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Abstract. We discuss the existence of solutions to the implicit fractional differential equation cDαu =
f(t, u, u′, cDβu, cDαu) satisfying nonlocal boundary conditions. Here 1 < β < α ≤ 2, f is continuous
and cD is the Caputo fractional derivative. The existence results are proved by the Leray–Schauder
degree method.∗
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ÒÄÆÉÖÌÄ. ÛÄÓßÀÅËÉËÉÀ ÀÒÀËÏÊÀËÖÒÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀÃÏÁÉÓ ÓÀÊÉÈáÉ ÀÒÀÝáÀ-
ÃÉ ßÉËÀÃ-ßÀÒÌÏÄÁÖËÉÀÍÉ cDαu=f(t, u, u′, cDβu, cDαu) ÂÀÍÔÏËÄÁÉÓÈÅÉÓ, ÓÀÃÀÝ 1<β<α≤2,
f ÖßÚÅÄÔÉÀ ÃÀ cD ÊÀÐÖÔÏÓ ßÉËÀÃÉ ßÀÒÌÏÄÁÖËÉÀ. ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÀ ÃÀÃÂÄÍÉËÉÀ ËÄÒÄ-
ÛÀÖÃÄÒÉÓ áÀÒÉÓáÏÅÀÍÉ ÌÄÈÏÃÉÓ ÂÀÌÏÚÄÍÄÁÉÈ.
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1 Introduction
Let T > 0 be given, J = [0, T ], ∥x∥ = max{|x(t)| : t ∈ J} be the norm in C(J), while ∥x∥1 = ∥x∥+∥x′∥
is the norm in C1(J).

In accordance with [12, 13], let M be the set of (generally nonlinear) functionals ϕ : C(J) → R
which are

(i) continuous, ϕ(0) = 0,

(ii) increasing, that is, x, y ∈ C(J), x(t) < y(t) for t ∈ J =⇒ ϕ(x) < ϕ(y).

Examples of functionals belonging to the set M were given in [12,13].
We are interested in the implicit fractional differential equation

cDαu(t) = f
(
t, u(t), u′(t), cDβu(t), cDαu(t)

)
, (1.1)

where 1 < β < α ≤ 2, f ∈ C(J × R4) and cD denotes the Caputo fractional derivative. Further
conditions on f will be specified later.

Together with (1.1), we consider the nonlocal boundary condition

u(0) = u(T ), ϕ(u) = 0, ϕ ∈ M. (1.2)

Example 1.1. The special cases of (1.2) are the boundary conditions:

x(0) = 0, x(T ) = 0;

x(0) = −x(ξ) = x(T ), where ξ ∈ (0, T );

x(0) = x(T ), min{x(t) : t ∈ J} = 0;

x(0) = x(T ) = −max{x(t) : t ∈ J}.

Definition 1.1. We say that u : J → R is a solution of equation (1.1) if u′, cDαu ∈ C(J) and u
satisfies (1.1) for t ∈ J . A solution u of (1.1) satisfying condition (1.2) is called a solution of problem
(1.1), (1.2).

If x, cDαx ∈ C(J), then it is not difficult to verify that cDβx(t) = Iα−βcDαx(t) for t ∈ J . Hence,
if u is a solution of equation (1.1), then the equality

cDαu(t) = f
(
t, u(t), u′(t), Iα−βcDαu(t), cDαu(t)

)
, t ∈ J,

holds, that is, w = cDαu satisfies the equality

w(t) = f
(
t, u(t), u′(t), Iα−βw(t), w(t)

)
for t ∈ J. (1.3)

The special case of equation (1.1) (for α = 2, a ∈ C(J), f(t, x, y, v, z) = a(t)v + f1(t, x, y, z)) is
the implicit generalized Bagley–Torvik fractional differential equation

u′′(t) = a(t)cDβu(t) + f
(
t, u(t), u′(t), u′′(t)

)
. (1.4)

For more details on the generalized Bagley–Torvik fractional differential equation one can see [13–15]
and the references therein.

We recall the definitions of the Riemann–Liouville fractional integral and the Caputo fractional
derivative [8, 9, 11].

The Riemann–Liouville fractional integral Iγx of order γ > 0 of a function x : J → R is defined as

Iγx(t) =

t∫
0

(t− s)γ−1

Γ(γ)
x(s)ds,

where Γ is the Euler gamma function. I0 is the identical operator.
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The Caputo fractional derivative cDγx of order γ > 0, γ ̸∈ N, of a function x : J → R is given as

cDγx(t) =
dn

dtn

t∫
0

(t− s)n−γ−1

Γ(n− γ)

(
x(s)−

n−1∑
k=0

x(k)(0)

k!
sk
)

ds,

where n = [γ] + 1, [γ] means the integral part of the fractional number γ. If γ ∈ N, then cDγx(t) =
x(γ)(t).

In particular,

cDγx(t) =
d2

dt2

t∫
0

(t− s)1−γ

Γ(2− γ)
(x(s)− x(0)− x′(0)s)ds

=
d2

dt2 I2−γ(x(t)− x(0)− x′(0)t), γ ∈ (1, 2).

