [ - n] in QF, (5.12)
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where
W = (ny,0)7, @ = (T,0)7, ¥ = (0,0,0,¢5,96) . U = (o, ¥3,94) ",

[C(y —z,w)]"g(y) d,S, =€ QF,
[T(@y, n(y))T(y — z,0) ] g(y)d,S, @ eQt.

The vectors V., (g) and Ww (g) are the single and double layer potentials associated with the operator
A*(0,w).
From () it follows that

{U} =0 and {9,w+pw}t =0 on S,

where p = pi1 4 ipa, po # 0.
Since the vector U € [H} (27)]° N My, my.ms (P*) and solves the homogeneous Dirichlet problem

A (0,w)U =0 inQ", {U}"=0oné,

the uniqueness Theorem @ implies that U = 0 in Q.
On the other hand, the function w € H(2%) solves the homogeneous Robin type problem

(A + pow?®)W =0 in QF, (5.13)
{0,w+aw}t =0 on S. (5.14)
This problem possesses only the trivial solution. Indeed, the following Green’s first formula holds:
/(A + pow®)Ww da + / |VW| dz — pow? / |w| do = ({8, W}, {Vv}+>s, (5.15)
Q+ Q+ O+
Taking into account equation () and the boundary condition (), from () we get
/ |VW| dx — paw? / |W| dz = —puy / y{e“v}ﬂQ dS +ips / ‘{W}+‘2 ds.
Q+ Q+ s s

Therefore, {W}* = 0. For a solution w € H!(QT) to the homogeneous equation () we have the
following integral representation:

& =W, ({#}1) =V, ({0,%}1) n QF. (5.16)

Since {w}T =0 and {9, W}T = 0, from the representation formula () we find that w =0 in Q7.
Using the jump formulae for potentials () and (), we derive that on the surface S the
following relations hold:

{W}™ = b1,

{0,W}™ = by V' -,
{[TU} = —nyn, j=1,2,3,
(IO} = —¢s,

{[T0)s}+ = —¢,
{U}F =07,
{Ua}* =0,

{Us}F =o.
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Hence we deduce that U = ([71, (72,[73, (74, (75)T = ((7’, (74, (75)T with U’ = ((71,(72, (73, )T and w solve
the following homogeneous transmission problem:
A*(0,w)U =0 in QF,
(A + pow®)W =0 in Q7
(U -n}* +5by {0,%}" =0 on S,
{[T@,m) U} +5, {F}n; =0 on S, j=1,2,3,
{U, 3" =0 on S,
{Us}* =0 on S,

From the uniqueness result (see Remark @) it follows that w =0 in Q= and U € XDw (Q1), ie., U
belongs to the space of Jones modes X7, ,(2F). Then we obtain

Y1 =0, Y ={U;}" j=1,23 ¢5= —{[fﬁ]4}+7 e = —{[fﬁ]5}+-
Vice versa, if Ue XDw (Q1), then from the representation formula
U=W,{U -V {TU} inQF (5.17)

it is easy to show that the vector-function ¥ := (072171}*, (U}, {Us}+, —{[TU4} T, —{[Tﬁ]g,ﬁ—r

is a solution of the adjoint homogeneous system ( ). Indeed, let us substitute ¥ in system (p.10).
Therefore, we obtain the equalities

(=27 1+ K], AT} = [H s {[TU)} T = [H s ([T} =0, (5.18)
j=1,3, k=1,5,
b N*({U'}F - n) =0, (5.19)

where 6, = (61, ﬁg, ﬁg)—r.
By taking a trace of the representation formula (), we get
(U} =27 YUY + K {U} —H{TU}" on S,
i.e., we have _ .
(27 T+ K){UYT —H{TU}" =0 on S. (5.20)

Since U € X} (), we have

(U} =0, {Us}" =0, {[T0);}" =0, j=1,2,3, (5.21)
(U} - n=0. (5.22)
Therefore, taking into account () in equality (), we find that () is true, and it follows from

() that (b.19) is true.
Therefore,

dimker Q,, p = dimker Q}, , = dim X5, ,(QF).
Thus the orthogonality condition

3 —_— = — —_— — ~
> (AT ) = (IO 77 - (T} 77) =0 vO e Xp (@), (5.23)

is necessary and sufficient for the system of pseudodifferential equations (@)7(@) to be solvable.
We can now formulate the following existence theorem.
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Theorem 5.2. If w € Jp(Q"), then the Dirichlet type problem (D,,) is solvable if and only if the
orthogonality condition (p.23) holds, and a solution is defined modulo Jones modes Xp ,(2).

