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ON THE WELL-POSEDNESS OF ANTIPERIODIC PROBLEM FOR
SYSTEMS OF NONLINEAR IMPULSIVE EQUATIONS

WITH FIXED IMPULSES POINTS

Abstract. The antiperiodic problem for systems of nonlinear impulsive equations with fixed points
of impulses actions is considered. The sufficient (among them effective) conditions for the well-
posedness of this problem are given.
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Let m0 be a fixed natural number, ω be a fixed positive real one, and 0 < τ1 < · · · < τm0
< ω be

fixed points (we assume τ0 = 0 and τm0+1 = ω, if necessary). Let T = {τl +mω : l = 1, . . . ,m0; m =
0,±1,±2, . . . }.

Consider the system of nonlinear impulsive equations with fixed impulses points
dx

dt
= f(t, x) almost everywhere on R \ T,

x(τ+)− x(τ−) = I(τ, x(τ)) for τ ∈ T

with the ω-antiperiodic condition

x(t+ ω) = −x(t) for t ∈ R,

where f = (fi)
n
i=1 is a vector-function belonging to the Carathéodory class Car(R × Rn,Rn), and

I = (Ii)
n
i=1 : T ×Rn → Rn is a vector-function such that I(τ, · ) is continuous for every τ ∈ T .

We assume that

f(t+ ω, x) = −f(t,−x) and I(τ + ω, x) = −I(τ,−x) for t ∈ R, τ ∈ T, x ∈ Rn.

Due to the above condition, if x : R → Rn is a solution of the given system, then the vector-function
y(t) = −x(t + ω) (t ∈ R) will likewise be a solution of that system. Moreover, it is evident that if
x : R → Rn is a solution of the given ω-antiperiodic problem, then its restriction on the closed interval
[0, ω] will be a solution of the problem

dx

dt
= f(t, x) almost everywhere on [0, ω] \ {τ1, . . . , τm0}, (1)

x(τl+)− x(τl−) = I(τl, x(τl)) (l = 1, . . . ,m0); (2)
x(0) = −x(ω). (3)
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Let now x : [0, ω] → Rn be a solution of system (1), (2) on [0, ω]. By x we designate the continuation
of this function on the whole R just as a solution of system (1), (2), as well. As above, the vector-
function y(t) = −x(t+ ω) (t ∈ R) will be a solution of system (1), (2). On the other hand, according
to equality (3), we have y(0) = −x(ω) = x(0). So, if we assume that system (1), (2) under the Cauchy
condition x(0) = c is uniquely solvable for every c ∈ Rn, then x(t + ω) = −x(t) for t ∈ R, i.e., x
is ω-antiperiodic. This means that the set of restrictions of the ω-antiperiodic solutions of system
(1), (2) on [0, ω] coincides with the set of solutions of problem (1), (2); (3).

In this connection, we consider the boundary value problem (1), (2); (3) on the closed interval [0, ω].
Below, we will give the sufficient conditions guaranteeing the well-posedness of this problem.

Consider a sequence of vector-functions fk ∈ Car([0, ω] × Rn,Rn) (k = 1, 2, . . . ), sequences of
points τlk (k = 1, 2, . . . ; l = 1, . . . ,m0), 0 < τ1k < · · · < τm0k < ω, and sequences of operators
Ik : {τ1k, . . . , τm0k} × Rn → Rn (k = 1, 2, . . . ) such that Ik(τlk, · ) (k = 1, 2, . . . ; l = 1, . . . ,m0) are
continuous.

In this paper, we establish the sufficient conditions guaranteeing both the solvability of the im-
pulsive systems

dx

dt
= fk(t, x) almost everywhere on [0, ω] \ {τ1k, . . . , τm0k}, (1k)

x(τlk+)− x(τlk−) = Ik(τlk, x(τlk)) (l = 1, . . . ,m0) (2k)

(k = 1, 2, . . . ) under condition (3) for any sufficiently large k and the convergence of their solutions
to a solution of problem (1), (2); (3), as k → +∞.

We assume that the above-described concept is fulfilled for problems (1k), (2k); (3) (k = 1, 2, . . . ),
as well.

The well-posed problem for the linear boundary value problem for impulsive systems with a finite
number of impulses points has been investigated in [5], where the necessary and sufficient conditions
were given for the case. Analogous problems are investigated in [1, 11–13] (see also the references
therein) for the linear and nonlinear boundary value problems for ordinary differential systems.

A good many issues on the theory of systems of differential equations with impulsive effect (both
linear and nonlinear) have been studied sufficiently well (for a survey of the results on impulsive
systems see, e.g., [2–4,6–9,14–16] and the references therein). But the above-mentioned works do not,
as we know, contain the results obtained in the present paper.

