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1 Introduction and formulation of main results

The term “variation formula of a solution” has been introduced by R. V. Gamkrelidze and proved
in [2] for the ordinary differential equation. The effects of perturbation of the initial moment and the
discontinuous initial condition in the variation formulas of solutions (shortly, variation formulas) were
revealed by T. A. Tadumadze in [4] for the delay differential equation.

In the present paper, for the controlled functional differential equation

z(t) = f(t, x(t),x(t —711), ..., x(t — Ts), u(t))
with the continuous initial condition
z(t) = ¢(t), t<to,

the variation formulas are proved in the framework of new wide classes of variations of the initial data.
The continuity of the initial condition means that the values of the initial function and the trajectory
always coincide at the initial moment, i.e., x(to) = @(to). In [5,9], the variation formulas were proved
for the equations

i(t) = f(t,z(t),z(t — 7)), tE€ [to,t1],
i(t) = f(t,z(t),z(t —7),u(t)), te [to,t],

respectively, in the case where the initial moment and delay variations had the same signs. In this
paper, the essential novelty is that here we consider the equation with several delays, the variation
formulas are proved for the controlled functional differential equations with several delays and the
variations of the initial moment and delays are, in general, of different signs.

The variation formula plays the basic role in proving of the necessary conditions of optimality
[2,3]. The variation formulas for various classes of controlled functional differential equations without
perturbation of delays are derived in [1,3,7,8].

Let I = [a, b] be a finite interval and 0 < 0;; < 0;2,7 =1,..., s, be the given numbers; suppose that
O C R™ and Uy C R" are the open sets. Let the n-dimensional function f(¢,z,x1,...,xs,u) satisfy the
following conditions: for almost all fixed t € I, the function f(¢t, -) : O'** x Uy — R™ is continuously
differentiable; for each fixed (z,x1,...,zs,u) € O x Uy, the functions f(t,z,x1,..., 24, u), f2(t, -),
fao, (&), 0 =1,...,s, and f,(¢, -) are measurable on I; for arbitrary compact sets K C O, U C Uy,
there exists a function mg 7 (t) € L1(I,Ry), Ry = [0, 00) such that

[tz wr, g w)| [ folt )+ D et )+ fult )] < mio(?)
i=1

for all (x,21,...,7s,u) € K x U and for almost all t € I.

Let @ be a set of continuous functions ¢ : I} = [7,b] — O, where T = a —max{f12,...,052} and let
Q be a set of measurable functions u(t), t € I, satisfying the condition clu(I) C Uy and be compact
in R".

To each element pu = (to, 71,...,7s, 0, u) € A =[a,b) X [011,012] X -+ X [0s1,052] X ® X Q we assign
the delay controlled functional differential equation
x(t) = f(t, z(t),x(t —711),...,2(t — 7s), u(t)) (1.1)

with the continuous initial condition
x(t) = p(t), t e [T, to]. (1.2)

Definition 1.1. Let u = (to, 71,...,7s, p,u) € A. A function z(t) = z(¢t; 1) € O, t € [T, t1], t1 € (to,b],
is called a solution of equation (1.1) with the initial condition (1.2) or a solution corresponding to the
element p and defined on the interval [T, ;] if it satisfies condition (1.2) and is absolutely continuous
on the interval [tg,t1], and satisfies equation (1.1) almost everywhere (a.e.) on [to,t1].
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Let us introduce a set of variations:

V= {(M = (0to,071,...,07s, 00, 0u) = |0t < o, |073| <, i=1,...,s,

k
S =3 Ndpi, Nl <a, [6ull < a, z:lk} (1.3)
i=1

where dp; € ® — g, i = 1,...,k, and ¢y € ¢ are fixed functions; a > 0 is a fixed number and
[|0u]] = sup{|du(t)| : t € I}.

Let x0(t) be a solution corresponding to the element pg = (¢o0, 710, - - -, 750, P0, o) € A and defined
on the interval [7/:, tlo], where too, t10 € (a, b), too < t1g and 70 € (9i1, 91‘2), 1=1,...,s.

There exist the numbers 6; > 0 and €1 > 0 such that for arbitrary (¢,0u) € (0,e1) x V' we have
to + e € A and a solution z(t; o + €dpt) defined on the interval [7,t19 + d1] C I3 corresponds to it
(see Lemma 2.2).

