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ON THE ANTIPERIODIC PROBLEM FOR SYSTEMS
OF NONLINEAR GENERALIZED ORDINARY

DIFFERENTIAL EQUATIONS

Abstract. A general theorem (principle of a priori boundedness) on the solvability of the antiperi-
odic problem for systems of nonlinear generalized ordinary differential equations is given.
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Let n be a natural number, ω > 0 be a real number, A : Rn → Rn×n be a matrix-function with
bounded total variation components on every closed interval of the real axis, and f : R × Rn → Rn

be a vector-function belonging to the Carathéodory class corresponding to the matrix-function A on
every closed interval of the real axis.

Consider the nonlinear system of generalized ordinary differential equations

dx = dA(t) · f(t, x) (1)

with the antiperiodic condition
x(t+ ω) = −x(t) for t ∈ R. (2)

We will assume that

A(t+ ω) = A(t) + C and f(t+ ω, x) = −f(t,−x) for t ∈ R, x ∈ Rn, (3)

or
A(t+ ω) = −A(t) + C and f(t+ ω, x) = f(t,−x) for t ∈ R, x ∈ Rn, (4)

where C ∈ Rn×n is a constant matrix.
The theorem on the existence of a solution of problem (1), (2), which is given below and called

the principle of a priori boundedness, generalizes the well known Conti–Opial type theorems (see
[6, 7, 12] for the case of ordinary differential equations) and supplements earlier known criteria for
the solvability of nonlinear boundary value and initial problems for systems of generalized ordinary
differential equations (see, e.g., [1–5,11,13,14] and the references therein).

Analogous and related questions are investigated in [7–10] (see also the references therein) for
the boundary value problems for linear and nonlinear systems of ordinary differential and functional
differential equations.

To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enables one to investigate ordinary differential,
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impulsive and difference equations from a unified point of view (see, e.g., [1–5, 11, 13, 14] and the
references therein).

Throughout the paper, the following notation and definitions will be used.
R = ]−∞,+∞[ , R+ = [0,+∞[ , [a, b] (a, b ∈ R) is a closed interval.

Rn×m is the space of all real n×m-matrices X = (xil)
n,m
i,l=1 with the norm ∥X∥ =

n,m∑
i,l=1

|xil|;

Rn×m
+ =

{
(xil)

n,m
i,l=1 : xil ≥ 0 (i = 1, . . . , n; l = 1, . . . ,m)

}
.

On×m (or O) is the zero n×m-matrix.
If X = (xil)

n,m
i,l=1 ∈ Rn×m, then |X| = (|xil|)n,mi,l=1.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ = Rn×1
+ .

If X ∈ Rn×n, then detX is the determinant of X; In is the identity n×n-matrix; diag(λ1, . . . , λn)
is the diagonal matrix with diagonal elements λ1, . . . , λn.

varba(X) is the total variation of the matrix-function X : R → Rn×m on the closed interval [a, b], i.e.,
the sum of total variations of its components xil (i = 1, . . . , n; l = 1, . . . ,m); V (X)(t) = (v(xil)(t))

n,m
i,l=1,

where v(xil)(0) = 0, v(xil)(t) = vart0(xil) for t > 0 and v(xil)(t) = − var0t (xil) for t < 0;
X(t−) and X(t+) are the left and the right limits of the matrix-function X : [a, b] → Rn×m

at the point t (we will assume X(t) = X(a) for t ≤ a and X(t) = X(b) for t ≥ b, if necessary);
∆−X(t) = X(t)−X(t−), ∆+X(t) = X(t+)−X(t);

BV([a, b],Rn×m) is the set of all matrix-functions of bounded variation X : [a, b] → Rn×m (i.e.,
such that varba(X) < +∞);

BVs([a, b],Rn×m) is the normed space of all X ∈ BV([a, b],Rn×m) with the norm ∥X∥s =
sup{∥X(t)∥ : t ∈ [a, b]}.

A matrix-function is said to be continuous, nondecreasing, integrable, etc., if each of its components
is such.

