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Abstract. In the present paper, we study a one-sided contact problem for a micropolar homogeneous
elastic hemitropic medium with a friction. Here, on a part of the elastic medium surface with a
friction, instead of a normal component of force stress there is prescribed the normal component of
the displacement vector. We consider two cases, the so-called coercive case (when the elastic medium
is fixed along some part of the boundary) and noncoercive case (without fixed parts). By using the
Steklov—Poincaré operator, we reduce this problem to an equivalent boundary variational inequality.
Based on our variational inequality approach, we prove the existence and uniqueness theorems for
the weak solution. In the coercive case, the problem is unconditionally solvable, and the solution
depends continuously on the data of the original problem. In the noncoercive case, we present in
a closed-form the necessary condition for the existence of a solution of the contact problem. Under
additional assumptions, this condition is also sufficient for the existence of a solution.
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1 Introduction

In the present paper, we investigate the one-sided contact problem for a homogeneous hemitropic
elastic medium with a friction. In the considered model of the theory of elasticity, as distinct from
the classical theory, every elementary medium particle undergoes both displacement and rotation. In
this case, all mechanical values are expressed in terms of the displacement and rotation vectors.

In their works [2] and [3], E. Cosserat and F. Cosserat created and presented the model of a
solid medium in which every material point has six degrees of freedom, three of which are defined by
displacement components and the other three by the components of rotation (for the history of the
model of elasticity see [5,28,30,31,34,39,40] and the references therein).

A micropolar medium, not possessing symmetry with respect to the inversion, is called a hemitropic
or noncentrosymmetric medium.

Improved mathematical models describing hemitropic properties of elastic materials have been
obtained and considered in [29] and [1]. The main equations of that model are interrelated and
generate a matrix second order differential operator of dimension 6 x 6. Particular problems for solid
media of the hemitropic theory of elasticity have been considered in [35,36,39] and [40]. The basic
boundary value problems and also the transmission problems of the hemitropic theory of elasticity with
the use of the potential method for smooth and non-smooth Lipschitz domains were studied in [35],
the one-sided contact problems of statics of the hemitropic theory of elasticity free from friction were
investigated in [16, 18,20], and the contact problems of statics and dynamics with a friction were
considered in [8-15,17,19,21-24]. Analogous one-sided problems of classical linear theory of elasticity
have been considered in many works and monographs (see [4,6,7,26,27,41] and the references therein).

In the present work, we present the basic equations of statics of the elasticity theory for homo-
geneous hemitropic media in a vector-matrix form, introduce the generalized stress operator and a
quadratic form of potential energy. Then we describe mathematical model of boundary conditions
which show the contact between a hemitropic medium and a solid body with regard for the friction
effect. We will consider the case, where some part of the elastic medium boundary is fixed mechan-
ically. The problem is reduced equivalently to the boundary variational inequality, the question on
the existence and uniqueness of a weak solution of the initial problem is treated, and a continuous
Lipschitz dependence of the solution on the data of the problem is investigated. Further, we will
investigate more complicated cases, where friction is considered on the whole medium boundary. In
such cases, the corresponding mathematical problem is, in general, unsolvable. The necessary con-
ditions of solvability are established and the sufficient conditions for the existence of a solution are
formulated explicitly.

2 Basic equations and Green’s formulas

2.1 Basic equations

Let Q C R? be a bounded simply connected domain with a C'*°-smooth boundary S = 9, Q = QU S.
The domain 2 is assumed to be filled with a homogeneous hemitropic material.

The basic equilibrium equations in the hemitropic theory of elasticity written in components of
the displacement and rotation vectors are of the form

(b + a)Au(z) + (A + p — a) grad divu(z) + (>r + v) Aw(x)
+ (6 + 3 —v) grad divw(z) + 2a curlw(z) + pF(z) =0,
(e +v)Au(z) + (6 + 3 — v) grad div u(z) + 2a curl u(z) + (v + ) Aw(x)
+ (B+v—¢) grad divw(z)+4v curlw(z) —4daw(z) +p¥(z) = 0,

(2.1)

where A = §? + 02 + 03 is the Laplace operator, 8; = 8/0x;, u = (u1,us,uz)’ is the displacement
vector, w = (wy,ws,ws) ! is the vector of rotation, F = (Fy, Fp, F3)T and ¥ = (¥, ¥y, U3) T are the
mass force and mass moment calculated per unit of mass, p is density of the elastic medium, and «,
B, 7, 8, A\, u, v, ¢ and ¢ are elastic constants (see [1,36]). Here and in what follows, the symbol ()—r
denotes transposition.
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We introduce a matrix differential operator corresponding to the left-hand side of system (2.1):

L(l)(a) L(2>(8)
L3(0) L<4><a>] o6
LY0) = (u+ )AL + (A + p— )Q(9),
LP () = L®(9) := (s + v) ALz + (0 + 2 — v)Q(9) + 2aR(D),
LDD) == [(y+e)A —4a]Iz + (B + 7 — )Q(0) + 4vR(9),

where I}, is the unit & x k-matrix and

0 —-03 09
Q(0) = [Qrj(D)],, 5 Quj(0) =00, R@)= |38 0 -0
—0y O 0

The system of equations (2.1) can be rewritten in the matrix form
LOYU(x)+G(x) =0, x €,

where U = (u,w) " and G = (pF, p¥)T.
By T'(0,n) we denote the generalized stress operator of dimension 6 x 6 (see [36]):

7(0,n) 0 = [Ty 7= T4,

" T®@,n) T@(@,n)
where
T (0, ) = (1-+ @)0pqn + (1 — @)y + A0y,
Tég)(a, n) = (3 + v)0pgOn + (3¢ — V)1g0p + 010y — 2a f:gqunk,
k=1

T(D(0,n) = (3¢ + 1)8pgOp + (3¢ — V)g0p + 510y,
3
TS0, m) = (¥ + €)0pgOn + (v — €)ngOp + Bripdy — 20> Epgiin.
k=1

Here, n(z) = (n1(x),na(z),n3(z)) denotes the outward (with respect to Q) unit normal vector at
the point = € S, and 9, = 9/0n is the normal derivative in the direction of the vector n. The
six-component generalized stress vector has the form

T(0,n)U = (TU,MU) ",
where TU := TWy + T@w is the force stress vector and MU := T®y + TWw is the moment stress

vector.

