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WITH GENERAL POWER-LAW NONLINEARITY



Abstract. The second-order differential equation with general power-law nonlinearity with continu-
ous potential bounded by positive constants is considered. The behavior of solutions to the equation
is studied with respect to the values of nonlinearity. The necessary and sufficient conditions for the
existence of a finite right-side boundary of the domain or horizontal asymptote are obtained. The
distance to the right-side boundary of the domain and the limits of solutions with horizontal asymp-
totes near their boundaries are estimated. The continuous dependence of the right-side boundary of
the domain and horizontal asymptotes on initial data is proved.1
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ÒÄÆÉÖÌÄ. ÂÀÍáÉËÖËÉÀ ÌÄÏÒÄ ÒÉÂÉÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÀ ÆÏÂÀÃÉ áÀÒÉÓáÏÁÒÉÅÉ
ÀÒÀßÒ×ÉÅÏÁÉÈ ÃÀ ÃÀÃÄÁÉÈÉ ÌÖÃÌÉÅÄÁÉÈ ÛÄÌÏÓÀÆÙÅÒÖËÉ ÖßÚÅÄÔÉ ÐÏÔÄÍÝÉÀËÉÈ. ÍÀÐÏÅÍÉÀ
ÓÀÓÒÖË ÛÖÀËÄÃÆÄ ÂÀÍÓÀÆÙÅÒÖËÉ ÅÄÒÔÉÊÀËÖÒÉ ÃÀ äÏÒÉÆÏÍÔÀËÖÒÉ ÀÓÉÌÐÔÏÔÄÁÉÓ ÌØÏÍÄ
ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÉÓ ÀÖÝÉËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ ÃÀ ÃÀÃÂÄÍÉËÉÀ ÌÀÈÉ ÀÓÉÌ-
ÐÔÏÔÖÒÉ ÛÄ×ÀÓÄÁÄÁÉ.

1Reported on Conference “Differential Equation and Applications”, September 4–7, 2017, Brno
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Consider the second-order Emden–Fowler type nonlinear equation

y′′ = p(x, y, y′)|y|k0 |y′|k1 sgn(yy′), k0 > 0, k1 > 0, k0, k1 ∈ R, (0.1)

with positive continuous in x and Lipschitz continuous in u, v function p(x, u, v).
The asymptotic behavior of solutions to (0.1) in the case k1 = 0 is described in [5]. Using the

methods described in [1] by I. V. Astashova, the behavior of decreasing solutions to (0.1) near the
right domain boundary is investigated with respect to the values k0 and k1.

In the case p = p(x), the asymptotic behavior of solutions to (0.1) is obtained by V. M. Ev-
tukhov [6]. Using the methods described in [2–4] by I. V. Astashova, the behavior of positive in-
creasing solutions to (0.1) near the right endpoint of their domains is investigated with respect to the
values k0 and k1.

1 Preliminary results
Consider the behavior of solutions according to initial data.

Lemma 1.1. Suppose k0 > 0, k1 > 0. Let p(x, u, v) be a positive continuous in x and Lipschitz
continuous in u, v function. Then all maximally extended solutions to equation (0.1) can be divided
into the following five types according to their behavior:

0. Constant solutions;
1. Increasing positive solutions;
2. Increasing negative solutions;
3. Increasing solutions negative near the left boundary of the domain and positive near the right

boundary of the domain;
4. Decreasing solutions positive near the left boundary of the domain and negative near the right

boundary of the domain.

Proof. Let us show first that if there is a point x0 such that y′(x0) = 0, then y(x) ≡ y(x0). Indeed,
from equation (0.1) we derive that y′′(x0) = 0 and since y0(x) ≡ y(x0) is a solution to (0.1), by the
theorem of the existence and uniqueness, y(x) ≡ y0(x) ≡ y(x0).

Thus, every solution with an extremum at some point is a constant solution (type 0), and therefore
every non-constant solution is either increasing or decreasing on its domain.

