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Abstract. For the systems of ordinary differential equations which are partially resolved relatively
to the derivatives in the case of a pole, the theorems on the existence of at least one analytic in
the complex domain solution of the Cauchy problem with an additional condition are established.
Moreover, the asymptotic behavior of these solutions in this domain is studied.
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Introduction

R. Fuchs, Ch. Beriot, J. Bouquet, A. Lyapunov, H. Poincare, P. Painleve are the founders of the
theory that investigates the behavior of solutions of systems of ordinary differential equations in the
neighborhood of the singularity.

A separate class of problems in this area is the study of the existence and asymptotic behavior of
solutions of systems of differential equations that are not resolved relatively to the derivatives. Certain
types of systems not resolved relatively to the derivatives in a complex domain were investigated by
such scientists as M. Jwano [4], O Song Guk, Pak Ponk, Chol Permissible [12], V. Gromak and many
others.

One of the methods studying the systems of differential equations that are not resolved relatively
to the derivatives in the real-valued domain was suggested by R. Grabovskaya [3] and J. Diblic [1,2].
Later, this method in the case of a complex domain was developed by G. Samkova [7,8], N. Sharay [10],
E. Michalenko, D. Limanska [5, 6] and others. The present article is a continuation of the research
devoted to the systems of differential equations that are not resolved relatively to the derivatives in a
complex domain.

Let us consider the system of ordinary differential equations

A()Y' = B(2)Y + f(2,Y,Y’), (0.1)

where the matrices A, B : D; — CP*", Dy = {2z € C: |z| < Ry, Ry > 0}, the matrices A(z), B(z)

are analytic in the domain Dqg, D1g = D; \ {0}, the pencil of matrices A(z)A — B(z) is singular as

z — 0, the vector-function f : D x G; x Gy — CP, where domains Gy C C*, 0 € Gk, k = 1,2, the
function f(z,Y,Y”) is analytic in the domain Dy x G19 X Gag, Gro = G \ {0}, k=1, 2.

The main goal of our paper is to establish the existence and to study the asymptotic behavior of

solutions of the system of differential equations (0.1) in the domain with the point z = 0 on its border,

under the conditions that p < n, the matrix A(z) is analytic in the domain Dy and rank A(z) = p in
this domain.

1 On some singular Cauchy problem for a system of
ordinary differential equations, not resolved relatively
to the derivatives

Let us consider the system of differential equations
Y = A P(2)Y; + F(z,1,Y]), (1.1)

where | € Z, Y1 = col(Y11(2),...,Y1,(2)), Y1 : D1 — CP, the matrix P(z) is analytic in the domain
Dy, F: D1 x G11 X Ga1 — CP, Gj1 C CP, j = 1,2, F(z,Y1,Y/) is analytic vector-function in the
domain D; x G171 X Ga1, F(0,0,0) = 0.
We study the questions of the existence of analytic solutions of system (1.1) that satisfy the initial
condition
Yi(z) = 0 for 2 — 0, z € Dy, (1.2)

and the additional condition
Y{(z) =+ 0 for 2 =0, z € Di. (1.3)

According to the method of analytic continuation of solutions [3], system (1.1) will be investigated
over two sets of curves. We analytically continue solutions from the curve of the first set to some
domain by using the curves of the second set.

1.1 Introduction of some intermediary notations

For arbitrary fixed ¢; > 0, v1,v2 € R, v1 < vg, let us introduce the following intermediary sets:

I={(t,v) eR*: t € (0,t1), v E (v1,v2)},
(t1) = {(t,v) €R*: t € (0,t1), v =19 € (v1,v2)},
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v is a fixed number.

For arbitrary fixed tg € (0,t1), Oy, (to) = {(t,v) € R? : t =19, v € (v1,v2)}.

For z = z(t,v) = te', let us assign for set I C R* theset I C C, I = {z =t € C: t €
(O,tl), v E (1)1,’[)2)}.

