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Abstract. For the systems of ordinary differential equations which are partially resolved relatively
to the derivatives in the case of a pole, the theorems on the existence of at least one analytic in
the complex domain solution of the Cauchy problem with an additional condition are established.
Moreover, the asymptotic behavior of these solutions in this domain is studied.
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ÒÄÆÉÖÌÄ. ÜÅÄÖËÄÁÒÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ, ÒÏÌËÄÁÉÝ ÍÀßÉ-
ËÏÁÒÉÅ ÀÌÏáÓÍÀÃÉÀ ßÀÒÌÏÄÁÖËÄÁÉÓ ÌÉÌÀÒÈ ÐÏËÖÓÉÓ ÛÄÌÈáÅÄÅÀÛÉ, ÃÀÌÔÊÉÝÄÁÖËÉÀ ÊÏÌ-
ÐËÄØÓÖÒ ÀÒÄÛÉ ÄÒÈÉ ÌÀÉÍÝ ÀÍÀËÉÆÖÒÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ ÈÄÏÒÄÌÄÁÉ ÊÏÛÉÓ ÀÌÏÝÀÍÉÓ-
ÈÅÉÓ ÃÀÌÀÔÄÁÉÈÉ ÐÉÒÏÁÉÈ. ÂÀÒÃÀ ÀÌÉÓÀ, ÛÄÓßÀÅËÉËÉÀ ÀÓÄÈÉ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÓÉÌÐÔÏÔÖÒÉ
ÚÏ×ÀØÝÄÅÀ ÀÌ ÀÒÄÛÉ.
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Introduction
R. Fuchs, Ch. Beriot, J. Bouquet, A. Lyapunov, H. Poincare, P. Painleve are the founders of the
theory that investigates the behavior of solutions of systems of ordinary differential equations in the
neighborhood of the singularity.

A separate class of problems in this area is the study of the existence and asymptotic behavior of
solutions of systems of differential equations that are not resolved relatively to the derivatives. Certain
types of systems not resolved relatively to the derivatives in a complex domain were investigated by
such scientists as M. Jwano [4], O Song Guk, Pak Ponk, Chol Permissible [12], V. Gromak and many
others.

One of the methods studying the systems of differential equations that are not resolved relatively
to the derivatives in the real-valued domain was suggested by R. Grabovskaya [3] and J. Diblic [1,2].
Later, this method in the case of a complex domain was developed by G. Samkova [7,8], N. Sharay [10],
E. Michalenko, D. Limanska [5, 6] and others. The present article is a continuation of the research
devoted to the systems of differential equations that are not resolved relatively to the derivatives in a
complex domain.

Let us consider the system of ordinary differential equations
A(z)Y ′ = B(z)Y + f(z, Y, Y ′), (0.1)

where the matrices A,B : D1 → Cp×n, D1 = {z ∈ C : |z| < R1, R1 > 0}, the matrices A(z), B(z)
are analytic in the domain D10, D10 = D1 \ {0}, the pencil of matrices A(z)λ − B(z) is singular as
z → 0, the vector-function f : D1 × G1 × G2 → Cp, where domains Gk ⊂ Cn, 0 ∈ Gk, k = 1, 2, the
function f(z, Y, Y ′) is analytic in the domain D10 ×G10 ×G20, Gk0 = Gk \ {0}, k = 1, 2.

The main goal of our paper is to establish the existence and to study the asymptotic behavior of
solutions of the system of differential equations (0.1) in the domain with the point z = 0 on its border,
under the conditions that p < n, the matrix A(z) is analytic in the domain D1 and rankA(z) = p in
this domain.

1 On some singular Cauchy problem for a system of
ordinary differential equations, not resolved relatively
to the derivatives

Let us consider the system of differential equations
zlY ′

1 = zlP (z)Y1 + F (z, Y1, Y
′
1), (1.1)

where l ∈ Z, Y1 = col(Y11(z), . . . , Y1p(z)), Y1 : D1 → Cp, the matrix P (z) is analytic in the domain
D1, F : D1 × G11 × G21 → Cp, Gj1 ⊂ Cp, j = 1, 2, F (z, Y1, Y ′

1) is analytic vector-function in the
domain D1 ×G11 ×G21, F (0, 0, 0) = 0.

We study the questions of the existence of analytic solutions of system (1.1) that satisfy the initial
condition

Y1(z) → 0 for z → 0, z ∈ D10, (1.2)
and the additional condition

Y ′
1(z) → 0 for z → 0, z ∈ D10. (1.3)

According to the method of analytic continuation of solutions [3], system (1.1) will be investigated
over two sets of curves. We analytically continue solutions from the curve of the first set to some
domain by using the curves of the second set.

1.1 Introduction of some intermediary notations
For arbitrary fixed t1 > 0, v1, v2 ∈ R, v1 < v2, let us introduce the following intermediary sets:

Ǐ =
{
(t, v) ∈ R2 : t ∈ (0, t1), v ∈ (v1, v2)

}
,

Lv0(t1) =
{
(t, v) ∈ R2 : t ∈ (0, t1), v = v0 ∈ (v1, v2)

}
,
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v0 is a fixed number.
For arbitrary fixed t0 ∈ (0, t1), Ot1(t0) = {(t, v) ∈ R2 : t = t0, v ∈ (v1, v2)}.
For z = z(t, v) = teiv, let us assign for set Ǐ ⊂ R2 the set I ⊂ C, I = {z = teiv ∈ C : t ∈

(0, t1), v ∈ (v1, v2)}.

