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ON A RESOLVENT APPROACH IN A MIXED PROBLEM
FOR THE WAVE EQUATION ON A GRAPH



Abstract. We study a mixed problem for the wave equation with integrable potential on the simplest
geometric graph consisting of two ring edges that touch at a point. We use a new resolvent approach
in the Fourier method. We do not use refined asymptotic formulas for the eigenvalues and any
information on the eigenfunctions.*
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We consider the simplest geometric graph consisting of two ring edges that touch at a point (at
the node of the graph). Parametrizing each edge by the interval [0, 1], we study the following mixed
problem for the wave equation on this graph:

0?u;j(z,t) B 0?u;j(z,t)
ot? ox?
u1(0,t) = u1(1,t) = ua(0,t) = ua(l,t),
ullz(oat) - u/lac(lvt> + U/Qm(oat) - uér(lvt) = 07
u1(2,0) = p1(z), u2(2,0) = pa2(x), uly(z,0) = uh(z,0)=0.

_Qj(x)uj(xvt)7 T e [07 1}7 te (—OO,—H)O) (] = 172)a

Conditions (2), (3) are generated by the structure of the graph.

In this problem the application of the Fourier method causes difficulties associated with the fact
that the eigenvalues of the corresponding spectral problem might be multiple. These difficulties can
be coped with by applying the resolvent approach [1]. Note that we do not use refined asymptotic
formulas for the eigenvalues and any information on the eigenfunctions. Besides, we use Krylov’s
idea [2, Chapter VI] concerning the convergence acceleration of Fourier-like series.

The following result was obtained in [3]:

Theorem 1. If ¢;(x) € C[0,1] are complez-valued, p;(z) € C?[0,1] and are complex-valued, ¢1(0) =

©1(1) = 2(0) = p2(1), ¥1(0) = 1 (1) + ©5(0) — ¥5(1) =0, ¥ (0) = Y (1) = ¢3(0) = 5(1), then the
formal solution by Fourier method is a classical solution of problem (1)—(4).

Now, we assume that ¢;(z) € L[0,1] are complex-valued. Then a classical solution is defined as
a function w(z,t) such that u(x,t) and its first derivatives with respect to x and t are absolutely
continuous, and satisfies the boundary and initial conditions (2)—(4) and the differential equation (1)
almost everywhere. Here we use the scheme of analysis given in [4-6].

We assume that the vector functions ¢(z) and ¢’(z) are absolutely continuous and such that satisfy
the following conditions:

©1(0) = ¢1(1) = ¢2(0) = 2(1),  #1(0) — ¥4 (1) + ¢5(0) — 5(1) =0, Ly € L3[0,1].  (5)
Everywhere, by L3]0, ] we denote the space of vector functions f(x) = (fi(z), fo(z))? such that
fr(z) € L2]0,1] (k =1,2), T denotes the transpose.

1 The transformation of a formal solution

The Fourier method is related to the spectral problem Ly = Ay for the operator

Ly = (—(2) — a1 (@)1 (2), —93 (2) — @2(@)y2(2)) ",y = y(@) = (1 (2), o (@))”

with the boundary conditions

y1(0) = y1(1) = 32(0) = y2(1),  ¥1(0) — y1(1) +15(0) — y5(1) = 0.

By Ry = (L —AE)™}, RS = (L° — AE)~! are denoted the resolvents of the operators L and L°,
where L° is L with gj(z) = 0 (E is the identity operator, and A is the spectral parameter). In the
sequel the notation corresponding to L° is marked with a zero index.

The formal solution u(z,t) = (uy(x,t),us(x,t))T of problem (1)—(4) produced by the Fourier
method can be represented as

u(z,t) = 2m(/ Z/) (Rx)(x) cos pt d,

[A]=r n>n0

where r > 0 is fixed and such that all the eigenvalues \,,, with n < ng, belong to the disk |[A\| < r, and

there are no eigenvalues of L on the contour |A| = r; v, are the contours of sufficiently small radius

in A-plane such that all the eigenvalues of operators L and L°® with n > ng are only inside ~,,.
Proceeding as in [1], we obtain the following result.
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Theorem 2. The formal solution can be represented as

u(z,t) = uo(z,t) + ui(z,1),

where
ug(z, t) o < / >Z /) cosptd)\,
n2mno.,
ml@t) =55 ( / > /) Rxg— R3g] cos pt d),

IAl=r n>n0

g= (L — uoE)p, uo is not an eigenvalue of L or L°, |po| > r, and po lies outside ~,, for n > ng.