Consider increasing solutions. Assume that at some point x0 we have y(x0) > 0 and y′(x0) > 0.
Then, according to the equation, sgn y′′ = sgn y, and therefore y′′(x) > 0 and y′(x) is positive and
increasing, while y(x) > 0. This implies y(x) > 0, y′(x) > 0 and y′′(x) > 0 for all x > x0, so the
solution is positive and increasing on its domain. Consider now x < x0. Since y′(x) is positive on the
whole domain of the solution, either there is a point x̃ such that y(x̃) = 0 or y(x) > 0 (also y′(x) > 0,
and therefore y′′(x) > 0) for all x < x0. Consider the first case. Since the first derivative of the
solution is positive, y′(x) > 0 and y(x) < 0 (therefore, y′′(x) < 0) for all x < x̃. Thus, y(x) is an
increasing solution negative near the left boundary of the domain and positive near the right one.

Assume now that at some point x0 we have y(x0) < 0, y′(x0) > 0. According to the equation,
sgn y′′ = sgn y, and therefore y′′(x) < 0, y′(x) > 0 and y(x) < 0 for all x < x0. Consider x > x0: since
y′(x) > 0, either the solution y(x) is negative and increasing on the whole domain or there exists a
point x̃ such that y(x̃) = 0. In the second case, for x > x̃ we have y(x) > 0, y′(x) > 0, and thus y(x)
is an increasing solution, negative near the left boundary of domain and positive near the right one.

Consider decreasing solutions. Suppose at some point x0 we have y(x0) > 0 and y′(x0) < 0.
According to the equation, sgn y′′ = − sgn y, and therefore y′′(x) < 0 and y′(x) is negative and
decreasing, while y(x) > 0. Thus, y′(x) < y′(x0) and

y(x) < y(x0) + y′(x0)(x− x0) = −|y′(x0)|x+
(
y(x0)− y′(x0)x0

)
,

while y(x) is positive. Since y(x) is estimated from above by a linear function, it cannot be positive on
its whole domain and therefore there exists a point x̃ such that y(x̃) = 0. Note that y′(x̃) is negative



104 Tatiana Korchemkina

and therefore in some neighbourhood (x̃, x̃ + ε), ε > 0, the solution y(x) and its derivative y′(x) are
both negative and, due to equation (0.1), we have y′′(x) > 0. Then for all x > x̃, the solution is
decreasing, and since its derivative is of a constant (negative) sign, we have y(x) < 0, y′(x) < 0,
y′′(x) > 0 for all x > x̃ and y(x) > 0, y′(x) < 0, y′′(x) > 0 at x < x̃. Thus, y(x) is a decreasing
solution, positive near the left boundary of the domain and negative near the right one.

Lemma 1.2. Suppose k0 > 0, k1 > 0, k1 ̸= 2. Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying the inequalities

0 < m ≤ p(x, u, v) ≤ M < +∞. (1.1)

Then for any solution y(x) to equation (0.1), strictly monotonous and having a constant sign on
[x1, x2], the following inequalities hold:

m
(
|y(x2)|k0+1 − |y(x1)|k0+1

)
sgn(yy′) ≤ k0 + 1

2− k1

(
|y′(x2)|2−k1 − |y′(x1)|2−k1

)
sgn y

≤ M
(
|y(x2)|k0+1 − |y(x1)|k0+1

)
sgn(yy′). (1.2)

Proof. Due to inequalities (1.1) and equation (0.1), we can estimate the absolute value of the second
derivative as

m|y|k0 |y′|k1 ≤ |y′′| = |p(x, y, y′)|y|k0 |y′|k1 sgn(yy′)| ≤ M |y|k0 |y′|k1 .