Remark 5.3. Let (f1, fo, f3) = ny, where 1) is a scalar function and n is the unit normal vector to
S (see ()) Then the necessary and sufficient condition () reads as

({T01 A7)+ ({IT0s} A7) =0 VT e X5, (2").

Clearly, if the Dirichlet datum for the electric potential and magnetic potential are constant, or
w & J5H(QT), then problem (D,,) is always solvable.

5.2 Existence of solution to the Neumann type problem (N,)

We look for a solution of the Neumann type problem (N,,) in the form of the following potentials:
U=V,g nQ", w=W,+pupV,)h in Q"

where g € [H=/2(S)]° and h € HY?(S) are unknown densities. From Theorems EI and @ of

Appendix it follows that U € [H!(Q1)]° and w e H. (7).
Transmission conditions (), (IL.19) and the Neumann boundary conditions (|L.16), () lead

to the following system of pseudodifferential equations with respect to the unknowns g and h:

[Hogling — biM(h) = fo on S, (5.24)

[(—27'I5 + Kw)g}j —boniN(h) = f; on S, j=1,2,3, (5.25)
(2705 + Ku)g], = £ on 8, (5.26)

[(—27' +K.)g], = ) on S. (5.27)

The operator generated by the left-hand side of system ()7() reads as

[ HE] 5 - M
Oun = (2705 + Ko )*], o [beniN]ss _T3 p_T%
w,N [(_271]5+Kw)4k]1><5 0 ) J y Iy 5
-1 k
(=271 + Ku)**], . 0 o

Due to Theorem @ (see Appendix), it is evident that the operator
Qun : [HY2(9)° x HY?(S) — [H~Y/2(9))°

is bounded.
It follows from (@) and (@) that the operator

Qu.N — Qrn 1 [HY2(S)P x HY2(S) — [HY/2(9)]8

is compact, where Q- n := P, n7T; with the operator 7, defined in (@) Since the operator Q, n is
Fredholm with index zero (see Section 4), we have that the operator

Qu.v : [HTV2(S)P x HY(S) — [HV2(9))°

is Fredholm with index zero.
Recall that Jy (1) = R, due to Theorem @ (see the end of Subsection EI)
The operator adjoint to Q,, y has the form

O v = [H*?m]sm [(—2_1f5+K$)kj]5X3 (=27 +KE) s (=27 L+KE)P),
w. N —b M* [ — sz*TLj] 0 0 656 ’

1x3




52 George Chkadua

and
Qn  [HY2(8)]° — [H'Y(S)]° x H'2(S)

is bounded.
Let ® := (¢1, 92,03, 04, 05, 06) | € [HY?(S)]% be a solution of the homogeneous adjoint system

Qo n®=0. (5.28)

Construct the potentials
U=v,o"+W,0? inQ, (5.29)
W= —b1Wapr — bV, [® - n] in QF, (5.30)

where (p(l) = (n(phO)T’ (p(2) = ((I)lygpfngpﬁ)—r’ ¢ = (@2a§03a(p4)—r'
From () we have

{U}" =0 on S,
{(%VT/JrﬁvT/}+ =0 on S,

where U € [HL_(Q7)]5 N My, my.ms (P*) and w € HY(QT).
Therefore, from the uniqueness results for the exterior Dirichlet problem (see Theorem @) and

interior Robin type problem, we conclude that U=0in Q" and w =0 in QF.
From jump formulae for potentials () and () we find that on the surface S the following
relations hold:

(W}~ =bien, (5.31)
(0,7}~ = —bo®' -, (5.32)
(U} = (¥, 05,6) ", (5.33)
{TO);}" = —njer, §=1,2,3, (5.34)
{101} =0, (5.35)
{(ITU]5}" =o. (5.36)

Hence we obtain that [7 = ([71, [72, (73, 64, 175)T = ([7/, (74, (75)T with [7/ = ([71, [72, [73)T and w solve
the following homogeneous problem:

A*(0,w)U =0 in QF,
(A + pow?)W =0 in Q7
(U -n}* +by {0,%}" =0 on S,
{70, m0);}" +b, {7} ;=0 on S, j=1,23,
{[Tﬁ}4}+ =0 on S,
{ITU]5}" =0 on S.