2 Spectral problem and resolvent

Let A = p?, where Rep > 0. Denote by {y;1(z),yj2(z)} (j = 1,2), the fundamental systems of
solutions of the equations
yi (@) = a;(2)y; (@) + p*y;(2) =0, (j=1,2)

with initial conditions

yjl(o) =1, y;’l(o) =0,
¥j2(0) =0, yj5(0) =1

yh(x) = cospz, (y}1(x)) = —psin pa,
sin px
y?z(x) = P (%‘2(1’))/ = CO8 P
From [7] it follows that all p for which A = p? are the eigenvalues of the operator L belong to the
semi-infinite strip S = {p|Rep > 0,|Im p| < h}, where h > 0 is sufficiently large.
Just as in [6, Lemma 7] we obtain

Lemma 1. If [Imp| < h, then

x

1
yjl(xvp) = COS px + 27 sinpx/ J(T) dr
P

o (£ oo

sin pgc
e, p) = = —fmm a7
0

+ 4;/36 {Qj (%) +q; <¥)} cos prdr + O(p™?),
0

where the O(...) estimates are uniform with respect to x € [0, 1].

The eigenvalues of operator L are the zeros of the determinant

L-yn(l)  —y(l) 0 0
1 0 -1 0
Ap=| | 0 lym()  —um()

—yn(1)  1=yl)  —yn()  1-ysn)
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The eigenvalues of LY (the zeros of A%(p)) are \) = (p2)2, where p = n7 (n =0,1,2,...). If nis
even, then eigenvalues are multiple. The eigenvalues A, of the operator L asymptotically approach
Y for large n.

Theorem 3. For the resolvent Ry = (Rix, Rox)?, the formula

Rizf(x) = (Mjpf)(x) + Qia(z, ), f=(fi,f2)" (G=1,2) (6)
holds, where

x

(M f5) () Z/Mj(x,ﬁ,p)fj(ﬁ)d& M;(z,&,p) = yi1(§)  ys2(8)

ygl(ﬂﬂ) yj2($)

)

0
Qir(@, f) = vj1 (@) (f1,911) + 052(2) (f1, v12) + vja(2) (f2, y21) +0ja(@)(f2, 422) (G =1,2),  (7)
)= 3B [Bulna) + Stz
et = B [ Sualon () = Sayia(V)
~ i (2)
v13(x) = P yik( ) [A3k( )y22(1) + A4k(P)y,22(1)]a
o) = 32 0 [ Akl (1)~ Aus(oha (1),

Ay s(p) are algebraic adjuncts of A(p), and vo;(z) are obtained by replacing Ag1, Aga by Agsz, Aga,

and y11(x), yi2(x) by yo1(x), y22(x); (f,9) = Off(x)g(x) dx

Proof. For y = (y1,y2)T = R f, we have
vy (@) = qi(2)y;(x) + p?y;(2) = fi(2), j=1,2,

whence
Uk(2) = cr1yr1 (%) + crayra(v) + (M, fi)(x), k=1,2.

From the boundary conditions for operator L follows (6), where

4
Ql)\(.’[ f yll Zd Ak 1 A((px)) Zdek,2(p)7
k=1
4
Qox(z, f) = y21 Zd Ak3 yzg((px)) dJAk,4(P)7
k=1

dl:(Mlpfl)’ _y day =0, dSZ(MprQ)‘ ,

1
d
di= [ ZMnEp)|_ hde+
0

O\,_.
5
—
&
A
>
o
=
N
QL
/"~

Calculating the coefficients dj, in an explicit form, we get (7). O

Define 4,, = {p| |p — 7n| = 0}, where ¢ > 0 is sufficiently small, n > ng, and ng is chosen so that
all \,, with n > ng lie inside 7,,. Let 7, be the image of 7, in the A-plane (A = p?).
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Lemma 2. If p € 7, then

o) (2,0) =03V (@,0) + O(" %) (j=0,1),
o) (x,0) =00 (2, 0) + O(" ) (5 =0,1),
oy (@, p) — qu(@)vit (@, p) — %Mam:mm
Vi@, p) — ao(@)vka(z, p) — vl (2, p) = O(p)

(k =1,2), where the derivatives are taken with respect to x and the O(...) estimates are uniform with
respect to x € [0,1] (in the last two relations O(...) stands for ||O(w)|eo < cw]).

Proof. Since v (z, p) — q(x)v;(x, p) = —p?vj(z, p), this lemma follows from Lemma 2 in [4]. O

Just as in [6], we can prove the following assertions.

