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Abstract. We study a nonlocal boundary value problem for nonlinear functional differential equa-
tions. New effective conditions are found for the solvability and unique solvability of the problem
under consideration. General results are applied to differential equations with deviating arguments.∗
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Introduction
On the interval [a, b], we consider the functional differential equation

u′(t) = F (u)(t), (0.1)

where F : C([a, b];R) → L([a, b];R) is a continuous (in general) nonlinear operator. As usually, by
a solution of this equation we understand an absolutely continuous function u : [a, b] → R satisfy-
ing equality (0.1) almost everywhere on [a, b]. Along with equation (0.1), we consider the nonlocal
boundary condition

h(u) = φ(u), (0.2)
where φ : C([a, b];R) → R is a continuous (in general) nonlinear functional and h : C([a, b];R) → R
is a (nonzero) linear bounded functional.

The following notation is used in the sequel.

- R is the set of all real numbers. R+ = [0,+∞[ .

- C([a, b];R) is the Banach space of continuous functions v : [a, b] → R with the norm ∥v∥C =
max{|v(t)| : t ∈ [a, b]}.

- AC([a, b];R) is the set of absolutely continuous functions v : [a, b] → R.

- L([a, b];R) is the Banach space of Lebesgue integrable functions p : [a, b] → R with the norm

∥p∥L =
b∫
a

|p(s)|ds.

- L([a, b];R+) =
{
p ∈ L([a, b];R) : p(t) ≥ 0 for almost all t ∈ [a, b]

}
.

- Lab is the set of linear operators ℓ : C([a, b];R) → L([a, b];R) for which there exists a function
η ∈ L([a, b];R+) such that

|ℓ(v)(t)| ≤ η(t)∥v∥C for a.e. t ∈ [a, b] and all v ∈ C([a, b];R).

- Pab is the set of so-called positive operators ℓ ∈ Lab transforming the set C([a, b];R+) into the
set L([a, b];R+).

- Fab is the set of linear bounded functionals h : C([a, b];R) → R.

- PFab is the set of so-called positive functionals h ∈ Fab transforming the set C([a, b];R+) into
the set R+.

- Bi
hc = {u ∈ C([a, b];R) : h(u) sgn

(
(2− i)u(a)+(i−1)u(b)

)
≤ c}, where h ∈ Fab, c ∈ R, i = 1, 2.

- K([a, b] × A;B), where A,B ⊆ R, is the set of function f : [a, b] × A → B satisfying the
Carathéodory conditions, i.e., f( · , x) : [a, b] → B is a measurable function for all x ∈ A,
f(t, · ) : A → B is a continuous function for almost every t ∈ [a, b], and for every r > 0, there
exists qr ∈ L([a, b];R+) such that

|f(t, x)| ≤ qr(t) for a.e. t ∈ [a, b] and all x ∈ A, |x| ≤ r.

As usual, throughout the paper we suppose the following assumptions on a nonlinear operator F
and a functional φ:

F : C([a, b];R) → L([a, b];R) is a continuous operator such that the relation
sup

{
|F (v)( · )| : v ∈ C([a, b];R), ∥v∥C ≤ r

}
∈ L([a, b];R+) holds for every r > 0.

(H1)

and
φ : C([a, b];R) → R is a continuous functional such that the condition

sup
{
|φ(v)| : v ∈ C([a, b];R), ∥v∥C ≤ r

}
< +∞ holds for every r > 0.

(H2)
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The solvability of boundary value problems for functional differential equations is being studied
intensively. There are many interesting results in the literature (see, e.g., [1–6, 8] and references
therein). But in the case, where a nonlocal boundary condition is considered, there are still many
open problems.

In this paper, we generalize the results stated in [4] in such a way that the boundary condition
(0.2) is considered as a nonlocal perturbation of the two point condition

u(a) + λu(b) = φ(u). (0.3)

where λ ∈ R+. Consequently, in what follows, we consider the linear functional h in the form

h(v)
def
= v(a) + λv(b)− h0(v) + h1(v) for v ∈ C([a, b];R), (0.4)

where λ ∈ R+ and h0, h1 ∈ PFab. There is no loss of generality to assume h like the above one,
because an arbitrary linear functional h can be represented in this form.