2.2 Green’s formulas
For the real-valued vector functions U = (u,w) " and U’ = (v/,w’) " of the class [C?(Q)]° the following

Green’s formula [36]

/[L(@)U-U'+E(U, 0 dm:/{T(a,n)U}+-{U’}+ ds (2.2)
Q S
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is valid, where {-}* denotes the trace operator on S from Q, and E(-, -) is a bilinear form defined
by the equality

E(U,U") = E(U',U)

3
= Z {(M + ) Upqtipg + (1 — a)up gy + (3 +v) (u;aquq + w],quPQ) + (e —v) (u;/oqwqp + Wyloqqu)
P,q=1

+(v+ E)w;aquq + (v = 5)W;qwqp + 5(u;pwqq + w;qupp) + )‘u;;puqq + 5W;pwqq}v

where upq and wy, are the so-called tensors of deformation and torsion-bending for the hemitropic

media,
3

Upg = Upq(U) = Opug — ngkwkv Wpq = wpq(U) = Opwy, p,q¢=1,2,3. (2.3)
k=1

m
Here and in the sequel, by a-b we denote the scalar product of two vectors a,b € R™ : a-b= > a;b,.
j=1
Under certain assumptions on elastic constants (see [1, 10, 23]), specific energy of deformation

E(U,U) is a positive definite quadratic form with respect to upe(U) and wpe(U), i.e., there exists a
positive number Cj > 0, depending only on the elastic constants, such that

3
E(UU)>Co > [up, +wp,].

P,q=1
The following assertion describes the null space of the energy quadratic form E(U,U) (see [36]).
Lemma 2.1. Let U = (u,w)" € [CY(Q)]® and E(U,U) =0 in Q. Then
u(z) =laxz]+0b, w)=a, z€Q,

where a and b are arbitrary three-dimensional constant vectors and [- x -| denotes the cross product
of two vectors.

Vectors of the type ([ax z]+b, a) are called generalized rigid vectors. We observe that a generalized
rigid displacement vector vanishes, i.e., a = b = 0 if it is zero at a single point.

Throughout the paper, L,(2) (1 <p < o00), La(2) = H°(Q2) and H*(Q) = H3(Q?), s € R, denote,
respectively, the Lebesgue and Bessel potential spaces (see, e.g., [32,42]). The corresponding norms we
denote by the symbols || - ||z, ) and || - [| (o). By D(2) we denote the class of C'>°(£2) functions with
support in the domain Q. If M is an open proper part of the manifold 09, i.e., M C 9Q, M # 09,
then by H®(M) we denote the restriction of the space H*(9Q) on M, H5(M) := {r,,p: ¢ € H*(0Q)},
where r,, stands for the restriction operator on the set M. Further, let H*(M) := {¢© € H*(%) :
suppp C M}.

From the positive definiteness of the energy form FE(-, -) with respect to the variables (2.3) it
follows that

B(U,U) = / EU,U)dz > 0. (2.4)
Q

Moreover, there exist positive constants ¢; and co, depending only on the material parameters,
such that the following Korn’s type inequality (see [7, Part I, § 12])

B(U,U) > er|U |1 e — c2|U 1o s (2.5)

holds for an arbitrary real-valued vector function U € [H'(Q)]S.

Remark 2.2. If U € [H'(2)]% and on some part S* C 0 the trace {U}" vanishes, i.e., 7. {U}T =0,
we have the strict Korn’s inequality B(U,U) > C’||UH[2H1(Q)]6 with some positive constant C' > 0 which
does not depend on the vector U. This follows from (2.5) and the fact that in this case B(U,U) > 0
for U # 0 (see, e.g., [33, Ch. 2J; [37, Ch. 3, p. 193]).
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Remark 2.3. By the standard limiting arguments, Green’s formula (2.2) can be extended to the
Lipschitz domains and to the vector function U € [H!(Q2)]¢ with L(9)U € [L2(2)]® and U’ € [H'(Q)]°
(see [32,37)),
/ (L@ - U + EU,U")] de = ({T(@,n)U}+, {U'}F)
Q
where (-, -)aq denotes duality between the spaces [H~/2(99Q)]¢ and [H'/?(092)]® which generalizes

the usual inner product in the space [Lo(92)]%. By virtue of this relation, the generalized trace of the
stress operator {T(9,n)U}* € [H~/2(99)]% is determined correctly.

o (2.6)

3 Contact problems with a friction

3.1 Pointwise and variational formulation of the contact problem

Let the boundary S of the domain €2 be divided into two open, connected and non overlapping parts
S1 and Sy of positive measure, S = S; U Sy, S NSy = &. Assume that the hemitropic elastic body
occupying the domain € is in contact with another rigid body along the subsurface Ss.

Definition 3.1. A vector function U = (u,w)’ € [H'(Q)]° is said to be a weak solution of the
equation
LOW 4G =0, G e [La(@)° (31)

in the domain 2 if
B(U,®) = /g-cb dr V& € [D(Q)]°,
Q

where the bilinear form B(-, -) is given by formula (2.4).