Due to the uniqueness, the solution x(¢; po) is a continuation of the solution z((¢) on the interval
[T,t10 + d1]. Therefore, in the sequel, the solution xo(t) is assumed to be defined on the interval
[?, tio + 51}

Let us define the increment of the solution x(t) = x(t; uo):

Ax(t) = Ax(t;edp) = x(t; po + edp) — xo(t), (t,e,0u) € [T,t10 + 01] X (0,61) X V. (1.4)

Theorem 1.1. Let the function po(t), t € I, be absolutely continuous. Let the functions ¢o(t) and
flw,u), (w,u) € I x O x Uy, be bounded, where w = (t,z,z1,...,25). Moreover, there exist the
finite limits

lim SbO(t) = 90(;7 lim f(wu uO(t)) = f_v w e (avtOO] X Ol+sa

t—too— w—wo

where wo = (too, Yo(too)s o(too — T10)s - - -, wo(too — Ts0)). Then there exist the numbers eo € (0,e1)
and d € (0,01) such that for arbitrary (t,e,0pu) € [too,t10 + d2] X (0,e2) X V—, we have

Az (t;edu) = edx(t; Sp) + o(t; edp), t (1.5)
where V= = {dpu € V : dtg < 0} and
ox(t;6p) =Y (too;t)(bg — f7)dto + B(t;0p), (1.6)

too

B(t;0p) =Y (too; t)dp(too) + Z / Y (&4 Tios t) fa, [€ + o]0 (€) d€
izltoo—ﬂ,o

- [¥(E0[ X faldinte — mojin] ae+ [Yonigae e o)

too tOO

where Y (&;t) is the n X n-matriz function satisfying the equation

Ye(§5t) = =Y (&) falS] — Zy(f + 7Tios t) fa: [€ + Tio], € € [too, 1], (1.8)
i=1
and the condition
T for £=1t,
V(&) = {@ P (1.9)
Here, 5
f:Ei = 87 fa f:DL [5] = wa (57 x0<§)7xo(€ - 7-10)7 D) $0(€ - 7—80>7u0(€))a

T is the identity matriz and © is the zero matriz.

!Here and throughout the paper, the symbols O(t;edp), o(t; edp) stand for quantities (scalar or vector) having the
corresponding order of smallness with respect to € uniformly with respect to (¢, du).
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Some comments. The function dx(¢; §p) is called the first variation of the solution z((t), t € [too, t10 +
2], and expression (1.6) is called the variation formula. On the basis of the Cauchy formula for
solutions of the linear delay functional differential equation, we conclude that the function

su(ty = 4 0°) t€[Ttoo),
dx(t;0p), t € [too,t10 + 2],

is a solution of the equation

Sa(t) = foltlox(t) + D fo,[l162(t — 7i0) — Y _ fa,[tlEo(t — 7i0)07i + fultlou(t)

i=1 i=1

with the initial condition

dx(t) = dp(t), t€[T,ton), dx(too) = (Yo — f )dto + dp(too)-

t s
The addend — [ Y(&8)[ X fo,[€]d0(€ — Ti0)07;] d€ in formula (1.7) is the effect of perturbations of
t00 i=1
the delays 1,0, 2 =1,...,5.

The expression Y (too;t)(¢g — f~)dto is the effect of the continuous initial condition (1.2) and of
the perturbation of the initial moment tgq.

s too
The expression Y (too; t)d¢(too) + 3. [ Y (& + Tioit) fa, [§ + Ti0]0p(€) d€ in formula (1.6) is the

=100 —Tio
effect of perturbation of the initial function ¢(t).

¢
The expression [ Y (&;¢)du[¢] d€ in formula (1.7) is the effect of perturbation of the control fun-
too
ction ug(t).

Theorem 1.2. Let the function po(t), t € I, be absolutely continuous. Let the functions ¢o(t) and
fw,u), (w,u) € I x OYF* x Uy, be bounded. Moreover, there exist the finite limits

lim ¢p(t) = gbar, lim f(w) = f", w € [too,b) x ots.

t—too+ w—wo

Then for each ty € (too,t10), there exist the numbers eo € (0,e1) and d3 € (0,01) such that for arbitrary
(t,e,01) € [to,t10 + da] x (0,69) x VT, where Vt = {du € V : 6ty > 0}, formula (1.5) holds, where

8 (t;0p) =Y (too; t) (g — fT)dto + B(t; o). (1.10)

The following assertion is a corollary to Theorems 1.1 and 1.2.

Theorem 1.3. Let the assumptions of Theorems 1.1 and 1.2 be fulfilled. Moreover, 5 — f~
oF — fT == f. Then for each to G/\(tomtlo), there exist the numbers eo € (0,e1) and 2 € (0,01
such that for arbitrary (t,e,0p) € [to,t10 + d2] X (0,e2) x V' formula (1.5) holds, where éx(t; )
Y (too;t) foto + B(t; dp).

