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Abstract. In this paper, we study mixed and crack type boundary value problems of the linear
theory of thermopiezoelectricity for homogeneous isotropic bodies possessing the inner structure and
containing interior cracks. The model under consideration is based on the Green—Naghdi theory
of thermopiezoelectricity without energy dissipation. This theory permits propagation of thermal
waves at finite speed. Using the potential method and the theory of pseudodifferential equations on
manifolds with boundary we prove existence and uniqueness of solutions and analyze their smoothness
and asymptotic properties. We describe an efficient algorithm for finding the singularity exponents
of the thermo-mechanical and electric fields near the crack edges and near the curves where different
types of boundary conditions collide. By explicit calculations it is shown that the stress singularity
exponents essentially depend on the material parameters, in general.
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1 Introduction

Theories of thermo-mechanics of continua consistent with a finite speed propagation of heat recently
are attracting increasing attention. In contrast to the conventional heat transfer theory, these non-
classical refined theories involve a hyperbolic-type heat transport equation, and are motivated by
experiments exhibiting the actual occurrence of wave-type heat transport (second sound). Several
authors have formulated these theories on different grounds, and a wide variety of problems revealing
characteristic features of the theories has been investigated.

Green and Naghdi [13,14] in 1993 developed a thermo-mechanical theory of thermoelastic bodies
based on an entropy balance law rather than an entropy inequality (hereinafter we refer this theory
as Green—Naghdi theory). The linearized form of this theory does not sustain energy dissipation and
permits the transmission of heat as thermal waves at finite speed. Moreover, the heat flux vector is
determined by the same potential function that determines the stress. The thermal waves propagate
with finite speeds and the solution has no dissipative term.

Almost complete historical and bibliographical notes to this direction can be found in the reference
[16] where the dynamical equations of the thermopiezoelectricity without energy dissipation are derived
on the basis of the Green—Naghdi theory established in [13,14] and Eringen’s results obtained in [9,10].

In the present paper we consider the pseudo-oscillation equations obtained by the Laplace trans-
form from the dynamical equations derived by Iegan in [16] for homogeneous isotropic solids possessing
thermopiezoelectricity properties without energy dissipation. We formulate the basic, mixed and crack
type boundary value problems (BVP) and prove existence and uniqueness of solutions. Our main tools
are the potential method and the theory of pseudodifferential equations. Solutions to the mixed and
crack type boundary value problems have singularities near the crack edges and near the lines where
the different types of boundary conditions collide, regardless of the smoothness of the boundary sur-
faces and given boundary data. Throughout the paper we shall refer to such lines as exceptional
curves. We carry out a detailed theoretical investigation of regularity and asymptotic properties of
thermo-mechanical and electric fields near the exceptional curves. By explicit calculations we show
that the stress singularity exponents essentially depend on the material parameters, in general. We
describe an efficient algorithm for finding the singularity exponents of the thermo-mechanical and
electric fields. The obtained asymptotic formulas allow us to establish optimal regularity results for
solutions.

2 Basic equations

Let © = QF be a bounded 3-dimensional domain in R? with a simply connected piecewise smooth
Lipschitz boundary S = 99, and Q = QU S. Throughout the paper n(z) stands for the outward unit
normal vector to S at the point x € S. We assume also that the origin of the co-ordinate system
belongs to €.

By C*(Q) we denote the subspace of functions from C*() whose derivatives up to the order k are
continuously extendable to S from Q and by C§°(€2) the space of infinitely differentiable test functions
with compact supports in Q C R3.

The symbols { - }§ and { - } 5 designate one sided limits on S from © and Q~ := R\, respectively.
We drop the subscript S if it does not lead to misunderstanding.

By Ly, Lpioc, Wy, W;loc, Hj, and By , (withr >0,s€R, 1 <p<oo,1<q< o0) are denoted
the Lebesgue, Sobolev—Slobodetskii, Bessel potential, and Besov function spaces, respectively (see,
e.g., [23]). Recall that Hy = W3 = Bj,, H5 = Bj ,, sz = B;w, and HI’f = Wf, for any r > 0, for
any s € R, for any positive and non-integer ¢, and for any non-negative integer k.

We use the notation v;, . ;,, for the components of tensor v of order m and employ the usual Einstein
summation convention where the subscripts range over the integers {1,2,3}. Partial derivatives with
respect to spatial variable z; we denote by 9; = 9/0x;, j = 1,2,3, while a superposed dot denotes
partial differentiation with respect to the time variable t.

We consider an elastic body that at some instant occupies the region 2 of the Euclidean three-
dimensional space and is bounded by a piecewise smooth Lipschitz surface S.
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We restrict our consideration to the linear theory of homogeneous isotropic thermoelastic bodies
developed by Green and Naghdi [13,14]. According to this theory the system of the governing equations
consists of the following field equations [16]:

e The local form of the conservation law of linear momentum
Ojtji + pofi = potis, (2.1)

where t;; is the stress tensor, u = (u1,uz,u3) " is the displacement vector, f; is the external
body force per unit mass, and pg is the density in the reference configuration.

e The local form of the conservation law of the moment of momentum
dymji + gijitie + poXi = Ijjd;, (2.2)

where m;; is the couple stress tensor, ;5 is the alternating Levi-Civita symbol, X; is the external
body couple per unit mass, I;; are the coeflicients of inertia, and ¢; is the microrotation vector.

o Maxwell’s equations for the quasi-static electric fields
8ij = f and Ek = —6k1/), (23)

where D is the electric displacement field, f is the density of free charge, E is the electric
intensity, and 1 is the electric potential.

e The local form of energy balance
poé = tijéi]‘ + mijjfij + 771'4'—1' +ep + P089 + 81((1)29) + EiDi’

where e is the internal energy per unit mass, ¢ is the microstretch function, 7; is the microstretch
stress vector, s is the external rate of supply of entropy per unit mass, 6 is the absolute temper-
ature, ®; are components of the entropy flux vector,

eij = Ojuj + €jinbr,  »ij = 09, G = Oip (2.4)
and
€ = 0;mj + poF — job, (2.5)
where jg is the microstretch inertia, and F is the microstretch body force.

e The equation of entropy
poTon = qj,; + po@, (2.6)

where 7 is the entropy per unit mass and unit time, Tg is the initial reference temperature, that
is, the temperature in the natural state in the absence of deformation and electromagnetic field,
q; is the heat flux vector

qi = To®;,

and @ is the external rate of supply of heat per unit mass.

The quantities ¢;;, my;, ™, €, D;, ¢; and pon for homogeneous isotropic media can be expressed via
Ui, Giy , ¥, 9 by the following constitutive relations [16]:

tij = Aepp0ij + (1 + 2)esj + peji + Aowdi; — BoT'dsj, (2.7)
Myj = atppGij + Botji + vo2i5 + bogijiCr + Ai€jin Bk + voei 1019, (2.8)
Ty = oG + N Ej + boersistrs + 10,0, (2.9)
€ = Xoerr + &0 — coT, (2.10)
D; = —\iegjpray — MG — v30:0 + X E, (2.11)
¢ = To(vaersisrs + v1G + kO + v3Ey), (2.12)
pon = Boerr + cop + aT, (2.13)
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where ¥ is the temperature change to a reference temperature Tp,
t
T=60-T, 19=/Tdt7
to

0i; is the Kronecker delta and A, u, s, Ao, Bo, a, B, v, A1, V1, ag, Ao, 1o, &o, Co, a, k, v3, and X, are
constitutive constants, then the field equations (2.1)—(2.3), (2.5), (2.6), read as [16]

(1 + )0;05u; + (N + p)d;05u; + 22451001 + Nodip — Bodid + pofi = poili, (2.14)
Y0;0;b; + (a + B);0;0; + e jkOjun — 23¢6; + poX; = lodi, (2.15)

(aoajaj — 50)30 — )\28]-8]-1/1 + 1/18]'8]‘19 — )\oaju]' + 0019 + p()]: = jogé, (216)
A20;0;¢ + x0j05% + 130;0;9 = — f, (2.17)

(2.18)

_ . 1
kzaj@jﬁ — 608juj —ad — Cop + V16j8j<p — u38j8j1/) = —?O poQ,

Let v = (eij, %5, Gir 0, T, iy Ey) and v = (e}, 545, C, @', T, 97, Ef). Introduce a symmetric bilinear
form

B(v,v') := Xegiel; + (1 + )esjel; + pejiei; + Aoleji@’ + €5;0) + Eopy’
+ k’ﬂj’ﬂ; + Oé%“‘%;-j + ﬂ%jiﬂgj + ’y%ij%gj + bOsijk(%ijC]lg + %z{jgk)
+ V2Eijk(%/ij19;€ + %;jﬁk) + aogg + 1 (191@/ + 19;@) + XEiEz{ +aTT'. (2.19)

The corresponding quadratic form B(v,v) can be represented as follows:

B(v,v) = Fi(e11, €22, €33, 9) + Fa(e12, €21, €13, €31, €23, €32) + F3(2211, 222, 2233)
+ Fy(sn12, 513, 001, 623, %31, %32, C1, C2, (3, V1, U2, V3) + F5(En, Eq, E5,T), (2.20)

where

Fi(e11,e22,e33,9) = (A +2u + »)errerr + Aerreas + Aeqress + Aoer1p + Aeazery
+ (A4 20 + x)eazean + Aezess + Ageaop + Aeszern + Aeszean
+ (M + 2p + 3)eszess + Aoesz@ + Aowerr + doweas + doess + Egp?,

Fy(e12, €21, €13, €31, €23, €32) = (1 + »)e12e12 + pe1zear + (1 + »)e1zens
+ peizest + pearers + (p + s)earear + peazess + (p + s)easeas
+ pezrers + (p+ x)ezresr + pesgeas + (1 + x)eszess,

F3(5211, 5092, 3233) = (o + B+ y) 112211 + Quaer1 329 + Quaey1 3633 + Quaegp 1y
+ (oo + B+ 7) 30025000 + Qustpose33 + (uaezzaeny + ez + (4 B 4 v) 333033,

Fy(s12, 201, 513, 7231, 503, 232, (1, G2, (3, U1, U2, U3) = se12(y2e12 + Breor + bo(3 + v203)
+ 3021 (Br12 + v321 — bo(3 — v2U3) + se13(7ysn13 + Brez1 — bola — v2va)
+ 231 (Bre13 + Y2831 + boCa + v2V2) + s023(y3223 + Beza + bo(r + v201)
+ re32(Bre2s + Y32 — b1 — v21) + C1(boseas — boses2 + aola + vivh)
+ Ca(—bore13 + borez1 + apla + v12) + (3(bose1a — bosear + aoCs + v103)
+ 01 (vaseas — vase3p + v1C1 + k1) + Do (—vasa3 + vosesy + vi(o + kida)
+ U3(vas12 — vosr + 1G5 + ki3),

F5(E1,Ey, E3,T) = XE;E; + aT?.

Throughout the paper we assume that B(v,7) is a positive definite form with respect to the vector

v = (eij7 Hijy Cj? ®, T7 197;7 E’L)7
B(v,v) >0 for all v #0. (2.21)
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From the positive-definiteness of the forms Fy, Fy, F3, Fy, and Fs, by Sylvester’s criterion we derive
the following necessary and sufficient conditions for form (2.20) to be positive definite:
>0, s+2u>0, 2+2u+3X>0, & (3¢+2u+3)\) > 3)\2,
v > 18], agk —vi >0, B+v+3a>0, x>0, a>0, k>0, ag>0, (2.22)
ao(y — B) > 263, (v — B)(aok — vi) + 4borrve — 2agvs — 2kbg > 0.

Further, we assume also that
po >0, Inp >0, jo>0. (2.23)

3 Equations of pseudo-oscillations

Let the sought functions u;, ¢;, @, ¥, ¥, as well as the sources f;, X;, F, f, @ involved in the system
of equations (2.14)—(2.18), be harmonic time dependent, i.e.

ui(fvv t) :eTtui(x)a ¢Z(.%', t) :eTt¢i($)v ‘P(xv t) :eTtQD(x% w(l', t) :eTtd}(w)v 79($7 t) :eTtﬁ(x)ﬂ
fi(xv t) ze‘rtfi(x)v XI(Z‘, t) :eTtXi('r)7 .7:(]}, t) :eTt]:('r)7 f(xv t) :6th($), Q(J?, t) :eTtQ(x)v
where 7 = 0 + iw is a complex parameter, o,w € R. Then equations (2.14)—(2.18) lead to the system
(1 + 5)9;0;u; + (A + p)9;0:u; — 7° pous + 3€1560; bk + Aodip — TV = —po fi, (
10;0;¢i + (v + B)0;0idj — 72 Lo + 384 djus, — 252 = —poXi, (
(aoajﬁj — fo)QO — T2j0§0 — )\Qajajw + Vlajajﬁ + 7'0019 — )\Oaj'LLj = —[)0./_'.7 (
Xajajw + )\gaj@jcp + Vgéjaj’ﬁ = 7f, (
1
kaj(’)jﬁ — 720 — Tﬁoajuj‘ — TCop + V18j6j<p — V38jajw = —? pQQ. (
0
If 7 is a pure imaginary number, we obtain the steady state oscillation equations, and if 7 = 0,

then we get the equations of statics.
Constitutive relations (2.7)—(2.13) for pseudo-oscillation state read as

tij = NOpurdij + (1 + 3)0;uj + €k dr + udju; + Xowdi; — TBoVdi;, (3.6)
m;j = adyrdi; + BO;jdi + V0;dj + bogijrk Ok + AMijkOkty + vagiji Ok, (3.7)
m; = ap0;ip — A20;1) + boeki Ok + 110;9, (3.8)
€ = AoOruy + fo(p — Tcod, (3.9)
Di = —M\iepiOkdr — X20ip — 1309 — x 00, (3.10)
¢ = To(v2ciriO1dr + 1109 + k0¥ — v30;1)), (3.11)
pon = BoOkug + cop + Tad, i,j=1,2,3. (3.12)