Throughout the paper, the following notation and definitions will be used.
R = ]−∞,+∞[ , R+ = [0,+∞[ ; [a, b] (a, b ∈ R) is a closed interval.
Rn×m is the space of all real n×m-matrices X = (xij)

n,m
i,j=1 with the norm ∥X∥ = max

j=1,...,m

n∑
i=1

|xij |.

|X| = (|xij |)n,mi,j=1, [X]+ = |X|+X
2 .

Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)

}
.

R(n×n)×m = Rn×n × · · · × Rn×n (m− times).
Rn = Rn×1 is the space of all real column n-vectors x = (xi)

n
i=1; Rn

+ = Rn×1
+ .

If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix, inverse to X, the determinant
of X and the spectral radius of X; In×n is the identity n× n-matrix.

b∨
a
(X) is the total variation of the matrix-function X : [a, b] → Rn×m, i.e., the sum of total

variations of components of X; V (X)(t) = (v(xij)(t))
n,m
i,j=1, where v(xij)(a) = 0, v(xij)(t) =

t∨
a
(xij)

for a < t ≤ b.
X(t−) and X(t+) are the left and the right limits of the matrix-function X : [a, b] → Rn×m at the

point t (we will assume X(t) = X(a) for t ≤ a and X(t) = X(b) for t ≥ b, if necessary).
BV([a, b], Rn×m) is the set of all matrix-functions of bounded variation X : [a, b] → Rn×m (i.e.,

such that
b∨
a
(X) < +∞).

C([a, b], D), where D ⊂ Rn×m, is the set of all continuous matrix-functions X : [a, b] → D.
Let Tm0 = {τ1, . . . , τm0}.
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C([a, b], D;Tm0) is the set of all matrix-functions X : [a, b] → D, having the one-sided limits
X(τl−) (l = 1, . . . ,m0) and X(τl+) (l = 1, . . . ,m0), whose restrictions to an arbitrary closed interval
[c, d] from [a, b] \ Tm0

} belong to C([c, d], D).
Cs([a, b],Rn×m;Tm0

) is the Banach space of all X ∈ C([a, b],Rn×m;Tm0
) with the norm ∥X∥s =

sup{∥X(t)∥ : t ∈ [a, b]}.
If y ∈ Cs([a, b],R;Tm0) and r ∈ ]0,+∞[, then U(y; r) = {x ∈ Cs([a, b],Rn;Tm0) : ∥x− y∥s < r}.
D(y, r) is the set of all x ∈ Rn such that inf{∥x− y(t)∥ : t ∈ [a, b]} < r.
C̃([a, b], D), where D⊂Rn×m, is the set of all absolutely continuous matrix-functions X : [a, b]→D.
C̃([a, b], D;Tm0) is the set of all matrix-functions X : [a, b] → D, having the one-sided limits

X(τl−) (l = 1, . . . ,m0) and X(τl+) (l = 1, . . . ,m0), whose restrictions to an arbitrary closed interval
[c, d] from [a, b] \ Tm0

belong to C̃([c, d], D).
If B1 and B2 are normed spaces, then an operator g : B1 → B2 (nonlinear, in general) is positive

homogeneous if g(λx) = λg(x) for every λ ∈ R+ and x ∈ B1.
An operator φ : C([a, b],Rn×m;Tm0

) → Rn is called nondecreasing if the inequality φ(x)(t) ≤
φ(y)(t) for t ∈ [a, b] holds for every x, y ∈ C([a, b],Rn×m;Tm0

) such that x(t) ≤ y(t) for t ∈ [a, b].
A matrix-function is said to be continuous, nondecreasing, integrable, etc., if each of its components

is such.
L([a, b], D), where D ⊂ Rn×m, is the set of all measurable and integrable matrix-functions X :

[a, b] → D.
If D1 ⊂ Rn and D2 ⊂ Rn×m, then Car([a, b] ×D1, D2) is the Carathéodory class, i.e., the set of

all mappings F = (fkj)
n,m
k,j=1 : [a, b] ×D1 → D2 such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . ,m} and

k ∈ {1, . . . , n}:

(a) the function fkj( · , x) : [a, b] → D2 is measurable for every x ∈ D1;

(b) the function fkj(t, · ) : D1 → D2 is continuous for almost every t ∈ [a, b], and sup{|fkj( · , x)| :
x ∈ D0} ∈ L([a, b], R; gik) for every compact D0 ⊂ D1.

Car0([a, b] × D1, D2) is the set of all mappings F = (fkj)
n,m
k,j=1 : [a, b] × D1 → D2 such that

the functions fkj( · , x( · )) (k = 1, . . . , n; j = 1, . . . ,m; ) are measurable for every vector-function
x : [a, b] → Rn with a bounded total variation.

We say that the pair {X; {Yl}ml=1}, consisting of a matrix-function X ∈ L([a, b],Rn×n) and of a
sequence of constant n×n matrices {Yl}ml=1}, satisfies the Lappo–Danilevskiĭ condition if the matrices
Y1, . . . , Ym are pairwise permutable and there exists t0 ∈ [a, b] such that

t∫
t0

X(τ) dX(τ) =

t∫
t0

dX(τ) ·X(τ) for t ∈ [a, b],

X(t)Yl = YlX(t) for t ∈ [a, b] (l = 1, . . . ,m).

