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1 Introduction
In 1925, Hardy [4] used the calculus of variations to prove the inequality

∞∫
0

(
1

x

x∫
0

f(t) dt

)p

dx ≤
( p

p− 1

)p ∞∫
0

fp(x) dx, (1.1)

where f ≥ 0 is integrable over any finite interval (0, x) and fp is integrable and convergent over (0,∞)
and p > 1. The constant (p/(p− 1))p is the best possible.

In 1928, Hardy [5] generalized inequality (1.1) and proved that if p > 1 and f is non-negative for
x ≥ 0, then

∞∫
0

x−c

( x∫
0

f(t) dt

)p

dx ≤
( p

c− 1

)p ∞∫
0

xp−cfp(x) dx for c > 1, (1.2)

and
∞∫
0

x−c

( ∞∫
x

f(t) dt

)p

dx ≤
( p

1− c

)p ∞∫
0

xp−cfp(x) dx for c < 1. (1.3)

The constants (p/(c− 1))p and (p/(1− c))p are the best possible.
In recent years, fractional inequalities were studied by using the fractional Caputo and Riemann–

Liouville derivative; for details, we refer the reader to [3] and [17]. In [1] and [7], the authors presented
conformable calculus and classical inequalities with the use of conformable fractional calculus such as
Opial’s inequality (see [11] and [12]), Hermite–Hadamard’s inequality (see [8] and [10]), Chebyshev’s
inequality (see [2]) and Steffensen’s inequality (see [13]). In this paper, using a somewhat different
approach we present new Hardy type inequalities via conformable fractional calculus. Also, one can
see from our approach and presentation that the conformable fractional inequalities encountered in
the literature are, in fact, special cases of weighted inequalities (for an appropriate weight function).
Our goal in this paper is, first, to show how naturally weights work in inequalities and, second, to
indicate and correct some slight mistakes (usually when one integrates by parts) in the literature.

The paper is organized as follows. In Section 2, we present some concepts on conformable fractional
calculus and also Hölder’s inequality for α-fractional differentiable functions which we will use to prove
our main results. In Section 3, we prove some Hardy type inequalities for α-fractional differentiable
functions and obtain the classical ones as special cases when α = 1.

2 Basic concepts and lemmas
In this section, we present some basic definitions concerning conformable fractional calculus. For more
details, we refer the reader to [1] and [7].

Definition 2.1. Let f : [0,∞) → R. Then the conformable fractional derivative of order α of f is
defined by

Dαf(t) = lim
ϵ→0

f(t+ ϵt1−α)− f(t)

ϵ

for all t > 0 and 0 < α ≤ 1, and
Dαf(0) = lim

t→0+
Dαf(t).

Let α ∈ (0, 1] and f, g be α-differentiable at a point t. Then

Dα(fg) = fDαg + gDαf. (2.1)

Further, let α ∈ (0, 1] and f, g be α-differentiable at a point t, with g(t) ̸= 0. Then

Dα

(f
g

)
=

gDαf − fDαg

g2
. (2.2)
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Remark 2.1. If f is a differentiable function, then

Dαf(t) = t1−α df(t)

dt
.

Definition 2.2. Let f : [0,∞) → R. Then the conformable fractional integral of order α of f is
defined by

Iαf(t) =

t∫
0

f(x) dαx =

t∫
0

xα−1f(x) dx (2.3)

for all t > 0 and 0 < α ≤ 1.

Now, we state an integration by parts formula (see [1] and [7]) which is immediate.

Lemma 2.1. Assume that w, g : [0,∞) → R are two functions such that w, g are differentiable and
0 < α ≤ 1. Then for any b > 0,

b∫
0

w(x)Dαg(x) dαx = w(x)g(x)|b0 −
b∫

0

g(x)Dαw(x) dαx. (2.4)

Next, we prove the Hölder type inequality needed in the next section (of course, it is the usual
Hölder inequality for the functions under consideration (i.e., x

(α−1)
p f(x) and x

(α−1)
q g(x)); for com-

pleteness we include its proof).

Lemma 2.2. Let f, g : [0,∞) → R and 0 < α ≤ 1. Then for any b > 0,

b∫
0

|f(x)g(x)| dαx ≤
( b∫

0

|f(x)|p dαx
) 1

p
( b∫

0

|g(x)|q dαx
) 1

q

, (2.5)

where 1/p+ 1/q = 1 (provided the integrals exist (and are finite)).

Proof. For nonnegative real numbers β, γ, the classical Young inequality is

β
1
p γ

1
q ≤ β

p
+

γ

p
.