For the normal and tangential components of the force stress vector we will use, respectively, the
following notation:

(TU)p :=TU -n, (TU)s:=TU —n(TU),.

Further, let G = (pF, p®)" € [Lo(Q)]%, ¢ € [H-Y2(S2)]3, f € HY?(S3), g € Loo(S2), g > 0.
Consider the following contact problem of statics with a friction.

Problem A. Find a vector function U = (u,w) ' € [H()]® which is a weak solution of equation (3.1)
and satisfies the inclusion r, {(TU)s}* € [Loo(S2)]? and the following conditions:

rs, {UY" =0 on S, (3.2)
re, {MU}" = ¢ on Sy,

rs2{un}+ = f on Sy,

if [rg, {(TU)s}*| < g, then 7y {us}* =0, if [ry {(TU)s}*| = g, then there exist nonnegative functions
A1 and A2 which do not vanish simultaneously, and A7y {us}" = =Xorg {(TU)s}*, where the symbol
{-}T stands for the trace operator on S; (i = 1,2) from Q. Conditions (3.2) and (3.4) are understood
in the usual trace sense, whereas (3.3) is understood in the generalized functional sense described in
Remark 2.3.

To reduce Problem A to a boundary variational inequality, we first reduce the inhomogeneous
equation (3.1) to a homogeneous one. In this connection, we consider the following auxiliary linear
boundary value problem.

Find a vector function Uy = (ug,wp)’ € [H'(Q)]% that is a weak solution of equation (3.1) and
satisfies the conditions

’I“Sl {(]0}Jr =0 on Sl, ’I“S2 {MUO}+ =0 on SQ,

3.5
ro, (o}t = f on Sy, v, {(TUs)}* =0 on Sy, (3:5)
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It is well known (see [36]) that this problem is uniquely solvable, because S is neither a surface of
revolution, nor a ruled surface. Let V € [H1(©)]® be a solution of Problem A, and let Uy € [H!(Q)]°
be a solution of the auxiliary problem (3.5); then the difference U := V — Uy is a solution of the
following problem.

Problem Aj. Find a weak solution U = (u,w)" € [H'(2)]® of the equation
LU =0 in Q (3.6)

satisfying the inclusion ro {(TU)}* € [Loo(S2)]* and the following conditions:

rs {U}T =0 on S, (3.7)

re, AMU}T = on S, (3.8)

Ts, {u,}T =0 on S, (3.9)

if |7‘S2{(TU)S}+| <g, then rg {us}™ = o, (3.10)

if [rs, {(TU)s}"| = g, then there exist nonnegative functions A\; and Az which do not vanish simulta-
neously, such that

M rs, {us}™ = o] = =Xor {(TU)s}7, (3.11)
where the symbol { - }* stands for the trace operator on S; (i=1,2) from Q and g = —r, {uos}" €
[H'/2(S2)]°.

In what follows, we will study Problem Ay. Obviously, if a vector function U € [H'(Q2)]% is a
solution of Problem Ag, then the sum U + Uy is a solution of Problem A.

3.2 Reduction of Problem A; to a boundary variational inequality

To reduce Problem Ay to an equivalent boundary variational inequality, we recall that the vector
U = (u,w)" € [HY(Q)]° is a solution of equation (3.6) satisfying the Dirichlet boundary condition
{U}t = hon S with h € [H'Y?(S)]® and hence can be uniquely represented by the simple layer
potential (see [35])

Ulz) = VL) (@) = /F(x )RR () dyS, @€,
S

where I' is the fundamental solution matrix of the operator L(J) and H is the boundary integral
operator generated by the trace of the simple layer potential on the boundary S (see the closed-form
representation of I' in 35, 36]),

@) = tim [ T = 9hi)d,S = (V).

o Q>5z—z€S
S

Note that the simple layer potential V and the integral operator H have the following properties
(see [35,36]):

Vi [H(S)® — [H™2(Q))%, H:[H"(S)]® = [H(9)]° reR. (3.12)
These operators are continuous. Moreover, H is an invertible operator and
HL[H(S))® = [HH(9)]%, reR. (3.13)
The relation
{T@,n)V(h)}" = (=27 I+ K)h on S (3.14)

holds for an arbitrary h € [H~'/2(S)]%, where K is the singular integral operator,

Khia) = [[T(@.0) - p]h(y) 5.
S
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Note that 1
—5 I+ K : [HY2(9)]° — [H™Y2(9))°

is a continuous singular operator of normal type with zero index (for details, see [35,36]).
Next, for the Dirichlet problem we introduce the so-called Green’s operator G : [H'/?(S)]® —
[H1(2)]® which is defined by the relation

Gh :=V(H 'h). (3.15)

Obviously, L(9)(Gh) = 0 in Q and {Gh}T = h on S. Taking into account the properties of the
trace operator and mappings (3.12), we find that there exist positive numbers C; and Cs such that

Cullhllzrirzsye < 1GRll i @)s < Callhllmz(s)s (3.16)

for all h € [H'/?(S)]°.
Now we introduce a generalized operator of the Steklov—Poincaré type by the relation

Ah = {T(@0,n)(Gh)} " = {T(@,n)V(H )} = (=275 + K)(H'h). (3.17)

By A(S) we denote the set of restrictions of rigid displacement vectors to S, i.e.,
T T
A(S) := {X(x):(p,a) =(laxz]+ba) ,zeS| a,beR}. (3.18)

By using the Green’s formula (2.6) for U = U’ = V(H~'h), relations (3.14), (3.17) and (3.18),
and the uniqueness theorems for the Dirichlet boundary value problem, we obtain ker A = A(S).
Now we state the following lemma describing the properties of the Steklov—Poincaré operator.