All assumptions of Theorem 1.3 are satisfied if the function f(¢,z,x1,...,xs,u) is continuous and

bounded, the function ¢g(t) is continuously differentiable and the function ug(t) is continuous at the
point tgg. Clearly, in this case,

~

f= ¢o(too) — f (too, ©o(too), ¢o(too — T10), - - -, o(too — Ts0), uo(too))-

2 Auxiliary assertions
To each element p = (g, 71,...,7s, , u) € A we assign the controlled functional differential equation

§(t) = flto, 1, -, 7s, 0,5 u)(t) (2.1)
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with the initial condition
y(to) = ¢(to), (2.2)

where

f(t0a7—17 s ,Ts,go,y,u)(t) = f(tay(t)vh@Ov@ay)(t - Tl)v Tt h(th@ay)(t - Ts)au(t))

and h(to, ¢, y)(t) is the operator given by the formula

p(t), te[rto),

y(t), tE€ [to,b]. (2.3)

h(to,p,y)(t) = {

Definition 2.1. Let u = (to,71,...,7s, p,u) € A. An absolutely continuous function y(t) = y(t; u) €
O, t € [r1,r2] C I, is called a solution of equation (2.1) with the initial condition (2.2) or a solution
corresponding to the element p and defined on the interval [rq, 7o) if to € [r1,72],y(to) = ¢(to) and
the function y(¢) satisfies equation (2.1) (a.e.) on [ry,rs].

Remark 2.1. Let y(¢; ), t € [r1,r2], be a solution corresponding to the element u=(tg,71, ... ,7s, P, u) €
A. Then the function

a(t; 1) = h(to, o, y(-5m))(1), T € [T,72], (2.4)
is the solution of equation (1.1) with the initial condition (1.2) (see Definition 1.1 and (2.3)).

Lemma 2.1. Let yo(t) be a solution corresponding to the element po = (too, T10, - - - s Ts0, P0, Uo) € A
and defined on [r1,r3] C (a,b); let too € [r1,72), Tio € (0i1,0:2), i = 1,...,s, and let K1 C O be a
compact set containing a neighborhood of the set wo(I1) Uyo([r1,72]). Then there exist the numbers
g1 > 0 and 61 > 0 such that, for any (g,0u) € (0,e1) X V, we have po + edp € A. In addition, to
this element there corresponds a solution y(t; po + o) defined on the interval [ry — 61,72 + 61]) C I.
Moreover,

P(t) = o(t) +edp(t) € K1, tel, (2.5)
y(t;u0+55u)€K1, te [7”1751,7’24’51],
lim y(t; pio + 0p) = y(t; ko) uniformly for (t,0u) € [ry — 01,72 + 0] x V.
E—
This lemma is a result of Theorem 3.1 in [6].
Lemma 2.2. Let 2¢(t) be a solution corresponding to the element g = (too, T10, - - - Ts0, Po, Uo) € A

and defined on [T,t10] (see Definition 1.1), let tog,t10 € (a,b), Tio € (0i1,0i2), t = 1,...,s, and let
K, C O be a compact set containing a neighborhood of the set po(I1)Uxo([too, t10]). Then there exist the
numbers e1 > 0 and 51 > 0 such that, for any (e,0u) € (0,e1) XV, we have po+edp € A. In addition,
to this element there corresponds a solution x(t; o + edp) defined on the interval [T,t19 + 61] C I1.
Moreover,

CE(t; Mo + 55/1,) e Ky, te [’?,tlo + 51] (26)

It is easy to see that if in Lemma 2.1 one put 1 = tqg, r2 = t19, then xq(t) = yo(t), t € [too, t10],
and x(t; po +edp) = h(to, o, y(-; o +e0p))(t), (t,e,0u) € [T, t10 + 01] X (0,e1) X V (see (2.4)). Thus,
Lemma 2.2 is a simple corollary of Lemma 2.1 (see (2.5)).

Remark 2.2. Due to the uniqueness, the solution y(t; o) on the interval [rqy — §1,72 + &1] is a
continuation of the solution yo(t). Therefore, we can assume that the solution yo(t) is defined on the
interval [rq — 01,72 + d1].