Suppose now, without loss of generality, that
b∫

0

|f(x)|p dαx ̸= 0 and
b∫

0

|g(x)|q dαx ̸= 0.

Applying Young’s inequality with

β =
|f(x)|p

b∫
0

|f(x)|p dαx
, γ =

|g(x)|q
b∫
0

|g(x)|q dαx

,

and integrating the obtained inequality from 0 to b, we get

b∫
0

|f(x)|( b∫
0

|f(s)|p dαs
) 1

p

|g(x)|( b∫
0

|g(s)|q dαs
) 1

q

dαx

=

b∫
0

β
1
p (x)γ

1
q (x) dαx ≤

b∫
0

(β
p
+

γ

q

)
dαx
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=

b∫
0

(
|f(x)|p

p
( b∫
0

|f(s)|p dαs
) + |g(x)|q

q
( b∫
0

|g(s)|q dαs
)
)
dαx

=

b∫
0

|f(x)|p dαx

p
( b∫
0

|f(s)|p dαs
) +

b∫
0

|g(x)|q dαx

q
( b∫
0

|g(s)|q dαs
) =

1

p
+

1

q
= 1,

which is the desired inequality (2.5).

3 Hardy type inequalities of α-fractional order
In this section, we state and prove the main results of this paper and we begin with the fractional
version of the classical Hardy type inequality. Throughout the paper, we will assume that the functions
are nonnegative locally α-integrable and the integrals throughout are assumed to exist (and are finite,
i.e., convergent).
Theorem 3.1. Let f be a nonnegative function on (0,∞), and 0 < α ≤ 1 and p > 1. Also assume
xα−1f(x) is continuous on [0,∞). Then

∞∫
0

(
1

x

x∫
0

f(s) dαs

)p

dαx ≤
( p

p− α

)p ∞∫
0

(xα−1f(x))p dαx. (3.1)

Proof. Let

F (x) :=
1

x

x∫
0

f(s) dαs. (3.2)

Integrating by parts, see formula (2.4) with w(x) = F p(x) and Dαg(x) = 1 (note here g(x) = xα

α ),
and using Remark 2.1, we obtain (here t > 0)

t∫
0

F p(x) dαx =
F p(x)xα

α

∣∣∣∣t
0

−
t∫

0

xα

α
DαF

p(x) dαx =
tαF p(t)

α
− p

α

t∫
0

xα

α
x1−αF p−1(x)F ′(x) dαx

=
tαF p(t)

α
− p

α

t∫
0

xF p−1(x)F ′(x) dαx; (3.3)

note

lim
x→0+

x
α
p F (x) = lim

x→0+

x∫
0

sα−1f(s) ds

x
p−α
p

= lim
x→0+

xα−1f(x)

(p−α
p )x−α

p
= lim

x→0+

( p

p− α

)
xα−1f(x)x

α
p = 0.

From the definition of F , we see that

xF ′(x) = xα−1f(x)− F (x),

and substituting it into (3.3), we obtain
t∫

0

F p(x) dαx =
tαF p(t)

α
− p

α

t∫
0

F p−1(x)
(
xα−1f(x)− F (x)

)
dαx

=
tαF p(t)

α
− p

α

t∫
0

xα−1F p−1(x)f(x) dαx+
p

α

t∫
0

F p(x) dαx,
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and so (
1− p

α

) t∫
0

F p(x) dαx =
tαF p(t)

α
− p

α

t∫
0

xα−1F p−1(x)f(x) dαx.

Thus
t∫

0

F p(x) dαx =
tαF p(t)

α− p
+

p

p− α

t∫
0

xα−1F p−1(x)f(x) dαx.

Applying Hölder’s inequality with indices p and p/(p− 1), and using the fact that tαF p(x)/(α− p) is
negative, we get

t∫
0

F p(x) dαx ≤ p

p− α

( t∫
0

F p(x) dαx

) p−1
p
( t∫

0

(
xα−1f(x)

)p
dαx

) 1
p

,

and so, ( t∫
0

F p(x) dαx

) 1
p

≤ p

p− α

( t∫
0

(
xα−1f(x)

)p
dαx

) 1
p

.

Hence,
t∫

0

F p(x) dαx ≤
( p

p− α

)p t∫
0

(
xα−1f(x)

)p
dαx.

Let t → ∞, and then
∞∫
0

F p(x) dαx ≤
( p

p− α

)p ∞∫
0

(
xα−1f(x)

)p
dαx,

which is the desired inequality (3.1).