Lemma 3.1. Let h,n € [HY2(S)]® and g € [HY?(5%)]%, where S* is a reqular open subset of the
boundary S = 02. Then the following assertions hold:

(i) (Ah,n)s = (An, h)s;

(i) A: [HYV2(S)]S — [H1/(S)]® is a continuous operator;
(iii) <.Ah, h>5 > C]_Hh||[2H1/2(S)]6 - CQHhH[QLQ(S)]G;.

(iv) (Ag,g9)s > CH9||[2H1/2(5)]6?

(v) (Ah,h)s > Cllh = PhlZyg)6-

Here, P is the operator of orthogonal projection (in the sense of La(S))of the space [HY/?(S)]® onto
the space A(S); the positive constants C, Cy, and Co depend on the elasticity constants and on the
geometric properties of the surface S and are independent of h and g.

Proof. Let h,n € [H'/2(S)]%. Since the vector Gh is a weak solution of the homogeneous equation
L(0)(Gh) = 0, it follows from the Green’s formula (2.6) that
<~Ah7 77>S = <{T(av n)(Gh)}"', {Gn}+>s = B(Gh7 Gﬂ) = B(Gnv Gh)
= ({T(0,n)(G)} " AGh} ") g = (An, h)s.
This implies assertion (i). Assertion (ii) is obvious, because the operator A is the composition of the
continuous operator H~! and operator —27115 + K (see relations (3.14) and (3.17)). The proof of (iii)

can be carried out as follows. By using condition (2.5), for an arbitrary h € [H/2(S)]®, we obtain the
inequality

(Ah,h)s = B(V(H " h), V(H'h)) > i [V(H ™ h)|F e — c2llV(HT A7, e
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Relations (3.15) and (3.16) imply the inequalities ||V (H™"h)|| (a1 (@ye = Cillhll{z1/2(s)6- On the other
hand, since the space [L2(S)]% is compactly embedded in [H~'/2(S)]%, it follows from the continuity
of operators (3.12) and (3.13) that

IV(H W) lza@ye < CHIH T Rl i-sr2(sye < CsllBlligr-1/2¢sy0 < Cslhllizacsye

with some positive constants C}, C5 and C3 independent of h.
We finally obtain the inequality

(Ah,B)s > 1 C3I[hlEas syp0 — c2(C5)2IAlE oo

which implies assertion (iii).
Now, assertion (v) follows from assertion (iii) and the nonnegativity of the operator A, and assertion
(iv) is a consequence of (iii). The proof of the lemma is complete. O

Our aim is to reduce Problem Ag to an equivalent boundary variational inequality. To this end, on
the space [H'/?(S3)]*® we introduce a convex continuous functional

i) = / glve — ol dS, v € [HY2(S,)P (3.19)
Sa
and the convex closed set
Ko={h=nW, T e [H>(S)%: r_ h=0, r,h{) =0}. (3.20)

On the set Ky, we consider the following boundary variational inequality.
Find a function hg = (hél), lz(()2))T € Ky such that the boundary variational inequality

(Aho, b — ho)s + j(hD) = j(h§") > (,75, (AP = b)) o (3.21)

holds for all h = (R, AT e K.

4 Equivalence theorem

Let us prove the equivalence of the boundary variational inequality (3.21) and the contact Problem Ag.

Theorem 4.1. The boundary variational inequality (3.21) and the contact Problem Ag are equivalent
in the following sense: if U € [H'(Q)]° is a solution of Problem Ay, then hg = {U}* € [HY/?(S)]¢ is
a solution of the variational inequality (3.21) and vice versa, if hg € Kq is a solution of the variational
inequality (3.21), then U := Gho € [H*(Q)]® is a solution of Problem Ag.

Proof. Let U = (u,w) " € [H'(2)]® be a solution of Problem Ag, and let hy = (h(()l),héz))—r = {U}*.
Since U € [H'(Q2)]% is a solution of Problem Ay, it readily follows from conditions (3.7) and (3.9) that

ho = (hél),héQ))T € Ko, and by virtue of the definition of the operator G (see relation (3.15)), the
solution U in the domain 2 can be uniquely represented in the form U = Ghq. By taking into account
the definition of the Steklov—Poincaré operator, we obtain

(Aho, h — ho)s + §(BD) = j(h§) = (o, rs, (MNP = BD)) o
= ({T(8,n)(Gho)}*, b — ho) ¢ + §(BV) — j(h§") — (g, ry, (K — B

2

for each h = (AW W) T € K. Since h and hg are elements of the set Ky and conditions (3.7) and
(3.8) are satisfied, we have

(Aho, h — ho)s + j(hD) = j (") = (.75, (WD = hED)) .
= ({T(0,n)(Gho)} 75, (h = ho)) g, + (g 75, () = o] =[G = o)),
= ({(T(Gho))s} ", 7s, (KD =h)) g, +(g, Irg, D —to| [, b —thol)g, =1 (4.1)
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Let
7o, {(T(Gho))s} | < g,

then rg {h }+ = 1)o and it is obvious that 1 > 0. If

{(T(Gho))s}*| = g,

then ) N
M [re, {RG)YT — 0] = —Aary, {(T(Gho))s}
and when A; # 0, we obtain

= / (T(GCho))s - (B — by — (hD) — 4i)) ds

Sa

4 [ ob2 = vl = 06 = wol) ds = [(T(Gho)) - (2~ ) ds

S2 SZ
A A
+ /g|hg1) — ol ds / | = AT Gl + S22 pds = 0.
A1 A1
Sa Sa

The case Ay # 0 is proved similarly.
Therefore, the right-hand side of equation (4.1) is non-negative and, consequently, we find that
inequality (3.21) is satisfied. The proof of the first part of Theorem 4.1 is thereby complete.