One can see that a particular case of equation (0.1) is, for example, the differential equation with
deviating arguments

u′(t) = p(t)u(τ(t))− g(t)u(σ(t)) + f
(
t, u(t), u(µ(t))

)
, (0.5)

where p, g ∈ L([a, b];R+), τ, σ, µ : [a, b] → [a, b] are measurable functions, and f ∈ K([a, b]× R2;R).
We mention that the conditions for the solvability and unique solvability of boundary value problems
for this equation are presented in Section 2.

On the other hand, the boundary condition (0.2) covers, for example, the Cauchy problem, anti-

periodic problem, condition (0.3) and an integral condition of the form
b∫
a

u(s)ds = c.

The statements formulated below generalize some results stated in [7] concerning the linear case,
as well as, some results presented in [4] concerning problem (0.1), (0.3).

1 Main results
In this section, new effective conditions are found for the solvability and unique solvability of problem
(0.1), (0.2).

Theorem 1.1. Let c ∈ R+, h be defined by (0.4), where λ ∈ ]0, 1] and

h0(1) < λ. (1.1)

Let, moreover,
φ(v) sgn v(b) ≤ c for v ∈ C([a, b];R) (1.2)

and there exist
ℓ0, ℓ1 ∈ Pab (1.3)

such that on the set B2
hc([a, b];R) the inequality(

F (v)(t)− ℓ0(v)(t) + ℓ1(v)(t)
)

sgn v(t) ≥ −q(t, ∥v∥C) for a.e. t ∈ [a, b] (1.4)

holds, where the function q ∈ K([a, b]× R+;R+) satisfies

lim
x→+∞

1

x

b∫
a

q(s, x)ds = 0. (1.5)

If, in addition,
(1 + h1(1))∥ℓ0(1)∥L + λ∥ℓ1(1)∥L < λ− h0(1), (1.6)

then problem (0.1), (0.2) has at least one solution.
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Remark 1.1. Let the operator ψ : L([a, b];R) → L([a, b];R) be defined by the formula

ψ(z)(t)
def
= z(a+ b− t) for a.e. t ∈ [a, b] and all z ∈ L([a, b];R).

Let, moreover, λ ∈ [1,+∞[, ω be the restriction of ψ to the space C([a, b];R), and

F̂ (z)(t)
def
= −ψ(F (ω(z)))(t) for a.e. t ∈ [a, b] and all z ∈ C([a, b];R),

ĥ(z)
def
= z(a) +

1

λ
z(b)− 1

λ
h0(ω(z)) +

1

λ
h1(ω(z)) for z ∈ C([a, b];R),

φ̂(z)
def
=

1

λ
φ(ω(z)) for z ∈ C([a, b];R).

It is not difficult to verify that if u is a solution of problem (0.1), (0.2), then the function v def
= ω(u) is

a solution of the problem
v′(t) = F̂ (v)(t), ĥ(v) = φ̂(v), (1.7)

and vice versa, if v is a solution of problem (1.7), then the function u def
= ω(v) is a solution of problem

(0.1), (0.2).
Using the transformation described in the previous remark, we can immediately derive from The-

orem 1.1 the following statement.
Theorem 1.2. Let c ∈ R+, h be defined by (0.4), where λ ∈ [1,+∞[ and

h0(1) < 1. (1.8)

Let, moreover, the condition

φ(v) sgn v(a) ≤ c for v ∈ C([a, b];R) (1.9)

be fulfilled and there exist ℓ0, ℓ1 ∈ Pab such that on the set B1
hc([a, b];R) the inequality(

F (v)(t)− ℓ0(v)(t) + ℓ1(v)(t)
)

sgn v(t) ≤ q(t, ∥v∥C) for a.e. t ∈ [a, b]

hold, where the function q ∈ K([a, b]× R+;R+) satisfies (1.5). If, in addition,

∥ℓ0(1)∥L + (λ+ h1(1))∥ℓ1(1)∥L < 1− h0(1), (1.10)

then problem (0.1), (0.2) has at least one solution.
The next theorems deal with the unique solvability of problem (0.1), (0.2).