M([a, b]×R+,R+) is the set of all functions ω ∈ Car([a, b]×R+,R+) such that the function ω(t, · )
is nondecreasing and ω(t, 0) = 0 for every t ∈ [a, b].

By a solution of the impulsive system (1), (2) we understand a continuous from the left vector-
function x∈ C̃([0, ω],Rn;Tm0) satisfying both system (1) for a.e. on [0, ω] \ Tm0 and relation (2) for
every l ∈ {1, . . . ,m0}.

Definition 1. Let ℓ : Cs([0, ω],Rn;Tm0
) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0

) → Rn
+ be, respectively,

a linear continuous and a positive homogeneous operators. We say that a pair (P, J), consisting of
a matrix-function P ∈ Car([0, ω] × Rn,Rn×n) and a continuous with respect to the last n-variables
operator J : Tm0 ×Rn → Rn, satisfies the Opial condition with respect to the pair (ℓ, ℓ0) if:

(a) there exist a matrix-function Φ ∈ L([0, ω],Rn×n
+ ) and constant matrices Ψl ∈ Rn×n (l =

1, . . . ,m0) such that

|P (t, x)| ≤ Φ(t) a.e. on [0, ω], x ∈ Rn,

|J(τl, x)| ≤ Ψl for x ∈ Rn (l = 1, . . . ,m0);
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(b)

det(In×n +Gl) ̸= 0 (l = 1, . . . ,m0) (4)

and the problem

dx

dt
= A(t)x a.e. on [0, ω] \ Tm0

, (5)

x(τl+)− x(τl−) = Gl x(τl) (l = 1, . . . ,m0), (6)
|ℓ(x)| ≤ ℓ0(x) (7)

has only the trivial solution for every matrix-function A ∈ L([0, ω],Rn×n) and constant matrices
Gl, . . . , Gm0

for which there exists a sequence yk ∈ C̃([0, ω],Rn;Tm0
) (k = 1, 2, . . . ) such that

lim
k→+∞

t∫
0

P (τ, yk(τ)) dτ =

t∫
0

A(τ) dτ uniformly on [0, ω],

lim
k→+∞

J(τl, yk(τl)) = Gl (l = 1, . . . ,m0).

Remark 1. In particular, condition (4) holds if ∥Ψl∥ < 1 (l = 1, . . . ,m0).

As above, we assume that f = (fi)
n
i=1 ∈ Car([0, ω] × Rn,Rn×n) and, in addition, f(τl, x) is

arbitrary for x ∈ Rn (l = 1, . . . ,m0).
Let x0 be a solution of problem (1), (2); (3), and r be a positive number. Let us introduce the

following definition.

Definition 2. The solution x0 is said to be strongly isolated in the radius r if there exist matrix- and
vector-functions P ∈ Car([0, ω] × Rn,Rn×n) and q ∈ Car([0, ω] × Rn,Rn), continuous with respect
to the last n-variables operators J,H : Tm0

× Rn → Rn, linear continuous ℓ and ℓ̃ and a positive
homogeneous ℓ0 operators acting from Cs([0, ω],Rn;Tm0

) into Rn such that

(a) the equalities

f(t, x) = P (t, x)x+ q(t, x) for t ∈ [0, ω] \ Tm0
, ∥x− x0(t)∥ < r,

I(τl, x) = J(τl, x)x+H(τl, x) for ∥x− x0(τl)∥ < r (l = 1, . . . ,m0),

x(0) + x(ω) = ℓ(x) + ℓ̃(x) for x ∈ U(x0; r)

are valid;

(b) the functions α(t, ρ) = max{∥q(t, x)∥ : ∥x∥ ≤ ρ}, β(τl, ρ) = max{∥H(τl, x)∥ : ∥x∥ ≤ ρ} (l =

1, . . . ,m0) and γ(ρ) = sup{[|l̃(x)| − l0(x)]+ : ∥x∥s ≤ ρ} satisfy the condition

lim
ρ→+∞

1

ρ

(
γ(ρ) +

ω∫
0

α(t, ρ) dt+

m0∑
l=1

β(τl, ρ)

)
= 0; (8)

(c) the problem

dx

dt
= P (t, x)x+ q(t, x) a.e. on [0, ω] \ Tm0

,

x(τl+)− x(τl−) = J(τl, x(τl))x(τl) +H(τl, x(τl)) (l = 1, . . . ,m0);

ℓ(x) + ℓ̃(x) = 0

has no solution different from x0;

(d) the pair (P, J) satisfies he Opial condition with respect to the pair (ℓ, ℓ0).
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Remark 2. If ℓ(x) ≡ x(0) + x(ω) and ℓ0(x) ≡ 0, then we say that the pair (P, J) satisfies the Opial
ω-antiperiodic condition. In this case, condition (7) coincides with condition (3), and ℓ̃(x) ≡ 0 and
γ(ρ) ≡ 0 in Definitions 1 and 2.