Definition 1.1. Let p,g : I — [0,+00). We say that the function p(t,v) possesses property Q:
relative to the function g(¢,v) for v = vg € (v1,v2), if the function p(t,vg) is of higher-order of
smallness relative to the function g(¢,vo) as t — +0.

Definition 1.2. Let p,g : I — [0,+00). We say that the function p(t,v) possesses property (2
relative to the function g(t,v), if there exist C; > 0, Cy > 0 such that in the set I the inequalities

Cr- g(t7v) < p(t,’U) <Cy- g(t7U>
hold.
Let us introduce the following intermediary vector-functions:
P02 = (01" () oD@ O T T
WO (t0) = @ (0), 90 (8 0), ¢ T = [0i400), j=Tp.

For z = z(t,v) = te'’, we have

O (t,0) = [ (2(t,0))], j=T,p.

Definition 1.3. We say that the analytic on the set I vector-function @(O)(z) possesses the property
Th, if for any z € I, for the counterpart vector-functions ’(/JJ(-O) (t,v) the conditions

GO0 >0, @0 0), >0, @), >0,
¥ (+0,0) =0, (¥ (+0,0)); =0, j=T,p uniformly in v € (v3,v2)

are fulfilled.

1.2 System (1.1) on the set L, (t1)

Let us consider system (1.1) over the interval L, (¢1) for an arbitrary fixed vy € (v1,v2).
For z = 2z(t,vp) = te**°, in system (1.1) we write each vector-function and matrix in the algebraic
form and separate real and imaginary parts. Introduce the following designations:

Yi(2(t,v0)) = Ya(t), Yi(t) =Yis(t) +iVaa(t); Yi;(t) = col(Yiju(t),..., Yip(t), j =12,
P(z(t,v0)) = Bk @)% ey = Pr(t) +iPa(t), Pult) = [Bjgs @)% oys s =1,2,
where
Pik(t) = Pjra(t) +ipjua(t), j,k =1,p,
F(2(t,v0), Y1(2(t,v0)), Y{ (2(t,v0))) = F(t, Y1, YY),
F(t,Y1,Y/) = col (Fi(t,Y1,Y]), ..., F,(t,Y1,Y])),
ﬁj(ta Y1, Y)) = ﬁlj(ta Y1, YY) +iﬁ2j(t73~/1,371/)7 Jj=1p.

Due to the fact that for each v € [v1,v2] we have the equality

i;Vll(t) = (Yl(Z(t,U))); = % . % — YY(Z) X eiv,

then for z = 2(t,vy) = te'® system (1.1) takes the form

t1(Y]; +iY{y) = t'(P1 + iP) (Vi1 +iY12)e™ +eU70"0 (Re F(t, 71, Y{) +iIm F(t,Y3,YY)).  (1.4)
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Let us introduce the matrices and the vector-function
f)(t) — }31 (t) _NPQ(t) ’
Py(t)  Pi(t)

~ _ [cos(vg)E —sin(vg)E ~ _( cos((l=Nvg)E  sin((I — L)vo)E
@1(vo) = <sm(v§)E cos(t0) B ) > Qa(vo) = (—sin((l 1) E cos((l— 1)UZ)E> )

‘]?(t, }711, }7127 }71/1, }7{2) = COl (ﬁll e ﬁlpﬁgl e Fvgp),
where F is the p X p identity matrix.

Equating the real and imaginary parts of the vector-functions from the left— and right-hand sides
of system (1.4), system (1.4) reduces to

¥ (gg) — #B() 31 (v0) (%Eg) o) (1 Ty, Tro V0, T). w3

This implies that system (1.1) over the interval L, (t1) for an arbitrary fixed vg € (v1,v2) reduces
to the system of real differential equations (1.5).