I ⊂ R is an interval.
C(I,Rn×m) is the set of all continuous matrix-functions X : I → Rn×m.
If B1 and B2 are normed spaces, then the operator g : B1 → B2 (nonlinear, in general) is positive

homogeneous if g(λx) = λg(x) for every λ ∈ R+ and x ∈ B1.
The operator φ : BV([a, b],Rn) → Rn is called nondecreasing if for every x, y ∈ BV([a, b],Rn) such

that x(t) ≤ y(t) for t ∈ [a, b] the inequality φ(x)(t) ≤ φ(y)(t) holds for t ∈ [a, b].
If α : I → R is a nondecreasing function, then Dα = {t ∈ I : α(t+)− α(t−) ̸= 0}.
s1, s2, sc : BV([a, b],R) → BV([a, b],R) are the operators defined by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

∆−x(τ) and s2(x)(t) =
∑

a≤τ<t

∆+x(τ) for a < t ≤ b,

and
sc(x)(t) = x(t)− s1(x)(t)− s2(x)(t) for t ∈ [a, b].

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R, then

t∫
s

x(τ) dg(τ) =

∫
]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t

x(τ)∆−g(τ) +
∑

s≤τ<t

x(τ)∆+g(τ) for a ≤ s < t ≤ b,

where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[ with respect to

the measure µ(sc(g)) corresponding to the function sc(g); if a = b, then we assume
b∫
a

x(t) dg(t) = 0;

so,
t∫
s

x(τ) dg(τ) is the Kurzweil–Stieltjes integral (see [11,13,14]);
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L([a, b],R; g) is the space of all functions x : [a, b] → R, measurable and integrable with respect to
the measure µ(gc(g)) for which∑

a<t≤b

|x(t)|∆−g(t) +
∑

a≤t<b

|x(t)|∆+g(t) < +∞,

with the norm ∥x∥L,g =
b∫
a

|x(t)| dg(t).

If gj : [a, b] → R (j = 1, 2) are nondecreasing functions, g(t) ≡ g1(t) − g2(t), and x : [a, b] → R,
then

t∫
s

x(τ) dg(τ) =

t∫
s

x(τ) dg1(τ)−
t∫

s

x(τ) dg2(τ) for a ≤ s ≤ t ≤ b.

If G = (gik)
l,n
i,k=1 : [a, b] → Rl×n is a nondecreasing matrix-function and D ⊂ Rn×m, then

L([a, b], D;G) is the set of all matrix-functions X = (xkj)
n,m
k,j=1 : [a, b] → D such that xkj ∈

L([a, b], R; gik) (i = 1, . . . , l; k = 1, . . . , n; j = 1, . . . ,m);
t∫

s

dG(τ) ·X(τ) =

( n∑
k=1

t∫
s

xkj(τ) dgik(τ)

)l,m

i,j=1

for a ≤ s ≤ t ≤ b,

Sj(G)(t) ≡
(
sj(gik)(t)

)l,n
i,k=1

(j = 1, 2) and Sc(G)(t) ≡
(
sc(gik)(t)

)l,n
i,k=1

.

If D1 ⊂ Rn and D2 ⊂ Rn×m, then Car([a, b] ×D1, D2;G) is the Carathéodory class, i.e., the set
of all mappings F = (fkj)

n,m
k,j=1 : [a, b]×D1 → D2 such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . ,m} and

k ∈ {1, . . . , n}:

(i) the function fkj( · , x) : I → D2 is µ(sc(gik))-measurable for every x ∈ D1;

(ii) the function fkj(t, · ) : D1 → D2 is continuous for µ(sc(gik))-almost every t ∈ I and for every
t ∈ Dgik , and

sup
{
|fkj( · , x)| : x ∈ D0

}
∈ L([a, b],R; gik)

for every compact D0 ⊂ D1.