Lemma 2.1 allows one to define the increment of the solution yo(t) = y(¢; po):
Ay(t) = Ay(t;edp) = y(t; po +6p) — yo(t), (t,e,0p) € [r1 — 01,72+ 1] x (0,1) x V. (2.7)

Obviously,
liH(l) Ay(t;edp) =0 (2.8)
E—r

uniformly with respect to (¢,0u) € [r1 — 1,72 + 1] x V (see Lemma 2.1).
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Lemma 2.3. Let the conditions of Theorem 1.1 hold. Then there exist the numbers eo € (0,e1) and
d2 € (0,01) such that
max  |Ay(t)] < O(edp) (2.9)

tE[too,r2+02]

for arbitrary (¢,0p) € (0,e2) x V=. Moreover,
Ay(too) = e[dp(too) + (Do — f7)dto] + o(edp). (2.10)
Proof. Let €}, € (0,e1) be so small that for arbitrary (e, dp) € (0,¢5) x V'~ the inequalities
to+7i >too, i=1,....s, (2.11)

hold, where tg = too+edty, 7 = Ti0+ed7;. On the interval [too, 72+01], the function Ay(t) = y(t)—yo(t)
satisfies the equation .
Ay(t) = alt;edp), (2.12)

where

a(t;edp) = f(t,yo(t) + Ay(t), h(to, v, yo + Ay)(t — 1), ..., h(to, o, yo + Ay)(t — 75), u(t))
— f(t,yo(t), h(too, €0, y0)(t — T10), - - -, hltoo, o, Yo) (t — Ts0), uo(t)).  (2.13)

We rewrite equation (2.12) in the integral form

t

Ay(t) = Ay(ton) + / a(€: £0p1) .

too

Hence it follows that
|Ay(t)] < [Ay(too)| + a1 (t; too, edp), (2.14)

where
t

ax (¢ too, £61) — / la(&:0)| dE, ¢ € [top, 2 + 81].

too
Let us prove formula (2.10). We have
Ay(too) = y(too; ko + €01) — yo(too)
too
= o(to) + edp(to) + /f(l% Yo(t) + Ay(), ¢t — 71),..., ot — 75),ult)) dt — @o(too) (2.15)
to
(see (2.11) and (2.3)). Since
to
[ ott)dt = =gista + ofcn).
too

liH(l) dp(to) = dp(top) uniformly with respect to dpu € V'~
E—

(see (1.3)), we get

to

@o(to) +€dp(to) — wo(ton) = /st(t) dt + 6¢(too) + € [0 (to) — 6 (too)]

= e[p 7 6to + dp(too)| + o(edp). (2.16)
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It is clear that if t € [tg, too], then

;i_r% (t,yo(t) + Ay(t), o(t —71),...,0(t = 7)) = lim (t,yo(t), po(t — T10), .-, ot — Ts0)) = wo

t—too—

(see (2.8)). Consequently,
lim sup |f(t,y0(t) + Ay(t), ot —11),..., 0t — 75),u(t)) — f_’ =0.

=0 tE(to,too]

This relation implies that

/ Ft o) + Ay(t) ot — 1), ..y ot — 1), u(t)) d

too
= Efi(st() + / [f(tayO(t) + Ay(t)a QD(t - 7_1)’ AR Qﬁ(t - Ts)vu(t)) - fi] dt
to
= —ef 70ty + o(gdp). (2.17)
From (2.15), by virtue of (2.16) and (2.17), we obtain (2.10).

Now, let us prove inequality (2.9). First, we note that for any compact set K1 C O and U; C Uy,
there exists a function Lk, v, (t) € L1(I, R4+) such that

S
‘f(t,l‘,a?l,. ..,xs,U1) - f(t7yay17' "72/87“’2)‘ S LK17U1(t)(‘x _yl +Z ‘xi _yl‘ + |U1 —U2|>
=1

for almost all t € I and for any (z,y) € K2, (z;,y;) € K2, i=1,...,s, ui,us € Uj.
Now, we estimate aj (¢; too,edp), t € [too, 72 + d1]. Obviously,

t s t
st =60 < [ L, (OBO1 e + Y anltiton,26) + & [ Lie, oy (OISu(©]de, (2.1
00 =1 too

t

where

t
azi(t; too, €0p) = /LKl,Ul (&)|n(to, s 9o + Ay)(€ = 7:) = h(teos o, yo) (€ — Ti0)| dE

too

(see (2.13)).