1.3 System (1.1) on the set Oy (to)

Let us consider system (1.1) over the arc of circle Oy, (t9) for an arbitrary fixed to € (0,;).
For z = z(t,vp) = te'**, in system (1.1) we write each vector-function and matrix in the algebraic
form and separate real and imaginary parts. Let us introduce the following designations:

Yi(2(to,v)) = Yi(v), Yi(v) =
Yij(0) = col (Vi (v).. .7?1jp<v>>, i=12
P(=(t0,0)) = s (0|2 4ey = Pi(v) + iPa(v), Po(v) = [[Bns(v)

p —
7,k=1 s = 1327

where

Pik(v) = Djr1(v) + iDjr2(v), 4,k =1,p,
F(2(to,v), Y1 (2(to,v)), Y{ (2(t0, v))) = F(v,Y1,Y7),
F(0,Y1,Y]) = col (F1(v,Y1,Y)),..., Fy(v,Y1,Y})),

Fj(0,Y1,Y]) = Fy; (0, Y1, Y{) + iF5(v,Y1,Y)), j=Tp.

Due to the fact that for each ¢ € (0,¢1) we have the equality

/ dY1 dZ

V() = (Vi=(t,0), = = - = Y{(2) -ite™,

then for z = 2(tg,v) = toe', system (1.1) reduces to the form
th 1 (YY) +iYy) = ith(Pr +iPy) (Y11 + i¥12)e™ + e D" (Re F(v, Y1, YY) +iIm F (v, Y1,YY)). (1.6)

Let us introduce matrices and the vector-function

Blv) — 131(?1) —ﬁ2(v)
) <P2<v> <v>>

~ _ (—sin(v)E —cos(v)E B (v sin((l — 1)v)E —cos((Il — 1)v)E
@) = ( cos(v)E —sin(v)E) » Q(v) = (cos((l —Dv)E  sin((l-1)v)E ) ’

J/c\(U’ Yir, Yio, Y7, ?1/2) = col(Fy; --- F1pF21 - 'FQp);

where E is the p x p identity matrix.
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Equating the real and imaginary parts of the vector-functions from the left— and right-hand sides
of system (1.6), system (1.6) reduces to

to ! (}%EZ;) = 6P (0)Q1(v) (2;%2;) + Qo(v)F (v, Vi1, Vi, V11, V). @

This implies that system (1.1) over the arc of the circle Oy, (tg) for an arbitrary fixed ¢y € (0,t1)
reduces to the system of real differential equations (1.7).

1.4 On some classes of systems of form (1.1)

Definition 1.4. We say that the matrix P(z) possesses property So; relative to the vector-function
©0)(2), if the following conditions are fulfilled:

(1) For each vy € (v1,v2), the functions (w](-o) (t,v)); possess property ()q relative to the functions
By O (1,0), 5 = Tp, for v = vy € (v1,02).

(2) The functions tl(w§0) (t,v))),, possess property @ relative to the functions ¢'~1|p;; (v)|¢§»0) (t,v),
j=Lp.

(3) Foreach vy € (v1,v2), the functions |p;(t) |1/),(€0) (t,v) possess property @ relative to the functions

B OV (¢, ), 4.k =T,p, j # k, for v =g € (v1,v2).

(4) The functions ¢ \ﬁjk(v)h/}]go) (t,v)) possess property Q2 relative to the functions tlil(w(o)(t v)),
g k=T1p,j#k
Let us define the sets

~ ~ ~ ~ ~ 2
Q((S, QP(O)(Z(t?’UO))) = {(t7Y117Y12) tte (07t1)7 Y121j +Y122j < 5?(’@/1§0)(t,1}0)) v J = 17;0}7

vg is fixed on (vy,vs),
(AZ(UHP(O)(Z(to,U))) = {(%?11,1712) v € (v1,02), }71213‘ ‘*‘?1221‘ < sz'(wy('O)(tO’U))Q’ J= 1,p},

to is fixed on (0,t1), where § = (81,...,8,), 0 = (01,...,0p), 6;,0; € R\ {0}, j =1,p.

Definition 1.5. We say that the vector-function F(z,Y7,Y) possesses property Moy, relative to the
vector-function ¢(®)(2), if the following conditions hold:

(1) For each vy € (vi,v2), when (tY11,Y12) € Qo,0@(2(t,10))), the functions
Fk] (t, Y11, Y12, Y]y, Y,) possess property Q; relative to the vector-functions tpj;(t )|¢](O) (t,v),
j=1,p, k=1,2 for v =19 € (v1,v2).