Definition 3. We say that a sequence (fk, Ik) (k = 1, 2, . . . ) belongs to the set Wr(f, I;x
0) if:

(a) the equalities

lim
k→+∞

t∫
0

fk(τ, x) dτ =

t∫
0

f(τ, x) dτ uniformly on [0, ω],

lim
k→+∞

Ik(τlk, x) = I(τl, x) (l = 1, . . . ,m0)

are valid for every x ∈ D(x0; r);

(b) there exist a sequence of functions ωk ∈ M([a, b]× R+,R+) (k = 1, 2, . . . ) such that

sup
{ ω∫

0

ωk(t, r) dt : k = 1, 2, . . .

}
< +∞, (9)

sup
{ m0∑

l=1

ωk(τlk, r) : k = 1, 2, . . .

}
< +∞; (10)

lim
s→0+

sup
{ ω∫

0

ωk(t, s) dt : k = 1, 2, . . .

}
= 0, (11)

lim
s→0+

sup
{ m0∑

l=1

ωk(τlk, s) : k = 1, 2, . . .

}
= 0; (12)

∥fk(t, x)− fk(t, y)∥ ≤ ωk(t, ∥x− y∥) for t ∈ [0, ω] \ Tm0 , x, y ∈ D(x0; r) (k = 1, 2, . . . ),

∥Ik(τlk, x)− Ik(τlk, y)∥ ≤ ωk(τlk, ∥x− y∥) for x, y ∈ D(x0; r) (l = 1, . . . ,m0; k = 1, 2, . . . ).

Remark 3. If for every natural m there exists a positive number νm such that ωk(t,mδ) ≤ νmωk(t, δ)
for δ > 0, t ∈ [0, ω] \ Tm0 (k = 1, 2, . . . ), then estimate (9) follows from condition (11); analogously,
if ωk(τlk,mδ) ≤ νmωk(τlk, δ) for δ > 0 (l = 1, . . . ,m0; k = 1, 2, . . . ), then estimate (10) follows from
condition (12). In particular, the sequences of functions

ωk(t, δ) = max
{
∥fk(t, x)− fk(t, y)∥ : x, y ∈ U(0, ∥x0∥+ r), ∥x− y∥ ≤ δ

}
for t ∈ [0, ω] \ Tm0

(k = 1, 2, . . . ),

ωk(τlk, δ) = max
{
∥Ik(τlk, x)− Ik(τlk, y)∥ : x, y ∈ U(0, ∥x0∥+ r), ∥x− y∥ ≤ δ

}
(l = 1, . . . ,m0; k = 1, 2, . . . )

have the latters properties, respectively.

Definition 4. Problem (1), (2); (3) is said to be (x0; r)-correct if for every ε ∈ ]0, r[ and (fk, Ik)
+∞
k=1 ∈

Wr(f, I;x
0) there exists a natural number k0 such that problem (1k), (2k) has at last one ω-antiperiodic

solution contained in U(x0; r), and any such solution belongs to the ball U(x0; ε) for every k ≥ k0.

Definition 5. Problem (1), (2); (3) is said to be correct if it has a unique solution x0 and is (x0; r)-
correct for every r > 0.

Theorem 1. If problem (1), (2); (3) has a solution x0 strongly isolated in the radius r, then it is
(x0; r)-correct.
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Theorem 2. Let the conditions

∥f(t, x)− P (t, x)x∥ ≤ α(t, ∥x∥) a.e. on [0, ω] \ Tm0 , x ∈ Rn, (13)
∥I(τl, x)− J(τl, x)x∥ ≤ β(τl, ∥x∥) for x ∈ Rn (l = 1, . . . ,m0), (14)
|x(0) + x(ω)− ℓ(x)| ≤ ℓ0(x) + ℓ1(∥x∥s) for x ∈ BV([0, ω],Rn) (15)

hold, where ℓ : Cs([0, ω],Rn;Tm0) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0) → Rn
+ are, respectively, a linear

continuous and a positive homogeneous operators, the pair (P, J) satisfies the Opial condition with
respect to the pair (ℓ, ℓ0); α ∈ Car([0, ω] × R+,R+) and β ∈ C(Tm0

× [0, ω],R+) are the functions,
nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a vector-function such that

lim
ρ→+∞

1

ρ

(
∥ℓ1(ρ)∥+

ω∫
0

α(t, ρ) dt+

m0∑
l=1

β(τl, ρ)

)
= 0. (16)

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Theorem 3. Let conditions (13)–(15),

P1(t) ≤ P (t, x) ≤ P2(t) a.e. on [0, ω] \ {τ1, . . . , τm0
}, x ∈ Rn, (17)