Theorem 1.3. Let h be defined by (0.4), where λ ∈ [0, 1[ and h0(1) satisfies (1.1). Let, moreover,
the condition

(φ(v)− φ(w)) sgn(v(b)− w(b)) ≤ 0 (1.11)
hold for every v, w ∈ C([a, b];R) and there exist ℓ0, ℓ1 ∈ Pab such that on the set B2

hc([a, b];R) with
c = |φ(0)| the inequality(

F (v)(t)− F (w)(t)− ℓ0(v − w)(t) + ℓ1(v − w)(t)
)

sgn(v(t)− w(t)) ≥ 0 (1.12)

is fulfilled for a.e. t ∈ [a, b]. If, in addition, condition (1.6) is satisfied, then problem (0.1), (0.2) is
uniquely solvable.
Theorem 1.4. Let h be defined by (0.4), where λ ≥ 1 and h0(1) satisfies (1.8). Let, moreover, the
condition

(φ(v)− φ(w)) sgn(v(a)− w(a)) ≤ 0 (1.13)
hold for every v, w ∈ C([a, b];R) and there exist ℓ0, ℓ1 ∈ Pab such that, on the set B1

hc([a, b];R) with
c = |φ(0)|, the inequality(

F (v)(t)− F (w)(t)− ℓ0(v − w)(t) + ℓ1(v − w)(t)
)

sgn(v(t)− w(t)) ≤ 0 (1.14)

is fulfilled for a.e. t ∈ [a, b]. If, in addition, condition (1.10) is satisfied, then problem (0.1), (0.2) is
uniquely solvable.
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2 Corollaries for nonlinear delay differential equations
In this section, corollaries of the main theorems are presented. We formulate the conditions guaran-
teeing the solvability and the unique solvability of the problem

u′(t) = p(t)u(τ(t))− g(t)u(σ(t)) + f(t, u(t), u(µ(t)), (0.5)
φ(u) = h(u), (0.2)

where a linear functional h is considered by formula (0.4).

Corollary 2.1. Let c ∈ R+ and h be defined by (0.4), where λ ∈ [0, 1[ and h0(1) satisfies (1.1). Let,
moreover, (1.2) and

f(t, x, y) sgnx ≥ −q(t) for a.e. t ∈ [a, b] and all x, y ∈ R

be satisfied, where q ∈ L([a, b];R+). If, in addition,

(1 + h1(1))

b∫
a

p(s)ds+ λ

b∫
a

g(s)ds < λ− h0(1), (2.1)

then problem (0.5), (0.2) has at least one solution.

Corollary 2.2. Let c ∈ R+ and h be defined by (0.4), where λ ≥ 1 and h0(1) satisfies (1.8). Let,
moreover, (1.9) and

f(t, x, y) sgnx ≤ q(t) for a.e. t ∈ [a, b] and all x, y ∈ R

be satisfied, where q ∈ L([a, b];R+). If, in addition,

b∫
a

p(s)ds+ (λ+ h1(1))

b∫
a

g(s)ds < 1− h0(1), (2.2)

then problem (0.5), (0.2) has at least one solution.

Corollary 2.3. Let h be defined by (0.4), where λ ∈ [0, 1[ and h0(1) satisfies (1.1). Let, moreover,
conditions (2.1) and[

f(t, x1, y1)− f(t, x2, y2)
]

sgn(x1 − x2) ≥ 0 for a.e. t ∈ [a, b] and all x1, x2, y1, y2 ∈ R

hold. If, in addition, condition (1.11) is fulfilled for every v, w ∈ C([a, b];R), then problem (0.5), (0.2)
is uniquely solvable.

Corollary 2.4. Let h be defined by (0.4), where λ ≥ 1 and h0(1) satisfies (1.8). Let, moreover,
conditions (2.2) and[

f(t, x1, y1)− f(t, x2, y2)
]

sgn(x1 − x2) ≤ 0 for a.e. t ∈ [a, b] and all x1, x2, y1, y2 ∈ R

hold. If, in addition, condition (1.13) is fulfilled for every v, w ∈ C([a, b];R), then problem (0.5), (0.2)
is uniquely solvable.

3 Auxiliary propositions
We use the lemma on a priory estimate stated in [6] to prove main results of the paper. It can be
formulated as follows.
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Lemma 3.1 ([6, Corollary 2]). Let there exist a positive number ρ and an operator ℓ ∈ Lab such that
the homogeneous problem

u′(t) = ℓ(u)(t), h(u) = 0 (3.1)
has only the trivial solution, and for every δ ∈ ]0, 1[ an arbitrary function u ∈ AC([a, b];R) satisfyings
the relation

u′(t) = ℓ(u)(t) + δ
[
F (u)(t)− ℓ(u)(t)

]
for a.e. t ∈ [a, b], h(u) = δφ(u) (3.2)

admits the estimate
∥u∥C ≤ ρ. (3.3)

Then problem (0.1), (0.2) has at least one solution.