Then
m|y|k0 |y′| ≤ |y′′| |y′|1−k1 ≤ M |y|k0 |y′|

and by integrating these inequalities on (x1, x2), we obtain

m

k0 + 1

(
|y(x2)|k0+1 − |y(x1)|k0+1

)
sgn(yy′)

≤ 1

2− k1

(
|y′|2−k1 − |y′(x1)|2−k1

)
sgn(y′y′′) ≤ M

k0 + 1

(
|y(x2)|k0+1 − |y(x1)|k0+1

)
sgn(yy′),

where sgn(yy′) and sgn(y′y′′) are constant and can be taken at any point from [x1, x2]. Therefore if
sgn y′ ̸= 0,

m
(
|y(x2)|k0+1 − |y(x1)|k0+1

)
sgn(yy′)

≤ k0 + 1

2− k1

(
|y′(x2)|2−k1 − |y′(x1)|2−k1

)
sgn y ≤ M

(
|y(x2)|k0+1 − |y(x1)|k0+1

)
sgn(yy′).

2 Increasing solutions
Theorem 2.1. Suppose k0 > 0, k1 > 0. Let p(x, u, v) be a continuous in x and Lipschitz continuous
in u, v function satisfying inequalities (1.1). Let y(x) be a maximally extended solution to (0.1) with
y(x0) ≥ 0 and y′(x0) > 0 at some point x0. Then the existence of a finite point x∗ > x0 such that

lim
x→x∗−0

y′(x) = +∞ is equivalent to the condition k0 + k1 > 1. Moreover, there exists a positive
constant ξ = ξ(m, k0) such that

x∗ − x0 < ξ(y′(x0))
− k0+k1−1

k0+1 .

Proof. Consider the case k0 + k1 > 1.
Denote y1 = y′(x0) > 0. According to Lemma 1.1, the solution y(x) with positive initial data tends

to infinity along with its derivative. This implies that for any i ∈ N there exists a point xi > xi−1

such that y′(xi) = 2y′(xi−1) = 2iy1. Let us estimate the difference xi+1 − xi.
For x ∈ [xi, xi+1], the inequalities

y′(x) ≥ y1, y(x)− y(xi) ≥ y1(x− xi)



On the Behavior of Solutions to Second-Order DE with General Power-Law Nonlinearity 105

hold, and since y(xi) ≥ y(x0) ≥ 0, we have y(x) ≥ y1(x− xi), hence

yk0(x) ≥ (y1(x− xi))
k0 and (y′(x))k1 ≥ yk1

1 ,

y′′(x) = p(x, y, y′)|y|k0 |y′|k1 sgn(yy′) ≥ myk0+k1
1 (x− xi)

k0 .

Integrating this inequality on the segment [xi, xi+1], we obtain

y′(xi+1)− y′(xi) ≥
m

k0 + 1
yk0+k1
1 (xi+1 − xi)

k0+1,

which means

2iy1 ≥ m

k0 + 1
yk0+k1
1 (xi+1 − xi)

k0+1,

(xi+1 − xi)
k0+1 ≤ 2i

k0 + 1

m
y
−(k0+k1−1)
1 ,

xi+1 − xi ≤ 2
i

k0+1

(k0 + 1

m

) 1
k0+1

y
− k0+k1−1

k0+1

1 .

Thus, the distance xi+1 −xi is estimated from above by the term of a converging series multiplied
by a positive constant. This implies that there exists a limit

x∗ = lim
n→+∞

n∑
i=0

(xi+1 − xi) + x0 = lim
n→+∞

xn,

and since a solution to (0.1) is continuous, lim
x→x∗−0

y′(x) = +∞. Moreover,

x∗ − x0 =

+∞∑
i=0

(xi+1 − xi) ≤
+∞∑
i=0

2
i

k0+1

(k0 + 1

m

) 1
k0+1

y
− k0+k1−1

k0+1

1 ,

x∗ − x0 ≤
(k0 + 1

m

) 1
k0+1

y
− k0+k1−1

k0+1

1

+∞∑
i=0

2
i

k0+1 ,

which implies
x∗ − x0 < ξ (y′(x0))

− k0+k1−1
k0+1

for
ξ = ξ(m, k0) =

(k0 + 1

m

) 1
k0+1

(1− 2
1

k0+1 )−1 > 0.