J1l ≤ J(τl, x) ≤ J2l for x ∈ Rn (l = 1, . . . ,m0) (18)

hold, where P ∈ Car0([0, ω] × Rn,Rn×n), Pi ∈ L([0, ω],Rn×n), Jil ∈ Rn×n (i = 1, 2; l = 1, . . . ,m0);
ℓ : Cs([0, ω],Rn;Tm0) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0) → Rn

+ are, respectively, a linear continuous
and a positive homogeneous operators; α ∈ Car([0, ω] × R+,R+) and β ∈ C(Tm0 × [0, ω],R+) are
the functions, nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a vector-function such
that condition (16) holds. Let, moreover, condition (4) hold and problem (5), (6); (7) have only the
trivial solution for every matrix-function A ∈ L([0, ω],Rn×n) and constant matrices Gl ∈ Rn×n

(l = 1, . . . ,m0) such that

P1(t) ≤ A(t) ≤ P2(t) a.e. on [0, ω] \ Tm0
, x ∈ Rn, (19)

J1l ≤ Gl ≤ J2l for x ∈ Rn (l = 1, . . . ,m0). (20)

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is correct.

Remark 4. Theorem 3 is interesting only in the case where P /∈ Car([0, ω]×Rn,Rn×n), because the
theorem follows immediately from Theorem 2 in the case where P ∈ Car([0, ω]× Rn,Rn×n).

Theorem 4. Let conditions (15),

|f(t, x)− P (t)x| ≤ Q(t) |x|+ q(t, ∥x∥) a.e. on [0, ω] \ Tm0
, x ∈ Rn, (21)

|Il(x)− Jl x| ≤ Hl |x|+ h(τl, ∥x∥) for x ∈ Rn (l = 1, . . . ,m0) (22)

hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ), Jl ∈ Rn×n and Hl ∈ Rn×n

+ (l = 1, . . . ,m0)
are the constant matrices, ℓ : Cs([0, ω],Rn;Tm0) → Rn and ℓ0 : Cs([0, ω],Rn;Tm0) → Rn

+ are,
respectively, a linear continuous and a positive homogeneous operators; q ∈ Car([0, ω] × R+,Rn

+)
and h ∈ C(Tm0

× R+;Rn×n
+ ) are the vector-functions, nondecreasing in the second variable, and

ℓ1 ∈ C(R,Rn
+) is a vector-function such that the condition

lim
ρ→+∞

1

ρ

(
∥ℓ1(ρ)∥+

ω∫
0

∥q(t, ρ)∥ dt+
m0∑
l=1

∥h(τl, ρ)∥
)

= 0 (23)

holds. Let, moreover, the conditions

det(In×n + Jl) ̸= 0 (l = 1, . . . ,m0) (24)
∥Hl∥ · ∥(In×n + Jl)

−1∥ < 1 (j = 1, 2; l = 1, . . . ,m0) (25)
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hold and the system of impulsive inequalities∣∣∣dx
dt

− P (t)x
∣∣∣ ≤ Q(t)x a.e. on [0, ω] \ Tm0

, (26)∣∣x(τl+)− x(τl−)− Jlx(τl)
∣∣ ≤ Hl|x(τl)| (l = 1, . . . ,m0) (27)

have only the trivial solution satisfying condition (7). Then problem (1), (2); (3) is solvable. If,
moreover, the problem has a unique solution, then it is correct.
Corollary 1. Let the conditions

|f(t, x)− P (t)x| ≤ q(t, ∥x∥) a.e. on [0, ω] \ Tm0 , x ∈ Rn, (28)
|I(τl, x)− Jlx| ≤ h(τl, ∥x∥) for x ∈ Rn (l = 1, . . . ,m0), (29)

|x(0) + x(ω)− ℓ(x)| ≤ ℓ1(∥x∥s) for x ∈ BV([0, ω],Rn) (30)

hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are the constant matrices satisfying
condition (24), ℓ : Cs([0, ω],Rn;Tm0

) → Rn is the linear continuous operator; q ∈ Car([0, ω]×R+,Rn
+)

and h ∈ C(Tm0
× R+;Rn×n

+ ) are the vector-functions, nondecreasing in the second variable, and
ℓ1 ∈ C(R,Rn

+) is a vector-function such that condition (23) holds. Let, moreover, the problem

dx

dt
= P (t)x a.e. on [0, ω] \ Tm0 , (31)

x(τl+)− x(τl−) = Jl x(τl) (l = 1, . . . ,m0); (32)
ℓ(x) = 0. (33)

have only the trivial solution. Then problem (1), (2); (3) is solvable. If, moreover, the problem has a
unique solution, then it is correct.
Remark 5. Let Y = (y1, . . . , yn) be a fundamental matrix, with columns y1, . . . , yn, of system
(31), (32). Then the homogeneous boundary value problem (31), (32); (33) has only the trivial solution
if and only if

det(ℓ(Y )) ̸= 0, (34)
where ℓ(Y ) = (ℓ(y1), . . . , ℓ(yn)).