Definition 3.1. Let h ∈ Fab. We say that an operator ℓ ∈ Lab belongs to the set U(h), if there exists
r > 0 such that for arbitrary q∗ ∈ L([a, b];R+) and c ∈ R+ every function u ∈ AC([a, b];R) satisfying
the inequalities

h(u) sgnu(b) ≤ c, (3.4)
−(u′(t)− ℓ(u)(t)) sgnu(t) ≤ q∗(t) for a.e. t ∈ [a, b] (3.5)

admits the estimate
∥u∥C ≤ r(c+ ∥q∗∥L). (3.6)

Lemma 3.2. Let c ∈ R+ and (1.2) hold. Let, moreover, there exists ℓ ∈ U(h) such that on the set
B2
hc([a, b];R) the inequality

−(F (v)(t)− ℓ(v)(t)) sgn v(t) ≤ q(t, ∥v∥C) for a.e. t ∈ [a, b] (3.7)

is fulfilled, where the function q ∈ K([a, b]× R+;R+) satisfies (1.5). Then problem (0.1), (0.2) has at
least one solution.

Proof. Since ℓ ∈ U(h), it is not difficult to show that the homogeneous problem (3.1) has only the
trivial solution.

Assume that a function u ∈ AC([a, b];R) satisfies (3.2) with some δ ∈ ]0, 1[. By virtue of (1.2),
inequality (3.4) is fulfilled, i.e., u ∈ B2

hc([a, b];R). Moreover, from relations (3.2) and (3.7) we obtain
that (3.5) holds with q∗ ≡ q( · , ∥u∥C). Therefore, in view of (3.4), (3.5) and the assumption ℓ ∈ U(h),
there exist r > 0 such that estimate (3.6) holds.

On the other hand, according to (1.5), there exists ρ > 2rc such that

1

x

b∫
a

q(s, x)ds < 1

2r
for x > ρ.

The last inequality, together with (3.6), yields that estimate (3.3) is satisfied. Since ρ depends neither
on u nor on δ, it follows from Lemma 3.1 that problem (0.1), (0.2) has at least one solution.

4 Proofs of main theorems
Proof of Theorem 1.1. Put ℓ = ℓ0− ℓ1, where ℓ0, ℓ1 ∈ Pab are such that condition (1.6) holds. Firstly,
we show that ℓ belongs to the set U(h).

Let c ∈ R+, q∗ ∈ L([a, b];R+), and u ∈ AC([a, b];R) satisfy (3.4) and (3.5). We prove that estimate
(3.6) holds, where the number r depends only on ∥ℓ0(1)∥L, ∥ℓ1(1)∥L, λ, h0(1), and h1(1).

It is obvious that

u′(t) = ℓ0(u)(t)− ℓ1(u)(t) + q̃(t) for a.e. t ∈ [a, b], (4.1)

where
q̃(t) = u′(t)− ℓ(u)(t) for a.e. t ∈ [a, b].
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Hence, in view of (0.4), (3.4) and (3.5), we get(
u(a) + λu(b)− h0(u) + h1(u)

)
sgnu(b) ≤ c (4.2)

and
−q̃(t) sgnu(t) ≤ q∗(t) for a.e. t ∈ [a, b]. (4.3)

First suppose that the function u does not change its sign. Then from (4.2) it follows that

|u(a)|+ λ|u(b)| − h0(|u|) + h1(|u|) ≤ c if u(b) ̸= 0. (4.4)

Put
M0 = max{|u(t)| : t ∈ [a, b]} (4.5)

and choose tM0 ∈ [a, b] such that
|u(tM0

)| =M0. (4.6)
Clearly, M0 ≥ 0 and, in view of (1.3), (4.3) and (4.6), from relation (4.1) we get

−|u(t)|′ ≤M0ℓ1(1)(t) + q∗(t) for a.e. t ∈ [a, b].