If Gj : [a, b] → Rl×n (j = 1, 2) are nondecreasing matrix-functions, G(t) ≡ G1(t) − G2(t), and
X : [a, b] → Rn×m, then

t∫
s

dG(τ) ·X(τ) =

t∫
s

dG1(τ) ·X(τ)−
t∫

s

dG2(τ) ·X(τ) for a ≤ s ≤ t ≤ b,

Sk(G)(t) ≡ Sk(G1)(t)− Sk(G2)(t) (k = 1, 2), Sc(G)(t) ≡ Sc(G1)(t)− Sc(G2)(t);

If G1(t) ≡ V (G)(t) and G2(t) ≡ V (G)(t)−G(t), then

L([a, b], D;G) =

2∩
j=1

L([a, b], D;Gj),

Car([a, b]×D1, D2;G) =

2∩
j=1

Car([a, b]×D1, D2;Gj).

If G(t) ≡ diag(t, . . . , t), then we omit G in the notation containing G.
The inequalities between the vectors and between the matrices are understood componentwise.
Below we assume that

A1(t) ≡ V (A)(t) and A2(t) ≡ V (A)(t)−A(t).
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A vector-function x : R → Rn is said to be a solution of system (1) if its restriction on every closed
interval [a, b] ⊂ R belongs to BV([a, b],Rn), and

x(t) = x(s) +

t∫
s

dA(τ) · f(τ, x(τ)) for s ≤ t.

Under the solution of problem (1), (2) we mean a solutions of system (1) satisfying the condition (2).
Let B ∈ BV([a, b],Rn×n), η : [a, b] → Rn and q : BV([a, b],Rn) → BV([a, b],Rn) be a matrix-

function, a vector-function and an operator, respectively. Then by a solution of the system of gener-
alized ordinary differential inequalities

dx− dB(t) · x ≤ dη(t) + dq(x) (≥) for t ∈ [a, b]

we mean a vector-function x ∈ BV([a, b],Rn) such that

x(t)− x(s)−
t∫

s

dB(τ) · x(τ) ≤ η(t)− η(s) + q(x)(t)− q(x)(s) (≥) for a ≤ s ≤ t ≤ b.

In addition, if the vector-function η : [a, b] → Rn is nondecreasing and g : BV([a, b],Rn) →
BV([a, b],Rn

+) is a positive homogeneous nondecreasing operator, then by ΩB,η,g we denote a set of
all solutions of the system

|dx− dB(t) · x| ≤ dη(t) + dg(|x|).

If η(t) ≡ 0 and q is the trivial operator, then we omit η and q in the notations containing ones.
So, ΩB is the set of all solutions of the homogeneous system of generalized differential equations

dx = dB(t) · x.

We define

αl(t) =

n∑
i=1

v(ail)(t) (l = 1, . . . , n) and α(t) =

n∑
i=1

αi(t) for t ∈ R.

Under conditions (3) or (4), it is not difficult to verify that if a vector-function x is a solution of
system (1), then the vector-function y(t) = −x(t + ω) (t ∈ R) will be the solution of system (1), as
well. Indeed, by definition of the solution of the system, using (3) or (4), we have

y(t)− y(s) = −
(
x(t+ ω)− x(s+ ω)

)
= −

t+ω∫
s+ω

dA(τ) · f(τ, x(τ)) =
t∫

s

dA(τ + ω) · f(τ + ω, x(τ + ω))

=

t∫
s

dA(τ) · f(τ, y(τ)) for s < t.

Therefore, if x ∈ BV([a, b],Rn) is a solution of system (1) on the closed interval [0, ω] satisfying the
condition

x(ω) = −x(0), (5)

then its ω-antiperiodic continuation, i.e. the vector-function y(t) = (−1)kx(t − kω) for kω ≤ t <
(k + 1)ω (k = 0,±1,±2, . . . ) will be a solution of the ω-antiperiodic problem (1), (2).