Evidently,
t

[ Lin ©18u©)]dé < ea [ Licuw 0 de = OG),

too I
Let top + T0 < 72 and let €} be so small that tog + 7; < ro + ;. Furthermore, let p;; = min{ty +
Tis t00+7'i0}7 Pig = max{t00+7'i,t00+7i0}. It is easy to see that p;o > pi1 > too and pj2 —pi1 = O(Eéu)
Let t € [too,pﬂ). Then for f S [too,t], we have f —1; < tg and f — Tio < too- Therefore,

t
az;(t; too, €0p) = /LKl,Ul (©)]e(€ = 7i) = @o(§ — 7o) | d&.
too
From the boundedness of the function ¢g(t), t € I, it follows that
lp(€ — 75) — o€ — Tio)| = |@o(€& — 7) + €6 (€ — 7i) — pol(€ — Tio)|
e
= O(edu) + ‘ / o(t) dt‘ < O(gdp). (2.19)

§—Tio
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Thus, for ¢ € [too, pi1], we have
a2 (t; too, edp) < O(edp), i=1,...,s. (2.20)
Let t € [p;1, pia), then
a2, (t;t00,€01) < a2i(pi1;too, €0pt) + azi(pio; pin,€6p) < O(edp) + agi(piz; pi1, €O1L).

Let pPi1 = t() + 7 and pPi2 = t()o + 7, i.e. to + 7 < too + 70 < too + 7. We have

too+Tio
azi(piz; pi1, €6p) < / L, v, ()|y(& — 75 1o + €0p) — po(€ — Tio) | d€
to+Ti
too+Ti
+ LKl,Ul(f)|y(§—Ti;Mo+86M) —yo(f—Tio)‘df
too+Tio
too+Tio
< [ L@l — o+ o) - ole - )| de
to+7i
too+Tio too+Ti
+ [ Lo ©leem—w-roldet [ Lioun @lu€—rino+etn—p(e—r)| de
to+Ti too+Tio
too+Ti too+Ti
+ / L, v, (§)]p(€ — 1) — ol — 7o) dE + / Li,,v, (§)lpo(§ = Tio) — yo(§ — 7o) | d€
too+Tio too+Tio
too+Ti
<oledm)+ [ Lo (©y(€ — 7o+ <) — (6 — )] dg
to+T7i
too+Ti
+ / Lk, v, (§)]po(& — Tio) — yo(§ — Tio)| d§
too+Tio
too too+7i—Tio
— o)+ [ Licuu (€4l motedn) —p©ldst [ Ly (6+7io)lol€) ~o©)] de
to too

(see (2.19)) with tog + 7; — Tio > too + Tio — Tio = too. The functions f(w,u), (w,u) € I x O**s x Uy,
and ¢o(t), t € I1, are bounded; therefore, we have

ly(&; 1o + e0p) — @(€)]

£
= ‘lp(to) + /f(thTla s Tsy 05 Yo + Ay, u)(t) dt — 80(5)’ < O(edp), €€ [to,too), (2.21)
to

£
©o(§) — ¢oltoo) — /f(tooﬂ'm, -5 Ts05 %05 Y0, Uo) (T) dt‘ < O(edp),

too

|900(€) - yo(f)| =

€ € [too, too + T — Tio).
Thus, ag;(pi2; pi1,edp) = o(edp). Let pj = to + 7 and pia = too + Tio, then

too+Tio

azi(piz; pir, €6p) = Lic, v, (§)|y(& — 75 po + €6) — po(§ — Tio) | d€ = o(edp).
to+Ti
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Let pi1 = too + Tio and pio = too + 73, i-€., too + Tio < to + 7 < too + 7;- We have

to+T7;

az;i(pi2; pi1,e0p) < / Li, v, (&)]p(§ —7i) — yo(§ — Ti0)| d€
too+Tio
too+Ti
+ / L, v, (O)|y(& — 73 1o + €0p) — yo(€ — Tio)| d€ = o(edp).
to+T;

Consequently, for ¢ € [too, pi2], inequality (2.20) holds.
Let t € [piQ,TQ + 51], then t — 7, > tg and t — 759 > tog. Therefore,

t

azi(t; too, €dp) = azi(piz; too, €0pt) + / Lk, v, (§)|Z/0(§ — 7))+ Ay(§ — 1) —yo(€ — Tz'o)| d¢

t—1; " t
< O(edp) + / Ly, v, (& +7:)|Ay(§)] d€ + /LKl,Ul Olyo(€ = 75) — yo(€ — Ti0)| d€
) Pi2—Ti Pi2 s
<Ot + [ X€+ )Ly (€ + mIAYEIdE + [ Licon @lo(€ — 1) — vo(€ — 7o)
too pi2

where x (&) is the characteristic function of the interval I.
Further, for & € [p;2,72 + 01],