Lemma 3. By p(z) denote the functions flm( q((§—x)/2)d¢ or fm &)q((€+x)/2) dE, where m(§)

is 91(6) 07 92(8) (9 = (g1 92)" = (L= poB)g). and a(a) i5 1(x) o aa(w). Then
IpllL, < 2[mliL, - llallz,
where || - ||L. s the norm on L0, 1].
Lemma 4. Let ¢(x) denote the function cosz orsinz. Letm(z) € L2[0,1] and m(z, p) = m(z)y(uz),
for € v, and B (1) = (m(x, u) w(wnx)). Further, by B, (n) we denote the sum of all |5, (1)|, where

m(z) is one of the functions g;(x qu ) dE, p(x) (p(x) is one of the functions from Lemma 3).

Then

no 1

> gl

n=niy

> A <e

n=niy

where ¢ > 0 is a constant independent of ny, na, and p € o, and by ||g|l2 is denoted the norm of
vector function g(z) = (g1(x), g2(x))T on L3[0,1].

Lemma 5. If g(z) = (g1(), g2(x))T € L3[0,1], p € 3, and p = 7n + u, then

(9 y1) = omx»+ O(p™" Bu(1)) + O(p~2llgll2),
(95> y51 — yh) = O(p™" Bul) + O(p~ 2| gll2),

@m%g=0@ Bu(1)) + O(p™?Bn(1)) + O(p~3lgll2),
(95> Yj2 — ¥52) = O(p™2Bn () + O(p~3|gll2),

where j = 1,2, s =1,2.
From Lemmas 2-5 follows
Lemma 6. If p=mn+p, p € Y0, Qa(z,9) = (Qa(z, 9), Qa(z,9)), then

A7
dxi

((z,9) = R(,9)) = O 2Bu(u)) + O lgll2) (j =0, 1).

((,9)) = O(p' ™ Bulm)) + 0P *[lgll2) (G =0,1),
d7
dzi
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3 Investigation of the function uy(z,1)
Since (M;,g;)(x), (M3,g;)(x) are entire functions, it follows that

uo(w,t) = —5 ( / Z /) /\_7’ cos pt d\.

n>no

From [3, Lemmas 3, 4] we have

Lemma 7. It is true that
(F(x+t)+ F(z —t)),

=g ( [+ 2 )i

n>ng

N |

ug(x,t) =

where

QA x,g) dA.

Lemma 8. For F(z) = (Fi(z), Fg(x))T, the relations
F1 1—x +F2(].—ZL') F1($)+F2(£E) s

1
) =5 [Fa
%[F1 1—2)+ (1 —2) + F(2) — Fa(z)],
1
=51
1
=51

Fy 1+£L’ F1 — F 1—56‘)+F2()+F2(1—33‘),
F 1+.T Fl —|—F1 1—56‘)+F2( ) Fg(l—.’lﬁ)
hold, and F(z) = §(x) = R}, g for x € [0,1].

Therefore, as in [6], we get

Lemma 9. The vector functions F(x), F'(z) are absolutely continuous, F"'(x) € L3[—A, A] for all
A >0, and F(x) = F(z+2).

Theorem 4. The function ug(x,t) is a classical solution of the reference problem obtained from
(1)~(4) by setting g;(x) = 0 with initial conditions (4), where p(x) is replaced by $(x) = R}, g, and
equation (1) is satisfied almost everywhere.

4 Investigation of the function u;(z,t)

For uq(z,t) we have

wet =g [ 2 )5

7L>7l()

,9) — D (x, g)] cos ptd.

By the methods in [6], we obtain the following assertions.

Lemma 10. The series uj(xz,t) and the series obtained by differentiating ui(x,t) term by term
with respect to x once and with respect to t twice is convergent absolutely and uniformly in Qr =
[0,1] x [T, T], where T > 0 is any fivzed number.

Lemma 11. The function uj ,(x,t) is absolutely continuous with respect to x, and the relation
uy 2 (x,t) = Q(x)ur (2,t) + d(x,t)
holds for almost all x and t in the rectangle Qr. Here Q(x) = diag(q1(x), ¢2(z)),

d(z,t) 27”( / Z />)\_ [Q(z,9) — DB (z, g)] cos ptd,

|>‘\—7" n>n0

and the series d(x,t) is convergent absolutely and uniformly in Qr.
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Using Theorem 4 and Lemmas 10 and 11, we obtain

Theorem 5. If q;(x) € L[0,1], the vector functions p(x) and ¢'(x) are absolutely continuous and
such that they satisfy the conditions (5), then the sum u(z,t) of the formal solution has the following
properties: the function u(x,t) is continuously differentiable with respect to x and t; the function
ul (z,t) (respectively, uy(z,t)) is absolutely continuous with respect to x (respectively, with respect to
t); and the function u(z,t) satisfies equation (1) almost everywhere and conditions (2)—(4); i.e., u(z,t)
is a classical solution of problem (1)—(4) with (1) satisfied almost everywhere.
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