Now assume that hy = (h(()l)JLéQ))—r € Ky is a solution of the variational inequality (3.21). Let
us show that the vector function U = (u,w)’ := Ghy € [H*(R)]® is a solution of Problem Ay. By
the definition of Green’s operator G, the vector Ghy is a weak solution of the equation L(0)U = 0
in Q; since hg € Ko, we have ry {U}* = ry {Gho}" = rg ho = 0; i.e., condition (3.7) is satisfied.

Condition (3.9) is automatically satisfied, since hg = (hg1 ,h(2 )T € Ko and ry {u,}* =rg, h&) =0.

Let h = (R, hCHT € Ko, BV = hél), and h(® = h(()z) =+ x, where y € [ﬁl/Q(Sg)]?’ is an arbitrary
vector function. Since r; (h — ho) = 0, it follows from inequality (3.21) that

{M(Gho)}* = ore,x)s. =0 Vx € [H2(Sy)P,

so {M(Ghy)}T = ¢; i.e., condition (3.8) is satisfied. Therefore, inequality (3.21) can be represented
in the form

(o, AT (G0} o7, (D =BG, +5(0D) = G(15) 20 Wh = (b, h) T € Ko,
(ro, {(T(Gho))s} ey (WD — g — (B = 10))) g, + (9,75, (IRD = o] = |BSY) = who)) g, >0.
Let x € [H'/2(S5)]3. Since
(ro, {(T(Gho)):}t e, Xe) s, = (rey {(T(Gho))} T, XD,
and |7, vs| < |ry, x|, taking o (h{" — ) instead of 7 xs, we obtain
(rs, {(T(Gho))s} ' rs, X, +<g,7‘52lx\>52
e AT GR) e, () = 00)) g, + (9.7, I —wol) } 20 ¥ € [HV2(S3)P. (42)

Further, let ¢ > 0 be an arbitrary number and take +tx for x in (4.2)

H{ & (r, AT (Gho) Ym0, XD, + (976, 1N, }
(e LTGRO Y o7 () = o)), + (974, IR = ol g, } = 0 Vx € [HY2(S2)P,
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whence, by making t tending first to +o0co and then to 0, we easily derive

(ro, {(T(Gho))s}* .7, (Y — ) g, + (9,74, |05 — o), <0, (4.3)
[(re, {(T(Gho))} .75, X) | < {0075, IXI)s, VX € [HY2(S:))°. (4.4)

Now we prove that ro {(T(Gho))s}" € [Loo(S2)]?. To this end, on the space [H'/2(5,)]3 we consider
the linear functional

@(X) = <7’52{(T(Gh0))s}+,7’32 X>52 VX € [ﬁ1/2(52)}3'

Inequality (4.4) shows that the functional ® is continuous on the space r_ [H/2(8,)]3 with respect

to the topology induced by the space [L1(S2)]*. Since the space rg_ [H/2(S,)]? is dense in [L;(S5)]3,
the functional ® can be continuously extended to the space [L;(S2)]? preserving the norm. Therefore,
by the Riesz theorem, there is a functional ®* € [L.(S2)]® such that

B0 = [ #xdS Vxe LS
Sa

Thus,

<r52{(T(Gh0))s}+ar52X>SQ = /(I)* -xdS Vxe [LI(SQ)]37
Sa

ie.,

(ro, {(T(Gho)) 3t = @15 X)g, =0 Vx € [H?(S)]%,

which implies

7, {(T(Gho))s}t = @ € [Loo(S2)]".

It is well known that for an arbitrary essentially bounded function 1 € Log(Ss) there is a sequence
@1 € C*°(Sy) with supp @; C Sy such that (see, e.g., [38, Lemma 1.4.2])

llim Zi(x) = (x) for almost all z € Ss,
—00

|51(z)| < esssup |i(y)| for almost all = € S,.
YyES2

Therefore, by the Lebesgue dominated convergence theorem, it follows from inequality (4.4) that
J T GRY x = gl ] dS <0 ¥ € [Lan(S)"
Sa

Instead of x we can put v(S*)y, where x € [Loo(S2)]® and (S*) is the characteristic function of an
arbitrary measurable subset S* C Sy. As a result, we arrive at the inequality +{(7(Gho))s}T-x < glx|
on Sy for all x € [Loo(S2)]? and, by choosing x = {(T(Gho))s}*, we finally get

75, {(T(Gho))s}*| < g on S,. (4.5)
In view of (4.3) and (4.5), we obtain
1o, {(T(Gho))s} ™ 1oy (hY) = w0) + glr, (h§) —0)| =0 on Sy, (4.6)

Now, it is evident that if |ry {(T(Gho))s}"| < g, then (4.6) implies rszhé? = 1. Also, if
Irs, {(T(Gho))s} | = g, then (4.6) can be rewritten as

g|7"s2 (hé? —1o)|(cosa+1) =0 on Sy,
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where « is the angle between the vectors 7o {(T(Gho))s}" and rg, (h(()? — 1p) at a point x € Ss.
Therefore, there exist the functions A (z) > 0 and Az2(x) > 0 such thatA;(x) + Az2(x) > 0 and

(@)1, (hy) = o) = =Aa(@)rg, {(T(Gho))s}T on S5

Moreover, we can assume that A; belongs to the same class as {(T(Ghg))s}T and Ay belongs to the

same class as 7, (h(()? — o).
Thus, conditions (3.10) and (3.11) of Problem Ag hold as well, and the proof of Theorem 4.1 is
complete. O

5 The existence and uniqueness of a solution

5.1 Uniqueness

Let us prove the following uniqueness theorem.
Theorem 5.1. Problem Ag has at most one solution.