Denote by
A(&, T) = [Aij(& T)]9><9

the matrix differential operator generated by the left hand side expressions in (3.1)—(3.5),

Aij(0,7) = 615 (u+ 2)00 + (N + p)0:0; — T2pobijy  Aij+3(0,7) = =320,
Ai7(0,7) = Xo0;, Aig(0,7) =0, Ai(0,7)=—71Bu0;, Aiy3;(0,T)=—3e;;0,
Aiy3,43(0,7)=0i70101+ (a+B)0;0; — (25c+7°10)0i5,  Aiysjre(0,7)=0, A7;(0,7)=—X0;,
A7.i43(0,7)=0, A7 (0,7)=0a00,0; —(&0+72%0), A7(0,T)=—X20,01, Arg(0,7)=11010; + Tco,
Agj(0,7) =0, As;13(0,7)=0, Ag7(0,7)= X200, Ags(9,7)= x99,

Agg(0,7) = 13010, Agj(0,7) = —7Podj, Agj4+3(0,7) =0,

Ag7(0,7) = 11010; — Tco, Ags(0,T) = —130,0), Ago(0,7) = k00, — T%a, i,j=1,2,3.
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Then we can rewrite system (3.1)—(3.5) in the matrix form
A0, T)U =9, (3.13)
where

U= (ulau27u37¢17¢27¢3a()07¢719)—r7

1 T
® = —(Pofhpof2,pof37PoX1,poX27poX3, poF, f, T POQ) :
0

4 Generalized stress operator and Green’s formulae

Let n be a unit vector field on Q coinciding with the outward unit normal vector to 9. Introduce
the generalized stress operator 7 (9,n,7) = [T;jx(0,n, T)]oxo defined by the relation

T(aanv']—)(uthauSa d)la ¢)23 ¢37 9077/}719)1—

~1 T
= (tinu, tigng, tigng, mpng, mygng, mysng, mng, —Ding, T qing)

)

where t;;,m;;, 7, D;, ¢; are defined in (2.7)—(2.13). Entries of the matrix 7(0,n, ) read as

Tii(0,m, T) = An;0j + pn;0; + 65 (p + s0)n Ok,  Tij+3(0,n, T) = —sce; KNk,
Tiz(0,n,7) = Aong,  Tig(0,n,7) =0, Tio(0,n,7) =—7Foni, Tits,;(0,n) =0,
Tit3,j+3(0,n,7) = an;0; + Bn;0; + 670k,  Tiys,7(0,n, T) = boerinniOk,
Tit3,8(0,n,T) = MerigniOk, Tits,0(0,n,T) = vagpniOk, T7;(0,n,7) =0,
Tz7,j+3(0,n,7) = =boejxniOk, Tr7(0,m,T) = agngOk, Tzs(0,n,T) = —Aong Ok,
T79(0,n,T) = inkly, Tgj(0,n,7) =0, Tg,;43(0,n,7)=—NiegjxmiOk, Ts7(0,n,T) = Xany0k,
Tss(0,n, T) = xnigOk, Tso(0,n,7) =v3ny0k, To;(0,n,7) =0, Tg;+3(0,n,T) = —vaerjunOk,
To7(0,n, 7) = v1ngOk, Tog(0,n,7) = —v3ndk, Too(0,n,7) = kni0y, 4,5 =1,2,3.

For a domain with smooth boundary and smooth complex valued vector functions

U= (U17U2,U37¢1,¢2a¢37%¢719)—r € [CQ(Q)P}’
U= (u/lau/27uév¢&a¢/2;¢éa§0/7w/a19/)T € [CQ(Q)]Q

the following Green formula holds

/A(@,T)U-U’dx:/{T(@,n,r)U}+-{U’}+ ds—/E(Uﬁ) da, (4.1)
Q o0 Q

where the overbar denotes complex conjugation operation, the central dot designates the scalar product
in the complex space C?,

E(U,U") = (p + 5)0ju;i0;u} + 72 pouins + A0ju; 0y, + pdsu;05ul + seeijrdrdiul + Nowpdin,
— TR0V} + 70;$:0;¢; + (23 + T2 1o) hi} + ;;0;0; + BO;0;0; 0}
+ »€ijn0iuidy, + bogijrOrpdid; + MeijnOpp iy + vagijrOk¥0; b 4 adjpd;e’
+ (€0 + T250) 0@’ — X000 + 110;00;¢" — Tegd@’ + Nodjuj@’ + bogijr0id; Ok’
+ X090 X200 4 130,900 — M40 PO + k0;00;9" + 72090’
+ 7B00ju;9 + 110;00;9" + TcopV — v30;10;0" + vae; 10 PROY . (4.2)

By standard limiting procedure Green’s formula (4.1) can be extended to Lipschitz domains and to
vector-functions U € [W, ()]° and U € [W},()]° with A(9,7)U € [L,(Q)]° 1 < p < oo, % + ﬁ =1.
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With the help of Green’s formula (4.1) we can correctly determine a generalized trace vector
{T(0,n,7)U}* € [B,y2/P(99)]° for a vector function U € (W, ()]2 with A(9,7)U € [Ly(Q)]° by the
relation (cf. [20])

{T@,n, ) UY {U'}" ), = / [A(0,7)U -U" + E(U,U")] du, (4.3)
o

where U € [W),(Q)]° is an arbitrary vector function. Here the symbol (-, -)so denotes the duality

between the function spaces [By, ,1,/ P(09)]° and (B, 1/ P (89)] which extends the conventional Lo inner
product for complex valued vector functions,

aQ—/ng gj(x)dS for f,g € [L2(09))°.

aq J=1

Introduce the boundary operator ’7~'(8,n, T) = [’7’(8,71,7)”-]%9 associated with the formally adjoint
differential operator A*(9,7) = AT(-0,7),
27~§j(8, n,T) = An;0; + un;0; + 65 (i + 3¢)ny Ok, 7~§,j+3(87n,7) = — €Nk,

Tor(@,n,7) = Xons, Tis(@om,7) =0, Tio(d,n,7) = Thoni, Tivs;(0,m,7) =0,
7~§+3,j+3(37n7T) = an;0; + pn;0; + 05 yniOk, 7~§+3,7(37ﬂ77) = boeikn Ok,
7~;+3,8(8,n77) = \i€isni Ok, 7~§+3’9(8,n,7) = Vo€ Ok, 7~—7j(37n,7) =0,

7~'7,j+3(8,n,7') =0, Tr(0,n,7) = agnidp, Trs(0,n,7) = AaniOi,  Tro(8,n,7) = v1ni0,
Tsi(@.n,7) =0, T r3(d,n,7) =0, Tsr(d,n,7) = —Xenidp, Tss(d,n,7) = xnudy,
7~§9(8,n,7) = —u3n 0O, 7~§j(37 n,7) =0, ’75d+3(87n,7) =0,

7~§7(3, n,T) = v1ngk, 7~§8(8,n,7) = v3nOk, %g(a,nﬁ) = kn0y, 1,5 =1,2,3.

From (4.1) we deduce Green’s second formula,

/ [A(0,T)U-U" = U - A*(9,7)U'] da
= / [{T(@, nﬂ')U}Jr AU — {’7’(8,n,T)U'}+ . {U'}ﬂ ds. (4.4)
o0

From Green’s formulae (4.3) and (4.4) by standard limiting procedure we derive similar formulae

for the exterior domain Q= provided vector functions U, U’ € [W},,.(27)]? N Z(Q7) and A(9,7)U

is compactly supported. The class Z(27) is defined as a set of functions U possesing the following
asymptotic properties as |z| — oc:
ug(z) = O(|z|7?), djur(x) = O(|2|72), ér(z) = O(|z[?), 9;on(z) = O(lz[~?),
p(z) = O(|lz|™), 9jp(x) = O(|z[72), Y(x) = O(lz[7"), d(x) = O(jz|7?), (4.5)
d(x) = O(|z|7?), 9;0(z) = O(|z|7?), k,j=1,2,3.
Note that the fundamental matrix of the operator A(0,,7) with 7 = ¢ +iw, ¢ > 0, > 0, possesses
the decay properties (4.5) (see Appendix B).

If A*(0,, ) U’ is compactly supported as well and U’ satisfies the decay conditions (4.5), then the
following Green formulae hold for the exterior domain €27:

UT @)UY AU} ),y = — / (A0, 1)U - U + E(U,T7)] dr, (4.6)

Q-
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/ (A0, 1)U -U' — U - A*(8,7)U"] da
= —/ [{T(a,n,T)U}‘ AU —{U} - {%(a,n,T)U'}‘} ds.
o0

We recall that the direction of the unit normal vector to S = 0 is outward with respect to the
domain Q = QF.
Denote by £(U, V) the sesquilinear form on [H3(2)]° x [H3(22)]°

EWU.V) = / B(U, V) da, (4.7)
Q

where E(U,V) is defined by (4.2).
For U = (uy,ug,us, g1, b2, d3,0,0,9) ", v = (eij, 715, (5, 0, T, Ui, Ey), where e;; = dyu; + €jindn,
sij = 0195, G = Oip, T =70, ¥; = 99, E; = —0;%, we have

E(U, U) = B(’U75) + 27;)\15ijk Im(@lgbjak@) + 22)\2 Im(ajgoaji) + 211/3 Im((’?jwajg)
+ 2i7Bo Im(9u;9) + 2iTeo Im(p0) + 7% (pouitt; + lodd + jo® + avv). (4.8)
Therefore from (4.7), (4.8), (2.21), and (2.22) it follows that
Re&(U,U) > c1||U||[2H5(Q)]9 - cz||U||[2H3(Q)]9 for all U € [Hj(Q)]° (4.9)

with some positive constants ¢; and ¢y depending on the material parameters and on the complex
parameter 7, which shows that the sesquilinear form £(U, V') defined in (4.7) is coercive.

5 Boundary value problems and uniqueness theorems

Here we preserve the notation introduced in the previous subsections and formulate the boundary
value problems for the pseudo-oscillation equation (3.13) assuming that

T=0+iw, o0>0,20 welk.

Further, let S, (m = 1,2,...,10) be proper sub-manifolds of JQ such that S1USy = S3U8, =
SsUSe=857USs =8S9gUS19g=09, 51 NSy =5N85,=8N855=57NS5s =S59NS510=2.
We consider the following boundary value problems.

The general mixed boundary value problem (G)}: Find a solution

U= (u17u2;u33¢17¢27¢37§03¢319)—r € [W;(Q)]g

to the pseudo-oscillation equation (3.13) with ® € [L,(Q)]°, 1 < p < oo, satisfying the boundary
conditions

U; = ﬂl on Sl, tjmj = a on SQ, ¢Z = 51 on Sg, mg;n; = ’ffll on S4,
p=p on S5, TN =7 on Sg, Y= 1; on Sz, Djn; = l~)i on Sg, (5.1)
v="1 on Sg, gqjnj =q on S, =123,

where u;, 5,;, P, {/;, 5, €, My, T, D and q are given functions. Here equation (3.13) is understood in
the distributional sense, the Dirichlet type conditions are understood in the usual trace sense and the

1/p

corresponding data belong to the space B,l,;, , while the Neumann type conditions are understood in

the generalized functional trace sense and the corresponding data belong to the space Bp_,ll,/p.

The Dirichlet problem (D);: Find a solution

U= (u,,0,9,9)" € [WHQ)°

p
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to the pseudo-oscillation equation (3.13) with ® € [L,(2)]°, 1 < p < oo, satisfying the Dirichlet type
boundary condition
{U}T=Ff on S, (5.2)

1-1/p

where f € [Bpp '7(9)]° is a given vector function.

In the case when U satisfies the homogeneous equation
A0y, 7)U =0 in Q, (5.3)

we denote the corresponding problem by (D).

The Neumann problem (N)I: Find a solution
U= (u,6,0,0,9)" € W, (Q)°

to the pseudo-oscillation equation (3.13) with ® € [L,(Q)]°, 1 < p < oo, satisfying the Neumann type
boundary condition
{T(8p,n,7) U} =F on S, (5.4)

—1/p

where F € [Bpp'"(S)]° is a given vector function.

In the case when U satisfies the homogeneous equation (5.3) we denote the corresponding problem

by (N)j—r,o-
Mixed boundary value problem for solids with interior cracks. Let us assume that a solid
under consideration contains an interior crack. We identify the crack surface as a two-dimensional,
two-sided manifold ¥ with the crack edge /. := 9%. We assume that ¥ is a proper part of a closed
surface Sy C € surrounding a domain Q¢ C € and that ¥, Sy, and ¢, are C*>°-smooth. Denote
QE =0 \ i

We write v € W (Qx) if v e W) (Q0), ve Wy (Q2\ Q), and 7‘50\5{0}Jr = rso\f{v}’.

Recall that throughout the paper n = (n1,n9,ng) stands for the exterior unit normal vector to
0 and Sy = 0Qy. This agreement defines the positive direction of the normal vector on the crack
surface 3.

Further, we assume that S is dissected into two smooth subsurfaces, the Dirichlet part Sp and the
Neumann part Sy, S = Sp N Sy, and consider the following mixed BVP (MQ)t:

(i) on the subsurface Sp there are given the displacement and the microrotation vectors, the mi-
crostretch function, the temperature and the electric potential functions (i.e., on Sp there are
given the components of the vector {U}* - the Dirichlet data);

(ii) on the subsurface Sy there are prescribed the mechanical stress vector, the normal components
of the microstretch stress vector, the heat flux, and the electric displacement vector (i.e., on Sy
there are given the components of the vector {TU}T — the Neumann data);

(iii) the crack surface ¥ is mechanically traction free and we assume that the microstretch function,
temperature, electric potential, and the normal components of the microstretch stress vector,
heat flux, and the electric displacement vector are continuous across the crack surface.