The integration of the last inequality from tM0
to b with respect to (1.3), (4.4), (4.6), λ ∈ ]0, 1] and

h0, h1 ∈ PFab, results in
M0

(
λ− h0(1)− λ∥ℓ1(1)∥L

)
≤ ∥q∗∥L + c. (4.7)

Moreover, it follows from condition (1.6) that λ− h0(1)−λ∥ℓ1(1)∥L > 0 and thus, relations (4.5) and
(4.7) yield

∥u∥C ≤
(
∥q∗∥L + c

)(
λ− h0(1)− λ∥ℓ1(1)∥L

)−1
.

Consequently, estimate (3.6) holds with r = (λ− h0(1)− λ∥ℓ1(1)∥L)−1.
Suppose now that the function u changes its sign. Put

m = −min{u(t) : t ∈ [a, b]}, M = max{u(t) : t ∈ [a, b]} (4.8)

and choose tm, tM ∈ [a, b] such that

−m = u(tm), M = u(tM ). (4.9)

Obviously, m > 0, M > 0, and either
tm > tM (4.10)

or
tm < tM . (4.11)

Suppose that relation (4.10) holds. Then there exists a1 ∈ ]tM , tm[ such that

u(a1) = 0, u(t) > 0 for tM ≤ t < a1. (4.12)

Let
a2 = sup

{
t ∈ [tm, b] : u(s) < 0 for tm ≤ s ≤ t

}
.

Obviously,
u(t) < 0 for tm ≤ t < a2 and if a2 < b then u(a2) = 0. (4.13)

Hence, in view of (4.2) and (4.9), we obtain

λu(a2) ≥ −M(1 + h1(1))−mh0(1)− c. (4.14)

Integrating (4.1) from tM to a1 and from tm to a2, with respect to (1.3), (4.3), (4.8), (4.9), (4.12),
(4.13), and (4.14), one gets

M ≤M

a1∫
tM

ℓ1(1)(s)ds+m

a1∫
tM

ℓ0(1)(s)ds+
a1∫

tM

q∗(s)ds
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and

λm−M
(
1 + h1(1)

)
−mh0(1)− c ≤ λM

a2∫
tm

ℓ0(1)(s)ds+ λm

a2∫
tm

ℓ1(1)(s)ds+ λ

a2∫
tm

q∗(s)ds.

Hence, we have
M(1−A) ≤ mC + ∥q∗∥L,

m(λ− h0(1)− λB) ≤M(1 + h1(1) + λD) + λ∥q∗∥L + c,
(4.15)

where

A =

a1∫
tM

ℓ1(1)(s)ds, B =

a2∫
tm

ℓ1(1)(s)ds, C =

a1∫
tM

ℓ0(1)(s)ds, D =

a2∫
tm

ℓ0(1)(s)ds.

By virtue of (1.6) and λ ∈ ]0, 1], it is clear that λ − h0(1) − λB > 0 and 1 − A > 0. Consequently,
inequalities (4.15) imply

0< M(1−A)(λ−h0(1)−λB)≤C
(
M(1+h1(1)+λD)+λ∥q∗∥L+c

)
+∥q∗∥L(λ−h0(1)−λB),

0 < m(1−A)(λ− h0(1)− λB) ≤ (mC + ∥q∗∥L)
(
1 + h1(1) + λD

)
+ (1−A)(λ∥q∗∥L + c).

(4.16)

Observe that

(1−A)(λ− h0(1)− λB) ≥ λ− λ(A+B)− h0(1) ≥ λ− λ∥ℓ1(1)∥L − h0(1). (4.17)

Moreover, from (1.6) and λ ∈ ]0, 1] we get

C(1 + h1(1) + λD) ≤ (1 + h1(1))(C +D) ≤ (1 + h1(1))∥ℓ0(1)∥L. (4.18)

In view of inequalities (1.6), (4.17), and (4.18), it follows from (4.16) that

M ≤ r0
(
1 + λ+ h1(1) + λ∥ℓ0(1)∥L

)
(c+ ∥q∗∥L),

m ≤ r0
(
1 + λ+ h1(1) + λ∥ℓ0(1)∥L

)
(c+ ∥q∗∥L),

(4.19)

where
r0 =

(
λ− h0(1)− λ∥ℓ1(1)∥L − (1 + h1(1))∥ℓ0(1)∥L

)−1

. (4.20)

Consequently, estimate (3.6) holds, where the number r is given by

r = r0
(
1 + λ+ h1(1) + λ∥ℓ0(1)∥L

)
. (4.21)

Let now (4.11) hold. Then there exists a3 ∈ ]tM , tm[ such that

u(a3) = 0, u(t) < 0 for tm ≤ t < a3. (4.22)

Put
a4 = sup

{
t ∈ [tM , b] : u (s) > 0 for tM ≤ s ≤ t

}
.