Remark 3.1. From the proof of Theorem 3.1 we see that if the condition “xα−1f(x) is continuous
on [0,∞)” is replaced either by

(i) xα−1f(x) is continuous on (0,∞) and lim
x→0+

xα−1+α
p f(x) = 0,

or

(ii) lim
x→0+

xαF p(x) = 0,

then (3.1) is again true.

Corollary 3.1. In Theorem 3.1, if α = 1, then we obtain the classical Hardy inequality (1.1).

Theorem 3.2. Let f be a nonnegative function on (0,∞) and 0 < α ≤ 1. Let c > 1 and p > 1. Also
assume that xα−1f(x) is continuous on [0,∞) and p > c− α. Then

∞∫
0

x−c

( x∫
0

f(t) dαt

)p

dαx ≤
( p

c− α

)p ∞∫
0

(xα− c
p f(x))p dαx. (3.4)

Proof. Let

F (x) :=

x∫
0

f(s) dαs.
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Integrating by parts
t∫
0

x−cF p(x) dαx (here t > 0) with

w(x) = x−cF p(x), Dαg(x) = 1
(
g(x) =

xα

α

)
,

Dαw(x) = x1−α
(
− cx−c−1F p(x) + px−cF p−1(x)F ′(x)

)
,

we obtain
t∫

0

x−cF p(x) dαx =
x−cF p(x)xα

α

∣∣∣∣t
0

−
t∫

0

xα

α
x1−α

(
− cx−c−1F p(x) + px−cF p−1(x)F ′(x)

)
dαx

=
tα−cF p(t)

α
+

c

α

t∫
0

x−cF p(x) dαx− p

α

t∫
0

x1−cF p−1(x)F ′(x) dαx;

note

lim
x→0+

x
α−c
p F (x) = lim

x→0+

x∫
0

sα−1f(s) ds

x
c−α
p

= lim
x→0+

xα−1f(x)

( c−α
p )x

c−α
p −1

= lim
x→0+

( p

c− α

)
xα−1f(x)x1+α−c

p = 0.

Thus
t∫

0

x−cF p(x) dαx =
tα−cF p(t)

α− c
+

p

c− α

t∫
0

x1−cF p−1(x)F ′(x) dαx.

Since F ′(x) = xα−1f(x), we obtain

t∫
0

x−cF p(x) dαx =
tα−cF p(t)

α− c
+

p

c− α

t∫
0

x1−cF p−1(x)xα−1f(x) dαx

≤ p

c− α

t∫
0

xα−cF p−1(x)f(x) dαx ≤ p

c− α

t∫
0

xα−cF p−1(x)f(x) dαx

≤ p

c− α

t∫
0

xα−c F p−1(x)

(x−c)
p−1
p (xc)

p−1
p

f(x) dαx ≤ p

c− α

t∫
0

xα−c

(x−c)
p−1
p

(
(x−cF p(x))

) p−1
p f(x) dαx

≤ p

c− α

t∫
0

xα− c
p
(
x−cF p(x)

) p−1
p f(x) dαx.

Applying Hölder’s inequality with indices p and p/(p− 1), we obtain (note α− c < 0)

t∫
0

x−cF p(x) dαx ≤ p

c− α

( t∫
0

(
(x−cF p(x))

p−1
p

) p
p−1

dαx

) p−1
p
( t∫

0

(xα− c
p f(x))p dαx

) 1
p

≤ p

c− α

( t∫
0

x−cF p(x) dαx

) p−1
p
( t∫

0

(xα− c
p f(x))p dαx

) 1
p

.

Thus ( t∫
0

x−cF p(x) dαx

) 1
p

≤
( p

c− α

)( t∫
0

(xα− c
p f(x))p dαx

) 1
p

,
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and so
t∫

0

x−cF p(x) dαx ≤
( p

c− α

)p t∫
0

(xα− c
p f(x))p dαx.

Let t → ∞, and then
∞∫
0

x−cF p(x) dαx ≤
( p

c− α

)p ∞∫
0

(xα− c
p f(x))p dαx,

which is the desired inequality (3.4).

Remark 3.2. From the proof of Theorem 3.2 we see that if the condition “xα−1f(x) is continuous
on [0,∞)” is replaced either by

(i) xα−1f(x) is continuous on (0,∞) and lim
x→0+

xα+α−c
p f(x) = 0,

or

(ii) lim
x→0+

xα−cF p(x) = 0,

then (3.4) is again true.

Corollary 3.2. In Theorem 3.2, if α = 1, then we have the weighted Hardy inequality (1.2).