Proof. Let hy = (hél),hE)Q))T € Ko and hy = (ﬁél),ﬁSQ))T € Ko be two arbitrary solutions of the
variational inequality (3.21). Then

<Ah0jbo - h0>s + j(ﬁél)) - j(hél)) > (p,rg, (E((f) - hé2))>527
(Aho, ho — ho) g + §(h$”) = §(RSY) = (p,ry, (WG = R§D)) g .

2

By summing these inequalities, we obtain (A(hy — EO), ho — E()) s < 0. Since A is a positive definite
operator, it follows that (A(hg — ho), ho — ho)s = 0. By virtue of relation (3.17) and Lemma 2.1,
we have

0= (A(ho — ho), ho — ho)
= ({T(8,n)V(H " (ho — o))} ho — ho) g = ({T(8,n)G (ho — o)}, ho — o)
= ({T(0,n)G(ho — ho)}* {G(ho — ho)}T) 4 = B(G(ho — ha), G(ho — ha)).

Hence we derive the relation G (ho—ho) = V(H " (ho — ho)) = ([ax ]+, a)T in Q. Since hy, ho € Ko,
we have ¢ {G(ho —ho)}" =1y (ho —ho) = 0; i.e., ([a x x] 4+, a)’ =0on S;. Consequently, a=b=0
and V(H Y (ho — EO)) =0 in Q. Therefore, ho = hg on S. O

5.2 Existence of a solution

To prove the existence of a solution, on the set Xy we introduce the functional
1 }
I<h) = 5 <Ah7 h>5 +j(h(1)) - <90aT52 h’(2)>52 Vh= (h(l)? h(Q))T € K:O- (51)

Since A is a symmetric operator (see Lemma 3.1(i)), it follows that the existence of a solution of
the variational inequality (3.21) is equivalent to the existence of an element of the set Ky minimising
the functional (5.1); i.e., the variational inequality (3.21) is equivalent to the following minimization
problem:
Z(ho) = inf Z(h). 5.2

(ho) = inf Z(h) (5:2)
By the general theory of variational inequalities (see [4,25]), the solvability of the minimization problem
(5.2) readily follows from the coerciveness of the functional Z, i.e., from the property

I(h) — 00 as ||h||[H1/2(S)]6 — o0, h e K.
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Since A is a coercive operator on the set Ky (see Lemma 3.1(iv)) and j(h(")) > 0, we find that the
coerciveness of the consequence of the obvious estimate

( ) > Cl||h||[H1/2 s)J6 CQHh||[H1/2(S)]67 h = (h(l)’h(Q))T € Ko,

where C7 and C, are the positive constants independent of h. Consequently, functional (5.1) is
coercive on the closed set Ky. In addition, Z is a convex continuous functional. By the general
theory of variational inequalities (see [4,25]), we find that the variational inequality (3.21) has a
unique solution. Therefore, from Theorem 4.1 we obtain the following assertion of the existence of
the solution of Problem Ay.

Theorem 5.2. Let mesS; > 0, ¢ € [H™Y2(85)]?, g € Loo(S2) and g > 0. Then the variational
inequality (3.21) has a unique solution ho € [HY/?(8)]%, and U = Ghy is a solution of Problem Ag.

Remark 5.3. Let mes S; > 0, G € [Lao(Q)]%, o € [H™Y2(Sy))?, f € HY?(S3), g € Loo(Ss) and g > 0.
Then Problem A has a unique solution which can be represented in the form U + Uy, where U is a
solution of Problem Ag and Uy is a solution of the auxiliary problem (3.5).

5.3 Lipschitz continuous dependence of the solution on the problem data

Let U € [H*(2)]¢ and U € [H(2)]° be two solutions of Problem Ag corresponding to the data ¢, g
and @, g, respectively. Further, let hg = (hél), h(()2))‘r € Ko and hg = (E(()l),ﬁéz))—r € Ko be the traces
of the vector functions U and (7, respectively, on the boundary S. By Theorem 4.1, the vectors hg
and hg are the solutions of the corresponding variational inequalities (3.21) for the above-introduced
data. Therefore, we have two variational inequalities of form (3.21), one for hg and another for Eo. By
substituting ?LO for h into the first inequality and hg into the second one, we obtain the inequalities:

(Aho, ho = ho)s + /g(\ﬁé? — ol = B2 — wol) dS > (0,74, (B = nP)) ..
Sa

(Aho, ho — ho)s + /ﬁ(\hffg — ol — [y — who]) dS > (B, rg, (b = RP)) .
Sa

By summing these inequalities, we obtain

(Alho = Ro). o = ho)g + [ (o= DR = vl = 1Y = ol) 45 = (o = G, (R = 1)),
Sa
ie.,
(A(ho — ho),ho — ho) 4 < / (9~ 9 (RS2 — ol — A8 — wol) dS + (3 — @,r, (B = WD) ..
Sa

This inequality, together with (3.16), property (iv) of the operator A (see Lemma 3.1(iv)), and the
continuous inclusion H'/2(S) C Lo(S) implies the Lipschitz estimate

1U = Ul oy < Cillho = hollprzisyes < Ca(lle — @llim-12sy6 + 19 = llLa(s))
where C7 and (5 are the positive constants independent of U and U and the data of the problem
under consideration.
6 The semicoercive case

Let Sy =@, S =S, G € [La(N)]%, p € [HY2(9)]?, g € Loo(S) and g > 0. Consider the boundary
contact problem.
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Problem B. Find a vector function U = (u,w)’ € [H'(Q)]® which is a weak solution of equation
(3.1) in the domain (, satisfying the inclusion {(TU)s}" € [Loo(9)]® and the following boundary
conditions on the surface S:

{MU}Jr =¥, {un}+ =0,
if [{(TU)s}T| < g, then {us}™ =0, if [{(TU)s}T| = g, then there exist nonnegative functions A\; and
A2 which do not vanish simultaneously, and A\j{us}™ = =X {(TU),}T.