Definition 1.1. Let p, g : Ǐ → [0,+∞). We say that the function p(t, v) possesses property Q1

relative to the function g(t, v) for v = v0 ∈ (v1, v2), if the function p(t, v0) is of higher-order of
smallness relative to the function g(t, v0) as t→ +0.

Definition 1.2. Let p, g : Ǐ → [0,+∞). We say that the function p(t, v) possesses property Q2

relative to the function g(t, v), if there exist C1 ≥ 0, C2 ≥ 0 such that in the set Ǐ the inequalities

C1 · g(t, v) ≤ p(t, v) ≤ C2 · g(t, v)

hold.

Let us introduce the following intermediary vector-functions:

φ(0)(z) = (φ
(0)
1 (z), . . . , φ(0)

p (z)), φ(0) : I → Cp,

ψ(0)(t, v) = (ψ
(0)
1 (t, v), . . . , ψ(0)

p (t, v)), ψ
(0)
j : Ǐ → [0;+∞), j = 1, p.

For z = z(t, v) = teiv, we have

ψ
(0)
j (t, v) = |φ(0)

j (z(t, v))|, j = 1, p.

Definition 1.3. We say that the analytic on the set I vector-function φ(0)(z) possesses the property
T0, if for any z ∈ I, for the counterpart vector-functions ψ(0)

j (t, v) the conditions

ψ
(0)
j (t, v) > 0, (ψ

(0)
j (t, v))′t > 0, (ψ

(0)
j (t, v))′v ≥ 0,

ψ
(0)
j (+0, v) = 0, (ψ

(0)
j (+0, v))′t = 0, j = 1, p uniformly in v ∈ (v1, v2)

are fulfilled.

1.2 System (1.1) on the set Lv0(t1)

Let us consider system (1.1) over the interval Lv0(t1) for an arbitrary fixed v0 ∈ (v1, v2).
For z = z(t, v0) = teiv0 , in system (1.1) we write each vector-function and matrix in the algebraic

form and separate real and imaginary parts. Introduce the following designations:

Y1(z(t, v0)) = Ỹ1(t), Ỹ1(t) = Ỹ11(t) + iỸ12(t); Ỹ1j(t) = col(Ỹ1j1(t), . . . , Ỹ1jp(t)), j = 1, 2,

P (z(t, v0)) = ∥p̃jk(t)∥pj,k=1 = P̃1(t) + iP̃2(t), P̃s(t) = ∥p̃jks(t)∥pj,k=1, s = 1, 2,

where

p̃jk(t) = p̃jk1(t) + ip̃jk2(t), j, k = 1, p,

F
(
z(t, v0), Y1(z(t, v0)), Y

′
1(z(t, v0))

)
= F̃ (t, Ỹ1, Ỹ

′
1),

F̃
(
t, Ỹ1, Ỹ

′
1

)
= col

(
F̃1(t, Ỹ1, Ỹ

′
1), . . . , F̃p(t, Ỹ1, Ỹ

′
1)
)
,

F̃j(t, Ỹ1, Ỹ
′
1) = F̃1j(t, Ỹ1, Ỹ

′
1) + iF̃2j(t, Ỹ1, Ỹ

′
1), j = 1, p.

Due to the fact that for each v ∈ [v1, v2] we have the equality

Ỹ ′
1(t) =

(
Y1(z(t, v))

)′
t
=
dY1
dz

· dz
dt

= Y ′
1(z) · eiv,

then for z = z(t, v0) = teiv0 system (1.1) takes the form

tl(Ỹ ′
11 + iỸ ′

12) = tl(P̃1 + iP̃2)(Ỹ11 + iỸ12)e
iv0 + e(1−l)iv0

(
Re F̃ (t, Ỹ1, Ỹ ′

1) + i Im F̃ (t, Ỹ1, Ỹ
′
1)
)
. (1.4)
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Let us introduce the matrices and the vector-function

P̃ (t) =

(
P̃1(t) −P̃2(t)

P̃2(t) P̃1(t)

)
,

Q̃1(v0) =

(
cos(v0)E − sin(v0)E
sin(v0)E cos(v0)E

)
, Q̃2(v0) =

(
cos((l − 1)v0)E sin((l − 1)v0)E
− sin((l − 1)v0)E cos((l − 1)v0)E

)
,

f̃
(
t, Ỹ11, Ỹ12, Ỹ

′
11, Ỹ

′
12

)
= col

(
F̃11 · · · F̃1pF̃21 · · · F̃2p

)
,

where E is the p× p identity matrix.
Equating the real and imaginary parts of the vector-functions from the left– and right-hand sides

of system (1.4), system (1.4) reduces to

tl

(
Ỹ ′
11(t)

Ỹ ′
12(t)

)
= tlP̃ (t)Q̃1(v0)

(
Ỹ11(t)

Ỹ12(t)

)
+ Q̃2(v0)f̃

(
t, Ỹ11, Ỹ12, Ỹ

′
11, Ỹ

′
12

)
. (1.5)

This implies that system (1.1) over the interval Lv0(t1) for an arbitrary fixed v0 ∈ (v1, v2) reduces
to the system of real differential equations (1.5).