Reducing the nonhomogeneous differential equation (3.13) to the corresponding homogeneous one, we
can formulate the above mixed problem mathematically as follows: Find a vector function

U= (u,¢,0,0,0)" = (u1,...,u9)' € [Wpl(Qg;)]g with 1 < p < oo,
satisfying the homogeneous differential equation
A0, 7)U =0 in Qy, (5.5)
the crack conditions on X,

{[TU;}" =F on %, j=T8, (5.6)
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{[TU];}  =F; on %, j=1.6, (5.7)
{ur}* —{ur}™ = fr on 3, (5.8)
{[TU1}" = {[TU):}” =Fr on %, (5.9)
{us}™ —{ug}™ = fs on 3, (5.10)
{[TU1s}" = {[TU)s} ™ =Fx on %, (5.11)
{ug}™ —{ug}™ = fo on 3, (5.12)
{ITUl}" = {[TU)e}” = Fy on £, (5.13)
and the mixed boundary conditions on S = SpUSn,
(U}t =g on Sp, (5.14)
{7'U}Jr = g™ on Sy. (5.15)

We require that the boundary data belong to the natural spaces,

1

~1—1 ~_1 1—1 1
fr: fss fo € Bpp” (¥), Fr, Fy, Fo € By’ (X)), Q(D) € [Bp,pp(SD)]ga Q(N) € [Bpp (SN)]gv (5.16)

and the compatibility conditions

~_1
Ej+ 7Fj_ € Bp’;(z), J = 1767

are satisfied.

Remark that if U € [W(Q5)]? solves the homogeneous differential equation (5.5) then actually
we have the inclusion U € [C*°(£2x)]° due to the ellipticity of the corresponding differential operator.
In fact, U is a complex valued analytic vector function of spatial real variables (z1, z2,z3) in Q.

Now we prove the uniqueness theorem (cf. [16, Theorem 3.1]).

Theorem 5.1. Let conditions (2.22) and (2.23) be satisfied and let U = (u, ¢, ¢, 1, 9) be a solution of
the problem (G)T for the homogeneous equation (5.3) satisfying the homogeneous boundary conditions
(5.1) forp=2. Then, u=¢ = =19 =0, and 1 = const. Moreover, if S; # &, then » =0 as well.

Proof. Due to (2.1), (2.2), we have the system of equations

djtji — T pou; = 0, i=1,2,3, (5.17)

oymj; + eirtin — 2 lop; = 0, i=1,2,3, (5.18)
0jmj — € —T2jop =0, (5.19)

0;q; — TpoTon =0, (5.20)

9;D; =0, (5.21)

where t;;, mj;, 7, €, ¢;, 1, D; are defined from (3.6)—(3.11).
Multiply (5.17), (5.18), (5.19), (5.20), and (5.21) by u;, ¢;, P, ¥, and 1, respectively, and integrate
over . In view of (2.4) and homogeneous boundary conditions we find

/ (tijéij + gijktijak + TQID()’U,iﬂi) dl’ = /njtjiﬂi dS = 0, (522)
Q oN
/ (mij?ij — 5ijktij$k + TQIQ(biai) dr = /njmj@i dsS =0, (523)
Q o0
/ (m@ +€p + 7'2j0<p¢) dr = /nm@dS =0, (5.24)

Q o0
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1 - _ _
—/ (qﬁﬂ? + TpOT(Jm?) dx = /niqﬂ? dS =0, (5.25)
Ty
Q 90
Q o9

By summing equalities (5.22)—(5.25) and complex conjugate of (5.26) we obtain

/(tijéij +1m % +m@+e¢+%0 q:0;0+7pond+ D, E;+77 (PouiﬂiJrIo(baJrjo@@)) dr=0. (5.27)
Q
By virtue of (2.19) the integrand in (5.27) can be rewritten as
Aeii€jj + (1 + x)eij€ij + pejiCiy + Aowej; — BoTejj + asaistj; + Bacjistiy + Vi
+ bogijkCiij + Mejinij By + vagiji3ij 060 + ao(iC; + A Ei(;
+ bogijr#iiCh, + 110;9C; + Xoej; P + E0pP — coTP — Mi€jin i Ex
— MC B — v30,0E; + XEiE; + vag;jr ;0,0 + 11(;0;0 + k0;90;9
+ v3E;0;0 + 7foe;;0 + Teowd + TaTV + 72 (pouih; + To¢d + jopP)
= B(v,) + 1Bo(ej;0 — €;;9) + Tco (0 — V) + 72 (pouiT; + Iodpg + jop@ + add),
where B(v,v") is the bilinear form with respect to the variables v = (e;;, 55, G, ¢, T, 0;9, E;) and
v = (e}, 5,,CL e’ T, 09", EY) defined in (2.19),
B(v,v") = /\€ii€}j +(pn+ %)eije;j + Mejiegj + Xo(ej;¢" + 6}]’%0) + oy’ + a%ii%;‘j
+ Baejir; + yoij g + bocigr (545G, + 25 Cr) + vacijn (54060 + 325 00)
+ aoCiCl 4+ 11 (0;9¢, + 0;9'¢;) + XEiE; + koY 09’

Due to (2.22) we have B(v,7) > 0 for any complex valued vector v # 0.
Let 7 = 0 +iw, 0 > 0. Separating the real and imaginary parts of (5.27) we get

/ (B(v,@) — 2w Im(e;;7) — 2weo Im(pd)
Q
+(0” — w?) (polul® + Io|o|* + jole|* + a|19|2)) dz = 0, (5.28)

/ (20ﬂ0 Tm(e;;9) + 20¢ Tm(o0) + 20w (polul® + To||? + jol|® + a|19|2)) dz = 0. (5.29)
Q
Multiply (5.29) by w/o and add to (5.28) to obtain

[ (B9 + 0+ ) (olul? + Tlof? + ol + alo?)) s = 0
Q
implying |u| = |¢| = |¢| = [9] = 0 and [ x|E|? dz = 0. Whence E = — grad 1) = 0 and thus ¢ = const.
Evidently, if S7 # &, then ¢ =0 follovSv)s7 which completes the proof. O
From Theorem 5.1 the following uniqueness theorem follows directly.
Theorem 5.2. Let S be Lipschitz surface and 7 = o +iw with 0 > 0, 2 0 and w € R.
(i) The basic Dirichlet BVP (D)} has at most one solution in the space [W3(Q)]°.

(ii) Solutions to the Neumann type BVP (N)I in the space [W4(2)]° are defined modulo a vector of

T

type UN) = (0,0,0,0,0,0,0,b,0)", where b is an arbitrary constant.
(ili) Mized type boundary value problem (MC)f has at most one solution in the space [W3(Qx)]°.

Similar uniqueness result for p # 2 will be proved later.
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6 Properties of potentials and boundary operators

The full symbol of the pseudo-oscillation differential operator A(9,,7) with Re7 # 0 is non-singular,
ie.,

det A(—i&,7) #0 V€& € R\ {0}.

Moreover, the entries of the inverse matrix A=(—i &, 7) are locally integrable functions decaying at
infinity as O(|¢|~2). Therefore, we can construct the fundamental matrix I'(z,7) = [[y;(x, 7)]oxo of
the operator A(9,,7) with the help of the Fourier transform technique,
D(z,7) = F o [A7 (=g, 7).

The structure of the matrix A=!(—i&, 7) allows to represent the fundamental matrix I'(x, 7) in terms
of elementary functions (see Appendix B). These explicit formulas imply that in a neighbourhood of
the origin the fundamental matrix possesses the property I'(z,7) = O(|Jz|~!), while the columns of
I'(x,7) satisfy the decay conditions (4.5) at infinity.

Here we collect some necessary results for our analysis. Proofs of the theorems below are similar
to the proofs of their counterparts in [2,3,8,17,18].

Let us introduce the single and double layer potentials:

V(h)(x) = Vs(h) = / Tz — y,7) h(y) dyS,

s
- T
W) = Ws(h) = [ [T0,000). 90 — 5. 0)T] 0l d, 5
s
where h = (hy,ha,...,hy) " is a density vector function.

Theorem 6.1. Let 1 <p<oo,1 < qg< o0, s €R. Then the single and double layer potentials can
be extended to the continuous operators

s+1+% s+2

V(B (8)" = [Brg "] W [B (9 — [Brg” (V)
B S) — [BERQOP, B8 B0,
(B3, ()] — [Hy @), (B, (9] — [H Q)]
B (S = o F@O)° (B (S)P = @)

1 1
Theorem 6.2. Let hV) € [B, 2 (S)]°, h?) ¢ [B;q”(S)]g, l<p<oo, 1<qg<oo. Then

{V(h(l))(z)}i = /I‘(z—yﬂ')h(l)(y) dyS on S,
5

(W)@ =451 + [ [T0,n0), )G =.0)] h20) 4,8 on 5.
S

The equalities are understood in the sense of the space [Bll,;ll/p(S)]9 (cf. [21])

Theorem 6.3. Let hY) € [B, 7 (9)]°, h® ¢ [B;,T];(S)]g, l<p<oo, 1<qg<oo. Then

[TV} = 750 00) + / T(0:,n(2), 7T (2 =y, 7) KV (y) dy S on S,
S
(TWHE) NV = {TW(H®)(2)} ™ on s,

_1
where the equalities are understood in the sense of the space [Bp.g (S)]°.
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We introduce the following notation for the boundary operators generated by the single and double
layer potentials:

H(h)(2) = /F(z oy () d,S, z €S, (6.1)
S

K(h)(z) = /T(@Z,n(z),T)F(z —y,T)h(y)dy,S, z€S8, (6.2)
° ~ T

N = [ [0 )0 = r)T] b d,S, 25, (63)
S

L) (z) = {TW(h)(2)} = {TW(h)(2)} ", z€S5. (6.4)

Note that #H is a weakly singular integral operator (pseudodifferential operator of order —1), K and
N are singular integral operators (pseudodifferential operator of order 0), and £ is a singular integro-
differential operator (pseudodifferential operator of order 1). These operators possess the following
mapping and Fredholm properties.

Theorem 6.4. Let 1 <p < oo, 1< qg< 00, seR. Then the operators

M [By () = [By (9, M [H(9) — [HyH(9))°,
KN By f(S)° = By (S)°, KN [H(9))° — [Hp(9))°,
L:[By (9 = By (9, Lo [Hy(S) = [Hy (),

are continuous.

The operators H and L are strongly elliptic pseudodifferential operators, while the operators :I:% Iy+
K and i% Iy + N are elliptic, where Iy stands for the 9 x 9 unit matriz.

Moreover, the operators H, %Ig + N, and % Iy + K are invertible, whereas the operators —% Iy+ K,
—% Iy + N, and L are Fredholm operators with zero indez.

The following operator equalities hold in appropriate function spaces

1 1
CH:—ZIQ+IC2, HL':—ZIQ+./\/2. (6.5)

7 Existence and regularity of solutions to mixed BVP (MC),

Before we start analysis of the mixed problem we present here existence results for the basic Dirichlet
and Neumann boundary value problems. Using Theorem 6.4 and the fact that the null spaces of
strongly elliptic pseudodifferential operators acting in Bessel potential H,(S) and Besov B, ,(S) spaces
actually do not depend on the parameters s, p, and ¢, by quite the same arguments as in [3], we arrive
at the following existence results.

1

Theorem 7.1. Let 1 <p < oo and f € [B;;;(S)]g. Then the pseudodifferential operator
-1 -3 9 -3 9
27 Ig + N 2 [Bpp” (S)) = [Bpp” (9)]
is continuously invertible, the interior Dirichlet BVP (5.3), (5.2) is uniquely solvable in the space
[(W(Q)]? and the solution is representable in the form of double layer potential U = W (h) with the
_1
density vector function h € [B;p” (9)]° being a unique solution of the singular integral equation

27y + Nlh=f on S.

Theorem 7.2. Let 1 < p < oo and a vector function U € [W, (€2)]° solves the homogeneous differential
equation A(0,7)U =0 in Q. Then it is uniquely representable in the form

Ux) =V(H HUI) (), z€Q,
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_1
where {U}" is the trace of U on S from Q and belongs to the space [B;,,”(S)]g. Here H™1 is the
inverse to the operator H : B % — B %,

1
Theorem 7.3. Let 1 <p < oo and F = (Fy,...,Fy)" € [Bp}(9)]°.

(i) The operator
—27 o + K [Bpf (9))° = [Bpg ()] (7.1)

is an elliptic pseudodifferential operator with zero index and has a one-dimensional null space
spanned by the vector function hg = H~1¥, where

¥ :=(0,0,0,0,0,0,0,1,0)" on S. (7.2)
(ii) The null space of the operator adjoint to (7.1),

-2 g+ K* - [B), ,(S))” — [B)

"D

iS]

is the linear span of the vector (0,0,0,0,0,0,0,1, O)T.

(iii) The equation
[-27' g+ KJh=F on S, (7.3)

is solvable if and only if

/ Fy(x)dS = 0. (7.4)

S

(iv) If condition (7.4) holds, then solutions to equation (7.3) are defined modulo constant times
ho = H™1W with ¥ defined in (7.2).

(v) If condition (7.4) holds, then the interior Neumann type boundary value problem (5.3), (5.4)
is solvable in the space [W)(Q)]° and its solution is representable in the form of single layer
1

potential U = V(h), where the density vector function h € [By} (S)]° is defined by equation
(7.3). A solutions to the interior Neumann BVP in Q is defined modulo summand C U with
arbitrary constant C and VU given by (7.2).