If the pair {P ; {Jl}m0

l=1} satisfies the Lappo–Danilevskiĭ condition, then the fundamental matrix Y
(Y (0) = In×n) of the homogeneous system (31), (32) has the form

Y (t) ≡ exp
( t∫

0

P (τ) dτ

)
·

∏
0≤τl<t

(In×n + Jl).

Theorem 5. Let the conditions∣∣f(t, x)− f(t, y)− P (t)(x− y)
∣∣ ≤ Q(t)|x− y| a.e. on [0, ω] \ Tm0 , x, y ∈ Rn, (35)∣∣I(τl, x)− I(τl, y)− Jl · (x− y)
∣∣ ≤ Hl|x− y| for x, y ∈ Rn (k = l, . . . ,m0), (36)∣∣x(0)− y(0) + x(ω)− y(ω)− ℓ(x− y)
∣∣ ≤ ℓ0(x− y) for x, y ∈ BV([0, ω],Rn)

hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ), Jl ∈ Rn×n and Hl ∈ Rn×n

+ (l = 1, . . . ,m0)
are the constant matrices satisfying conditions (24) and (25), ℓ : Cs([0, ω],Rn;Tm0

) → Rn and
ℓ0 : Cs([0, ω], Rn;Tm0

) → Rn
+ are, respectively, linear continuous and positive homogeneous contin-

uous operators. Let, moreover, problem (26), (27); (7) have only the trivial solution. Then problem
(1), (2); (3) is correct.
Corollary 2. Let there exist a solution x0 of problem (1), (2); (3) and a positive number r > 0 such
that the conditions∣∣f(t, x)− f(t, x0(t))− P (t)(x− x0(t))

∣∣ ≤ Q(t)|x− x0(t)| a.a. [0, ω] \ Tm0
, ∥x− x0(t)∥ < r,∣∣I(τl, x)− I(τl, x

0(τl))− Jl · (x− x0(τl))
∣∣ ≤ Hl|x− x0(τl)| for ∥x− x0(τl)∥ < r (l = l, . . . ,m0),∣∣x(0)− x0(0) + x(ω)− x0(ω)− ℓ(x− x0)

∣∣ ≤ ℓ∗(|x− x0|) for x ∈ U(x0, r)



160 Malkhaz Ashordia

hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ), Jl and Hl ∈ Rn×n (l = 1, . . . ,m0) are

the constant matrices satisfying conditions (24) and (25), ℓ : Cs([0, ω],Rn;Tm0
) → Rn and ℓ∗ :

Cs([0, ω],Rn;Tm0
) → Rn

+ are, respectively, linear continuous and positive homogeneous continuous
operators. Let, moreover, the system of impulsive inequalities∣∣∣dx

dt
− P (t)x

∣∣∣ ≤ Q(t)x a.e. on [0, ω] \ Tm0
,∣∣x(τl+)− x(τl−)− Jl · x(τl)

∣∣ ≤ Hl · x(τl) (l = 1, . . . ,m0)

have only the trivial solution under the condition |ℓ(x)| ≤ ℓ∗(|x|). Then problem (1), (2); (3) is (x0; r)-
correct.
Corollary 3. Let the components of the vector-functions f and Il (l = 1, . . . , n) have partial derivatives
by the last n variables belonging to the Carathéodory class Car([0, ω]×Rn,Rn). Let, moreover, x0 be
a solution of problem (1), (2); (3) such that the condition

det
(
In×n +Gl(x

0(τl))
)
̸= 0 (l = 1, . . . ,m0)

hold and the system
dx

dt
= F (t, x0(t))x almost everywhere on [0, ω] \ Tm0

,

x(τl+)− x(τl−) = Gl(x
0(τl)) · x(τl) (l = 1, . . . ,m0);

ℓ(x) = 0,

where F (t, x) ≡ ∂f(t,x)
∂x and Gl(x) ≡ ∂Il(x)

∂x , have only the trivial solution under condition (3). Then
problem (1), (2); (3) is (x0; r)-correct for any sufficiently small r.

In general, it is rather difficult to verify condition (34) directly even in the case if one is able to
write out the fundamental matrix of system (31), (32); (33). Therefore, it is important to seek for
effective conditions which would guarantee the absence of nontrivial ω-antiperiodic solutions of the
homogeneous system (31), (32); (33). Below, we will give the results concerning the question. Anal-
ogous results have been obtained in [2] for the general linear boundary value problems for impulsive
systems, and in [12] by T. Kiguradze for the case of ordinary differential equations.