1.3 System (1.1) on the set Ot1(t0)

Let us consider system (1.1) over the arc of circle Ot1(t0) for an arbitrary fixed t0 ∈ (0, t1).
For z = z(t, v0) = teiv0 , in system (1.1) we write each vector-function and matrix in the algebraic

form and separate real and imaginary parts. Let us introduce the following designations:

Y1(z(t0, v)) = Ŷ1(v), Ŷ1(v) = Ŷ11(v) + iŶ12(v);

Ŷ1j(v) = col
(
Ŷ1j1(v), . . . , Ŷ1jp(v)

)
, j = 1, 2,

P (z(t0, v)) = ∥p̂jk(v)∥pj,k=1 = P̂1(v) + iP̂2(v), P̂s(v) = ∥p̂jks(v)∥pj,k=1, s = 1, 2,

where

p̂jk(v) = p̂jk1(v) + ip̂jk2(v), j, k = 1, p,

F
(
z(t0, v), Y1(z(t0, v)), Y

′
1(z(t0, v))

)
= F̂ (v, Ŷ1, Ŷ

′
1),

F̂ (v, Ŷ1, Ŷ
′
1) = col

(
F̂1(v, Ŷ1, Ŷ

′
1), . . . , F̂p(v, Ŷ1, Ŷ

′
1)
)
,

F̂j(v, Ŷ1, Ŷ
′
1) = F̂1j(v, Ŷ1, Ŷ

′
1) + iF̂2j(v, Ŷ1, Ŷ

′
1), j = 1, p.

Due to the fact that for each t ∈ (0, t1) we have the equality

Ŷ ′
1(v) =

(
Y1(z(t, v))

)′
t
=
dY1
dz

· dz
dv

= Y ′
1(z) · iteiv,

then for z = z(t0, v) = t0e
iv, system (1.1) reduces to the form

tl−1
0 (Ŷ ′

11 + iŶ ′
12) = itl0(P̂1 + iP̂2)(Ŷ11 + iŶ12)e

iv + e(1−l)iv
(

Re F̂ (v, Ŷ1, Ŷ ′
1) + i Im F̂ (v, Ŷ1, Ŷ

′
1)
)
. (1.6)

Let us introduce matrices and the vector-function

P̂ (v) =

(
P̂1(v) −P̂2(v)

P̂2(v) P̂1(v)

)
,

Q̂1(v) =

(
− sin(v)E − cos(v)E
cos(v)E − sin(v)E

)
, Q̂2(v) =

(
sin((l − 1)v)E − cos((l − 1)v)E
cos((l − 1)v)E sin((l − 1)v)E

)
,

f̂
(
v, Ŷ11, Ŷ12, Ŷ

′
11, Ŷ

′
12

)
= col(F̂11 · · · F̂1pF̂21 · · · F̂2p),

where E is the p× p identity matrix.
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Equating the real and imaginary parts of the vector-functions from the left– and right-hand sides
of system (1.6), system (1.6) reduces to

tl−1
0

(
Ŷ ′
11(v)

Ŷ ′
12(v)

)
= tl0P̂ (v)Q̂1(v)

(
Ŷ11(v)

Ŷ12(v)

)
+ Q̂2(v)f̂

(
v, Ŷ11, Ŷ12, Ŷ

′
11, Ŷ

′
12

)
. (1.7)

This implies that system (1.1) over the arc of the circle Ot1(t0) for an arbitrary fixed t0 ∈ (0, t1)
reduces to the system of real differential equations (1.7).

1.4 On some classes of systems of form (1.1)
Definition 1.4. We say that the matrix P (z) possesses property S2l relative to the vector-function
φ(0)(z), if the following conditions are fulfilled:

(1) For each v0 ∈ (v1, v2), the functions (ψ
(0)
j (t, v))′t possess property Q1 relative to the functions

|p̃jj(t)|ψ(0)
j (t, v), j = 1, p, for v = v0 ∈ (v1, v2).

(2) The functions tl(ψ(0)
j (t, v)))′v possess property Q2 relative to the functions tl−1|p̂jj(v)|ψ(0)

j (t, v),
j = 1, p.

(3) For each v0 ∈ (v1, v2), the functions |p̃jk(t)|ψ(0)
k (t, v) possess property Q1 relative to the functions

|p̃jj(t)|ψ(0)
j (t, v), j, k = 1, p, j ̸= k, for v = v0 ∈ (v1, v2).

(4) The functions tl|p̂jk(v)|ψ(0)
k (t, v)) possess property Q2 relative to the functions tl−1(ψ

(0)
j (t, v))′v,

j, k = 1, p, j ̸= k.