Now we start investigation of the mixed boundary value problem (MC),.
First let us note that the boundary conditions on the crack faces X, (5.6) and (5.7), can be
transformed equivalently as

(U} = {70} = Ff —F € i (%),

I
J—‘
o

I
—
o

9

(TU +{[TU)) = Ff + F € BA(S),

Therefore the boundary conditions (5.6)—(5.15) of the problem under consideration can be rewritten as

{7'U}+ =™ on Sy, (7.5)

(U}t =g on Sp, (7.6)

{(TU Y+ {[TU);} =Ff +F7 on =, j=T.8, (7.7)
{ur}* —{ur}”™ = fr on %, (7.8)

{us}™ —{us}™ = fs on X, (7.9)

{uo}™ —{ug}™ = fo on %, (7.10)
(T} = {[TU);} =F —F on %, j=1.6, (7.11)
7.12)

{[TU]7}+ —{[TUlz} =F; on %,

—_
[\

—~
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{[TU)s}" = {[TUls}” = Fs on %, (7.13)
{[TU)o}" = {[TU} =Fy on 3. (7.14)

We look for a solution of the boundary value problem (5.5), (7.5)—(7.14) in the form

V(H ™ h) + Wo(h®) + Vo(hY) in Qy, (7.15)
where
Vb ) (@) i= [T 5, mh D 0,5,
>
Wei®)@) i= [ [F(0yn). 0 = 5.7 h 1) 4,8,
>
VO @) = [T =50 D)) 4,8,
S

R = (hgi), cee hg))—r, i=1,2,and h = (hy,...,hg) " are unknown densities,

W e Brs)?. h® e B 7 (s)° =5 6y19
AV e [Bpp(2)]7, A € [Bpp”(8)]7, he[Bpy”(9)]. (7.16)
Due to the above inclusions, clearly, in the potentials V., and W, we can take the closed surface Sy as
an integration manifold instead of the crack surface X. Recall that ¥ is assumed to be a proper part
of Sop = 09y C Q (see Section 5).

The boundary and transmission conditions (7.5)—(7.14) lead to the equations:

re Ah g [TWo(h®)] + 1, [TVe(h™M)] = g™ on Sy, (7.17)
re b+ [Wc(h(g))] +rs, Vo(hM) = ¢gP) on Sp, (7.18)
re [TVHTR)] 4 g [LhP] 4 g [Ko(BW)], =27 H(F + Fj7) on B, j =16, (7.19)
where
f h(2) f h(z) f93 j :Fji _Fj+7 j:1767

WY = —p, nl = —Fs, h§Y) = —Fy on ¥,
and A := (=271Iy + K)H ! is the Steklov—Poincaré type operator on S, and

Lo(h®)(2) = {TWe( h<2>>( )} = {TWe(h®)(2)}” on %,
Ko (h™M)( /T d2,n(2), ) T(z —y, 7)hV(y) d,S on X.

As we see the sought for density 2(*) and the last three components of the vector h(?) are determined
explicitly by the data of the problem. Hence, it remains to find the density h and the first six
components (2 = (h:(LQ), ey héz))—r of the vector h(2).

The operator generated by the left hand side expressions of the above simultaneous equations
(7.17)~(7.19), acting upon the unknown vector (h, h(?)), reads as

SNA Tsn [TWeloxe
Q:= s, 1o [rs, Weloxe )

r [TV(H ™ Y]exo 75 [Leloxe 24x15

Sp
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where [M],,x» denotes the upper left m x n dimensional block of a matrix M of dimension mg x ng
with my > m and ng > n. This operator possesses the following mapping properties:

Q: [Hy(S))” x [Hy(2)]° — [Hy~ (Sn)]” x [H(Sp)]* x [Hy (D)),

p

Q: (B 4(9))° x [B; o(£))° = [By,' (Sn))° x B} ,(Sp))° x [By ' (D), (7.20)

D,
l<p<oo, 1<g<00, seR.

Our main goal is to establish invertibility of the operators (7.20). To this end, by introducing a
new additional unknown vector we extend equation (7.18) from Sp onto the whole of S. We will do
this in the following way. Denote by g(()D) some fixed extension of g(P) from Sp onto the whole of S
preserving the space. In particular, for the zero vector ¢’ = 0 on Sp we always choose the fixed
extension vector g(()D) =0on S.

Introduce a new unknown vector w on S

w=h+r [Wa(h®)] +r Vo(h) — g5 (7.21)

It is evident that w € [ p.p (SN)] in accordance with (7.18), (7.16), (5.16), and the imbedding

1
g(()D) € [B,l,,p” (9)]°. Moreover, the restriction of equation (7.21) on Sp coincides with equation (7.18).
Therefore, we can replace equation (7.18) in system (7.17)-(7.19) by equation (7.21). Finally, we
arrive at the following simultaneous equations with respect to unknowns h, w, and h(:

ro AR+ 1, [TWeloxs(h®) = g on Sy, (7.22)
h—w+r, [Weloxs(h?) = g? on 8, (7.23)
Ty [TV(?—[_I)]ﬁxg(h) —|—7“2[£C}6X6(E(2)) ¢® on %, (7.24)

where
g0 = g™ = v [TVehO)] =1, [TWe(((0)1x0. 57 187 167) ) .
9@ = gt = v [Veh™)] = o [We((10)1xo 7,0 0 )]
9% =27 (F 4 F7) = [Keloxo(hD) = | Lo (0o, b, 1 16V) )

with F* = (FE . FHT.
Rewrite system (7.22)—(7.24) in the equivalent form

re Aw+ 1y [TWelows(h®) =y AlrsWeloxe(h®) = ¢ —r, Ag® on Sy, (7.25)
—w+h 475 [Weloxs(h®) = g? on S, (7.26)
re[TVH )], o (h) + rs[Lloxs(B) = ¢®) on 3. (7.27)

Remark 7.4. Systems (7.17)—(7.19) and (7.25)—(7.27) are equivalent in the following sense:

(i) if (h, R®)T solves system (7.17)-(7.19), then (w, h, h®)T with w given by (7.21) where g(()D) is
some fixed extension of the vector ¢P) from Sp onto the whole of S involved in the right hand
side of equation (7.26), solves system (7.25)—(7.27);

(i) if (w, h, A®)T solves system (7.25)~(7.27), then (h, h)T solves system (7.17)~(7.19).
The operator generated by the left hand sides of system (7.25)—(7.27) reads as

r. A (0] re R

SN SN

M= |-r rslg (s Weloxe
[0]6x9 TE[TV(H_l)]fsxg rslLefoxo 24%24

)



56 Tengiz Buchukuri, Otar Chkadua, David Natroshvili

where
R = [TWeloxe — Alrs Weloxe.

This operator has the following mapping properties:

M [H(SN))? % [HE(S))? x [H3(2)]® — [H3 1 (Sn)]° x [H5(8)]° x [Hy 1 (2)]°,
M (B (Sh))? % [B 4(9)]° x [B5 o (D)]° — [B (Sw))° x [Bs ,(S)) x [Ba,H (D)), (7.28)
l<p<oo, 1<g< o0, seR.

Due to the above agreement about the extension of the zero vector we see that if the right hand side
functions of the system (7.17)—(7.19) vanish then the same holds for the system (7.25)—(7.27) and vice
versa.

The uniqueness Theorem 5.2 and properties of the single and double layer potentials imply the
following assertion.

Lemma 7.5. The null spaces of the operators Q and M are trivial for s =1/2 and p = 2.

Now we start to analyse Fredholm properties of the operator M.
For the principal part My of the operator M we have

A [0]9><9 [0]9x6
M() = —TSIQ 7“519 [0]9><6 s (729)
[0]6X9 [0]6><9 r):‘c(l)

24x24
where £V := [£ ]6x6-

Clearly, the operator My has the same mapping properties as M and the difference M — M, is
compact.

By the same arguments as in [3], we can establish that the operators £, and A are strongly elliptic
pseudodifferential operators of order 1, therefore £(!) is a strongly elliptic pseudodifferential operator
as well. Moreover, we have the following invertibility results.

Theorem 7.6. Let 1 <p<oo,1<qg<o0,1/p—1/2<s<1/p+1/2. Then the operators

6

ro L0 [Hy ()] = [Hy ' ()], re®: [By(2)]° = [By ()]

(7.30)
are invertible.

Proof. With the help of the first equality in (6.5) we find that the principal homogeneous symbol
matrix of the strongly elliptic pseudodifferential operator £, reads as

S(Le;,8) = S(Lsy; m,6) i= [ — 47 g + &*(Ky; 7, €)] [S(Hy; 2,6)]
= [_ 4_1—[9 + GQ(Kc;xvg)] [G(Hc;x,f)]_17 T € i7 §e R? \ {0}7

where Hg, and Kg, are integral operators given by (6.1) and (6.2) with Sy for S.

One can show that the principal homogeneous symbol matrix of the operator K. is an odd matrix
function in £, whereas the principal homogeneous symbol matrix of the operator H, is an even matrix
function in £. Consequently, the matrix &(L.;z,§) is even in & (for details see [3, Lemma C.2]).

From these results it follows that £() is a strongly elliptic pseudodifferential operator with even
principal homogeneous symbol. Therefore the matrix [&(£™M); 2,0, +1)]7'&(LM); 2,0, —1) is the unit
matrix and the corresponding eigenvalues equal to 1. Now, from Theorem A.1 in Appendix A it
follows that the operators (7.30) are Fredholm with zero index for 1 < p < 00, 1 < ¢ < oo and
1/p—1/2 < s < 1/p+1/2. It remains to show that the corresponding null spaces are trivial. In turn,

~ _1
due to the same Theorem A.1, it suffices to prove that the operator r, L) : [H2 (X)]® — [H, > (%)]°
is injective, i.e, we have to prove that the homogeneous equation

reLPg=0 on ¥ (7.31)
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~1
possesses only the trivial solution in the space [H7 (X)]°.

Let g € [I?Q% (2)]° solve equation (7.31) and construct the double layer potential
U:(ulau'aUQ)TZWC(g)ﬂ gz(gaO,Ovo)T'

In view of properties of the double layer potential and equation (7.31), it can easily be verified that
the vector U € [W2(R3\ X)) is a solution to the following crack type boundary transmission problem:

A0y, T)U =0 in R\ %,
{ITU);}" ={[T0);} =0, j=T.6 on %,
{ue}t —{up}” =0, k=17,89 on %,
{(ITULY " = {[TUL} =0, k=7,8,9 on ¥

and satisfies the decay conditions (4.5) at infinity, i.e., U € Z(R3\ X).

Applying Green’s identities (4.1), (4.6) by standard arguments we can show that U = 0 in R?\ X.
Whence g = (g1,---,96)" = 0 on ¥ follows due to the equalities {u;}* — {u;}~ =g; on %, j = 1,6.
This completes the proof. O

Due to (4.9) the operator A is coercive and consequently is elliptic. Moreover, it is strongly elliptic.
Indeed, let A, be the operator A written in some local coordinate system with origin at the frozen
point z € S. Denote by A the principal part of the operator A, and let R3(n) be the half-space
y1m1(z) + yana(z) + ysns(z) < 0 with plane boundary R?(n) = OR?(n). Evidently, n(x) is the unit
outward normal vector to R3(n). From Green’s formula (4.1) with Q = R3(n), equality (4.8), and
positive definiteness of form (4.1) it follows that for all ¢ € [C§°(R?)]%, ¢ # 0,

Re / AL o) - oly) dy = / Re S (A;2,6)¢(€) - ¥(§)dE 20, ¥(§) = Fyme(o)(v),

R2(n) R2(n)

(cf. [19, Theorem 17]) which ensures strong ellipticity property of the symbol &(A; z, £), that is, there
exists a positive constant ¢ such that Re &(A;x,£)¢ - ¢ > cl¢||¢]? for x € S, £ € R2, ¢ € C°.

Let A\, k = 1,9, be the eigenvalues of the matrix ao(z) = [6(A;2,0,+1)] 7 1&(A; 2,0, -1), = €
by, = 0Sp = OSy, where &(A; x,€) with z € Sy and € = (&1, &) € R? is the principal homogeneous
symbol of the Steklov—Poincaré operator A. As we will see below one of the eigenvalues (Xg say) of
the matrix ag(z) equals to 1.

Let us introduce the notation

1 ~ 1 ~
r L ) " _ L )
o' = 1;%9 5 arg Aj(z), 6 121]129 - arg A;(z). (7.32)
zE€Lm z€l,,

Due to strong ellipticity of the operator A and since one eigenvalue equals to 1, we deduce that
-1/2 < ¢ <0 < ¢ < 1/2. Theorem A.1 in Appendix A implies the following assertion (cf. [3,
Theorem 5.19]).

Theorem 7.7. Let 1 <p<oo,1<qg<oo, 1/p—1/248" <s<1/p+1/24§ with ¢ and §" given
by (7.32). Then the Steklov—Poincaré operators

ro At [H3(Sn)]" = [HE U (SN, re, A [BSo(Sn)]° = B (S)]°

SN N

are invertible.
In turn, Theorem 7.7 leads to the following invertibility result.

Theorem 7.8. Let
1 1

l<p<oo, 1<g<L o0, 5

1 1
+0"<s<=+=-+44. (7.33)
p 2

Then operators (7.28) are invertible.
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Proof. From Theorems 7.6 and 7.7 we conclude that for arbitrary p, ¢, and s satisfying conditions
(7.33), the operators
Mo = [Hy(Sn))° x [Hy(9)]° x [Hy (5)]° = [Hy ' (Sn))” x [H(9)]° x [Hy ™ (2))°,

p p p p

Mo : (B} ,(Sn)]° % [B o (9))° x [B; o(D))° = [By' (Sw)]” x [By 4(9))° x [By ' (D),

with My defined in (7.29) are invertible. Therefore the operators (7.28) are Fredholm operators with
index 0.

By Lemma 7.5 we conclude then that for s = 1/2 and p = 2 operator (7.28) is invertible. The
null-spaces and indices of the operators (7.28) are the same for all values of the parameter ¢ € [1, +o0],
provided p and s satisfy the inequalities (7.33) (see [1, Chapter 3, Proposition 10.6]). Therefore, for
such values of the parameters p and s they are invertible. In particular, the nonhomogeneous system
(7.25)—(7.27) is uniquely solvable in the corresponding spaces. Moreover, it can be easily shown that

the solution vectors h, 1 do not depend on the extension of the vector ¢(P), while w does. However,
the sum w + g(()D) is defined uniquely. O

Due to Remark 7.4 we conclude that the operators (7.20) are invertible if p, ¢ and s satisfy
conditions (7.33).

With the help of this theorem we arrive at the following existence result for the original mixed
BVP.