In this connection, we introduce the operators. For every matrix-function X ∈ L([0, ω],Rn×n) and
a sequence of constant matrices Yk ∈ Rn×n (k = 1, . . . ,m0) we put[

(X,Y1, . . . , Ym0
)(t)

]
0
= In for 0 ≤ t ≤ ω,[

(X,Y1, . . . , Ym0
)(0)

]
i
= On×n (i = 1, 2, . . . ),

[
(X,Y1, . . . , Ym0

)(t)
]
i+1

=

t∫
0

X(τ) ·
[
(X,Y1, . . . , Ym0

)(τ)
]
i
dτ

+
∑

0≤τl<t

Yl ·
[
(X,Y1, . . . , Ym0

)(τl)
]
i

for 0 < t ≤ ω (i = 1, 2, . . . ). (37)

Corollary 4. Let conditions (28)–(30) hold, where

ℓ(x) ≡
ω∫

0

dL(t) · x(t),

P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are the constant matrices satisfying condition (24),
L ∈ L([0, ω],Rn×n); q ∈ Car([0, ω] × R+,Rn

+) and h ∈ C(Tm0
× R+;Rn×n

+ ) are the vector-functions
nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is a vector-function such that condition (23)
holds. Let, moreover, there exist natural numbers k and m such that the matrix

Mk = −
k−1∑
i=0

ω∫
0

dL(t) ·
[
(P, Jl, . . . , Jm0

)(t)
]
i
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is nonsingular and
r(Mk,m) < 1, (38)

where the operators [(P, J1, . . . , Jm0)(t)]i (i = 0, 1, . . . ) are defined by (37), and

Mk,m =
[(
|P |, |J1|, . . . , |Jm0 |

)
(ω)

]
m

+

m−1∑
i=0

[(
|P |, |J1|, . . . , |Jm0 |

)
(ω)

]
i

ω∫
0

dV (M−1
k L)(t) ·

[(
|P |, |J1|, . . . , |Jm0 |

)
(t)

]
k
.

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is correct.

Corollary 5. Let conditions (28)–(30) hold, where

ℓ(x) ≡
n0∑
j=1

Ljx(tj), (39)

P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l = 1, . . . ,m0) are the constant matrices satisfying condition (24),
tj ∈ [0, ω] and Lj ∈ Rn×n (j = 1, . . . , n0), L ∈ L([0, ω],Rn×n), ℓ : Cs([0, ω],Rn;Tm0

) → Rn is the
linear continuous operator; q ∈ Car([0, ω] × R+,Rn

+) and h ∈ C(Tm0 × R+;Rn×n
+ ) are the vector-

functions nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn
+) is a vector-function such that

condition (23) holds. Let, moreover, there exist natural numbers k and m such that the matrix

Mk =

n0∑
j=1

k−1∑
i=0

Lj

[
(P, Jl, . . . , Jm0)(tj)

]
i

is nonsingular and inequality (38) holds, where

Mk,m =
[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
m

+
(m−1∑

i=0

[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
i

) n0∑
j=1

|M−1
k Lj | ·

[(
|P |, |Jl|, . . . , |Jm0

|
)
(tj)

]
k
.

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is correct.

Corollary 5 for k = 1 and m = 1 has the following form.

Corollary 6. Let conditions (28)–(30) hold, where the operator ℓ is defined by (39), P ∈L([0, ω],Rn×n),
Jl ∈ Rn×n (l = 1, . . . ,m0) are the constant matrices satisfying condition (24), tj ∈ [0, ω] and
Lj ∈ Rn×n (j = 1, . . . , n0); q ∈ Car([0, ω] × R+,Rn

+) and h ∈ C(Tm0
× R+;Rn×n

+ ) are the vector-
functions, nondecreasing in the second variable, and ℓ1 ∈ C(R,Rn

+) is the vector-function such that
condition (23) holds. Let, moreover,

det
( n0∑

j=1

Lj

)
̸= 0 and r(L0 A0) < 1,

where

L0 = In×n +
∣∣∣( n0∑

j=1

Lj

)−1∣∣∣ · n0∑
j=1

|Lj | and A0 =

ω∫
0

|P (t)| dt+
m0∑
l=1

|Jl|.

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is correct.
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Remark 6. If the pair {P ; {Jl}m0

l=1} satisfies the Lappo–Danilevskiĭ condition, then condition (34)
has the forms

det
( ω∫

0

dL(t) · exp
( t∫

0

P (τ) dτ

)
·

∏
0≤τl<t

(In×n + Jl)

)
̸= 0,

det
( n0∑

j=1

Lj exp
( tj∫

0

P (τ) dτ

)
·

∏
0≤τl<tj

(In×n + Jl)

)
̸= 0

for the operators ℓ defined, respectively, in Corollary 4 and Corollary 5.

By Remark 2, in the case if ℓ(x) ≡ x(0) + x(ω) and ℓ0(x) ≡ 0, the results given above have,
respectively, the following forms.
Theorem 2′. Let conditions (13) and (14) hold, where the pair (P, J) satisfies the Opial ω-antipe-
riodic condition; α ∈ Car([0, ω] × R+,R+) is a function, nondecreasing in the second variable, and
β ∈ C(Tm0 × [0, ω],R+) is nondecreasing in the second variable function such that

lim
ρ→+∞

1

ρ

( ω∫
0

α(t, ρ) dt+

m0∑
l=1

β(τl, ρ)

)
= 0. (40)

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is cor-
rect.