For the case k0 + k1 ≤ 1, we can apply the following
Theorem (K. Dulina, T. Korchemkina [5]). Suppose k > 0, k ̸= 1. Let the function P (x, u, v)
be continuous in x, Lipschitz continuous in u, v. Let there exist the constants u0 > 0, v0 > 0
and α ≤ 1 − k such that for u > u0, v > v0 the inequality P (x, u, v) ≤ C|v|−α holds. Then any
non-extensible solution y(x) to equation

y′′ − P (x, y, y′)|y|k sgn y = 0

with initial data y(x0) ≥ u0, y′(x0) ≥ v0 can be extended on (x0,+∞) and

lim
x→+∞

y(x) = lim
x→+∞

y(x) = +∞.

Indeed, here we have P (x, u, v) = p(x, u, v)|v|k1 ≤ Mvk1 , so, the above theorem holds if k1 ≤ 1−k0,
i.e., k0 + k1 ≤ 1.

Remark. It is sufficient that p(x, u, v) ≥ m for the solution to have a finite right-side boundary x∗

of its domain.
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Note that after the substitution y(x) 7→ −y(−x) we obtain an equation of the same type as (0.1),
so the following statement is also true.

Theorem 2.2. Suppose k0 > 0, k1 > 0. Let p(x, u, v) be a continuous in x and Lipschitz continuous
in u, v function satisfying inequalities (1.1). Let y(x) be a maximally extended solution to (0.1) with
y(x0) ≤ 0 and y′(x0) > 0 at some point x0. Then the existence of a finite point x∗ < x0 such that

lim
x→x∗+0

y′(x) = −∞ is equivalent to the condition k0 + k1 > 1. Moreover, there exists a positive
constant ξ = ξ(m, k0) such that

x0 − x∗ < ξ (y′(x0))
− k0+k1−1

k0+1 .

It follows from [5, Theorem 3.4] that in the case k1 > 2 all positive increasing solutions are the
black hole solutions [7], i.e., lim

x→x∗−0
y(x) < ∞.

Applying now Lemma 1.2 for x1 = x0, x2 = x and considering inequalities (1.2) as x → x∗ − 0, we
obtain the following estimates for the limit lim

x→x∗−0
y(x).

Theorem 2.3. Suppose k1 > 2. Let p(x, u, v) be a continuous in x and Lipschitz continuous in u, v
function satisfying inequalities (1.1). Let y(x) be a maximally extended solution to (0.1) with y(x0) ≥ 0
and y′(x0) > 0 at some point x0. Then for the right-side boundary of the domain x∗ which existence
is stated in Theorem 2.1, the limit lim

x→x∗−0
y(x) = y∗ is finite and

k0 + 1

2− k1

1

M
(y′(x0))

2−k1 ≤ (y∗)k0+1 − yk0+1
0 ≤ k0 + 1

2− k1

1

m
(y′(x0))

2−k1 .

Analogously, we obtain the similar statement for the limit lim
x→x∗−0

y(x).

Theorem 2.4. Suppose k1 > 2. Let p(x, u, v) be a continuous in x and Lipschitz continuous in u, v
function satisfying inequalities (1.1). Let y(x) be a maximally extended solution to (0.1) with y(x0) ≤ 0
and y′(x0) > 0 at some point x0. Then for the left-side boundary of the domain x∗ which existence is
stated in Theorem 2.2, the limit lim

x→x∗−0
y(x) = y∗ is finite and

k0 + 1

2− k1

1

M
(y′(x0))

2−k1 ≤ |y∗|k0+1 − |y0|k0+1 ≤ k0 + 1

2− k1

1

m
(y′(x0))

2−k1 .

3 Decreasing solutions
Consider now decreasing solutions. Let us prove that every solution of such type has two horizontal
asymptotes.