Theorem 7.9. Let

<p< (7.34)

3 — 24" 1—26"

with &' and 8" given by (7.32). Then the BVP (5.5)—(5.15) has a unique solution U in the space
(W2 (Q)]°, which can be represented as U = V(H='h) + W(h?)) + V(b)) in Qg, where h, h(?),
and hY) are defined by the system (7.17)~(7.19).
Proof. The condition (7.34) follows from the inequality (7.33) with s = 1 — 1/p. Now existence of
a solution U € [W, (Qx)]° with p satisfying (7.34) follows from Theorem 7.8 and Remark 7.4. Due
to the inequalities —1/2 < &' < §” < 1/2 we have p = 2 € (3-%57, 7—557)- Therefore the unique
solvability for p = 2 is a consequence of Theorem 5.2.

To show the uniqueness result for all other values of p from the interval (7.34) we proceed as follows.
Let a vector U € [W}(Qx)]? with p satisfying (7.34) be a solution to the homogeneous boundary value
problem (5.5)—(5.15).

Then it is evident that

1—1 _1 1—1 1
{U}E € [Bpp” (), {TUYS € [Bpg (9)]°, {U}S € [Bpp” (D)), {TU}5 € [Bois (2))°,
- _ipl-e -
{U}; —{U}s € [Bpp” (D), {TU}; —{TU}y =0 on X.
By the general integral representation formula the vector U can be represented in {2y as
U=wW.({U}g —{U)Ve({TU}, —{TU}g) + WH{U}§) - V{TU}E),

ie.,

U=U"+W.(h?)+V.(hY) in Qy, (7.35)

where
WO = (TUY ~{TU)z, h® = (U} — {U}5 on %,

Ut = W{US) - V{TUYS) € Wy ().
Note that U* solves the homogeneous equation

A0, 7)U* =0 in Q.

Denote h := {U*}{. Clearly, h € [B;;l/p(S)]g. Since the Dirichlet problem possesses a unique
solution in the space [W(Q)]? for arbitrary p € [1,400), due to Theorem 7.2 we can represent U*
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uniquely in the form of a single layer potential, U* = V(H~1h) in Q (for details see [3, Chapter 5,
Section 5.6]). Therefore from (7.35) we get

U=V(H ' h)+W.(h?)+V,(h) in Qx.

Now, the homogeneous boundary and transmission conditions for U lead to the homogeneous
system (cf. (7.17)(7.19)) Q¥ = 0, where ¥ = (h, h® (D)7, Whence, ¥ = 0 follows immediately
due to invertibility of Q (see Theorem 7.8 and Remark 7.4). Consequently, U = 0 in Q. O

Let us now present some regularity results for solutions of the mixed boundary value problem
(5.5)-(5.15).

Theorem 7.10. Let 1 <t < oo, 1<q< o0,

4 4 1
395 ~P<

1 1 1
- _ = 5// - - 6/
1—25° 270 <s<ytgf

with &' and 6" given by (7.32), and let U € [W, (Qx)]? be the solution of the boundary value problem
(5.5)—(5.15). Then the following reqularity results hold:

(i) If
Ff F7 € Bi;'(%), Ff—F € B;'(%), j=16,
Fy € Bi7Y(S), fr€B; (%), k=189,
9P € [B;(Sp))°, g™V € (B (Sw))’,
then .
U e [H ()
(i) If
Ff F- e B '), Ff —F €B;;'(%), j=16,
Fr € B;;'(%), fu € B (D), k=1,8,9,
9P € (B, (Sp))°, o™ e [B:;'(SN))°,
then

Ue B, Q)

(iii) If a > 0 and

F F, € BX (%), Ff—F; € BL (%), j=1,6,
Fr € BLL(%), fr€C*X), refr=0, k=7,8,9,
9P € [C*(Sp), g™ € [BE L (SV)]’,
then L
Ue (] C”(®Q)). j=0.1,
al <y

where v = min{a, 1/2 + 6}, —1/2 < ¢’ <0 and Qo is an arbitrary proper subdomain of Q such
that ¥ C 0Q¢ = Sp € C* and Q1 = Q\ Q.

Moreover, in one-sided interior and exterior neighbourhoods of the surface Sy the vector U has c' e
smoothness with v' = min{a, 1/2}, while in a one-sided interior neighbourhood of the surface S the
vector U possesses C7 ¢ -smoothness with v = min{a, 1/24§'}; here € is an arbitrarily small positive
number.

Proof. The proof is exactly the same as that of Theorem 5.22 in [3]. O
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8 Asymptotic expansion of solutions

Here we investigate the asymptotic behaviour of solutions to the problem (5.5)—(5.15) near the ex-
ceptional curves ¢, and ¢,,. For simplicity of description of the method applied below, we assume
that the boundary data of the problem are infinitely smooth, F;", F;~ € C*=(%), F;" — F; € Cg°(%),
j=1,6, fr, Fr € C°(%), k =17,8,9, ¢P) € [C>(5p)]?, ¢ € [C’OO(SN)] where Cg°(X) denotes a
space of functions vanishing along with all tangential (to X) derivatives at £, = 9X.

In Section 7, we have shown that the boundary value problem (5.5)—(5.15) is uniquely solvable and
the solution U can be represented by (7.15), where the densities are defined by equations (7.17)—(7.19)
or by the equivalent system (7.25)—(7.27).

Let ® := (w,h, h®)T be a solution of the system (7.25)~(7.27): M® = G, where G is the vector
constructed by the right hand sides of the system, G € [C°°(Sy)]? x [C*(S)]° x [C*=(2)]5. To
establish the asymptotic behaviour of the vector U near the curves ¢, and ¢,,, we rewrite (7.15) as
follows:

VH ™ w) + Wa(@) + R, (8.1)
where

R = =V (H  [raWo(h®) + 1 Vo(hD) = g$P]) + Welfo) + Ve(h D),

with fO = (Oa0507070a0af77f8af9)—r'
Due to the relations

r Wo(h®) 4 r Vo(h) — g§P) € [C>(8))°,
WY = (Fy — Ff,... Fy — Fy,—Fy,—Fs,—Fy) € [C°(2)]°,
W’feCW)JW fs € C(X), h$? = fo e C5°(%).

we deduce s, R € [C*(9Q;)]%, where Q;, j = 0,1, are as in Theorem 7.10(iii).

The vector g involved in (8.1) is defined as follows: g = (h(Q), 0,0,0) ", where h2 solves the pseu-
dodifferential equation
ro LV R =™ on ¥ (8.2)

with T = ¥V 0T, Evidently,

v = 9 [TV( )]6><9(h)'

Finally, the vector w involved in (8.1) solves the pseudodifferential equation

ro Aw=9? on Sy, (8.3)

SN

where
U@ =g~ Ag® —r, ([TWeoxs(h®) — AlrsWeloxs(R®)) € [C(Sn))°.

As we have already mentioned, the principal homogeneous symbol G(E(l); r,8), 2 €N, £=(&,86) €
R2\ {0} of the pseudodifferential operator £(1) is even with respect to the variable ¢ and therefore
the matrix

[S(LM;2,0,+1)]

S(LW;z,0,-1), = €L,

is the unit matrix Is. Consequently, all eigenvalues of this matrix equal to one, Xj () =1, j =1,6,
x € .. Applying a partition of unity, natural local coordinate systems and local diffeomorphisms,
we can rectify £, and ¥ locally in a standard way. For simplicity, let us denote the local rectified
images of £, and ¥ under this diffeomorphisms by the same symbols. Then we identify a one-sided
neighbourhood (on X) of an arbitrary point = € £, as a part of the half-plane x5 > 0. Thus, we assume
that (x1,0) € £, and (21,22 4) € 3 for 0 < z9 4+ < e. Clearly, x2 + = dist(x, £,).
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Applying the results obtained in the references [6] and [7] we can derive the following asymptotic
expansion for the solution h(?) of the strongly elliptic pseudodifferential equation (8.2),

M

~ 1 1.p ~
h® (21, 22,4) = colar)ad , + Z cr(z)zg L + W2 (z1,224), (8.4)
k=1
where M is an arbitrary natural number, ¢, € [C*°(£.)], k = 0,1,..., M, and the remainder term

satisfies the inclusion N
A2 e [CMT e )5, f =t x [0,¢].

M+1 c,

Note that, according to [7], the terms in expansion (8.4) do not contain logarithms, since the
principal homogeneous symbol &(LM); z, €) of the pseudodifferential operator £(1) is even in &.

To derive analogous asymptotic expansion for the solution vector w of equation (8.3), we apply
the same local technique as above to a one-sided neighbourhood (in Sy ) of the curve ¢,,, and preserve
the same notation for the local coordinates.

Consider a 9 X 9 matrix ag(z1) constructed by means of the principal homogeneous symbol of the
Steklov—Poincaré operator A,

ag(w1) = [S(A;21,0,+1)] " S(A;21,0,-1), (21,0) € L. (8.5)

Note that unlike to the above considered case, now (8.5) is not the unit matrix and therefore we
proceed as follows. _

Denote by Ai(x1),...,Ag(z1) the eigenvalues of the matrix ag. Let p;, j =1,...,[,1 <1 <9,
be the distinct eigenvalues and m; be their algebraic multiplicities: mq + --- +my; = 9. It is well
known that the matrix ag(z1) admits the decomposition (see, e.g., [12, Chapter 7, Section 7]) ag(z1) =
D(x1)Tay (x1)D 71 (21), (21,0) € £y, where D is 9x 9 nondegenerate matrix with infinitely differentiable
entries and 7, has a block diagonal structure J,, (1) := diag{su1 (x1)B™) (1), ..., w(z1)B™)(1)}.

Here B®(t), v € {m4,...,m;}, are upper triangular matrices:
th=
(k o )‘ b j < k’
B (1) = o) (Ol B0 =4 1 ik
0, Jj >k,
ie.,
B t2 tl/—2 tl/—l ,
1 = ...
2! v-2)! (v—1)
tl/73 tl/72
. 1 t ..
B = | w—3)1 (—2)
0 0 0 1 t
0 0 0o .- 0 1
L <4 vXv
Denote

By(t) := diag { B (¢),..., B (t)}.

Again, applying the results from the reference [6] we derive the following asymptotic expansion for
the solution w of the strongly elliptic pseudodifferential equation (8.3):

1iA(z 1 _
w(zy,r24) = D(m)wii ( 1)Bo( ~om 10g$2,+)D H(a1)bo (1)
o L+ A1) +k
+Y D(e)a3 = T By, logws, ) + warga (w1, @a,4), (8.6)
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where by € [C™ (€))7, wars1 € [C®(GF ), 4 o = lm x [0,€], and
t k(2m0—1)
By (21,t) = Bo( - 7) Z tVdy;(x1).
=1

Here mo = max{my,...,mo}, the coefficients dy; € [C™(£,,)]?, A := (Ay,...,Ag), and
1 ~ 1 ~ 1 ~
Aj(@1) = 5 logAj(x1) = o arg Aj(z1) + 5 log|A; (1)),
—m < arg\;(z1) <m, (21,0) €4y, j=1,9.

Furthermore,

giA(’“) = diag {xf iA o L3 iAg(xl)}

Now, having at hand formulae (8.4) and (8.6) with the help of the asymptotic expansion of
potential-type functions obtained in [5] we can write the following spatial asymptotic expansions
for the solution vector U of the boundary value problem (5.5)—(5.15) near the crack edge ¢, and near
the collision curve ¢,

(a) Asymptotic erpansion near the crack edge (.:

lg mg—1 M+2 M+2-—1 A
3o+ -
Ua)= 3 |3 a4z ldD @+ Y S ahadz2 ) @) | + UG (@) (8.7)
p==£1 Ls=1 j=0 k,l=0 j+p=0
k+l+j+p>1

with the coefficients dgj)( . ,p),dii,l (1) € [C(L)]° and UI(VC[_i_1 € [CMT1(Q,)]%, j = 0,1. Here ;,
7 =0,1, are as in Theorem 7.10(iii3, and

Zo 41 = — (T2 + 23Cs 41), Zs,—1 = T2 — x3(s,—1, —T <argzs+1 <m, Cs41 € C(Le), (8.8)

where {(;, il} »_, are the different roots in ¢ of multiplicity ns, s = 1,...,lp, of the polynomial
det A(O)([Jl(xl,o 0)]~'ns) with ne = (0,£1,¢) 7, satisfying the condltlon Re Cs+1 < 0. The matrix
J,. stands for the Jacobian matrix corresponding to the canonical diffeomorphism s related to the
local co-ordinate system. Under this diffeomorphism ¢, and ¥ are locally rectified and we assume that
(21,0,0) € £, zo = dist(z™),£.), x3 = dist(z, X), where (> is the projection of the reference point
x € 2y onto the plane corresponding to the image of ¥ under the diffeomorphism .

Note that the coefficients dgj)( -, ) can be expressed by the first coefficient ¢y in the asymptotic
expansion (8.4) (for details see |5, Theorem 2.3]).

(b) Asymptotic erpansion near the collision curve (.,

lo ng—1
Uz Z {Z Z A {d( )xl, )zs;A(Il) "By ( 2%” logzs’#)}'cvj(xl)

p==x1 s=1 j=0
M+2 M+2—1 Alen)
I (m L+A(z)+p+k (m)
+ Z Z ToTy dsljp 1‘1,/0292# Bskjp(xlvlogzs,u) +UM+1(37)7 (8'9)
k,0=0 j+p=0
kd+ltjrp>1

where dgjﬁ)( , i) and dsl]p
(C=(En))?, Uy € [CMH (@), and

z;’”’;A(Il) = dlag{Z’H_A @) ,ZSIAQ(“)} kER, p==1, 1 € by

(-,p) are matrices with entries belonging to the space C*({,,), ¢; €

Bgkjp(x1,t) are polynomials with respect to the variable ¢ with vector coefficients which depend
on the variable x; and have the order vy, = k(2mo — 1) +mo — 1 + j + p, in general, where
mo = max{mq,...,m;} and m; +---+m; =9.