It is clear that u(t) > 0 for tM ≤ t < a4 and if a4 < b then u(a4) = 0. Hence, by virtue of (4.2), we
obtain

λu(a4) ≤ m+Mh0(1) +mh1(1) + c. (4.23)

Integrating (4.1) from tm to a3 and from tM to a4 and taking into account (1.3), (4.3), (4.8), (4.9),
(4.22) and (4.23), one gets

m ≤M

a3∫
tm

ℓ0(1)(s)ds+m

a3∫
tm

ℓ1(1)(s)ds+
a3∫

tm

q∗(s)ds
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and

−m−Mh0(1)−mh1(1)− c+ λM ≤ λm

a4∫
tM

ℓ0(1)(s)ds+ λM

a4∫
tM

ℓ1(1)(s)ds+ λ

a4∫
tM

q∗(s)ds.

Hence,
m(1− Ã) ≤MC̃ + ∥q∗∥L,

M
(
λ− h0(1)− λB̃

)
≤ m

(
1 + h1(1) + λD̃

)
+ c+ λ∥q∗∥L,

(4.24)

where

Ã =

a3∫
tm

ℓ1(1)(s)ds, B̃ =

a4∫
tM

ℓ1(1)(s)ds, C̃ =

a3∫
tm

ℓ0(1)(s)ds, D̃ =

a4∫
tM

ℓ0(1)(s)ds.

In view of λ ∈ ]0, 1] and (1.6), we have λ− h0(1)− λB̃ > 0 and 1− Ã > 0. Therefore, inequalities
(4.24) yield

0 < m(1− Ã)
(
λ− h0(1)− λB̃

)
≤ mC̃(1 + h1(1) + λD̃) + (∥q∗∥L + c)

(
1 + λ+ h1(1) + ∥ℓ0(1)∥L

)
,

0 < M(1− Ã)
(
λ− h0(1)− λB̃

)
≤MC̃(1 + h1(1) + λD̃) + (∥q∗∥L + c)

(
1 + λ+ h1(1) + ∥ℓ0(1)∥L

)
.

Now, analogously as in case (4.10), we show that relations (4.19) hold with r0 given by (4.20).
Consequently, estimate (3.6) is fulfilled, where the number r is defined by (4.21).

We have proved that estimate (3.6) holds in all possible cases and therefore, the operator ℓ = ℓ0−ℓ1
belongs to the set U(h). Therefore, it follows from Lemma 3.2 that problem (0.1), (0.2) has at least
one solution.

Proof of Theorem 1.2. According to Remark 1.1, the assertion of the theorem follows immediately
from Theorem 1.1.

Proof of Theorem 1.3. It follows from assumption (1.11) that inequality (1.2) is fulfilled on the set
C([a, b];R), where c = |φ(0)|. On the other hand, from (1.12) we get that inequality (1.4) holds on the
set B2

hc([a, b];R), where q ≡ |F (0)|. Consequently, according to Theorem 1.1, problem (0.1), (0.2) has
at least one solution. Moreover, it follows from the proof of Theorem 1.1 that the operator ℓ = ℓ0− ℓ1
belongs to the set U(h).

It remains to prove that problem (0.1), (0.2) has at most one solution. Let u1, u2 be solutions of
problem (0.1), (0.2). Put

u(t) = u1(t)− u2(t) for t ∈ [a, b].

From relations (1.11) and (1.12), we get u1, u2 ∈ B2
hc([a, b];R) with c ≡ |φ(0)|,

h(u) sgnu(b) ≤ 0,

and
−(u′(t)− ℓ(u)(t)) sgnu(t) ≤ 0 for a.e. t ∈ [a, b].

Consequently, the last inequalities, together with ℓ ∈ U(h), result in u ≡ 0, which yields u1 ≡ u2.

Proof of Theorem 1.4. The assertion can be proved analogously to Theorem 1.3. We only use Theo-
rem 1.2 instead of Theorem 1.1 and relations (1.13), (1.14) instead of (1.11), (1.12).

Proofs of Corollaries 2.1–2.4. The assertions of corollaries follow from Theorems 1.1–1.4.
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