To reduce Problem B to an equivalent boundary variational inequality, we first reduce the inhomo-
geneous equation (3.1) to a homogeneous one. In this connection, we consider the following auxiliary
linear boundary value problem.

Find a weak solution Uy = (ug,wp)' € [H*(Q)]® of equation (3.1) in the domain Q under the
conditions

{up}t =0, {MU}T =0 (6.1)

on S. Tt is well known (see [23]) that the problem is uniquely solvable. Let W € [H!(£2)]® be a solution
of Problem B, and let Uy € [H!(©2)]° be a solution of the auxiliary problem (6.1), then the difference
U :=W —Uj is a solution of the following problem.

Problem By. Find a vector function U = (u,w)" € [H1(Q)]° that is a weak solution of the homoge-

neous equation
LO)U =0 in Q

satisfying the inclusion {(TU)s}+ € [Loo(9)]? and the following conditions on S:
(MUY =, {un}" =0;
if | {(TU)s} T +¢o| < g, then {us}T =0, if [{(TU)s}* +po| = g, then there exist nonnegative functions
A1 and Ay which do not vanish simultaneously, and
M{udt = =X ({(TU) 3 + o),
where o = {(TUp)s}*.

By analogy with the preceding coercive case (see Theorem 4.1), one can show that Problem By is
equivalent to the following boundary variational inequality.
Find a vector hg = (h(()l), h((f))—r € K such that the inequality

(Aho,h = ho)s + j1(h) = j1(h(") > (0, h® — ) (6.2)
holds for all h = (R, AN T € K, where

310) = [ glualdS + (go,0)s. ve [HS)P,
5
K={h=nYrNT e [H2(9): n} =0}. (6.3)
Note that the variational inequality (6.2) is equivalent to Problem By in the following sense: if U €
[H1(9)]° is a solution of Problem By, then hg = {U}* € K is a solution of the variational inequality
(6.2); conversely, if hg € K is a solution of the variational inequality (6.2), then Ghy € [H*(2)]% is a
weak solution of Problem By (here the operator G is defined by relation (3.15)).
Let hg = (hél)7 hé2))T € K be a solution of the variational inequality (6.2). By substituting first
h = 0 and then h = 2hg into inequality (6.2), we obtain the relation (Ahg, ho)s —i—jl(hgl)) = {p, h82)>5
which, together with (6.2), implies that

(Aho, h)s + j1 (A1) > (o, h))s. (6.4)

Let £ = (p,a)” € A(S) and p, = 0 on S. By substituting £¢ € A(S) for h into inequality (6.4)
(A(S) is defined by relation (3.18)) and taking into account the relation ker A = A(S), we obtain the
inequality
/g‘p8| ds — |(<p,a>s - <@07PS>S‘ Z 0. (65)
S
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Inequality (6.5) is a necessary condition for the solvability of the variational inequality (6.2).

Consider the case in which inequality (6.5) is strict. Taking into account the fact that the space
A(S) has finite dimension (dim A(S) = 6), one can readily see that inequality (6.5) is equivalent to
the relation

[ dloulds = lt.abs = (o ps] = I€llaaioe (6.6)
s
with some positive constant C' and with an arbitrary & = (p,a)” € A(S). Let P be the operator of
orthogonal projection of the space [H/?(S)]® onto A(S) in the sense of [Ly(S)]%; i.e., any function
h € [HY?(S)]® can be represented in the form h = & + y, where £ = (p,a)’ = Ph € A(S) and

X =007 € A(9) :i={h € [HY2(S)]5 : (h,&)[1y(sy70 = 0V E € A(S)}.
One can readily see that the norm [|hl|;z1/2(gys is equivalent to the norm || x||(g1/2(syjs + 1€l (L2 (s
On the convex closed set K we introduce the continuous convex functional

1 .
Ti(h) = 5 (A h)s + j1(hD) = (0, k) s, h= (A BT € K

Vh=x+¢c [HY?(9) with x = (1,¢)T and € = (p,a) ", we obtain

L) = Tu(x +€) = 5 (A +6), X +E)g +ia(n+p) — (0, +a)s

1 , . .
=3 (Ax, x)s — (¢, Q) s +41(p) — (p,a)s + j1(n + p) — ji(p)
> CilIxlfr2(sye = Calixllima(sye + Cllélzacsye + 1+ p) — j1(p),

with some positive constants C, C; and Cy. Now let us estimate the difference j1(n + p) — j1(p). We
have

Jin+p) —jilp) = /glns + ps| dS + {po,1s + ps)s — /glpsl dS — (o, ps)s
S S

= /9(|775 + ps| = lpsl) dS + (po, ns)s > —/glnsldS = CslIxllim1r2(syje = —Callxllimrrz(syes
S S

where Cy is a positive constant independent of n and p. By taking into account this inequality, we
finally obtain the estimate

Zi(h) > CilIxllEig/2(sye + Clléllzacsye — Csllxlimrzcsys,

which implies that
Il(h) — 400 as ||h||[H1/2(S)]6 — 00, h e K.

We have thereby shown that the functional Z; is coercive and the minimization problem is solvable
for this functional. Consequently, the corresponding variational inequality (6.2) is solvable (see [4,25]).
By virtue of the symmetry of the operator A, the problem of minimization of the functional Z; on the
space [HY/2(S)]% is equivalent to the solvability of the variational inequality (6.2). Next, note that
(A(ho — Eo) ho — h()>s = 0 for two pos&ble solutions hg and hq of the variational inequality (6.2) in
the set K. Hence it follows that hg — ho = ([a x 2] +b,a)T, a,b € R®. We have thereby proved the
following theorem on the existence and uniqueness of the solution.