Note that the coefficients dg;n)( -, i) can be calculated explicitly, whereas the coefficients ¢; can
be expressed by means of the first coefficient by in the asymptotic expansion (8.6) (for details see [5,
Theorem 2.3]).
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9 Analysis of singularities of solutions

Let 2’ € £, and H(;,) be the plane passing through the point 2’ and orthogonal to the curve £.. We

introduce the polar coordinates (r,«), r > 0, —7 < a < 7, in the plane H;C,) with pole at the point

«’. Denote by X% the two different faces of the crack surface ¥. It is clear that (r,xm) € nE,
Denote the similar orthogonal plane to the curve ¢,, by Hg(;fl) at the point 2’ € ¢,, and introduce

there the polar coordinates (r, ), with pole at the point 2’. The intersection of the plane H(;?) and
Qs can be identified with the half-plane r > 0 and 0 < a < 7.

In these coordinate systems, the functions zs 11 given by (8.8) read as follows:
25,41 = —1r(cosa + (s +1(2')sina), z5,-1 =r(cosa — (s —1(2") sina),

where 2’ € L. UL, s = 1,...,lp. We can rewrite asymptotic expansions (8.7) and (8.9) in more
convenient forms, in terms of the variables » and a. Moreover, we establish more refined asymptotic
properties of the solution vector U = (u, ¢, ¢,v,9) T € [C°(2x)]? near the exceptional curves.

(i) Asymptotic analysis of solutions near the crack edge (..

The asymptotic expansion (8.7) yields
U= (ua ¢a 2 1/)7 19)T = a0($/7 04) 7,1/2 + al(x/a a) T3/2 +oeee (91)

where r is the distance from the reference point x € H;}) to the curve /., and a; = (aj1,..., Cl,jg)T,
j=0,1,..., are smooth vector functions of z’ € /..

From this representation it follows that in one-sided interior and exterior neighbourhoods of the
1
surface Sy = 9 the vector U = (u, ¢, p,1,9) " has C'z-smoothness.

(ii) Asymptotic analysis of solutions near the curve {,,.

The asymptotic expansion (8.9) yields

lg 1’7,5—1

U(z) = Z Z Z csjﬂ(ac’,a)r”’“‘sBo( - 2i7m logr)'cvsjﬂ(:c',a) +y (9.2)

p==£1s=1 5=0

where ' € £,

P70 = diag {r'“”‘;l, L., et },
(9.3)

1 1~ 1~ o
=g + oy arg\j(z'), §; = o log |\;(z")], j=1,9,

and Xj, j =1,9, are eigenvalues of the matrix
ag(a’) = [S(A;2/,0,+1)] T S(A;a’,0,-1), 2’ € Ly

Recall that here &(A;2’,€) is the principal homogeneous symbol of the Steklov—Poincaré operator
A = (=27 + K)YH~!. Moreover, the eigenvalues Xj, j = 1,9, can be expressed in terms of the
eigenvalues j3;, j = 1,9, of the matrix &(K;2’,0,41), where &(K;2’,§) is the principal homogeneous
symbol matrix of the singular integral operator K (see [4, Theorem 6.3)),

- 1428,
Aj = J =1,9. 4
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The symbol matrix &(K;2’,0,+1) is calculated explicitly

00 0 0O 0 0 0 0 0
00 —ia 0O 0O 0 0 0 0
0 ia 0 0O 0 0 0 0 0
0 0 0 0 0 0 ic ip g
00 0 0 0 —ib 0 0 0
00 0 0 b 0 0 0 0
S(K;a',0,+1) = ibg :

00 0 -2 9 0 0 0 0

2

i
00 0 -2 0 0 0 0 0

2y
00 0 -2 9 0 0 0 0
L 2y d9x9

where

a_l( A u) b_l(gﬁ;ifé)

A \NF2u42 ptx) T A\a+ By )

¢ = bobi1 + Aiba1 +v2b31, P = bobia + Aibay + v2b3a, q = bobi3 + A1baz + v2b33,
—1

ap —X2 U
[bjk]3x3 =X x 3 = (kxao + kX3 — xvi — 2Xoviv3 + agrd) ™!
11 —V3 k
kX + 1/32 k)\g — V13 xv1 + )\2V3
X | —kXo + 1113 kag — u12 —vag + Ay

Xv1+ Ao =Xy +agrs Xag + A3
The characteristic polynomial of the matrix &(C; 2’,0,+1) can be represented as

B3(B% — a®) (8% — b*)(27B* — cbo — pA1 — qua)
2y '

det (&(K;2',0,41) — BI) = —
Therefore we have the following expressions for eigenvalues of the matrix &(fC; 2/, 0, +1):

61,2 = :F\/ga 5374 = Fa, ﬂ5,6 = :Fba 57 = ﬂ8 = 59 = 07

where 1 1 bo + A1 +
Cbo T pA1 T V2
-, <z, d=————= . .
ol <5, <3, S >0 (9.5)
Then due to (9.4) we have
1—2iv—
1=2v=d o,
M= L= 1+2iv=d
A2 1_72\/& if d>0,
1+2Vd
~ 1—2a ~ 1 ~ 1-20 ~ 1 ~ ~ %
A3 = M==, s=——, ==, Mr=Xg=Xdg=1
3 1+2a7 4 )\37 5 1+2b7 6 57 7 8 9
Note, that Xg, . ,Xg are positive eigenvalues, whereas Xl, and Xg are positive if d > 0 (see Appendix A)

and | M| = [Xo| =1 if d < 0.
Applying the above results we can explicitly write the exponents of the dominant terms in the
asymptotic expansion (9.2)—(9.3):

1 1 1 1
n=g o arctan2v/—d, o = 3 + — arctan2v/—d, 6 =00, =0 if d <0, (9.6)
0 0
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1 1 . 1-2V/d

= = — 5:717 5:—(5 .fd>7 7
M=r=5, 1= H1+2\/g, 2 1 i 0 (9.7)
and
1
'73:'74:'75:'76:77:'78:79:§a
1 1—-2a 1 1—-2b
= — In—— = — = — In— = —0¢r = = = ().
3 o H1+2a754 03, 05 9 H1+2b756 05, 07 = dg =09 =0

Note, that By(t) has the form

. B =

1 0l6x
Bo(t)Zl 6 [0]6x3

[0lsxs B (t)

S O =

O~
~
—-
jarid
ISH
AN
=

and
Bo(t)=1y if d > 0.

Now we can draw the conclusions concerning the asymptotic behaviour of solution U to the mixed
problem near the exceptional curve /,,:

e If d <0, then the asymptotic expansion has the form

U — Cl,r’yl + 627,,1/2+Z63 + 637,1/27153 + C4T1/2+’L§5

+esrt/27 poeert 2 Ing + et In? e 4 gt/ g2 4 -

As we see from (9.5) and (9.6), the exponent v; characterizing the behaviour of the solution
near the line ¢, depends on the material constants and may take an arbitrary value from the
interval (0, %) In this case the solution possesses C'' smoothness in a neighbourhood of the
line ¢,,, and since vy < % the first order derivatives of solutions have non-oscillating singularities
near the exceptional curve /,,.

e Ifd >0, then

U= dl,rl/Q + d2T1/2+i51 T d3,r,1/2—'£51 +d47ﬁ1/2+i53
+ d57,,1/2—i53 + d6,,,1/2+7l65 + d77’1/2_i65 + (9(,],,3/2—6)7

where ¢ is a sufficiently small positive number. In this case the solution possesses C' 3-smoothness
in a neighbourhood of the line £,,.

10 Appendix A: Fredholm properties of strongly elliptic
pseudodifferential operators on manifolds with boundary

Here we collect some results describing the Fredholm properties of strongly elliptic pseudodifferential
operators on a compact manifold with boundary. They can be found in [1,11,15,22]. We essentially
use these results in Section 7 to prove the existence and regularity of solutions to the mixed boundary
value problem for a solid with an interior crack.

Let M € C™ be a compact, n-dimensional, nonselfintersecting manifold with boundary OM € C>
and let A be a strongly elliptic N x N matrix pseudodifferential operator of order v € R on M. Denote
by &(A;x, &) the principal homogeneous symbol matrix of the operator A in some local coordinate
system (z € M, ¢ € R™\ {0}).

Let A1(z), ..., A\n(z) be the eigenvalues of the matrix

[S(A;2,0,...,0,+1)] '&(A4;,0,...,0,—1), =€ dM,
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and let B
§j(z) =Re[(2mi) " 'InX;(z)], j=1,...,N.

Here In ¢ denotes the branch of the logarithm analytic in the complex plane cut alongi—oo, 0]. Due to
the strong ellipticity of A we have the strict inequality —1/2 < §;(z) < 1/2 for x € M. The numbers
d;(x) do not depend on the choice of the local coordinate system at the point . In particular, if the

eigenvalue Xj is real, then it is positive and consequently the corresponding d; = 0.
Note that when &(A, z,€) is a positive definite matrix for every z € M and £ € R\ {0} or when

it is an even matrix in £ we have §;(z) =0 for j =1,..., N, since all the eigenvalues X(z) (j=1,N)

are positive numbers for any x € M.
The Fredholm properties of strongly elliptic pseudodifferential operators are characterized by the
following theorem.

Theorem A.1. Let s€e R, 1 < p < oo, 1< q< o0, and let A be a strongly elliptic pseudodifferential
operator of order v € R, that is, there is a positive constant ¢y such that

Re (G(A,(E,f)é' ! C) > COK‘Q fO’f‘ T e ma g e R"”
with || =1, and ¢ € CN. Then
A:Hy(M) — H;7" (M), A: B (M)— By " (M), (A.1)
are Fredholm operators with index zero if

1 1
2;—1—1— sup d;(x) <s—Z<Zy d;(z). (A.2)

inf
TEIM, 1<j<N 2 p  zedM,1<iEN

Moreover, the null-spaces and indices of the operators (A.1) are the same (for all values of the
parameter q € [1,4+00]) provided p and s satisfy the inequality (A.2).

11 Appendix B: Fundamental solution
Let I' be the fundamental solution of the operator A(9, ),

A0, T)T(x) = 6(x) Iy, (B.1)

where §(z) is Dirac’s delta function and Iy is the 9 x 9 unite matrix.
Denote by F and F~! the direct and inverse Fourier transform operators in R?,

Fanlf) = 1O = [y do, g
R3

Fdil = s [ 0@ e, 2 e
R3

Applying the Fourier operator F to both sides of equation (B.1) we get

A(=ig, T)T(E) = I,
whence R
L(¢) = [A(—ig, )] (B.2)

From (B.2) it follows that r = (XM X)) where X*®) = (ka),...,Xék))T, k=1,...,9 is a
solution of the equation
A(—ig, 1) X® = B® (B.3)

with the right side B®) = ((C*)T (FENT G HE LENT  where
C®) = 81k, 021, 03x) ', F®) = (8up, 055, 061) T, GW) =67, H®) =3gp, LK) = 6.
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Introduce the notations

~ k) (k) (K & k - k) k) .3 k
a® = (2", 28,27, 0 = (2,2l 2f")T, ¢ =2V, §B =2l I0 =P (B4)
Then equation (B.3) can be rewritten as

[+ 29[ + 72po) @™ + (A + i€ - TM) +ielé x D] +idocd™ Wﬁo&? ® = —c®,

(1€l + <2z+ 721)] 28 + (a+ B)E(E - @) 4 ix[¢ x ] = —F®),
(aol€]? + €0 + 7270) 8% + Aa|€[20™®) — (11]€]% — 7o) I —ixg(€ - a®) = —G™)|  (B.5)

22l€2 3™ + x[EPP™) + val¢PIP) = —H®),

(kI€? 4+ 72a) 9% —irBo(€ - a®) + (1]€]? + 7o) BF) — vs|ePp™) = LB,

Multiplying the first and second equations of (B.5) by i¢ and denoting n® := i¢-a®, ¢*®) = j¢.d®)
we get

(@+B+NEL k)" 7 at+B+v’

for k = 4,5,6 and (¥} = 0 otherwise, whereas the remaining equations constitute a system of four
equations for unknowns 7]( ), pk) ¢(k) ﬁ(k)

C(k) __ 'L’gkf?, k2 7—2[0 + 2%

[+ 20+ 30) €] + 720] n™®) — Xo|€]2BH) + 7029 = —ig - C*),
(aol€* + & + 7250) ™ + Aol€2p™) — (nl¢)? - TCo)ﬂ(k) —don® = -G®,

~ ~ (B.6)
Aoe?e™ + x|£\2¢<’“> +walg9®) = —H®),
(k\£|2 + T2a)19 — 768om + (1/1|§| + Tco) — v3l¢| 1/J(k) — L"),
Denote by A(|¢[2) the matrix of coefficients of system (B.6)
[\ +2p + ) [€[* + 7% o] —Xol¢[? 0 7Bol¢[?
A(ep) = —Ao (aolé” + & +7%0)  Aalél* —(1lé]* — Teo)
0 Azl€[? XI€[? vsl¢]?
—7Bo (nl€l* + 7co) —vslé]*  (k[¢[* +7a)
Note, that ~
D(J¢[2) = det (A(l¢f))
can be factorized as
DE[) = dolé> (161 — k2) (161 — k2) (1€]? — K2),
where
do = (N 4 20 + 3)(aokx + aors + xv? 4+ 2 av1v3 — kA3)
and k7, k2, k% are the roots of the polynomial
P(z) = 2 + p12° + paz + p3 (B.7)
with
a+ b+
p1 = # { — kxA§ — 7% [a(se + A+ 2p) + B3] A3 — 27xBorovs — 27 BoAoAavs
0
= AJV3 + (32 + A+ 20)7% o (kx + v3) + ksexo + kA€o + 2kpxéo + »v3€0 + A3
+ 2uv2 0+ T (— kN2 4 v+ 2 11 v3) po+T2ag [a(%+)\+2u)x+xﬂg+(k‘x—kug)po} }7
2
Py = Aatf+) (aser?xap 4+ art*xag + 2apr?xag + ke xjo + kAT X o 4 2kuT*xjo

do
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+ 72)(@063 - kx)\% - a%TQAQ —a/\7'2)\2 - 2am’2)\2 - 263)\2 —27XxBo o1 — 27 By Ao 23
+ s jovs + AT jovs +2ur jovs — )\0’/3 +ksex€o+kAx€o+2kuxo+ 2580+ A5
+ 2/11/3&) + kT XaopPo — ]4}7' /\2/)0 + T XleO + 27’ /\2V1V3p0 + 7 aoygpo),

a+ B+ A

do x[ = ¢ + a(m?jo + )] o, (B.8)

p3 =

From (B.6) for n®), (%) $*) 9% we have
(n®), ™ §*), @(k))T — A (jgP) (iIC® ¢, G0, HW), L(k))T
implying
7D =il (x( = 723 + (162 + 07%) (€ + 7o) ) — 162 (161°kxao + ar>xa0 + € kAo
— ar? XX+ € xvi+ (e (AO—/\Q)+|§|2()\0+>\2)u1)u3+(£o+|§|2a0+72j0)u§)) Dﬁéz) ;