Corollary 3.3. In Theorem 3.2, if c = p and α = 1, then we have the classical Hardy inequality (1.1).

Theorem 3.3. Let f be a nonnegative function on (0,∞) and 0 < c < α ≤ 1. Let p > 1. In addition,
assume that xα−1f(x) is continuous on (0,∞) and lim

t→∞
tα+

α−c
p f(t) = 0. Then

∞∫
0

x−c

( ∞∫
x

f(t) dαt

)p

dαx ≤
( p

α− c

)p ∞∫
0

(xα− c
p f(x))p dαx. (3.5)

Proof. Let F (x) :=
∞∫
x

f(s) dαs =
∞∫
x

sα−1f(s) ds and integrate by parts the term
t∫
ϵ

x−cF p(x) dαx (here

t > 0 and 0 < ϵ < t small) with

w(x) = x−cF p(x), Dαg(x) = 1
(
g(x) =

xα

α

)
,

Dαw(x) = x1−α
(
− cx−c−1F p(x) + px−cF p−1(x)F ′(x)

)
.

Then we obtain

t∫
ϵ

x−cF p(x) dαx =
x−cF p(x)xα

α

∣∣∣∣t
ϵ

−
t∫

ϵ

xα

α
x1−α

(
− cx−c−1F p(x) + px−cF p−1(x)F

′
(x)
)
dαx

=
tα−cF p(t)

α
− ϵα−cF p(ϵ)

α
+

c

α

t∫
ϵ

x−cF p(x) dαx− p

α

t∫
ϵ

x1−cF p−1(x)F ′(x) dαx

≤ tα−cF p(t)

α
+

c

α

t∫
ϵ

x−cF p(x) dαx− p

α

t∫
ϵ

x1−cF p−1(x)F ′(x) dαx,

and therefore (letting ϵ → 0+), since α− c > 0, we have
t∫

0

x−cF p(x) dαx ≤ tα−cF p(t)

α− c
− p

α− c

t∫
0

x1−cF p−1(x)F ′(x) dαx.
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Since F ′(x) = −xα−1f(x), we obtain

t∫
0

x−cF p(x) dαx ≤ tα−cF p(t)

α− c
+

p

α− c

t∫
0

x1−cF p−1(x)xα−1f(x) dαx

=
tα−cF p(t)

α− c
+

p

α− c

t∫
0

xα−cF p−1(x)f(x) dαx =
tα−cF p(t)

α− c
+

t∫
0

xα−c F p−1(x)

(x−c)
p−1
p .(xc)

p−1
p

f(x) dαx

=
tα−cF p(t)

α− c
+

t∫
0

xα−c

(x−c)
p−1
p

(
(x−cF (x))p

) p−1
p f(x) dαx

=
tα−cF p(t)

α− c
+

t∫
0

xα− c
p (x−cF p(x))

p−1
p f(x) dαx.

Applying Hölder’s inequality with indices p and p/(p− 1), we obtain

t∫
0

x−cF p(x) dαx ≤ tα−cF p(t)

α− c
+

p

α− c

( t∫
0

(
(x−cF p(x)

) p−1
p

) p
p−1

dαx

) p−1
p
( t∫

0

(
xα− c

p f(x)
)p

dαx

) 1
p

≤ tα−cF p(t)

α− c
+

p

α− c

( t∫
0

x−cF p(x) dαx

) p−1
p
( t∫

0

(
xα− c

p f(x)
)p

dαx

) 1
p

,

so, ( t∫
0

x−cF p(x) dαx

) 1
p

≤ tα−cF p(t)

α− c
+
( p

α− c

)( t∫
0

(xα− c
p f(x))p dαx

) 1
p

.

Thus
t∫

0

x−cF p(x) dαx ≤ tα−cF p(t)

α− c
+
( p

α− c

)p t∫
0

(xα− c
p f(x))p dαx.

Let t → ∞ and note

lim
t→∞

t
α−c
p F (t) = lim

t→∞

∞∫
t

sα−1f(s)

t
c−α
p

ds = lim
t→∞

− tα−1f(t)

( c−α
p )t

c−α
p −1

= − lim
t→∞

( p

c− α

)
f(t)tα+

α−c
p = 0,

so,
∞∫
0

x−cF p(x) dαx ≤
( p

α− c

)p ∞∫
0

(xα− c
p f(x))p dαx,

which is the desired inequality (3.5).

Corollary 3.4. In Theorem 3.3, if α = 1, then we have the weighted Hardy inequality (1.3).
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