§—Ti

1Yo (€ — 7i) — Yo (€ — Tio)| < / |f (t00, T10, - - -, Ts0, Y0, o) (t) | dt < O(ebp).
€-Ti0
Thus, for t € [tgg, T2 + 1], we get
t
aai(tito0,200) < O(8) + [ X(€-+ 70 L a1 (€ + 7| By(€)] de. (222)
too

We now consider the case where tog + 70 > r2. Let 62 € (0,61) and € € (0,21) be so small numbers
that too + Tio > 72 + 02 and to + 7; > 19 + o for arbitrary (g,du) € (0,e5) x V.
It is easy to see that

t
az;(t; too, e6p) < /LKl,Ul ()& = 7i) = @ol(§ — Tio)| dt < O(edp).

t

Thus, for arbitrary (t,&,0u) € [too, 72 + d2] X (0,e2) X V™ and i = 1,...,s, where o = min(eh,e}),
inequality (2.22) holds.
Consequently, we have

a1 (t; oo, edp) < O(edp)
t

[ L@+ x4 w6+ 7] 180(@1dE, ¢ € ftonr2 #8229

too i=1

(see (2.18)).
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According to (2.10) and (2.23), inequality (2.14) directly implies

t

|NﬁﬂSW¢M+/P¢¢MO+Z}K+Eﬂmu@+n)MMOM&tEWmm+M

o i=1

from which, by the Gronwall lemma, we get (2.9). O
The following lemma, with a minor modification can be proved analogously to Lemma 2.3.

Lemma 2.4. Let the conditions of Theorem 1.2 hold. Then there exist the numbers e € (0,€1) and

d2 € (0,61) such that [max . |Ay(t)| < O(edu) for arbitrary (e,6u) € (0,e2) x V. Moreover,
t€(to,r2+02

Ay(to) = €[dp(too) + (¢f — f1)dto] + o(edp).

3 Proof of Theorem 1.1

Let ry = tgp and ro = t1g in Lemma 2.1, then

m@:{%m,tﬂﬁm%

yo(t), t € [too,t0],

and for arbitrary (g,0u) € (0,e1) x V7,

xw%+dm:{wm%m+wmmteﬁm»

y(t; po + edp), t € [to, t10 + 1]
(see (2.4)).
We note that o € V7, i.e., to < tgo, therefore, we have
edp(t) for t € [T, 1),
Az(t) = < y(t; po +edp) — po(t) for ¢ € [to, too),
Ay(t) for t e [too, tio + 51]

(see (1.4) and (2.7)). By Lemma 2.3 and the relation |y(t; po + du) — @o(t)| < O(edp), t € [to, too],
we have

|Az(t)| < O(edp) Y (t,e,0p) € [T,t10 + d2] X (0,62) x V7, (3.1)
Ax(too) = [dp(too) + (¢ — f7)bto] + o(edp).

The function Ax(t) satisfies the equation
Ax(t) = f(t,a0(t) + Aa(t),@olt = 71) + Aa(t = 7)., w0t = 72) + Aa(t = 72),u(t) ) - f[1]

= L[tA2() + > fo, [(1AD(t — Ti0) + efult]du(t) + r(t;edp)  (3.3)

=1

on the interval [tgg,t10 + d2], where

r(t; e6p1) = f(t,xo(t) Ax(t),zo(t — )+ Azt — 1), ... xo(t —75) + Ax(t — TS),u(t)>

— 1] = falt]Ax(t) = Y fo,[1Ax(t = 7o) — efult]u(t), (3.4)

f[t] = f(t,l‘o(t),aio(t — 7'10), .i.,a?o(t — 7'50),U()(t))7
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By using the Cauchy formula, one can represent the solution of equation (3.3) in the form

ASC(t) = Y(too; t)AIE(too) +e€ / Y(g, t)fu[t](Su(t) dt + Z Rp(t; 100, 55#), t e [too, t10 + 52], (35)

too p=0

where

Ry (t; too, E§M) = Z RiO(t§ too, E5M),
i=1

Rio(t; too, 65/14) = / Y(ﬁ + Tio; t).fxl [5 + Tio]A.T(f) df, (36)

too—Tio
t

R (£ too, 261) — / Y (€ (& o) de

too

and Y'(&;¢) is the matrix function satisfying equation (1.8) and condition (1.9). The function Y (§;t)
is continuous on the set I = {(&,t) : too — 02 < & < 't, t € [too,t10 + d2]} by Lemma 2.1.7 in [3, p. 22].
Therefore,

Y (too; t) Az (too) = €Y (too; t) [d(too) + (pg — f7)dto] + o(t; edp) (3.7)

(see (3.2)), where o(t;edp) = Y (too; t)o(edp). One can readily see that

to too
Rio(t;too, edp) = € / Y (& + 7o t) fo. [§ + Tio)dp(§) dE + /Y(f + Tioi t) fa, [€ + Tio) Az (&) d€
too—Tio to
too
= [ V(e moit) ol + raldo(€) de + oftion) (3.8)
too—Tio
(see (3.1)). Thus,
too

Ro(t;too, e0p) = EZ / Y (& + Tios t) fu, [€ + Tio]0p(&) dE + o(t; €0 ).