In connection with this fact, we consider the boundary value problem (1), (5) on the closed interval
[0, ω]. Below we will give the sufficient conditions guaranteing the solvability of the latter and hence
of problem (1), (2), as well.
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Definition 1. The pair (P, l) of a matrix-function P ∈ Car([0, ω] × Rn,Rn×n;A) and a continuous
operator l : BVs([0, ω],Rn)× BVs([0, ω],Rn) → Rn is said to be consistent if:

(i) for any fixed x ∈ BVs([0, ω],Rn) the operator l(x, · ) : BVs([0, ω],Rn) → Rn is linear;

(ii) for any z ∈ Rn, x and y ∈ BVs([0, ω],Rn), the inequalities

∥P (t, z)∥ ≤ ξ(t, ∥z∥), ∥l(x, y)∥ ≤ ξ0(∥x∥s) · ∥y∥s

are fulfilled for µ(gc(α))-almost all t ∈ [0, ω] and for t ∈ Dα, where ξ0 : R+ → R+ is a
nondecreasing function, and ξ : [0, ω] × R+ → R+ is a nondecreasing in the second variable
function such that ξ( · , s) ∈ L([0, ω],R+;α) for every s ∈ R+;

(iii) there exists a positive number β such that for any x ∈ BVs([0, ω],Rn), q ∈ L([0, ω],Rn;A) and
c0 ∈ Rn, for which the conditions

det
(
In −∆−A(t) · P (t, x(t))

)
̸= 0 for t ∈ [0, ω]

and
det

(
In +∆+A(t) · P (t, x(t))

)
̸= 0 for t ∈ [0, ω]

hold, an arbitrary solution x of the boundary value problem

dy = dA(t) ·
(
P (t, x(t))y + q(t)

)
, l(x, y) = c0

admits the estimate
∥y∥s ≤ β

(
∥c0∥+ ∥q∥L,α

)
.

Theorem 1. Let A ∈ BV([0, ω],Rn×n), f ∈ Car([0, ω] × Rn, Rn;A) and let there exist a positive
number ρ and a consistent pair (P, l) of a matrix-function P ∈ Car([0, ω] × Rn,Rn×n;A) and a
continuous operator l : BVs([0, ω],Rn) × BVs([0, ω],Rn) → Rn such that an arbitrary solution of the
problem

dx = dA(t) ·
(
P (t, x)x+ λ[f(t, x)− P (t, x)]x

)
, (6)

λ(x(0) + x(ω)) + (1− λ)l(x, x) = 0 (7)

admits the estimate
∥x∥s ≤ ρ (8)

for any λ ∈ ]0, 1[ . Then problem (1), (2) is solvable.

Definition 2. Let S ⊂ BVs([0, ω],Rn×n), L be a subset of the set of all bounded vector-functionals
l : BVs([0, ω],Rn) → Rn, and y ∈ BV([0, ω],Rn). We say that

(i) a matrix-function B0 ∈ BV([0, ω],Rn×n) belongs to the set En
S if the condition

det
(
In −∆−B0(t)

)
̸= 0 and det

(
In +∆+B0(t)

)
̸= 0 for t ∈ [0, ω] (9)

holds and there exists a sequence Bk ∈ S (k = 1, 2, . . . ) such that

lim
k→+∞

∥Bk −B0∥s = 0;

(ii) a vector-functional l0 : BVs([0, ω],Rn) → Rn belongs to the set En
L(y) if there exists a sequence

lk ∈ L (k = 1, 2, . . . ) such that
lim

k→+∞
lk(y) = l0(y).

Definition 3. Let g0 : BV([0, ω],Rn
+) → BV([0, ω],Rn) be a positive homogeneous nondecreasing

operator, and h0 : BVs([0, ω],Rn
+) → Rn

+ be a positive homogeneous operator. We say that the pair
(S,L) of the set S ⊂ BVs([0, ω],Rn×n) and the set L of some vector-functionals l : BVs([0, ω],Rn) →
Rn belongs to the Opial class On

g0,h0
if:
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(i) every operator l ∈ L is linear and continuous with respect to the norm ∥ · ∥s;

(ii) there exist the numbers r0, ξ0 ∈ R+ and a nondecreasing function φ : [0, ω] → R such that the
inequalities

∥B(0)∥ ≤ r0, ∥B(t)−B(s)∥ ≤ φ(t)− φ(s) for 0 ≤ s < t ≤ ω

and
∥l(y)∥ ≤ ξ0∥y∥s

are fulfilled for any B ∈ S, l ∈ L and y ∈ BVs([0, ω],Rn);

(iii) if for B0 ∈ En
S the function y ∈ BVs([0, ω],Rn) is a solution of the system

|dy − dB0(t) · y| ≤ dg0(|y|)

under the condition
|l0(y)| ≤ h0(|y|),

where l0 ∈ En
L(y), then y(t) ≡ 0.