(2) For each (v, Y11, Y12) € Q(o, 0@ (2(ty, v))) the functions ﬁkj(v, Yi1,Yia, Y/, Y/,) possess proper-
ty Q2 relative to vector-functions tl|ﬁjj(v)\w§0)(t, v),j=1,p, k=1,2.

Let us introduce intermediary functions &, (t), @,k (v), 7,k = 1,p,

cos(p(t)) = ——20____

Vom@P+ Be? = (1.8)
sin(@u(1) = ——2220 ,

\/(pjkl( )%+ (Piw2(t))?
cos(@za(1)) = — 1210 ,

N O T R — (1.9
sin(@u(t) = ——22___

V(Djr1(t))? + (Djna(t))?
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Without loss of generality, let us suppose that t; < R; and introduce the domains Ay x(¢1),
k € {+,—} defined as follows:

Ay () = {(t, v) : cos ((I = L)v+ay;(t)) >0, sin ((I — L)v+aj;(v)) >0,
1,p, t € (0,t1), v € (’Ul,Ug)};
As_(t) = {(t,v) : cos((l — 1w+ a;(t)) > 0, sin((l — 1)v + a;(v)) <0,

,p, t € (0,t1), v e (’Ul,’Ug)}.

J

1

J
Definition 1.6. We say that system (1.1) belongs to the class C, i, k € {+,—}, if for the matrix
P(z) = P(te™) the condition (t,v) € Ay x(t1), k € {4+, —} is true.
1.5 On the existence of a solution of problem (1.1),(1.2),(1.3)
Let us introduce the domains G4 ;(t1) = {z = 2(t,v) : 0 <|z| <t1, (t,v) € Ay (1)}, ke {+ —}.
Theorem 1.1. For system (1.1), let the following conditions be fulfilled:

(1) The matriz P(z) is analytic in the domain Dy and possesses property Sa; relative to the analytic
vector-function o (z).

(2) The vector-function F(z,Y1,Y]) is analytic in the domain Dy X G11 X Ga1, F(0,0,0) = 0 and
possesses property Mo, relative to the analytic vector-function 4,0(0)(2).

(3) System (1.1) belongs to one of the classes Cy i, k € {+, —}.

Then for each k € {+,—} and for some t* € (0,t1) there exist analytic solutions Y1(z) of system
(1.1) that satisfy the initial condition Yi(z9) = Yio for zo € G i(t*), Yio € {Y1 : [Y15(20)| <
5j|g0§-0)(zo)|, §; >0, j =1,p}. These solutions are analytic in the domain Dy N G4 x(t*) and satisfy
the inequalities

V()2 < 2o ()P, 5 =T.p. (1.10)

Proof. (1) Let us consider system (1.1) over the interval L., (¢1) for an arbitrary fixed vy € (v1,v2).
We introduce the sets

G (0,60 (=t v0)) = {(t. V21, Va2) : VR, + T, < 2@ (Lw))?, te (0.01)}, j = Tp.

Thus the set Q(8, 0@ (2(t,v9))) can be considered as intersection of the sets ﬁj of the form

p
(5.9 () = () (6, ¢ (a(t,00).

Jj=1
A part of the boundary of the set ﬁj, je{1,2,...,p}, will be denoted by

00 (0,60 (2(t,v0))) = { (1. V11, Via) + V3, + Vi, = 2267 (8, v0))?,

Vi + Vi < 0 (G vo)? k=Top, k#j. t€ (0.0) ).

Assume
O, (t,Y (1)) = Y2, () + Y5, (t) — 82w\ (t,v0))%, j € {1,2,....p}.