Let us define the sets

Ω̃
(
δ, φ(0)(z(t, v0))

)
=
{
(t, Ỹ11, Ỹ12) : t ∈ (0, t1), Ỹ

2
11j + Ỹ 2

12j < δ2j (ψ
(0)
j (t, v0))

2
, j = 1, p

}
,

v0 is fixed on (v1, v2),

Ω̂
(
σ, φ(0)(z(t0, v))

)
=
{
(v, Ŷ11, Ŷ12) : v ∈ (v1, v2), Ŷ

2
11j + Ŷ 2

12j < σ2
j (ψ

(0)
j (t0, v))

2, j = 1, p
}
,

t0 is fixed on (0, t1), where δ = (δ1, . . . , δp), σ = (σ1, . . . , σp), δj , σj ∈ R \ {0}, j = 1, p.

Definition 1.5. We say that the vector-function F (z, Y1, Y
′
1) possesses property M2l relative to the

vector-function φ(0)(z), if the following conditions hold:

(1) For each v0 ∈ (v1, v2), when (t, Ỹ11, Ỹ12) ∈ Ω̂(σ, φ(0)(z(t, v0))), the functions
F̃kj(t, Ỹ11, Ỹ12, Ỹ

′
11, Ỹ

′
12) possess property Q1 relative to the vector-functions tl|p̃jj(t)|ψ(0)

j (t, v),
j = 1, p, k = 1, 2, for v = v0 ∈ (v1, v2).

(2) For each (v, Ŷ11, Ŷ12) ∈ Ω̂(σ, φ(0)(z(t0, v))) the functions F̂kj(v, Ŷ11, Ŷ12, Ŷ
′
11, Ŷ

′
12) possess proper-

ty Q2 relative to vector-functions tl|p̂jj(v)|ψ(0)
j (t, v), j = 1, p, k = 1, 2.

Let us introduce intermediary functions α̃jk(t), α̂jk(v), j, k = 1, p,

cos(α̃jk(t)) =
p̃jk1(t)√

(p̃jk1(t))2 + (p̃jk2(t))2
,

sin(α̃jk(t)) =
p̃jk2(t)√

(p̃jk1(t))2 + (p̃jk2(t))2
,

j, k = 1, p, (1.8)

cos(α̂jk(t)) =
p̂jk1(t)√

(p̂jk1(t))2 + (p̂jk2(t))2
,

sin(α̂jk(t)) =
p̂jk2(t)√

(p̂jk1(t))2 + (p̂jk2(t))2
,

j, k = 1, p. (1.9)
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Without loss of generality, let us suppose that t1 ≤ R1 and introduce the domains Λ+.k(t1),
k ∈ {+,−} defined as follows:

Λ+.+(t1) =
{
(t, v) : cos

(
(l − 1)v + α̃jj(t)

)
> 0, sin

(
(l − 1)v + α̂jj(v)

)
> 0,

j = 1, p, t ∈ (0, t1), v ∈ (v1, v2)
}
;

Λ+.−(t1) =
{
(t, v) : cos((l − 1)v + α̃jj(t)) > 0, sin((l − 1)v + α̂jj(v)) < 0,

j = 1, p, t ∈ (0, t1), v ∈ (v1, v2)
}
.

Definition 1.6. We say that system (1.1) belongs to the class C+.k, k ∈ {+,−}, if for the matrix
P (z) = P (teiv) the condition (t, v) ∈ Λ+.k(t1), k ∈ {+,−} is true.

1.5 On the existence of a solution of problem (1.1), (1.2), (1.3)
Let us introduce the domains G+.k(t1) = {z = z(t, v) : 0 < |z| < t1, (t, v) ∈ Λ+.k(t1)}, k ∈ {+,−}.

Theorem 1.1. For system (1.1), let the following conditions be fulfilled:

(1) The matrix P (z) is analytic in the domain D1 and possesses property S2l relative to the analytic
vector-function φ(0)(z).

(2) The vector-function F (z, Y1, Y
′
1) is analytic in the domain D1 × G11 × G21, F (0, 0, 0) = 0 and

possesses property M2l relative to the analytic vector-function φ(0)(z).

(3) System (1.1) belongs to one of the classes C+.k, k ∈ {+,−}.

Then for each k ∈ {+,−} and for some t∗ ∈ (0, t1) there exist analytic solutions Y1(z) of system
(1.1) that satisfy the initial condition Y1(z0) = Y10 for z0 ∈ G+.k(t

∗), Y10 ∈ {Y1 : |Y1j(z0)| <
δj |φ(0)

j (z0)|, δj > 0, j = 1, p}. These solutions are analytic in the domain D1 ∩G+.k(t
∗) and satisfy

the inequalities
|Y1j(z)|2 < δ2j |φ

(0)
j (z)|2, j = 1, p. (1.10)

Proof. (1) Let us consider system (1.1) over the interval Lv0(t1) for an arbitrary fixed v0 ∈ (v1, v2).
We introduce the sets

Ω̃j

(
δ, φ(0)(z(t, v0))

)
=
{
(t, Ỹ11, Ỹ12) : Ỹ

2
11j + Ỹ 2

12j < δ2j (ψ
(0)
j (t, v0))

2, t ∈ (0, t1)
}
, j = 1, p.

Thus the set Ω̃(δ, φ(0)(z(t, v0))) can be considered as intersection of the sets Ω̃j of the form

Ω̃
(
δ, φ(0)(z(t, v0))

)
=

p∩
j=1

Ω̃j

(
δ, φ(0)(z(t, v0))

)
.