From uniqueness result (see Remark @) we have w = 0 in Q~ and U € X3, (QF), ie, U belongs
to the space of Jones modes X (7).

From () and () we get
e1=0, g1 ={U;}*, j=1,5.

On the other hand, if U € X3 o(Q7F), then using the representation formula () it is easy to
show that the vector-function ® := (0,{U1}", {Us}*, {Us}*, {Us},{Us}*)T is a solution of the
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homogencous adjoint system (5.28). Indeed, let us substitute @ in system (p.2§). Therefore, we
obtain the equalities

(27" + K){U} =0, (5.37)
DN ({U'} - n) = 0. (5.38)
Taking the trace of the representation formula ()7 we get
(=27 ' T+ K){UY —H{TU}* =0 on S. (5.39)
Since U € X3, (QF), we have

{TU}* =0, (5.40)
(U n=0. (5.41)

Therefore, taking into account () in equality (), we obtain that () is true, and it follows
from () that (5.3§) is true.

Therefore,
dimker Q,, v = dimker Q, y = dim X3, (7).

Thus the orthogonality condition
3
ST AT g+ (VAT ) g + (B T3 g =0 VU € X5, () (5.42)
Jj=1

is necessary and sufficient for the system of pseudodifferential equations ()—() to be solvable.
The following existence theorem follows directly.

Theorem 5.4. The Neumann type problem (N,,) is solvable if and only if the orthogonality condition
() holds, and a solution is defined modulo Jones modes X .,(Q).

Remark 5.5. If (f1, f2, f3) = ny, where ¢ is a scalar function and n is the unit normal vector to S
(see ())7 then the necessary and sufficient condition () can be written in the form

(VAT )+ (I ATs )5 = 0 VD € Xjro (@),

Clearly, if f; (M) = f5 (N) — = 0, then problem (IV,,) is always solvable.

6 Appendix

For the readers convenience, we collect here some results describing properties of the layer potentials.
Here, we preserve the notation from the main text of the paper. For the potentials associated with
the Helmholtz equation, the following theorems hold (see [[13,20,32,37]).

Theorem 6.1. Let s € R, 1 < p < oo, S € C®. Then the single and double layer scalar potentials
can be extended to the following continuous operators:

Vot HY(S) > H2(Q4), Vs Hs(S) — HiP (@),

loc
W, : H*(S) — H*PV2(QY), W, : H(S) —» HITY2 Q).

loc
Theorem 6.2. Lets€e R, 1 <p < oo, S € C>®. Then the operators
He : H*(S) — HT(9),
Ko, K« H5(S) — H*(S),
L, : H*(S) — H*Y(9)

are continuous.
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For the potentials of steady state oscillation and pseudo-oscillation equations, the following theo-
rems hold (see [5-§,12]).

Theorem 6.3. Let s € R, 1 <p < o0, S € C>®. Then the vector potentials V,, W, V. and W,
are continuous in the following spaces:

V,,V.: [HS(S)]5 N [Hs+3/2(Q+)]5 ([HS(S)]5 _ [Hs+3/2(Q_)]5)’

loc

W, W_: [HS(S)F) N [H;Jrl/Q(QJr)]S ([HS(S)P - [H;Otl/Q(Q,)]g)).
Theorem 6.4. Let s € R, 1 < p < oo, S € C®. Then the operators

H, : [H*(S)]” — [H*1(S)],

K., K, : [H* ()] = [H*(S)],
L, [H*(S))° — [H*H(S)P°
are bounded.

The operators Hy and L, are strongly elliptic pseudodifferential operators of order —1, and 1
respectively, while the operators £2 1 Is + K, and £27 ' I5+ K, are elliptic pseudodifferential operators
of order 0. _

Moreover, the operators H, 27115 + K, and 27 I5s + K, are invertible, whereas the operators L,
—27'Is + K, and —27'I5 + K, are Fredholm operators with index zero.

Theorem 6.5. Let se R, 1 <p < oo, Se€C®. Then the operators

H, : [H*(S)]° — [H*T(9)],
+27' 5 + K, [H(9))° — [H*(9)]°,
+£271 5 + K, ¢ [H(S)]° — [H*(S)),

L, : [H*(S)) = [H*(S))°

are bounded Fredholm operators with index zero.
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