Then the outward normal vector for the surface G(Qj)(é, P(z(t,vp))), for the fixed j € {1,...,p}, will
take the form
N; 2,,(0) (0) / > -
7 = (—5j'll)j (t7’l)()))((’(/)j (t, Uo))t,07 e ,07Y11j,0, N 70, Ylgj, 0, ey 0)
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Let T be a slope-field vector of system (1.5) at an arbitrary fixed point (£*,Yi1(t*), Yia(t*)) €
990,09 (2(t,v0))), 7 € {1,...,p}.

Consider the dot product
(AT, 52 ) = =#620” (8. v0) () (1, w0));
1! (B2 (2) cos( = 1)vo) = Bya(8) sin((L = 1)wo) )02 (4 (¢, vo))

2

P

30 (Bt cos (1= 1)vo) = Bywa(0)sin((L = 1) (Vs Vs + Vi Vo) )
k=1, k#j
30 (B (®)sin (0= Do) + Byealt) cos(1 = oo)) (Vink¥azy — Viauiny) )
k=1, k#j

+ (F1j cos((I—1)vo)+ Fay sin((I—1)vo) ) YViry+ (— Fijsin((I—1)vo ) + Fa; cos((I—1)vo) ) Vizj, j = 1,p.

Since by condition the matrix P(z) possesses property Sy and the vector-function F(z,Y:,Y{)
possesses property My relative to the vector-function ¢(©) (z), we have

(4T, @) ~ Fn ()% + (B372(0)2 (cos((L — Do +a55(1), =T,

as t — +0, where the functions &;;(t) are defined by equalities (1.8).

According to the fact that system (1.1) pertains to one of the classes Cy x(t,v), k € {+, —}, there
exists t* such that for ¢ € (0,t*) the inequality (¢'T, %) > 0, j = 1,p, holds true. Thus, for ¢ € (0,t*),
98, 0 (2(t,vg))) is the surface without contact for system (1.5). Moreover, the integral curve enters
the domain (8, p(©)(z(¢,v0))) as the variable ¢ decreases.

According to the topological principle of T. Wazewski [13], at least one smooth integral curve of
system (1.5) goes through every point of the set Q(8, (@ (2(t, v9))) U8, @ (2(t,v0))) N (¢ = t*). All
integral curves of this system going through the points Q(8, o(? (z(t, v0))) U8, o (2(t,v0))) N (t =
#*), remain in the domain (8, 0(© (2(¢, vo))) for (t,v0) € Ay 1 (%), k € {+, =1}, vo € (v1,v2). Moreover,
the inequalities

Vig; (2(t,v0))2 < 62 (0 (t,00))%, j=Top, s=1,2, (1.11)
are fulfilled for (¢,vo) € Ay x(t*), k € {+,—}.

(2) Consider system (1.1) over the arc of circle O, (o) for an arbitrary fixed tq € (0,%1).
Let us introduce the sets

ﬁj (o,go(o)(z(to,v))) = {(v,}?n,f/lg) : 57121j —l—fffzj < 0?(w§0)(to,v))2, v e (vl,vg)}7 j=1,p.

Thus the set ﬁ(m ©(©)(2(tg,v))) can be considered as the intersection of sets ﬁj of the form

p
Q(o, 0 (2(to,v) m Q; (o, 0O (2(to, v))).

j=1

A part of the boundary of the set ﬁj, j€{1,2,...,p} is denoted by

00 (0,6 (2(t0,v))) = { (v, Vi1, Tr2) = V3, + Vi, = 26" (to, v))?,

Ynk +Y12k < Uk(l/)( )(t07 )2, k=

Lp, k #]? te (07t1)}
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Let T be a slope-field vector of system (1.7) at an arbitrary fixed point (£*,Yi1 (%), Yio(t)) €
0Q; (0, ¢(2(to,v))), for the fixed j € {1,...,p},

(477 52) = 2020 10,000 0,0,
+th (ﬁm(v) cos((I = 1)v) — pjja(v) sin((l — 1)v))072(w§0)(t0’ v

+1 Z (ﬁjkl(”) cos (1 — 1)v) — Pjra(v) sin((l — 1)) (Y116 Y12j — ﬁzkﬁu))

k=1, k#j
p
b Y ( — By () sin (1= 1)) — Pira(v) cos((l — 1)v)) (Viax¥is; + melzj))
k=1, k#j

+ (ﬁlj sin((l — 1)v) + ﬁgj cos((l — 1)1)))3711]» + (ﬁlj cos((l — 1)v) + ﬁgj sin((l — 1)1}))}712]», j=1p.