A part of the boundary of the set Ω̃j , j ∈ {1, 2, . . . , p}, will be denoted by

∂Ω̃j

(
δ, φ(0)(z(t, v0))

)
=
{
(t, Ỹ11, Ỹ12) : Ỹ

2
11j + Ỹ 2

12j = δ2j (ψ
(0)
j (t, v0))

2,

Ỹ 2
11k + Ỹ 2

12k < δ2k(ψ
(0)
j (t, v0))

2, k = 1, p, k ̸= j, t ∈ (0, t1)
}
.

Assume
Φ̃j(t, Ỹ (t)) = Ỹ 2

11j(t) + Ỹ 2
12j(t)− δ2j (ψ

(0)
j (t, v0))

2, j ∈ {1, 2, . . . , p}.

Then the outward normal vector for the surface ∂(Ω̃j)(δ, ψ(z(t, v0))), for the fixed j ∈ {1, . . . , p}, will
take the form

N j

2
= (−δ2jψ

(0)
j (t, v0))

(
(ψ

(0)
j (t, v0))

′
t, 0, . . . , 0, Ỹ11j , 0, . . . , 0, Ỹ12j , 0, . . . , 0

)
.
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Let T be a slope-field vector of system (1.5) at an arbitrary fixed point (t∗, Ỹ11(t
∗), Ỹ12(t

∗)) ∈
∂Ω̃j(δ, φ

(0)(z(t, v0))), j ∈ {1, . . . , p}.
Consider the dot product

(
tlT ,

N j

2

)
= −tlδ2jψ

(0)
j (t, v0)(ψ

(0)
j (t, v0))

′
t

+ tl
(
p̃jj1(t) cos((l − 1)v0)− p̃jj2(t) sin((l − 1)v0)

)
δ2j
(
ψ
(0)
j (t, v0)

)2
+ tl

p∑
k=1, k ̸=j

(
p̃jk1(t) cos

(
((l − 1)v0)− p̃jk2(t) sin((l − 1)v0)

)(
Ỹ11kỸ11j + Ỹ12kỸ12j

))
+ tl

p∑
k=1, k ̸=j

(
p̃jk1(t) sin

(
((l − 1)v0) + p̃jk2(t) cos((l − 1)v0)

)(
Ỹ11kỸ12j − Ỹ12kỸ11j

))
+
(
F̃1j cos((l−1)v0)+F̃2j sin((l−1)v0)

)
Ỹ11j+

(
−F̃1j sin((l−1)v0)+F̃2j cos((l−1)v0)

)
Ỹ12j , j = 1, p.

Since by condition the matrix P (z) possesses property S2l and the vector-function F (z, Y1, Y
′
1)

possesses property M2l relative to the vector-function φ(0)(z), we have

(
tlT ,

N j

2

)
∼
√
(p̃jj1(t))2 + (p̃jj2(t))2

(
cos((l − 1)v0 + α̃jj(t))

)
, j = 1, p,

as t→ +0, where the functions α̃jj(t) are defined by equalities (1.8).
According to the fact that system (1.1) pertains to one of the classes C+.k(t, v), k ∈ {+,−}, there

exists t∗ such that for t ∈ (0, t∗) the inequality (tlT ,
Nj

2 ) > 0, j = 1, p, holds true. Thus, for t ∈ (0, t∗),
∂Ω̃(δ, φ(0)(z(t, v0))) is the surface without contact for system (1.5). Moreover, the integral curve enters
the domain Ω̃(δ, φ(0)(z(t, v0))) as the variable t decreases.

According to the topological principle of T. Wazewski [13], at least one smooth integral curve of
system (1.5) goes through every point of the set Ω̃(δ, φ(0)(z(t, v0)))∪∂Ω̃(δ, φ(0)(z(t, v0)))∩(t = t∗). All
integral curves of this system going through the points Ω̃(δ, φ(0)(z(t, v0)))∪∂Ω̃(δ, φ(0)(z(t, v0)))∩ (t =

t∗), remain in the domain Ω̃(δ, φ(0)(z(t, v0))) for (t, v0) ∈ Λ+.k(t
∗), k ∈ {+,−}, v0 ∈ (v1, v2). Moreover,

the inequalities
|Y1sj(z(t, v0))|2 < δ2j

(
ψ
(0)
j (t, v0)

)2
, j = 1, p, s = 1, 2, (1.11)

are fulfilled for (t, v0) ∈ Λ+.k(t
∗), k ∈ {+,−}.

(2) Consider system (1.1) over the arc of circle Ot1(t0) for an arbitrary fixed t0 ∈ (0, t1).
Let us introduce the sets

Ω̂j

(
σ, φ(0)(z(t0, v))

)
=
{
(v, Ŷ11, Ŷ12) : Ŷ

2
11j + Ŷ 2

12j < σ2
j (ψ

(0)
j (t0, v))

2, v ∈ (v1, v2)
}
, j = 1, p.

Thus the set Ω̂(σ, φ(0)(z(t0, v))) can be considered as the intersection of sets Ω̂j of the form

Ω̂(σ, φ(0)(z(t0, v))) =

p∩
j=1

Ω̂j

(
σ, φ(0)(z(t0, v))

)
.