=1, 7
We introduce the notations:
F1t:6,280) = £ (t,0(t) + OA(8), wo(t — 10) + 6 (o (t — 71) = wo(t — 10) + Aa(t = 71)), .,
zo(t — 7s0) + 0 (2o (t — 75) — @o(t — 7s0) + Ax(t — 75)), uo(t) + Oaéu(t>),

o(t;0,e0p) = fo[t;0,e0u] — fot], 0i(t; 0,€0p) = fo, [t;0,€0u] — fa,[t],
V(t;0,e0p) = fult; 0,e0p] — fult].

It is easy to see that

f(t,:vo(t) FAZ(t), mo(t — 1) + Azt —71), .. a0t — 75) + Azt — 74),uo(t) + Eéu(t)) — 1

1
d
—/@f[tﬁ,séu] dé
0

i=1

1
:/{fx [t; 0, 55u]Ax(t)+mei [t; 0, 6] (w0 (t—7:) — 2o (t—Ti0) + Az (t—T7;)) +e fult; 6, séu]éu(t)} de
0
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1
[/U:ﬁ@&éu dH]A:U
0

1 S
[/19 (t;0,e0m) d@] Su(t)+ fu[t| Ax(t +Z fo [t (zo(t—7) =m0 (t—Ti0) + Az (t —73)) +e fu[t]Ou(t).
0 =1

=1

1 0i(t;0,e0u) do (wo(t — 1) — xo(t — Tio) + Ax(t — TZ‘))
[/ |

Taking into account the last relation for ¢ € [tog, t19 + d2], we have
6
R t too,E(SM ZRP t t00,€(5/J, 5
p=2
where

t 1
Ratitoo,20m) = [ V(&0 (Geon)An(e) s, o1(6etm) = [ o(€i6,00) db
0

too

R3(t; oo, p) = Z/Y(E;t)gﬂ(ﬁ;&@) [20(§ — 7i) — 0(§ — Ti0) + Az(§ — 7)] dE,

z:ltoo

1
0i1(&edp) = /9¢(€;9,€5u) do
0

s t

Ry(t;to0,e0p) = Z/Y(fﬁ)fxi [€][z0(& — i) — wo(€ — T0)] dE,

s t

Rs(t;too, e0p) = Z/Y(ﬁ;t)fm [E][Az(E — 7)) — Ax(€ — 7i0)] dE,

i:ltoo
1
R (t; ton, €61) = / V(016 ubu©) de. Dn(&ieom) = [ 0(€:0.0m)d
too 0

(see (3.4)). The function zo(t), t € [T, t10 + d2], is absolutely continuous, then for each fixed Lebesgue
point &; € (too, t10 + d2) of function (€ — 750), we get

§i—edT;

xo(& — 1) — x0(& — Tio) = / &0(s — Ti0) ds = —edo(& — Ti0)0Ti + vi(&is e0pt) (3.9)
&
where
lin% M = 0 uniformly for dp e V™. (3.10)
e—

Thus, (3.9) is valid for almost all points of the interval (oo, 10 + d2). From (3.9), taking into account
the boudedness of the function

Io(t) _ SbO(t)v te [?7 tOO]v
f(f,l‘o(t),xo(f — 7—10)7- . .,l‘o(t — 7'5())7’110(t))7 te (to(),tlo + (52],

it follows that

‘.’E()(&; - Ti) - (E()(& - Ti())| S 0(65/1,) and M’ S const. (311)

€
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Clearly,
o(&;e6 for € € [too, pi1),
|Az(§ = 7)) — Ax(§ — Tio)| = (& €u) ¢ € ltoo, pul (3.12)
O(&edpn)  for & € [pir, pio
(see (3.1)).
Let € € [pig,tl() + (51], then & — 7; > too, £ — Tip > tog- Therefore,
e
|Az(& —7;) — Aw(€ - T0) / A (s)| ds < / Lic, 0,(<) 182 (3)]
E—Tio §—Tio
s E—Ti
+ 3 |wo(s — ) — zols — 7io)| + |Az(s — Ti)l} ds +ea / Li, v, (s)ds = o(&edp)  (3.13)
=1 §—Tio
(see (2.6), (3.1), (3.3) and (3.11)). According to (3.1), (3.9) and (3.11)—(3.13) for the expressions
R, (t;too,e0p), p=2,...,6, we have
ti0+51
| Ra(t; too, €0p)| < [Y[O(edp)oa(edp), oa(edp) = / |o1(&5e6p)] dE,
too
s t10+01
[Ratsto 00| < [Y[OE0) S pialein), paledi) = [ Ipaleeom] de
i=1 o