Since by the condition the matrix P(z) possesses property Sy and the vector-function F(z, Y1, Y;)
possesses property Moy, relative to the vector-function go(o)(z), we have

(157752 ~ @i @) + Gra0))? (sin( — Do) +@55(0)), 5 =Tp,

as t = +0, v € (v1,v2), where the functions &;;(v) are defined by equalities (1.9). Thus

_ N,
sign (tfflﬂ 7]) = sign (sin((l — 1)v) + @j;(v)), j=1,p, v € (v1,v2).

Without loss of generality, we suppose that for each fixed to € (0,t*), 8Q(c, p(@)(2(to,v)) €
At ("), k € {4+, —} is the surface without contact for system (1.7).

According to the fact that system (1.1) belongs to one of the classes Cy x(t,v), k € {+,—},
any integral curve of system (1.7) going through the point of the set Q(U, 0O (2(tg,v))) N (v = vy),
vo € (v1,v2), remains in the domain Q(U, ©©(2(tg,v))) under the condition that variable v decreases
if (to,v0) € Ay +(t*), and v increases if (to,vo) € Ay —(t*).

Moreover, the inequalities

Vi (2(t0, )% < o2 (07 (t0,0))?, j=T,p, s=1,2, (1.12)
hold true for (tg,v) € Ay i (t*), k € {+,—}.

(3) Let us use the method of analytic continuation of solutions for the problems that are solved
relatively to the derivatives, i.e., the method suggested by R. Grabovskaya [3] and developed by
G. Samkova [7,8] for the problems that are not solved relatively to the derivatives and also used by
D. Limanska and G. Samkova [6] in the proof of the third point of Theorem 2 [6].

Let us suppose that for vectors §,0 € CP, §; # 0, 0; # 0, j = 1, p, the inequalities

(6,)% < (07)% =T, (1.13)

are true.

In the proof of item (1) of the theorem, we have got the fact that there are infinitely many
continuously differentiable solutions of system (1.5) over the interval vg € (v1,v2) for t € (0,¢*), and
these solutions satisfy inequality (1.11). We denote a set of such solutions by {Y1(z(¢,v0))}.

Any solution Y7 (z(¢,v9)) from the set {Y7(z(¢,v0))} is analytically continuable from the interval
L, (t1), where (t,v) € Ay (t*), for fixed vy € (v1,v2), to the domain containing this interval, with
preservation of inequalities (1.12).

From the proof of item 2 of the theorem it follows that if inequalities (1.13) are fulfilled, then the
solution Y7 (z(t,v)) for fixed v = vy can be continued from the interval L,, (1) over the curves O, (to)
to the set Q(c, 0@ (2(t*,v))) for ¢ € (0, |2(ty,v)|]. We denote the obtained analytic continuation by
Y1(z). The set of solutions of system (1.4) is {Y1(2)}.

As aresult, the solutions Y7 (z) of system (1.1) are analytically continuable to the domain G j(t*)x

{Y : |1y, < 5j|g0§0)(z(t07v))\, j = 1,p}, and, moreover, in this domain solutions Y;(z) satisfy

inequality (1.10). O
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2 The main results for system (0.1)

Let us consider the system of ordinary differential equations (0.1) under the conditions that p < n,
A(z) is an analytic matrix in the domain D;, and rank A(z) = p for z € Dy. Let us introduce the
function Y = col (Y1 Yg), Y1 = col(Y11(2), ..., Y1,(2)), Y2 = col(Y21(2),...,Yan—p(2)), Y1 : D1 —
CP, Yy : D; — C"P. Without loss of generality, we assume that the matrices A(z), B(z) and the
vector-function f(z,Y,Y”) take the forms