1@ = —ile (x( - 72 + (1€PK + ar) (6o + 7%0) ) ~ I€[2 (IE*kxao + arXao + € R0k
&
D(ieP)”
1 = = ile2 (x( = 72 + (16Rk + ar®) (& + 7o) ) — I¢[2 (1€ hxao + arxao + ¢ koA
&
DigP)”

- GT2)\0)\2+|£|2XV12+(TCo()\o—)\2)+|§|2()\0+)\2)V1)V3+(§0+|§\2a0+72j0)V§))

— at*XoAe+ € xvi+ (Tco()\o—/\2)+|§|2(/\0+)\2)V1)V3+(€0+|£‘2a0+72j0)1/§))
W =n® =y =0,
1™ = = €1 (~2xeoBo -+ €A + dava) + X (€ + arx + 163)) Gy
9 = (¢! (&2 +a72) A3 + 1€ dorn (7o — )
1
D(l¢?)’
1@ = J¢* (780 (x (0 + 1€a0 + 7o) — I€2A0A2 = Ao(=Txco + €01 + €2Aovs) )) ﬁ

+ 7(& + |€12a0 + %50 ) Bovs + TcoAo(TBo + Vg))

W =— |f|2< — 72xcoBo + [EPTXBov1 + Ao ((J€1°k + ar?) x + [€]Pvs(TBo + V3))) D(§|é|2) ,

5O = |2 ( — 72xcofBo + |EPTxBors + )\0((|§|2k +ar?)x + [€Pvs (160 + Vs))) % ’
50 = _ |§|2< — P2xeoBo + |€[2xBovt + )\0((|§|2k + CLTQ)X + [€[%vs(TB0 + V3))) D(£|2|2)’

W =50 =306 g
30 = — ¢l (16Pr2x85 + (16Pkx + ar®x + |€[23) (16 (e + A+ 200) + 7o) ) ﬁfl?)
56) |2 ((Tco — 1€PPu) ws (JE2 (3 + A+ 20) + 72p0)
+ 2o (1627288 + 627 Bovs + (16k + ar?) (1€2 ¢ + A+ 20) + 7200) )) ﬁ
) = J¢l? (mxco (IE[2¢ + A+ 21) = 700 = TxBoo
+@m+AW@mﬁw+A+mo+#mD)5éﬁy
ONIIE (AQ (|§|2k)\0 +7( = Teofo +atho + |£\2B0V1)>



Mixed and Crack Type Problems of the Thermopiezoelectricity Theory Without Energy Dissipation 69

+ (T(&) +[€[*a0 +7%50) Bo — Ao (Teo + |f|21/1))’/3> D(€]2)
12;(2) = Z|£|2 <)\2(|§|2]€)\0 + T( — TCoﬂo +atXo + |£‘2ﬂ0y1)>
(6o Pao -+ 7200) = doren +1671) ) 13) 352

P = ief2 (o (Il + 7( = reaf -+ aro + €[ Born)

€3

+ (rl6o-+1€Pao-+ 700) 0 = da(ren + I6m) ) iy

DW= §6) = 5O =,
P =16 (o (167283 + (IEPK + ar) (I (e + A+ 20) + 7o)

_ V3< — €127 BoXo + (Teo + |€7v1) (1€ (3¢ + X + 20) + TQPO))) ﬁ ’
) = — 2180 (7 (€0 + |€[2a0 + 7o) Bo + Mo (reo — [€°m1) )

— (Ph+ar®) (= €PN + (60 + 1€ a0 + 7o) (IEP (e A 200+ 7200)

+ (reo + [€m) (I€P7Bodo + (e — [617) (162 + A+ 200) + 7o) D(\1§“|2) ’
GO =9 = ¢ (s = 12X + (& + I€[2a0 + 7o) (IE[2 (e + A+ 20) + 7200))

— AQ(\Q%BOAO + (o — [€PPm) (117 (e + A+ 2u) + 72”0))) ﬁ ’
DO = — ilé]? (780 (x (€ + 1€Pa0 + 7o) — [€2A0re) = Ao (rxco + €21 + € Aavs)) D(§|22) ’
T8 = =l (780 (x €0 + €an +7%5u) = € h0da) = do(rxeo + € + [€damn) ) s
T = = 12 (B0 (6 + Iea0 -+ 7240) = 1€-20A) = do{rxeo -+ € + [62harn) ) it
IO = §e) — 5o — g,
T = — |g2( = mxeo (J6 (¢ + A+ 21) + 7p0)

_ |§|2( — 7xBoo + (xv1 + Aovs) (|€]2 (3¢ + A+ 2p) + TzPO))) ﬁ )
0O = — vy (— 6PX3 + (6o + [€lPa0 + 7o) (1€ (5 + A+ 200) + 7200))

= Xo( = Ig2rBoro + (reo + €0) (161 (5 + A+ 212) + 7200) ) D|(§|;|2> ’
DO = — (e~ ePAod2 (1€ (e + A+ 202) + 7o)

+ x( — €208 + (€0 + [€1%a0 + 72j0) (€7 (3 + A + 2u) + ero))) m :

Rewrite the first two equations of (B.5) as follows:

(1 + 30)[€2 + 72p0) 0™ 4 ise[€ x B = —C®) 13X+ p)n™e — iNg€® +iTBocd™,  (B.9)
(Y1612 + (2 + 7210)] 88 +ise[e x a®] = —F®) 4 i(a + B)¢Pe. (B.10)

Taking cross product of £ with both sides of (B.9) and employ the identity

[Ex[Exa]] = (€ a)s—¢a
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we get
[(n+ )| + 72po) [€ x T®] — iscle PR = —[CH) x €] — 5¢Pe,
[VI€12 + (25 + 7210)| 88 +ise[¢ x aW] = —F®) 4 i(a + )¢ Pe.
Hence
B0 (¢) = i(C 3¢ + [CF) x €]) = (F®) —i(a + B)CWE) ((5¢ + p)|€]* + 72po)
0(¢§)
with

O(€) = (2« +91E* + 7o) (2 + )€1 + 72 p0) — * €.
Similarly, if we take cross product of £ with both sides of (B.10),

(1 + )€ + 72p0]a™) +ise[€ x ®B] = —C®) 1 i(A + u)n™e — ig€@®) + irBocd™,

[VIE? + (25¢ + 7210)] [€ x 8P| — isele]?ath) = —[F®) x €] — 5p®e,
we find
A9() = g [0+ w1 = ¥ = idagp® + ire™®)

X (YIE1? + 25 + 7200 + ise([F®) x €] + %n(k)f)} .

Let k3 and k2 be the roots of the quadratic polynomial

Q(2) = (20 + 7z + 7210 (3¢ + )z + 72po) — 5°2 = Y3 + 1) 2* + @12 + g2, (B.11)
where
@ =72po + (s + 1) (2 + 7°1o) — 5°, g2 = T polo,
then
T VE -t pe s o+ Ve - et e
2 2y(5 + 1) n 2y(5 + ) ’
1 _ 1 ( 1 _ 1 )
QUER) (et p)(k3 — k3) \[E]> — k3 [§]> — k3 /)’
and
eM(¢) = Q(|1§|2) [i5¢(CM 526 4+ [CW) x ]) = () — i+ B)CE) (e + €12 + 72p0) |, (B12)
a®)(€) = Q(|1€|2) [( — C® i+ p)n®e — irged®) +iTBoeIW) (v1€[2 +25¢ + 721)

+ise([F® x €] + xn““)g)}. (B.13)

From (B.12)—(B.13) we obtain

S0 _ e Sk 2@t H(CeAmE +7700)) £i€m —
A TR at Bt Er—m)QQep)” »m= b
@5 +3) = _6mj [(%+M)‘§|2 + TQPO] W’ m,) = 1,2,3,

o™ =0, j=1,23 m="18,9,

" = | (Ve + 25+ 72L0) (= 1+ 166 6m (= A ((kIEI +ar2)x + [€[2va(rBo + 13))
1

—|—Tx(fo—l—|§|2ao+72jo)507'50—|§|2>‘0(7Xﬁ01/1+(XV1+)‘2(T'BO+V3))TﬁO)))] Q0P
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+ [ (2 + O+ 6Py + 22+ 710) ) (IefPhSox + agor — Txcd + [€2kr o
+ arxjo — |€[* kAor2 — al€]PT? AN + €]\t
+ €% (Teo(Ao — A2) + €12 (Ao + A2)vr ) vs + [€1 (&0 + Th0)v3

+ ‘f|2ao(|§\2k’X + a7_2X+ |§|2V§)):| M ) jam = 172733
D([¢*)Q(I¢?)
(m . ¢ .
;_ ) = i3 jmn ngz) jm=1,2,3,
a7 = | (162 + 20+ 71) ((7xc0 + IE[xv + €2 A2v) (IE[2 (¢ + A + 20) + 7p0) 6o

+ 2o (161783 + (1€2kx + ar®x + €03)

2¢.
< 50+ 34 20+ 720) — €Prxsorin) )| Sxieh
- i[(%Q + A+ w) (€% + 25+ 7°1))) (TQXCoﬁo + €17 Bo (xv1 + Aovs)
de.
# ol + artx + ) | Bradogem = L2

") = | (16 + 2+ 7 1) ( (€0 + IEPan + 730w (162G + A+ 20) + 720 7o
3 (e2r22 + 1€k -+ ar) (e + A+ 20) + 72p0)

+ Ig[2rBo(vs — 7o) — I€[vs7ho)

2¢.
— Mo (€125 + X+ 20) + 7%po) (1€]*11(v3 — T80 — Teo(vs + Tﬂo))))] 2;(!%)
+i[(%2 + A+ ,u)(|§|2’y + 23 + 7'2]0)) ((|£|2k + a7'2))\(2) + €12 Xov1 (T80 — 13)
‘ €' :
+ T(EO + |£\2a0 +7’2j0)501/3 + TC(])\()(TﬂO + 1/3)):| l)(§||2|)Qj(|§|2)7 7=1,23,
a;g) = i[(|§|2’)’ + 23+ 721) (>\0< —7xco (|2 (e + A+ 2p) + 72 po)
+ €17 (= TxBoro + (xv1 + Aova) (|€7 (5e + A+ 2p) + 72/)0)))
= (= 1EPAOA (1€ (G + A+ 20) +72p0)
2¢.
#x(~ 1638 + (60 + €Pan + i) (PG + 3o+ 20) +720)) ) i) | 50
i (22 A ) (1627 + 25+ 7206)) (780 (x (6o + €%a0 + T250) — IE[2A02)
€]4¢; .
= (= xeo + 6P + 1EP0w) )| premioamy 4= b2

From (B.4) it follows that the Fourier transform of the entries of the fundamental solution matrix
have the form

Tjm = { [(y|g|2 + 25+ 721y ( —-1+ |§|25j§m( — A ((KIEP? + ar?)x + [€]2vs (B0 + v3))
+7x (&0 + 1€PPa0 + 7%50) BomBo — €12 X (TXBorr + (xva + A2 (T80 + V3))Tﬁo)>)]

+ [(%2 + (A ) (1€ + 22+ 7215)) (1€ R€ox + agor?x — T + [€[2k7 o

+attxjo — [€*kAoA2 — aléPT* XoA2 + €] xvF
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+ €% (Teo(Ao — A2) + €12 (Ao + A2)va ) vz + [€12 (&0 + T2h0) V3

2 2 2 2.2 |§‘25‘€m 1 . N
+ [P a0 (€ Rx + ar*x + I¢] V3))] DUER) }Q(ISIQ)’ jm=1,23,
T j(mts) = 15 jmi Q(€I£k|2) . jm=1,2,3,

fﬂ = {(|§|27 + 23+ 721) ((TXCO + 1€ xv1 + €12 Aaws) (€17 (3¢ + A+ 2p) + 72p0) TBo

+ 2o (€728 + (162kx + ar?x + [¢03)

2¢.
It A+ 20+ 72) = [P rasrin) )| S
[ + (ot W (1€P + 2+ 7210)) (7o + IETBo (v + Aovs)
d¢.
+ Xo (|€1Pkx + at?x + |€|21/§))] D(|§||§|)C§](|§|2)’ j=1,2,3,

L= {(ﬂ% + 2+ 70) ((50 + [€1a0 + 72j0) vs (1617 (5 + A+ 20) + 72 p0) 70
3 (16222 + (Jefk -+ ar) (e -+ A+ 20) + 72p0)

+ |€[2rBo(vs — 750) — I¢[vsBo)

€17
QUIEP)
+i [(%2 + A+ p) (17 + 25 + 7210)) ((|§|2k +ar?) A2 + €20 (T80 — vs)

ag
+7 (&0 + [€17a0 + 7%50) Bovs + Teo o (TS0 + VS))} D(|f|§|)5](|§|2) 7

Ljo=i [ufw + 25+ 7200) (Mo = 7xeo (1620 + A+ 20) + 72p0)

= Xo([EPGe+ A+ 2u) 4+ 72 p0) (|€1Pv1 (vs — 7B0) — Teo(vs + Tﬁo)))}

J=12,3,

+ €12 (= TxBoro + (xva + Aovs) (|67 (3¢ + A+ 2u) + T2,00)))

B ( — € AoA2 (|€7 (3¢ + A+ 21) 4+ 7o)

2¢.
x((~ 1629 + (60 + ePan + ) (e + 3+ 200 + 7)) ) | S5
4 [(%2 + A4 ) (€ + 2 + 7210)) (Tﬂo(x(fo +1€1%a0 + 72j0) — [€2A0N2)
|£]%¢; .
- )\0( — TXCo + ‘§|2XV1 + |§|2)\0V3)>] WQJ(MQ), J=12,3,
5 : &k (2 4+ (a+B) (e w)E]* +7%po)) £ibm )
T, m = im . 5 5 =1,4,9,
Fsm = ek ey at Bt (eE=k)Qqep) »m=h*?
_ 1
Fj+3,m+3 = _6m] [(%+ iu’)|§|2 + szO] W ) ] =123 m=1,...,6,

Pry =~ ( = 7xcoBo + €2 rxBom

& .
+ )\0((|§|2k+a7'2))(+ 1€)%vs(TBo + l/3))> D(|Z‘|2) » J1=1,2,3,
Ty =75 =T =0,
1

Trr = —[6f? (167768 + (1€ + ar®x + €8) (1€ (e + A+ 20 + 7o) ) e
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L7 = |§‘2((TCO - |§|2V1)V3(|§|2(%+ A+ 2p) + 7'2p0)

+ do(IE7285 + [€lPrBovs + (1€ + ar®) (162G + A+ 20) +700) ) ) ﬁ ’
Trg = |f‘2(TXCO(|§|2(% + A +2p) = 7%po — TXBo o
+ (XV1 + )\OVS)(‘HQ(% A+ 2'“) + T2p0))> ﬁ’

Ty = il (2 (I¢l2k20 + 7( = Teofo + aro + [€[280m) )

&
D(I¢I?)