A part of the boundary of the set Ω̂j , j ∈ {1, 2, . . . , p} is denoted by

∂Ω̂j

(
σ, φ(0)(z(t0, v))

)
=
{
(v, Ŷ11, Ŷ12) : Ŷ

2
11j + Ŷ 2

12j = σ2
j (ψ

(0)
j (t0, v))

2,

Ŷ 2
11k + Ŷ 2

12k < σ2
k(ψ

(0)
j (t0, v))

2, k = 1, p, k ̸= j, t ∈ (0, t1)
}
.
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Let T be a slope-field vector of system (1.7) at an arbitrary fixed point (t∗, Ŷ11(t
∗), Ŷ12(t

∗)) ∈
∂Ω̂j(σ, φ(z(t0, v))), for the fixed j ∈ {1, . . . , p},(

tl−1
0 T ,

N j

2

)
= −tl−1

0 σ2
jψ

(0)
j (t0, v)(ψ

(0)
j (t0, v))

′
v

+ tl0

(
p̂jj1(v) cos((l − 1)v)− p̂jj2(v) sin((l − 1)v)

)
σ2
j (ψ

(0)
j (t0, v))

2

+ tl0

p∑
k=1, k ̸=j

(
p̂jk1(v) cos

(
((l − 1)v)− p̂jk2(v) sin((l − 1)v)

)(
Ŷ11kŶ12j − Ŷ12kŶ11j

))
+ tl0

p∑
k=1, k ̸=j

(
− p̂jk1(v) sin

(
((l − 1)v)− p̂jk2(v) cos((l − 1)v)

)(
Ŷ12kŶ11j + Ŷ12kŶ12j

))
+
(
F̂1j sin((l − 1)v) + F̂2j cos((l − 1)v)

)
Ŷ11j +

(
F̂1j cos((l − 1)v) + F̂2j sin((l − 1)v)

)
Ŷ12j , j = 1, p.

Since by the condition the matrix P (z) possesses property S2l and the vector-function F (z, Y1, Y ’
1)

possesses property M2l relative to the vector-function φ(0)(z), we have(
tl−1
0 T ,

N j

2

)
∼
√
(p̂jj1(v))2 + (p̂jj2(v))2

(
sin((l − 1)v) + α̂jj(v)

)
, j = 1, p,

as t→ +0, v ∈ (v1, v2), where the functions α̂jj(v) are defined by equalities (1.9). Thus

sign
(
tl−1
0 T ,

N j

2

)
= sign

(
sin((l − 1)v) + α̂jj(v)

)
, j = 1, p, v ∈ (v1, v2).

Without loss of generality, we suppose that for each fixed t0 ∈ (0, t∗), ∂Ω̂(σ, φ(0))(z(t0, v)) ∈
Λ+.k(t

∗), k ∈ {+,−} is the surface without contact for system (1.7).
According to the fact that system (1.1) belongs to one of the classes C+.k(t, v), k ∈ {+,−},

any integral curve of system (1.7) going through the point of the set Ω̂(σ, φ(0)(z(t0, v))) ∩ (v = v0),
v0 ∈ (v1, v2), remains in the domain Ω̂(σ, φ(0)(z(t0, v))) under the condition that variable v decreases
if (t0, v0) ∈ Λ+.+(t

∗), and v increases if (t0, v0) ∈ Λ+.−(t
∗).

Moreover, the inequalities

|Y1sj(z(t0, v))|2 < σ2
j

(
ψ
(0)
j (t0, v)

)2
, j = 1, p, s = 1, 2, (1.12)

hold true for (t0, v) ∈ Λ+.k(t
∗), k ∈ {+,−}.

(3) Let us use the method of analytic continuation of solutions for the problems that are solved
relatively to the derivatives, i.e., the method suggested by R. Grabovskaya [3] and developed by
G. Samkova [7, 8] for the problems that are not solved relatively to the derivatives and also used by
D. Limanska and G. Samkova [6] in the proof of the third point of Theorem 2 [6].

Let us suppose that for vectors δ, σ ∈ Cp, δj ̸= 0, σj ̸= 0, j = 1, p, the inequalities
(δj)

2 < (σj)
2, j = 1, p, (1.13)

are true.
In the proof of item (1) of the theorem, we have got the fact that there are infinitely many

continuously differentiable solutions of system (1.5) over the interval v0 ∈ (v1, v2) for t ∈ (0, t∗), and
these solutions satisfy inequality (1.11). We denote a set of such solutions by {Y1(z(t, v0))}.

Any solution Y1(z(t, v0)) from the set {Y1(z(t, v0))} is analytically continuable from the interval
Lv0(t1), where (t, v) ∈ Λ+.k(t

∗), for fixed v0 ∈ (v1, v2), to the domain containing this interval, with
preservation of inequalities (1.12).

From the proof of item 2 of the theorem it follows that if inequalities (1.13) are fulfilled, then the
solution Y1(z(t, v)) for fixed v = v0 can be continued from the interval Lv0(t1) over the curves Ot1(t0)

to the set Ω̂(σ, φ(0)(z(t∗, v))) for t ∈ (0, |z(t0, v)| ]. We denote the obtained analytic continuation by
Y1(z). The set of solutions of system (1.4) is {Y1(z)}.