A(Z) = (Al(z) AQ(Z))a B(Z) = (Bl(z) BZ(Z))v f(Z,KY/) :f*(’z?YlaYanY{?Yé)a

A1 : D1 — (Cpo, A2 : D1 — Cpx(nfp% Bl : D1 — CPXP, BQ : D1 — Cpx(nip), detAl(z) 7é 0 for
2 € Dy, f*: D1 X Gi1 X Gi2 X Ga1 X Gag = CP, Gj1 X Gja = G, Gj1 CCP, Gje CC"7P, j=1,2.
Due to the above-said, system (0.1) can be written as

Y] = ATN(2)Bi(2)Y1 + A7 (2) Ba(2)Ya — AT (2)Ae(2)Y3 + AT (2) ¥ (2,11, Y2, Y1, YS)  (21)

Suppose that the matrices A7 *(2)Bi(2), A7 (2)A2(2), A7*(2)Ba(z) are analytic in the domain Dy
and have removable singularity at the point z = 0.
Let us introduce

P(z) = A7 (2) Bu(2),
F*(Z, Y1, Ya, Yll7 Y2l) = AII(Z)BQ(Z)YQ - A;1(2>A2(Z)Y2/ + Aflf*(zv Y1, Yo, Yllﬂ Y2I)7 (2'2>

then system (1.1) can be written as
Yll = P(Z)Yl + F*(Z,Y17Y27Y1/a }/é/)a (23)

where P(z) is the matrix, analytic in the domain D¢ having removable singularity at the point z = 0,
and P : Djg x CP*P, F*(z,Y1,Ys,Y{,Yy) is the vector-function, analytic in the domain D19 X G119 X
G120 X Ga19 X GQQQ, ijo = ij \ {O}, 7 k= 1,2. Therefore, the vector-function F* (Z7Y1,§/2’ Y{,YQ/)
has isolated singularity at the point (0,0,0,0,0). This means that according to the theorem on the
isolated singularity of the function of several complex variables, the point (0,0,0,0,0) is a removable
singular point of that function.

Let us define the vector-function F*(z,Yy,Ys,Y{,Yy) at the point (0,0,0,0,0) in such a way that
it becomes analytic in the domain D; X G117 X G132 X Ga1 X Gaoo. Without loss of generality, assume
that £*(0,0,0,0,0) = 0.

By H~P we basically mean a class of (n — p)-dimensional analytic in the domain Djo functions
that have pole of r-order at the point z = 0.

Let us consider system (2.3) for an arbitrary fixed vector-function Yo € H>~P. Then the function
Ys = Y5(z) can be written as

Ya(z) = 27"Y5 (2), (2.4)

where r € N, Y;*(z) is an analytic vector-function in the domain D; such that Y5*(0) # 0. Moreover,
the function Y5*(2) is represented as a convergent power series for z € Dj. Therefore, (2.4) in the
domain Dy, takes the form

Ya(z) = Z Crpztr,
k=0

where C, € C" P, k=0,1,2,...,9 #0.

Since Cy # 0, the vector-function Y;(z) has a pole of r + 1-order at the point z = 0.

Since the vector-function F*(z, Y1, Ya, Y{,Y) is analytic in the domain D1 X G11 X G12 X Ga1 X G2
and F*(0,0,0,0,0) = 0, we get that F*(z,Y7,Y>,Y/,Yy) can be represented as a convergent power

series
o0

F*(2,Y1,Y,Y{,Y3) = > Cajkbdz"Y{ Y (Y)"(V3)
a+|j|+|k|+]|b|+|d|=1
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near the point (0,0,0,0,0), where Cujkpa € CP, j = (j1,---,Jp), (Y1)7 = (Yir)?t - (Y1), || =
Gt gy k= (ke knep), (Yo)P = (Yar )% - (Yoo r, [k = kit A hp_p, b= (b, ..., by),
(Y))? = (V)" - (Y1,)P, (o] = b+ 4 by, d = (dus oy dny), (Y3)T = (Y1) P o (Y, )P,
|d| =di+ -+ dn_p.