Ry (t;too, edp) = —62 [/Y &) fo,[€]20(€ — Ti0) d€:|57'z+z%1 (t;edp),

=1 00
|R5(t; too, €6p)| = o(t; edp),
ti0+01
|Re(t; too, edp)| < el|Y|[J2(e0p), Da(edp) = / [01(&; €0p)| dE,
too
where
t
Y l=sup IV (601 () €T} ua(tedn) = [ V(Est) o lehules o) de.
too
Obviously,
( (5 t10+61 g 5
Yi1 (¢ €01 7i(&edp)
WG <y [ |kl de.
too

By the Lebesgue theorem on the passage to the limit under the integral sign, we have

lim og(edp) =0, lim pa(edp) =0, lim Jo(edp) =0, lim M‘ =0
e—0 e—0 e—0 e—0 £
uniformly for (¢,du) € [too, t10 + 02] x V'~ (see (3.10)). Thus,
Ry (t;too, e0p) = o(t;edp), p=2,3,5,6, (3.14)
¢
Ralt: ton, o) = < 3 | [ it lelinte - ro)ae o (3.15)

i=1 t00
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On the basis of (3.14), (3.15), we obtain

Ry (t;too,e0p) = —EZ [/ (&) fu; [€]T0(€ — Ti0) dE| 075 + o(t;€d). (3.16)

thoo

From (3.5), by virtue of (3.7), (3.8) and (3.16), we obtain (1.5), where dx(¢; i) has the form (1.6).

4 Proof of Theorem 1.2

First of all, we note that du € V7T, i.e., tog < to, therefore, we have

edp(t) for t € [T,t00),
A:Z?(t) e (p(t) — yo(t) for t € [t()o,to),
Ay(t) for t € [to,t10 + 01]-

In a similar way (see (2.21)), one can prove |¢o(t) — yo(t)| = O(t;edp), t € [too,to]. According to the
last relation and Lemma 2.4, we have

[Az(t)] < O(edp) Y (t,e,0u) € [T, tio + d2] x [0,2] x VT,
Ax(to) = e[dp(too) + (g — fF)dto] + o(dp).

Let t € (too,t10) be a fixed point, and let e5 € (0,&;) be so small that to < t for arbitrary (,du) €
(0,e2) x V. The function Axz(t) satisfies equation (3.3) on the interval [, ¢19 + da); therefore, by
using the Cauchy formula, we can represent it in the form

t

Ax(t) =Y (to; )A»T(to)+€/Y(€;t)fu[ﬂ5U(£) s+ Ri(t;to,ebp) (4.1)

0 i=0
(see (3.6)). The matrix function Y (£;t) is continuous on [too, ] X [t, t10 + d2]; therefore,
Y (to; t) Ax(to) = €Y (too; t)[0¢(too) + (95 — fT)dto] + o(t; edp), (4.2)

where o(t;edu) = Y (to, t)o(edp). Let us now transform

t to
Rio(t;to,e0p) = ¢ / Y (& + Tios t) fa, [€ + Tio]0p(&) d€ + /Y(E + Tios ) fu, [€ + Tio] Axw(§) dE

to—Tio too
too
= / Y (€ + 7105 t) fa, [€ + Tios t]0p(§) d€ + o(t; € ).
too—To
Thus,
too
Ro(t;tg,e0p) =€ / Y (€ + 70;t) f, [€ + Ti0; t]0p(€) dE + o(t; € ). (4.3)
too—To

In a similar way, with nonessential changes, for t € E, t10 + d2] one can prove

Ry (t;tg,edu) = —62/ (&) [fa: [€]20(€ — Tio)O7:] dE + o(t;€0p1). (4.4)

1= 1t00
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Fin

ally, note that

e / Y (€18 fulelou(€) de = ¢ / Y (€08 fu[€10u(€) dE + oft: 25) (4.5)

for t € [t,t10 + 02). Taking into account (4.2)—(4.5), from (4.1), we obtain (1.5), where dz(t;eu) has
the form (1.10).
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