Theorem 3′. Let conditions (13), (14), (17), (18) and (40) hold, where P ∈ Car0([0, ω]× Rn,Rn×n),
Pi ∈ L([0, ω],Rn×n), Jil ∈ Rn×n (i = 1, 2; l = 1, . . . ,m0); α ∈ Car([0, ω] × R+,R+) is a function,
nondecreasing in the second variable, and β ∈ C(Tm0

× [0, ω],R+) is nondecreasing in the second
variable function. Let, moreover, condition (4) hold and problem (5), (6); (3) have only the trivial so-
lution for every matrix-function A ∈ L([0, ω],Rn×n) and constant matrices Gl ∈ Rn×n (l = 1, . . . ,m0)
satisfying conditions (19) and (20). Then problem (1), (2); (3) is solvable. If, moreover, the problem
has a unique solution, then it is correct.

Theorem 4′. Let conditions (21) and (22) hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ),

Jl ∈ Rn× and Hl ∈ Rn×n
+ (l = 1, . . . ,m0) are the constant matrices satisfying conditions (24) and

(25), q ∈ Car([0, ω]× R+,Rn
+), and h ∈ C(Tm0 × R+;Rn×n

+ ) are the vector-functions, nondecreasing
in the second variable, such that

lim
ρ→+∞

1

ρ

( ω∫
0

∥q(t, ρ)∥ dt+
m0∑
l=1

∥h(τl, ρ)∥
)

= 0. (41)

Let, moreover, the system of impulsive inequalities (26), (27) have only the trivial solution satisfying
condition (3). Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution,
then it is correct.

Corollary 1′. Let conditions (28), (29) and (40) hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n

(l = 1, . . . ,m0) are the constant matrices satisfying condition (24), q ∈ Car([0, ω] × R+,Rn
+) and

h ∈ C(Tm0
× R+;Rn×n

+ ) are the vector-functions, nondecreasing in the second variable. Let, more-
over, problem (31), (32), (3) have only the trivial solution. Then problem (1), (2); (3) is solvable. If,
moreover, the problem has a unique solution, then it is correct.

Theorem 5′. Let conditions (35) and (36) hold, where P ∈ L([0, ω],Rn×n), Q ∈ L([0, ω],Rn×n
+ ),

Jl ∈ Rn×n and Hl ∈ Rn×n
+ (l = 1, . . . ,m0) are the constant matrices satisfying conditions (24) and

(25). Let, moreover, problem (26), (27); (7) have only the trivial solution. Then problem (1), (2); (3)
is correct.

Corollary 5′. Let conditions (28), (29) and (41) hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l =
1, . . . ,m0) are the constant matrices satisfying condition (24); q ∈ Car([0, ω] × R+,Rn

+) and h ∈
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C(Tm0 × R+;Rn×n
+ ) are the vector-functions, nondecreasing in the second variable. Let, moreover,

there exist natural numbers k and m such that the matrix

Mk =

k−1∑
i=0

[
(P, Jl, . . . , Jm0

)(ω)
]
i

is nonsingular and inequality (38) holds, where

Mk,m =
[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
m

+
(m−1∑

i=0

[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
i

)
|M−1

k | ·
[(
|P |, |Jl|, . . . , |Jm0

|
)
(ω)

]
k
.

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is correct.

Corollary 5′ for k = 1 and m = 1 has the following form.
Corollary 6′. Let conditions (28), (29) and (41) hold, where P ∈ L([0, ω],Rn×n), Jl ∈ Rn×n (l =
1, . . . ,m0) are the constant matrices satisfying condition (24); q ∈ Car([0, ω] × R+,Rn

+) and h ∈
C(Tm0

× R+;Rn×n
+ ) are the vector-functions, nondecreasing in the second variable. Let, moreover,

r(A0) <
1

2
,

where

A0 =

ω∫
0

|P (t)| dt+
m0∑
l=1

|Jl|.

Then problem (1), (2); (3) is solvable. If, moreover, the problem has a unique solution, then it is
correct.

Remark 7. In the conditions of Corollary 6′, if the pair {P ; {Jl}m0

l=1} satisfies the Lappo–Danilevskiĭ
condition, then condition (34) has the form

det
(
In×n + exp

( ω∫
0

P (τ) dτ

)
·
m0∏
l=1

(In×n + Jl)

)
̸= 0.

The analogous questions are investigated in [7] for system (1), (2) under the general nonlinear
boundary condition h(x) = 0, where h : C([0, ω],Rn;Tm0

) → Rn is a continuous vector-functional,
nonlinear, in general. The results given in the paper are the particular cases of the results obtained
in [7] for h(x) ≡ x(0) + x(ω).
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