If

g0(y)(t) ≡
t∫

0

dG0(τ) · q0(y)(τ) for y ∈ BV([0, ω],Rn
+),

where G0 : [0, ω] → Rn is a nondecreasing matrix-function, and q0 : BVs([0, ω],Rn
+) → BVs([0, ω],Rn

+)
is a positive homogeneous operator, then we write On

G0,q0,h0
instead of On

g0,h0
.

Definition 4. Let P ∈ Car([0, ω] × Rn,Rn×n;A) and let l : BVs([0, ω],Rn) × BVs([0, ω],Rn) →
Rn be a continuous vector-functional. We say that the pair (B0, l0) of the matrix-function B0 ∈
BV([0, ω],Rn×n) and the vector-functional l0 : BVs([0, ω],Rn) → Rn belongs to the set En

A,P,l if there
exists a sequence xk ∈ BVs([0, ω],Rn) (k = 1, 2, . . . ) such that the conditions

lim
k→+∞

t∫
a

dA(τ) · P (τ, xk(τ)) = B0(t) uniformly on [0, ω] (10)

and
lim

k→+∞
l(xk, y) = l0(y) for y ∈ ΩB0

are valid.

Definition 5. We say that the pair (P, l) of the matrix-function P ∈ Car([0, ω]× Rn,Rn×n;A) and
the continuous operator l : BVs([0, ω],Rn)×BVs([0, ω],Rn) → Rn belongs to the Opial class On

A with
respect to the matrix-function A if:

(i) for any fixed x ∈ BVs([0, ω],Rn), the operator l(x, · ) : BVs([0, ω],Rn) → Rn is linear;

(ii) for any z ∈ Rn, x and y ∈ BVs([0, ω],Rn), the inequalities

∥P (t, z)∥ ≤ ξ(t), ∥l(x, y)∥ ≤ ξ0∥y∥s (11)

are fulfilled for µ(gc(α))-almost all t ∈ [0, ω] and for t ∈ Dα, where ξ0 ∈ R+, and ξ ∈
L([0, ω],R+;α);

(iii) the problem
dy = dB0(t) · y, l0(y) = 0

has only the trivial solution for every pair (B0, l0) ∈ En
A,P,l.
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Remark 1. By (10) and (11), the condition

∥∆−A(t)∥ · ξ(t) < 1 and ∥∆+A(t)∥ · ξ(t) < 1 for t ∈ [0, ω]

guarantees condition (9).

Corollary 1. Let A ∈ BV([0, ω],Rn×n), f ∈ Car([0, ω] × Rn,Rn;A) and let there exist a positive
number ρ and a pair (P, l) ∈ On

A such that an arbitrary solution of problem (6), (7) admits estimate
(8) for any λ ∈ ]0, 1[ . Then problem (1), (2) is solvable.

Corollary 2. Let A ∈ BV([0, ω],Rn×n), f ∈ Car([0, ω]× Rn,Rn;A), P ∈ L([0, ω],Rn×n;A), and let
l : BVs([0, ω],Rn) → Rn be a bounded linear operator such that

det
(
In −∆−A(t) · P (t)

)
̸= 0 and det

(
In +∆+A(t) · P (t)

)
̸= 0 for t ∈ [0, ω]

and the problem
dy = dA(t) · P (t)y, l(y) = 0

has only the trivial solution. Let, moreover, there exists a positive number ρ such that an arbitrary
solution of the problem

dx = dA(t) ·
(
P (t)x+ λ[f(t, x)− P (t)x]

)
,

λ
(
x(0) + x(ω)

)
+ (1− λ)l(x) = 0

admits estimate (8) for any λ ∈ ]0, 1[ . Then problem (1), (2) is solvable.

The following result is analogous to the well-known one belonging to R. Conti and Z. Opial for the
boundary value problems for ordinary nonlinear differential equations (see [6, 7, 12]).