As a result, the solutions Y1(z) of system (1.1) are analytically continuable to the domainG+.k(t
∗)×

{Y : |Y1j | < δj |φ(0)
j (z(t0, v))|, j = 1, p}, and, moreover, in this domain solutions Y1(z) satisfy

inequality (1.10).
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2 The main results for system (0.1)
Let us consider the system of ordinary differential equations (0.1) under the conditions that p < n,
A(z) is an analytic matrix in the domain D1, and rankA(z) = p for z ∈ D1. Let us introduce the
function Y = col

(
Y1 Y2

)
, Y1 = col(Y11(z), . . . , Y1p(z)), Y2 = col(Y21(z), . . . , Y2n−p(z)), Y1 : D1 →

Cp, Y2 : D1 → Cn−p. Without loss of generality, we assume that the matrices A(z), B(z) and the
vector-function f(z, Y, Y ′) take the forms

A(z) =
(
A1(z) A2(z)

)
, B(z) =

(
B1(z) B2(z)

)
, f(z, Y, Y ′) = f∗(z, Y1, Y2, Y

′
1 , Y

′
2),

A1 : D1 → Cp×p, A2 : D1 → Cp×(n−p), B1 : D1 → Cp×p, B2 : D1 → Cp×(n−p), detA1(z) ̸= 0 for
z ∈ D1, f∗ : D1 ×G11 ×G12 ×G21 ×G22 → Cp, Gj1 ×Gj2 = Gj , Gj1 ⊂ Cp, Gj2 ⊂ Cn−p, j = 1, 2.

Due to the above-said, system (0.1) can be written as

Y ′
1 = A−1

1 (z)B1(z)Y1 +A−1
1 (z)B2(z)Y2 −A−1

1 (z)A2(z)Y
′
2 +A−1

1 (z)f∗(z, Y1, Y2, Y
′
1 , Y

′
2) (2.1)

Suppose that the matrices A−1
1 (z)B1(z), A−1

1 (z)A2(z), A−1
1 (z)B2(z) are analytic in the domain D10

and have removable singularity at the point z = 0.
Let us introduce

P (z) = A−1
1 (z)B1(z),

F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) = A−1

1 (z)B2(z)Y2 −A−1
1 (z)A2(z)Y

′
2 +A−1

1 f∗(z, Y1, Y2, Y
′
1 , Y

′
2), (2.2)

then system (1.1) can be written as

Y ′
1 = P (z)Y1 + F ∗(z, Y1, Y2, Y

′
1 , Y

′
2), (2.3)

where P (z) is the matrix, analytic in the domain D10 having removable singularity at the point z = 0,
and P : D10 ×Cp×p, F ∗(z, Y1, Y2, Y

′
1 , Y

′
2) is the vector-function, analytic in the domain D10 ×G110 ×

G120 ×G210 ×G220, Gjk0 = Gjk \ {0}, j, k = 1, 2. Therefore, the vector-function F ∗(z, Y1, Y2, Y
′
1 , Y

′
2)

has isolated singularity at the point (0, 0, 0, 0, 0). This means that according to the theorem on the
isolated singularity of the function of several complex variables, the point (0, 0, 0, 0, 0) is a removable
singular point of that function.

Let us define the vector-function F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) at the point (0, 0, 0, 0, 0) in such a way that

it becomes analytic in the domain D1 × G11 × G12 × G21 × G22. Without loss of generality, assume
that F ∗(0, 0, 0, 0, 0) = 0.

By Hn−p
r we basically mean a class of (n − p)-dimensional analytic in the domain D10 functions

that have pole of r-order at the point z = 0.
Let us consider system (2.3) for an arbitrary fixed vector-function Y2 ∈ Hn−p

r . Then the function
Y2 = Y2(z) can be written as

Y2(z) = z−rY ∗
2 (z), (2.4)

where r ∈ N, Y ∗
2 (z) is an analytic vector-function in the domain D1 such that Y ∗

2 (0) ̸= 0. Moreover,
the function Y ∗

2 (z) is represented as a convergent power series for z ∈ D1. Therefore, (2.4) in the
domain D10 takes the form

Y2(z) =

∞∑
k=0

Ckz
k−r,

where Ck ∈ Cn−p, k = 0, 1, 2, . . . , 0 ̸= 0.
Since C0 ̸= 0, the vector-function Y ′

2(z) has a pole of r + 1-order at the point z = 0.
Since the vector-function F ∗(z, Y1, Y2, Y

′
1 , Y

′
2) is analytic in the domain D1×G11×G12×G21×G22

and F ∗(0, 0, 0, 0, 0) = 0, we get that F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) can be represented as a convergent power

series

F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) =

∞∑
a+|j|+|k|+|b|+|d|=1

Cajkbdz
aY j

1 Y
k
2 (Y ′

1)
b(Y ′

2)
d
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near the point (0,0,0,0,0), where Cajkbd ∈ Cp, j = (j1, . . . , jp), (Y1)
j = (Y11)

j1 · · · (Y1p)jp , |j| =
j1+· · ·+jp, k = (k1, . . . , kn−p), (Y2)k = (Y21)

k1 · · · (Y2(n−p))
kn−p , |k| = k1+· · ·+kn−p, b = (b1, . . . , bp),

(Y ′
1)

b = (Y ′
11)

b1 · · · (Y ′
1p)

bp , |b| = b1 + · · · + bp, d = (d1, . . . , dn−p), (Y ′
2)

d = (Y ′
21)

d1 · · · (Y ′
2(n−p))

dn−p ,
|d| = d1 + · · ·+ dn−p.