Theorem 3.1. Suppose k0 > 0, k1 ∈ (0, 2). Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying inequalities (1.1). Then any solution y(x) to equation (0.1) with
initial data y(x0) ≤ 0, y′(x0) < 0 is defined on the whole axis and there exists a finite negative value
y+ < y(x0) such that lim

x→+∞
y(x) = y+. Moreover,

k0 + 1

2− k1

1

M
|y′(x0)|2−k1 ≤ |y+|k0+1 − |y(x0)|k0+1 ≤ k0 + 1

2− k1

1

m
|y′(x0)|2−k1 .

Proof. According to the proof of Lemma 1.1, for any x > x0, we have y(x) < 0, y′(x) < 0 and therefore
y′′(x) > 0. This implies that y′(x) → 0 as x → x̃, where x̃ > x0 is a right domain boundary of y(x).

Denote y1 = |y′(x0)| = −y′(x0). While y′(x) ̸= 0, from Lemma 1.2 with x1 = x0 and x2 = x > x0

we derive

k0 + 1

2− k1

|y′(x0)|2−k1 − |y′(x)|2−k1

M
≤ |y(x)|k0+1 − |y(x0)|k0+1 ≤ k0 + 1

2− k1

|y′(x0)|2−k1 − |y′(x)|2−k1

m
.
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Denote Y = lim
x→x̃

y(x), then considering the above inequalities at x → x̃, we obtain

k0 + 1

2− k1

|y′(x0)|2−k1

M
≤ |Y |k0+1 − |y(x0)|k0+1 ≤ k0 + 1

2− k1

|y′(x0)|2−k1

m
,

which implies |Y | < +∞.
Consider now x̃ in correspondence with k1. Let x∗ > x0, x∗ ≤ +∞ be the closest to x0 point such

that lim
x→x∗

y′(x) = 0.
From equation (0.1), on the interval (x0, x

∗), we derive

y′′|y′|−k1 = p(x, y, y′)|y|k0 sgn(yy′),

and since at x > x0 we have y(x) < 0, y′(x) < 0, therefore

y′′(−y′)−k1 = p(x, y, y′)|y|k0 ,

and for k1 ̸= 1,
1

1− k1

(
|y′(x0)|1−k1 − |y′|1−k1

)
=

x∫
x0

p(x, y, y′)|y|k0 dx.

In the case k1 ∈ (1, 2), we get

1

1− k1

(
|y′(x0)|1−k1 − |y′|1−k1

)
≤

x∫
x0

M |Y |k0 dx = M |Y |k0(x− x0),

x− x0 ≥ 1

M |Y |k0(k1 − 1)

(
|y′(x)|1−k1 − |y′(x0)|1−k1

)
.

Since y′(x) → 0 as x → x∗ and 1− k1 < 0, the right part of the above inequality tends to infinity as
x → x∗, which implies x∗ = +∞, and therefore the solution y(x) is defined on (x0,+∞), y+ = Y and
the theorem for the case k1 ∈ (1, 2) is proved.

Analogously, in the case k1 = 1, we obtain

x− x0 ≥ 1

M |Y |k0

(
ln |y′(x0)| − ln |y′|

)
.

Since y′(x) → 0 as x → x∗, the right part of the above inequality tends to infinity as x → x∗, which
implies x∗ = +∞, and therefore the solution y(x) is defined on (x0,+∞), y+ = Y and hence the
theorem for the case k1 = 1 is also proved.

In the case k1 ∈ (0, 1), we denote x̃0 = x0 if y(x0) ̸= 0 and otherwise x̃0 = x0 + ε, where ε > 0
is such that y(x) < 0 and y′(x) < 0 on (x0, x0 + ε). Then |y(x)|k0 ≥ |y(x̃0)|k0 on (x̃0, x

∗), and
analogously we obtain the estimate

1

1− k1

(
|y′(x̃0)|1−k1 − |y′|1−k1

)
≥

x∫
x̃0

m|y(x̃0)|k0 dx = m|y(x̃0)|k0(x− x̃0),

x− x̃0 ≤ 1

m|y(x̃0)|k0(1− k1)

(
|y′(x̃0)|1−k1 − |y′(x)|1−k1

)
.