Assume that there exist ¢ € N and s € N such that

(1) for some ag € N, jo = (Jor,---Jop)s Jin € NU{0}, bo = (bo1,---,bop), bon € NU{0}, h = 1,p,
we have Coqjokbed 7 0 for k| =g, |d] =s;

(2) forany hym e Nand u=1,2,...,n —p,c=1,2,...,n — p, we have Cuj(ithe,)b(d+me.) = 0;

where e, is the (n — p)-dimensional uth orthogonal unit vector, and e is the (n — p)-dimensional cth
orthogonal unit vector.

Consequently, the summands in the power series expansion of function F'* in the neighbourhood of
the point (0,0,0,0,0), containing the maximum powers of vector-functions Y5 and Y, with non-zero
coefficients, take the form

Cajivaz Y7 YVF (V] (Y3)? = Cajroaz™Y7 (277 Y5 ) F (V) (z77Ys = vz 1Y5)
—rg—(r svJ * * N
= Cojipaz® 17DV (V) () (Y5 — Y5,

fora=0,1,2..., |7 =0,1,2,..., [b| =0,1,2,..., |k| = ¢, |d| = s and, at least, if a = ag, j = jo,
b=bp.
Two logical cases are possible:

(1) a—rq—(r+1)s>0. Then for an arbitrary fixed function Yz € H P, we have F*(z,Y1,Y2,Y{,Yy) =
F(z,Y1,Y]), where F(z,Y1,Y]) is analytic at the point (0,0,0), and system (2.1) is reduced to
the system

Y] = P(2)Y1 + F(z2,Y1,Y]). (2.5)

According to Theorem 1.1 of [6, p. 22], the sufficient conditions for the existence of analytic
solutions of the Cauchy problem (2.5), (1.2) with the additional condition (1.3) are found.

(2) a —rq — (r+1)s < 0. Let us introduce | = rq + (r + 1)s — a, then the vector-function
F*(z,Y1,Y3,Y],Y]) may take the form
F*(2,Y1,Y2, Y/, Y;) = 27" > Cajrvaz"Y{ (Y3)*(])" (Y5 —rY5)
a+|j|+1k|+[b]+]d|=0
=27 (2, Y1, Y YY),

where F(z7Y1,Y2*7Y1’,Y2*') is the analytic vector-function in the domain D; x G x G2 X
G21 x Gag. Without loss of generality, we assume that F(z,Y7,Ys,Y!,Ys") = F(2,Y1,Y!), and
F(0,0,0) = 0.

According to (2.2), system (0.1) takes form (1.1). Let us consider the problem on the existence
and asymptotic behavior of the solutions of system (0.1) that satisfy the initial condition (1.2) and
the additional condition (1.3).

Theorem 2.1. Let p < n, A(z) be an analytic matriz in the domain Dy, rank A(z) = p for z € D;.
Moreover, let system (0.1) take form (2.3), and for Yo € H* P, conditions (1)—(3) of Theorem 1.1 be
true for the associate system (1.1).

Then for each k € {+,—}, some t* € (0,t1) and for each Yo € H P there exist analytic solu-
tions Y (z) = (Y11(2),...,Y1p(2),Y21(2), ..., Yan_p(2)) of system (1.1). The first p-elements of these
solutions are analytic in the domain Dy N G4 (t*) and satisfy inequality (1.10).

Proof. According to Theorem 1.1, the solution Yj(2) of system (1.1) is analytically continuable on
Giu(t*) x {Y @ |Yi4] < &lp,(2)], 7 = 1,p}. Moreover, the solution satisfies inequality (1.10)
in this domain. Therefore, system (0.1), for an arbitrary fixed function Y2 € H?~P, has solutions
Y = (Y1(z),Y2(2)), the first p-elements of which are analytic in the domain G ;(t*) x {Y : |Y1;| <
d;ilei(2)], 7 =1,p} and satisfy inequality (1.10) for z € Dy N G4 ,(t*). O
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