+ (T(fo + [¢a0 + 7%50) Bo — Ao (Tco + |€|2V1))V3) , 7=1,2,3,

Tgy = g5 = Lgg = 0,

Dar = 00 = |2 (A2 (1617288 + (161 + ar®) (I[P (e + A+ 200) + 7200 )

_ u3< — €127 Boxo + (Teo + |€17v1) (JE]* (3 + A+ 2p) + 72p0))> ﬁ ’

Tgs = 9® = —[¢2r 6, (T(&J + [¢[Pa0 + 7%50) Bo + Ao (Tco — |§|2V1)>

— (6% + a72) ( = 61228 + (é0 + Ig[%a0 + 7%0) (€2 (¢ + A+ 200) + 72p0) )

+ (reo -+ 1€P0n) (€l rta + (reo — I6Fm) (€R e+ A +20) + 7)) e
Do = 00 = |¢P (va(— 6°X3 + (0 + 6P a0 + 750) (€ (e + A+ 20) + 7°00))
= o€ + (reo = €01) (€ +- A+ 2 + 7)) ) s
Doy = 0 = —ilél? (780 (x(€o + 1€12a0 + 7%j0) — l€*Aoe)
= Xo(Txeo + [¢[Pxn + €2 Aas) ) D(€|2“|2)’ i=1,23,
I'gy =T95s =T'gs =0,
Tor = —[é]?( = 7xco (|61 (¢ + A+ 202) + 7o)
= 1€ ( = o+ (o + Aars) (6120 + A+ 20 +7%50) ) ) e
Pos = —va( = €A + (& + 6P a0 + 7o) (JE2(x + A+ 200) + 7o)
= o = I€[2rBoo + (reo + [€[20) (16 (5 + A + 20) + 72po) ) D(€||§2|2) ,

Too = —|f|2( — [€PX0A2 (J€]? (52 + A+ 2) + 7% o)

+x(— IEPXS + (o + [€PPa0 + 7250) (167 (3¢ + A + 2p) “on))) ﬁ

Remark B.1. To perform the inverse Fourier thransform, for simplicity, now we assume that the
polynomials P(z) = 23 + p12% + paz + p3 and Q(2) = v(5c + p)2% + q12 + g2 defined in (B.7) and
(B.11) respectively have distinct non-negative roots in z. Note that this assumption does not follow
from conditions (2.22) and (2.23). Indeed, let 7 > 0 and choose A2 and ¢g, which are not involved in
conditions (2.22) and (2.23), sufficiently large. We will have p3 > 0 in view of (B.8) and therefore the
polynomial P(z) will have at least one negative root without violating conditions (2.22) and (2.23).

In what follows we will find an explicit representation of the fundamental matrix in terms of
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elementary functions by inverting the Fourier transform

I'(z) = (2;3 / e €T T(E) dE. (B.14)

R3
To this end, let us note that the functions

1 1 1 1
QU ™ D(EP) ™ DUEPQUER) ™ (€17 = EDQ(IEI?)

can be expanded as follows:

3 e

3 ey 1
\f| gfw K2 (|§\Lk%>c2<|s|2>:z|f\2 k2

(B.15)

L —0(3) 1 zﬁ: (3) 1 = ¢l —I—Z
D¢ ° €2 —k27 D(E)QE?) o’ |§|2 |€|2 k2’

where
1 -1
S = =) = (et w2 — kD))", P = (Yo + ) (k2 — k) (k2 — k2))
1 —1
& = (Yoe+ (K3 — KD — K3) ™' o) = —(dok3h2RE)
1

—1 —
AP = (dok3 (k3 — kD) (KF — k2) ', Y = (dok2 (k2 — KD (K2 — k2)) 7,

_ 6 -1
¥ = (dokdt — K0 )7 o = (2o T[)
j=2

e = ((oe + ok (k5 — K3) (k3 — k3) (K3 — K2) (k3 — k2))
e = (Y0 + ok (3 — K3) (3 — K2 (43 — R2)(KE — K2))
e = (Y0 + ok (3 — K3) (2 — 3) (k5 — k2)(KF — K2))
& = (7(oe o+ m)dok3 (2 — 1) (2 — K3) (K2 — k) (K2 — 12))
00 = (3604 i)R02 — KRR — K82 — KD )

Let kg = 0. Choose ky, p=1,...,6 so, that —7 < arg(k,) < 0 and denote by K,, p =0,...,6, the
functions

exp(—ikp|z|)

Ky(z) = , p=0,...,6. (B.16)

47 |x|

Then K, belongs to the space S’(R?) of tempered distributions in R* and
(A + k) Ey(2)==0(x), (&P = k) Kp(&)=1, F, (I€°Kp(€) =6(x) + kyKp(w), p=0,....6,

where K, (&) = Fae(Kp)(©)-
From (B.15) we get

3 3
7elg |£\) 2, Kol fém(ua? ; Q) — 2o Kala)

p 1

- ” (B.17)
7ol |e|) 2 » 7o BrEma |e|) 26"y

p=0
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where c§,3) =0,p=1,2,3, 054) =0.

To obtain the expression of the fundamental solution I', we have to evaluate the inverse Fourier
transform (B.14) of the Fourier image I'. Note that due to ellipticity of the operator A(9,T) its
fundamental solution I' belongs to C°°(R?\ {0}) N L}, .(R?) and therefore terms containing J(x) are
canceled. Taking into consideration relations (B.16)—(B.17) and properties of the inverse Fourier
transform operator we arrive at the following expressions for the components of the fundamental
solution matrix:

3
L) = 3 eV [ (Vk2 + 22¢ + 72, ( 14 k;@gm( — N2((kk2 + ar?)x + K2vs(7Bo + v3))
p=2

+ Tx(€o+kja0+7%50) BoTBo— ko (TxBovr + (XV1+/\2(Tﬂo+V3))TﬂO))>] K,()

6
-2 { 5 4 (A W) (k2 + 236 4+ 7210)) (K2k€ox + aor?x — 72X + K2k
p=0

+ attxjo — kpkAoda — aki T XA + kpxvi + k2 (Teo(Xo — A2) + k(Ao + A2)v) v

+ kf,(ﬁo + 7250 )va + kf,ao(kier +ar?y + kf,ug))] kf,@japr(x), j,m=1,2,3,
3
T (m3) () = 22€jm y_ VO (), jm =1,2,3,

3
Lj7(z) = Z cél) [(kz’y + 22+ 721) ((TXCO + kﬁxul + kzz)\gyg)

p=2

X (K3 (5 + X+ 2p) +72po) 7o + Ao (k,%r?xﬂg + (K2kx + ar’x + k203)

x (K2(3¢+ X+ 21) + 7%p0) — kf,rxﬁorﬁo))} k20, K, (x)
+ Z 05)4) {(%2 + A+ ,u)(k:f,v + 20 + 7'2]0)) (TQXCOBO + k:f,TBO(Xl/l + Aov3)

+ Ao(k2kx + ar?x + kgug))] kA0 K (), §=1,2,3,
3

Ijg(x) = — Z Cl(,l) {(kzv + 2+ 7°1Y) ((fo + k2 Sa0 + T jo)l/g( 2(3c+ A +2u) + 72p0) 8o
p=2

+ A2 (ki#ﬁ&ﬂkﬁkm#) (K2 (54 A+2) +7p0) + k27 B0 (v3 — 7o) —kgygTﬁ())

~ o (/{;12)(%+)\+2M)+7-2p0) (kf)yl(yg—r,é’o) —7co(vs +Tﬁ0))):| kf,&ij(m)

6
+> ey [(%2+(A+u)(k§v+2%+rﬂlo)) ((kf;mmmg+k§A0yl(Tﬁo_y3)

p=0
+7(&0 + kpao + 7250) Bovs + Tcodo(TBo + Vs))} ki Kp(x), j=1,2,3,
3
Ljo(x) = Z cz()l) [(k;f,’y + 23 + 721 (/\0( — TXCo (kg(% + A+ 2u) + 72,00)
p=2
+ k2 (= mxBoro + (xvr + Aows) (ko (se + A+ 2p) + 7 Po)))

- ( — k2 oo (K2 (3¢ + X+ 2u) + 77po)
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x(- kﬁ)\3+(§0+k§ao+T2jo)(’fﬁ(%+)\+2#)+7200)))Tﬂoﬂ K20, K ()
6

+ 37 e (324 Ot ) R+ 256472 10)) (780 (x(€o+ ka0 +7%0) ~ k2 Ao Do)
p=0

— Xo(—7xco + kﬁxul + kngyg))}kéaij({L’), ji=1,2,3,

p=2
3
+) (= + (o +5)<(%+”)k2+72/}0))80 Ky(x), j,m=1,2,3
p:1p Oé+ﬂ+"}/ jUm D p s S ) 4y 9y
3
Fj+3,m+3(m) = _ch()l)(sffu I:(%_F:u)kz + T2p0]Kp($), j = 172737 m = 17 s 767
p=2
6
I7j(z ZC [ (—T2X00ﬁo+kZTX50V1
p=0

+ o ((k2k + am?)x + k2vs(TBo + Z/3>))} 0;Kp(x), j=1,2,3,

F74(:C) = F75($) = F76($) = 0,
6

Trr(z) = — Z 023) [kg (k§7'2xﬁ0 (kzkx +ar?y + k2 )(k:Q(% FA+2u)+ T po))} K,(z),
=0

6

Prs(a) = ¢ [kg ((TCO — k2 (k7 (3 + A+ 2p) + 7°po)
p=0

+ Ao (k27282 + K27 Bovs + (k2K + ar2) (K2 (3¢ + A + 21) + 72,00)))} K,(z),
Tro(z 26: ® [k2 (Txco (K2(5¢ 4+ A+ 211) — 72p0 — 7xBoo
p=0
+ (xvn + Aovs) (K203 + A+ 2u) + 7'2p0>>)} K,(z),
Ds;(z) = 26: ®) [kg (AQ (k2kXo + T(—7coBo + atXo + k2Bov1))
p=0

+ (7(€0 + K2ao + 7%0)Bo — Ao(Teo + kgul))y?,)}ajz(p(x), j=1,2,3,

I'sa(z) = I'ss(x) = I'se(x) =0,
6
Fg7(x) = Z 65)3) [k; ()\2 (kf,TQ,Bg + (k:?)k + ClT2)(k'§(% +A+2u) +72p0))

p=0

— w3 = k270N + (reo + K2) (K2 (¢ + A+ 200) + 7o) )| K (),

6
Fsg ZC [ k2 Tﬁo ({0+k§ao—|—7’2j0)60+/\0(7'60 —k}?)l/l))
p=0

— (k2K + at?) (= k2XG + (€0 + k2ao + 7250 ) (k2 (3e + A+ 2p) + 72p0) )
+ (TCo+k2V1) (k’ZTﬁo)\o—F(TCO—kgl/ﬂ(kz(%+>\+2u)+7'2po)):| K,(z),

T'so(x Z el [k2( — k2AG + (o + k2ao + 7%j0) (K2 (3¢ + A+ 2) + 7°p0) )
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— X2 (K2mBoNo + (Teo — k2vn) (K2 (3e + A + 2p) + T%o)))} Kp(),
6
Loj(z) = ch(og) [kf, (780 (x(&otkpaotT2jo)— k2 AoA2) — Ao (TX00+1€,%XV1+7€§)\2V3))} 0, Kp(z),

J=12,3,

Ly7(z) = Z 01()3) [ — kf)( - TXCo(kf)(% + A+ 2u) + 72po)

— k2(—=7xBoAo + (xv1 + Aovs) (k2 (3 + A+ 2p) + 7200)))} Kp(x),
6
Log(7) = Z 01(73) [ —v3(— 7%27)\(2) + (&0 + /ff,ao + 72%j0) (]4?;27(” + A+ 2u) +72po))

p=0

— Mo( = kpmBoXo + (Teo + kyrn) (Ko (s + A + 2p) + TQPO))}kZKp(x),

6
Tog(2) = > cf” [ - kﬁ( — k2XoA2 (K2(5¢ + A+ 2p) + 72 o)

p=0

(= BN+ (€0 + k2ao + 7%0) (K2( + A+ 20) + 700)) ) | K, (@),
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