Since y′(x) → 0 as x → x∗ and 1 − k1 > 0, the right part of the above inequality tends to a
constant value |y′(x̃0)|1−k1

m|y(x̃0)|k0 (1−k1)
as x → x∗, which implies x∗ < +∞, and therefore the solution y(x)

is unique only on (x0, x
∗). Note that even though the uniqueness of solutions is not satisfied, there

is only one possible way to extend the solution y(x) to the right. Thus, y(x) < 0, is decreasing on
(x0, x

∗) and is equal to a constant on [x∗,+∞). This implies y+ = lim
x→+∞

y(x) = y(x∗) = Y and the
theorem is proved.
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Since the substitution y(x) 7→ −y(−x) gives an equation of the same type as (0.1), the following
statement is also true.

Theorem 3.2. Suppose k0 > 0, k1 ∈ (0, 2). Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying inequalities (1.1). Then any solution y(x) to equation (0.1) with
initial data y(x0) ≥ 0, y′(x0) < 0 is defined on the whole axis and there exists a finite positive value
y− > y(x0) such that lim

x→−∞
y(x) = y−. Moreover,

k0 + 1

2− k1

1

M
|y′(x0)|2−k1 ≤ |y−|k0+1 − |y(x0)|k0+1 ≤ k0 + 1

2− k1

1

m
|y′(x0)|2−k1 .

Definition ([8]). y(x) is a white hole solution to equation (0.1) if there exists a finite point x̃ such
that lim

x→x̃
y′(x) = 0, but lim

x→x̃
y(x) ̸= 0.

Thus, all decreasing solutions to equation (0.1) in the case k1 ∈ (1, 2) are the white hole solutions.

Lemma 3.1. Suppose k0 > 0, k1 ∈ (0, 2). Let p(x, u, v) be a continuous in x and Lipschitz continuous
in u, v function satisfying inequalities (1.1). Then any decreasing solution y(x) to equation (0.1) is
defined on the whole axis and there exist a finite positive value y− and a finite negative value y+ such
that lim

x→±∞
y(x) = y±. Moreover,

(m

M

) 1
k0+1 ≤

∣∣∣y+
y−

∣∣∣ ≤ (M
m

) 1
k0+1

.

Proof. Indeed, let x0 be a zero of a decreasing solution y(x) to equation (0.1). Then the limits
y± = lim

x→±∞
y(x) are finite and the estimates from Theorems 3.1 and 3.2 take the form

k0 + 1

2− k1

1

M
|y′(x0)|2−k1 ≤ |y+|k0+1 ≤ k0 + 1

2− k1

1

m
|y′(x0)|2−k1 ,

k0 + 1

2− k1

1

M
|y′(x0)|2−k1 ≤ yk0+1

− ≤ k0 + 1

2− k1

1

m
|y′(x0)|2−k1 ,

hence
m

M
≤

∣∣∣y+
y−

∣∣∣k0+1

≤ M

m
,

which implies the statement of the lemma.

Applying Lemma 3.1 for the case p(x, u, v) ≡ p0 = const, we obtain the following

Corollary. Suppose k0 > 0, k1 ∈ (0, 2), p(x, u, v) ≡ p0 = const. Then any solution y(x) to (0.1)
satisfying at some point x0 the condition y′(x0) < 0 is defined on the whole axis and the limits
y± = lim

x→±∞
y(x) are finite and satisfying the equality y− = −y+.

Theorem 3.3. Suppose k0 > 0, k1 ≥ 2. Let p(x, u, v) be a continuous in x and Lipschitz continuous
in u, v function satisfying inequalities (1.1). Then any solution y(x) to equation (0.1) with initial
data y(x0) ≤ 0, y′(x0) < 0 is unbounded and defined on the whole axis.