Theorem 6.1. Let Sy = @, ¢ € [H™Y2(9)]3, g € Loo(S), g > 0 and let inequality (6.6) be satisfied.
Then the variational inequality (6.2)is solvable and if hg € K is a solution of inequality (6.2), then
U = Ghy is a solution of Problem By. Moreover, two solutions can differ from each other only by a
rigid displacement vector.

Remark 6.2. Let S; = @, G € [Lo(N)]%, ¢ € [HY/2(9)]3, g € Loo(S), g > 0 and let inequality (6.6)
be satisfied. Then Problem B has a solution which can be represented in the form U + Uy, where U is
a solution of Problem By and Uy is a solution of the auxiliary problem (6.1).
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Remark 6.3. Let the boundary S = 92 fall into three mutually disjoint parts Sy, St and S5 such that
S1USrUSy =8, 51 NSy =@. By analogy with the coercive case, we can study the problem, when
on Sy the traction boundary condition o {T'(9,n)U}* = Q is assigned, where @ € [H~/2(S7)]5.
The conditions on the parts S; and S5 in this case remain the same as in Problem A.

To reduce this problem to a boundary variational inequality, we first consider the following auxiliary
problem.

Find a vector function Uy = (ug,wp) ' € [H'(2)]® that is a weak solution of equation (3.1) in the
domain 2 and satisfies the boundary conditions

Ts, {Up}" =0, Tsp {T(9,n)Up} " =0,
Ts, {MU}T =0, Ts, {ug, }t = f, TSQ{(TU0)5}+ =0.

It is well known that this problem has a unique weak solution (see [4,25]), because S is neither a surface
of revolution, nor a ruled surface. Obviously, if V is a solution of the above-considered problem and
Uy is a solution of the auxiliary problem, then the difference U := V — U is a solution of the following
problem.

Find a weak solution U = (u,w) " € [H'(Q)]° of the equation

L(0)U =0 on £,

which satisfies the inclusion ¢ {(TU)s}" € [Loo(S2)]* and the following conditions:

rs {U}T =0 on Sy, TST{T(a,n)U}+ =@ on Sr,
re, {MU}" =@ on Sy, 7y {un}™ =0 on S,

if [rg, {(TU)s} 1| < g, thenry {us}* = 1o, whereas if [, {(TU)s}| = g, then there exist nonnegative
functions A; and Ay which do not vanish simultaneously, and Ay (rs {us} " — o) = =Xars {(TU)}T,
where ¢y = —rg, {ues}t. Just as above, this problem can be reduced to an equivalent boundary
variational inequality.

Find a vector hg = (h((]l), 11(()2))T € Ko such that the inequality

(Aho,h — ho)s + §(hM) — §(h{Y) > (Q, 7y, (h — ho))sy + (g, h® — b)) s

holds for all h = (AW, A®)T € Ky, where the functional j and the convex set Ky are defined
by relations (3.19) and (3.20), respectively. The proof of the existence, uniqueness and Lipschitz
continuous dependence of the solution on the problem data in this case can be carried out just as in
Problem Ag in the coercive case.

Remark 6.4. By analogy with the non-coercive case, we can study the problem when on the part
Sy of the boundary instead of the Dirichlet condition (3.7) there is assigned the tractional boundary
condition r, {T(d,n)U}" = Q, where Q € [H ~*/?(S1)]%. Moreover, we assume that the vector ¢
appearing in condition (3.8) belongs to the space [H ~1/2(55)]3 and the conditions imposed on the
part S; are the same as in Problem Ag.

To reduce the above problem to the equivalent boundary variational inequality, we preliminarily
reduce the inhomogeneous equation (3.1) to a homogeneous one. In this connection, we consider the
following auxiliary problem.

In the domain €, find a weak solution Uy = (ug,wo)' € [H'()]® of equation (3.1) with the
following condition on S:

re AT@,n)Uo} " =0, 7y {uo}t =0, ry {TU}* =0.

By [23], this problem is uniquely solvable. In this regard, we also consider the following problem.

Problem Cy. Find a vector function U = (u,w)" € [H'(€2)]® which is a weak solution of the homo-

geneous equation
LO)U =0 in Q
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satisfying the inclusion {(7TU)s}T € [Lo(S)]? and the following conditions on S:

rs {TO.MUY = Q, 1o, AMU}" = ¢ — ¢,
o = 1o, (MUY € [H2(S2)P, g {un}t =05

if {(TU)s}*] < g, then rg {us}* =0, if [{(TU)s}*| = g, then there exist nonnegative functions A\
and Ap which do not vanish simultaneously, and Airg {us}* = —Xorg {(TU).}". In this case, we
obtain the following boundary variational inequality.

Find a function hg = (hél), /182))—r € K such that the inequality
(Aho, h = ho)s + j1 (M) = j1(h§?) > (re, Q.75 (h—ho))g, + (rs, (0 —90), 76, (K@ = h§?)) o (6.7)

holds for all h = (b, )T € K, where j; (hV) = [ g|htV|dS and K defined by formula (6.3).
Sa

Now the necessary condition for the solvability of the variational inequality acquires the form

/g|ps| ds — ’<rs2 (4/7 - <p0)a a>52 + <r51 ersl >Sl‘ >0 (68)
Sa

for all £ = (p,a)T € A(S), 75, Pn = 0. When inequality (6.8) is strict, then, just as in the non-coercive
case, one can show that condition (6.8) is sufficient for the solvability of inequality (6.7).
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