Assume that there exist q ∈ N and s ∈ N such that
(1) for some a0 ∈ N, j0 = (j01, . . . , j0p), j1h ∈ N ∪ {0}, b0 = (b01, . . . , b0p), b0h ∈ N ∪ {0}, h = 1, p,

we have Ca0j0kb0d ̸= 0 for |k| = q, |d| = s;

(2) for any h,m ∈ N and u = 1, 2, . . . , n− p, c = 1, 2, . . . , n− p, we have Caj(k+heu)b(d+mec) = 0,
where eu is the (n− p)-dimensional uth orthogonal unit vector, and e is the (n− p)-dimensional cth
orthogonal unit vector.

Consequently, the summands in the power series expansion of function F ∗ in the neighbourhood of
the point (0, 0, 0, 0, 0), containing the maximum powers of vector-functions Y2 and Y ′

2 with non-zero
coefficients, take the form

Cajkbdz
aY j

1 Y
k
2 (Y ′

1)
b(Y ′

2)
d = Cajkbdz

aY j
1 (z

−rY ∗
2 )

k(Y ′
1)

b(z−rY ∗
2
′ − rz−r−1Y ∗

2 )
d

= Cajkbdz
a−rq−(r+1)sY j

1 (Y
∗
2 )

k
(Y ′

1)
b
(zY ∗

2
′ − rY ∗

2 )
d
,

for a = 0, 1, 2 . . . , |j| = 0, 1, 2, . . . , |b| = 0, 1, 2, . . . , |k| = q, |d| = s and, at least, if a = a0, j = j0,
b = b0.

Two logical cases are possible:
(1) a−rq−(r+1)s≥0. Then for an arbitrary fixed function Y2∈Hn−p

r , we have F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) =

F (z, Y1, Y
′
1), where F (z, Y1, Y ′

1) is analytic at the point (0,0,0), and system (2.1) is reduced to
the system

Y ′
1 = P (z)Y1 + F (z, Y1, Y

′
1). (2.5)

According to Theorem 1.1 of [6, p. 22], the sufficient conditions for the existence of analytic
solutions of the Cauchy problem (2.5), (1.2) with the additional condition (1.3) are found.

(2) a − rq − (r + 1)s < 0. Let us introduce l = rq + (r + 1)s − a, then the vector-function
F ∗(z, Y1, Y2, Y

′
1 , Y

′
2) may take the form

F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) = z−l

∞∑
a+|j|+|k|+|b|+|d|=0

Cajkbdz
aY j

1 (Y
∗
2 )

k(Y ′
1)

b(zY ∗
2
′ − rY ∗

2 )
d

= z−lḞ (z, Y1, Y
∗
2 , Y

′
1 , Y

∗
2
′),

where Ḟ (z, Y1, Y
∗
2 , Y

′
1 , Y

∗
2
′) is the analytic vector-function in the domain D1 × G11 × G12 ×

G21 ×G22. Without loss of generality, we assume that Ḟ (z, Y1, Y ∗
2 , Y

′
1 , Y

∗
2
′) = F (z, Y1, Y

′
1), and

F (0, 0, 0) = 0.
According to (2.2), system (0.1) takes form (1.1). Let us consider the problem on the existence

and asymptotic behavior of the solutions of system (0.1) that satisfy the initial condition (1.2) and
the additional condition (1.3).
Theorem 2.1. Let p < n, A(z) be an analytic matrix in the domain D1, rankA(z) = p for z ∈ D1.
Moreover, let system (0.1) take form (2.3), and for Y2 ∈ Hn−p

r , conditions (1)–(3) of Theorem 1.1 be
true for the associate system (1.1).

Then for each k ∈ {+,−}, some t∗ ∈ (0, t1) and for each Y2 ∈ Hn−p
r there exist analytic solu-

tions Y (z) = (Y11(z), . . . , Y1p(z), Y21(z), . . . , Y2n−p(z)) of system (1.1). The first p-elements of these
solutions are analytic in the domain D1 ∩G+.k(t

∗) and satisfy inequality (1.10).
Proof. According to Theorem 1.1, the solution Y1(z) of system (1.1) is analytically continuable on
G+.k(t

∗) × {Y : |Y1j | < δj |φj(z)|, j = 1, p}. Moreover, the solution satisfies inequality (1.10)
in this domain. Therefore, system (0.1), for an arbitrary fixed function Y2 ∈ Hn−p

r , has solutions
Y = (Y1(z), Y2(z)), the first p-elements of which are analytic in the domain G+.k(t

∗) × {Y : |Y1j | <
δj |φj(z)|, j = 1, p} and satisfy inequality (1.10) for z ∈ D1 ∩G+.k(t

∗).
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