Proof. Let us prove the theorem for x > x0. Consider first the case k1 > 2.
According to the proof of Lemma 1.1, for any x > x0 we have y(x) < 0, y′(x) < 0 and, therefore,

y′′(x) > 0. This implies that y′(x) → 0 as x → x̃, where x̃ > x0 is the right domain boundary of y(x).
Denote y1 = |y′(x0)| = −y′(x0). While y′(x) ̸= 0, from Lemma 1.2 with x1 = x0 and x2 = x > x0

we derive

m
(
|y(x)|k0+1 − |y(x0)|k0+1

)
≤ k0 + 1

k1 − 2

(
|y′(x)|2−k1 − y2−k1

1

)
≤ M

(
|y(x)|k0+1 − |y(x0)|k0+1

)
.
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Denote Y = lim
x→x̃

y(x), then considering the above inequalities at x → x̃, we obtain

k0 + 1

k1 − 2

|y′(x)|2−k1 − y2−k1
1

M
≤ |Y |k0+1 − |y(x0)|k0+1 ≤ k0 + 1

k1 − 2

|y′(x)|2−k1 − y2−k1
1

m
,

and since y′(x) → 0 as x → x̃ and 2− k1 < 0, it follows that |Y | = +∞.
Analogously, for k1 = 2, we obtain

k0 + 1

M

(
ln y1 − ln |y′(x)|

)
≤ |Y |k0+1 − |y(x0)|k0+1 ≤ k0 + 1

m

(
ln y1 − ln |y′(x)|

)
,

and since y′(x) → 0 as x → x̃, it follows that |Y | = +∞.
Consider now x̃ in correspondence with k1. Let x∗ > x0, x∗ ≤ +∞ be the closest to x0 point such

that lim
x→x∗

y′(x) = 0.
From equation (0.1), on the interval (x0, x

∗), we derive

y′′|y′|−k1 = p(x, y, y′)|y|k0 sgn(yy′),

and since at x > x0 there is y(x) < 0, y′(x) < 0, we have

y′′(−y′)−k1 = p(x, y, y′)|y|k0 ,

1

1− k1

(
|y′(x0)|1−k1 − |y′|1−k1

)
=

x∫
x0

p(x, y, y′)|y|k0 dx,

therefore
1

1− k1

(
|y′(x0)|1−k1 − |y′|1−k1

)
≤

x∫
x0

M |Y |k0 dx = M |Y |k0(x− x0)

and
x− x0 ≥ 1

M |Y |k0(k1 − 1)

(
|y′(x)|1−k1 − |y′(x0)|1−k1

)
.

Since y′(x) → 0 as x → x∗ and 1− k1 < 0, the right part of the above inequality tends to infinity as
x → x∗, which implies x∗ = +∞ and, therefore, the solution y(x) is defined on (x0,+∞), y+ = Y and
the theorem is proved.

4 Continuous dependence of boundaries of domain or
horizontal asymptotes of solutions on initial data

Consider first continuous dependence of the right-side boundary of the domain on initial data.

Theorem 4.1. Suppose k0 > 0, k1 > 0, k0+k1 > 1. Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying inequality p(x, u, v) ≥ m > 0. Then for any ε > 0, there exists
δ > 0 such that for any x0, x̃0, y0, z0, y1, z1 satisfying |x̃0 − x0| < δ, |z0 − y0| < δ, |z1 − y1| < δ,
y0 ≥ 0, y1 > 0, z0 ≥ 0, z1 > 0, the maximally extended solutions y(x) and z(x) to equation (0.1) with
the initial data {

y(x0) = y0,

y′(x0) = y1
(4.1)

and {
y(x̃0) = z0,

y′(x̃0) = z1,
(4.2)

respectively, have finite right-side boundaries of the domains x∗
1 > x0 and x∗

2 > x̃0, respectively, and
|x∗

2 − x∗
1| < ε.
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Proof. From Theorem 2.1 it follows that y′(x) → +∞ as x → x∗
1−0, there exists a point x1 such that

ỹ1 = y′(x1) satisfies

ỹ1 >
( ε

2ξ

)− k0+1
k0+k1−1

, ξỹ
− k0+k1−1

k0+1

1 <
ε

2
,

where ξ is a constant from Theorem 2.1. Then

x∗
1 − x1 < ξ(y′(x1))

− k0+k1−1
k0+1 <

ε

2
.