Corollary 3. Let A ∈ BV([0, ω],Rn×n), f ∈ Car([0, ω] × Rn,Rn;A) and let a pair (P, l) ∈ On
A be

such that
|f(t, x)− P (t, x)x| ≤ β(t, ∥x∥) for t ∈ [0, ω], x ∈ Rn, (12)

and
|x(0) + x(ω)− l(x, x)| ≤ l0(|x|) + l1(∥x∥s) for x ∈ BVs([0, ω],Rn), (13)

where β ∈ Car([0, ω] × R+,Rn
+;A) is a nondecreasing in the second variable vector-function,

l0 : BVs([0, ω],Rn
+) → Rn

+ is a positive homogeneous continuous operator, and l1 ∈ C(R+,Rn
+).

Let, moreover,

lim
k→+∞

1

ρ

b∫
a

dV (A)(τ) · β(τ, ρ) = 0n, lim
ρ→+∞

l1(ρ)

ρ
= 0n. (14)

Then problem (1), (2) is solvable.

By YP (x) we denote the fundamental matrix of the system

dy = dA(t) · P (t, x(t)) y

for every x ∈ BVs([0, ω],Rn), satisfying the condition YP (x)(a) = In.

Corollary 4. Let A ∈ BV([0, ω],Rn×n), f ∈ Car([0, ω]× Rn,Rn;A), P ∈ Car([0, ω]× Rn,Rn×n;A)
and a continuous operator l : BVs([0, ω],Rn)×BVs([0, ω],Rn) → Rn, satisfying conditions (i) and (ii)
of Definition 5, be such that conditions (12)–(14) hold, where β ∈ Car([0, ω]×R+,Rn

+;A) is a nonde-
creasing in the second variable vector-function, l0 : BVs([0, ω],Rn

+) → Rn
+ is a positive homogeneous

continuous operator, and l1 ∈ C(R+,Rn
+). Let, moreover,

inf
{
|det(l(x, YP (x)))| : x ∈ BVs([0, ω],Rn)

}
> 0. (15)

Then problem (1), (2) is solvable.
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Remark 2. In Corollary 4, condition (15) cannot be replaced by the condition

det(l(x, YP (x))) ̸= 0 for x ∈ BVs([0, ω],Rn). (16)

The corresponding example for the ordinary differential systems, i.e., for the case where A(t) ≡
diag(t, . . . , t), has been constructed in [8]. Basing on these example, it is not difficult to construct
analogous examples for the case where A(t) ̸≡ diag(t, . . . , t). Consider the scalar boundary value
problem

dx =

(
|x|x

1 + |x|
+ 1

)
dα(t), x(0) = −x(ω),

where α(t) = 0 for 0 ≤ t ≤ c and α(t) = −2 for c < t ≤ ω, and c = ω/2. Every solution of the system
has the form

x(t) =

x(0) for 0 ≤ t ≤ c,

x(0)− 2
( |x(0)|x(0)
1 + |x(0)|

+ 1
)

for c < t ≤ ω.

This problem is not solvable because the equation x(0) + x(ω) = 0 is not solvable with respect to the
x(0). On the other hand, if we assume P (t, x) = |x|

1+|x| and l(x, y) = y(0) + y(ω) in this case, then

Y (t) =

1 for 0 ≤ t ≤ c,

1− 2|x(c)|
1 + |x(c)|

for c < t ≤ ω

for x ∈ BVs([0, ω],Rn) and, therefore,

det(l(x, YP (x))) =
2

1 + |x(c)|
for x ∈ BVs([0, ω],Rn).

Thus, all conditions of Corollary 4 are fulfilled except of condition (15), instead of which condition
(16) holds.

Remark 3. In particular, we can assume that l(x, y) ≡ x(0) + x(ω) and l(x) = l(x, x) ≡ x(0) + x(ω)
in the results given above. So, for example, the second estimate in condition (ii) of Definition 1 is
fulfilled. Condition (7) in Theorem 1 and Corollary 1 as well as the analogous condition in Corollary 2
coincides to condition (3). Condition (13) is valid for the l0 ≡ 0 and l1 ≡ 0 operators.
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