For any ε > 0, there exists δ̃ > 0 such that if |z̃1 − ỹ1| < δ̃, then ξz̃
− k0+k1−1

k0+1

1 < ε
2 . Also for every

δ̃ > 0 there exists δ > 0 such that for any x0, x̃0, y0, z0, y1, z1 satisfying |x̃0 − x0| < δ, |z0 − y0| < δ,
|z1 − y1| < δ, y0 ≥ 0, y1 > 0, z0 ≥ 0, z1 > 0 the inequality |z′(x1) − y′(x1)| < δ̃ holds. Then from
Theorem 2.1 we derive that the solution z(x) with initial data (4.2) has a finite right-side boundary
of the domain x∗

2 and
x∗
2 − x1 < ξ(z′(x1))

− k0+k1−1
k0+1 <

ε

2
.

Thus, for any ε, there exists δ > 0 such that

|x∗
2 − x∗

1| ≤ |x∗
2 − x1|+ |x1 − x∗

1| <
ε

2
+

ε

2
< ε.

Analogously, continuous dependence of the left-side boundary of the domain on the initial data is
obtained.

Theorem 4.2. Suppose k0 > 0, k1 > 0, k0+k1 > 1. Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying the inequality p(x, u, v) ≥ m > 0. Then for any ε > 0, there
exists δ > 0 such that for any x0, x̃0, y0, z0, y1, z1 satisfying |x̃0−x0| < δ, |z0−y0| < δ, |z1−y1| < δ,
y0 ≤ 0, y1 > 0, z0 ≤ 0, z1 > 0, the maximally extended solutions y(x) and z(x) to equation (0.1)
with initial data (4.1) and (4.2), respectively, have finite left-side boundaries of domains x1∗ < x0 and
x2∗ < x̃0, respectively, and |x2∗ − x1∗| < ε.

Analogously, with the help of the estimates from Theorems 3.1 and 3.2 the following results on
the continuous dependence of solutions’ limits on the initial data are obtained.

Theorem 4.3. Suppose k0 > 0, k1 ∈ (0, 2). Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying inequalities (1.1). Then for any ε > 0 there exists δ > 0 such
that for any x0, x̃0, y0, z0, y1, z1 satisfying |x̃0 − x0| < δ, |z0 − y0| < δ, |z1 − y1| < δ, y0 ≤ 0, y1 < 0,
z0 ≤ 0, z1 < 0, the maximally extended solutions y(x) and z(x) to equation (0.1) with initial data (4.1)
and (4.2), respectively, have finite limits y+ < y(x0) and z+ < z(x̃0), respectively, as x → +∞, and
|y+ − z+| < ε.

Theorem 4.4. Suppose k0 > 0, k1 ∈ (0, 2). Let p(x, u, v) be a continuous in x and Lipschitz
continuous in u, v function satisfying inequalities (1.1). Then for any ε > 0, there exists δ > 0 such
that for any x0, x̃0, y0, z0, y1, z1 satisfying |x̃0 − x0| < δ, |z0 − y0| < δ, |z1 − y1| < δ, y0 ≥ 0, y1 < 0,
z0 ≥ 0, z1 < 0, the maximally extended solutions y(x) and z(x) to equation (0.1) with initial data (4.1)
and (4.2), respectively, have finite limits y− > y(x0) and z− > z(x̃0), respectively, as x → −∞, and
|x− − z−| < ε.
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