It is well known that Iγ : C(J) → C(J) for γ ∈ (0, 1); IγIµx(t) = Iγ+µx(t) for x ∈ C(J) and
γ, µ ∈ (0,∞); cDγIγx(t) = x(t) for x ∈ C(J) and γ > 0; if x, cDγx ∈ C(J) and γ ∈ (0, 1), then
IγcDγx(t) = x(t)− x(0).

The boundary value problems for implicit fractional differential equations were considered in the
papers [1, 2, 4–6,10] and the references therein. For instance, the problem

cDαu(t) = f
(
t, u(t), cDαu(t)

)
, α ∈ (0, 1],

n∑
k=1

aku(tk) = u0

was discussed in [6], while the problem

cDαu(t) = f
(
t, u(t), cDαu(t)

)
, α ∈ (1, 2],

u(0) = u0, u(T ) = u1

was considered in [4].
The aim of this paper is to discuss the existence of solutions to problem (1.1), (1.2). The existence

result is proved by the following procedure. We first show that for each x ∈ C1(J) there exists a
unique solution w ∈ C(J) of the equation w = f(t, x(t), x′(t), Iα−βw,w). Then we put w = Fx and
obtain an operator F : C1(J) → C(J) and prove that if u is a solution of the problem cDαu = Fu,
(1.2), then u is a solution of problem (1.1), (1.2). In order to prove that this problem has a solution,
we introduce an operator Q : C1(J) × R → C1(J) × R having the property that if (u, c) is its fixed
point, then u is a solution of problem cDαu = Fu, (1.2). The existence of a fixed point of Q is proved
by the Leray–Schauder degree method [7].

We work with the following conditions on the function f in (1.1).

(H1) There exist positive constants L1 and L2 such that

∆ =
L1T

α−β

Γ(α− β + 1)
+ L2 < 1

and the estimate∣∣f(t, x, y, v1, z1)− f(t, x, y, v2, z2)
∣∣ ≤ L1|v1 − v2|+ L2|z1 − z2|

is fulfilled for t ∈ J and x, y, vj , zj ∈ R.

(H2) There exist ρ, µ ∈ (0, 1) and A > 0 such that

|f(t, x, y, 0, 0)| ≤ A
(
1 + |x|ρ + |y|µ

)
for t ∈ J , x, y ∈ R.
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(H3) There exist positive constants A, B and C such that

|f(t, x, y, 0, 0)| ≤ A+B|x|+ C|y| for t ∈ J , x, y ∈ R.

The paper is organized as follows. In Section 2, an operator F is introduced and its properties are
given. In Section 3, the operators Q,K and H are defined and their properties are stated. The main
existence results for problem (1.1), (1.2) are given and proved in Section 4. Examples demonstrate
our results.

2 Operator F and its properties
Keeping in mind (1.3), we need the following result.

Lemma 2.1. Let (H1) hold and let x ∈ C1(J). Then there exists a unique solution w of the equation

w = f
(
t, x(t), x′(t), Iα−βw,w

)
(2.1)

in the set C(J).

Proof. Let an operator S : C(J) → C(J) be defined as

(Sw)(t) = f
(
t, x(t), x′(t), Iα−βw(t), w(t)

)
.

We show that S is a contractive operator. To this end, let w1, w2 ∈ C(J). Then∣∣(Sw1)(t)− (Sw2)(t)
∣∣ = ∣∣∣f(t, x(t), x′(t), Iα−βw1(t), w1(t)

)
− f

(
t, x(t), x′(t), Iα−βw2(t), w2(t)

)∣∣∣
≤ L1

∣∣Iα−β(w1(t)− w2(t))
∣∣+ L2|w1(t)− w2(t)|

≤ L1T
α−β

Γ(α− β + 1)
∥w1 − w2∥+ L2∥w1 − w2∥

≤ ∆∥w1 − w2∥, t ∈ J.

In particular,
∥Sw1 − Sw2∥ ≤ ∆∥w1 − w2∥.

Due to ∆ < 1, the operator S is contractive and therefore there exists a unique fixed point w of S. It
is clear that w is a unique solution of (2.1) in C(J).

By Lemma 2.1, for each x ∈ C1(J) there exists a unique solution w ∈ C(J) of equation (2.1). We
put w = Fx and obtain an operator F : C1(J) → C(T ) satisfying

(Fx)(t) = f
(
t, x(t), x′(t), Iα−β(Fx)(t), (Fx)(t)

)
for t ∈ J and x ∈ C1(J). (2.2)

The properties of F are collected in the following result.

Lemma 2.2. Let (H1) hold. Then F : C1(J) → C(J) is a continuous operator and

∥Fx∥ ≤ 1

1−∆
max

{
|f(t, x(t), x′(t), 0, 0)| : t ∈ J

}
, x ∈ C1(J). (2.3)

Proof. Let {xn} ⊂ C1(J) be a convergent sequence and let x ∈ C1(J) be its limit. Let (for t ∈ J ,
n ∈ N)

dn(t) = f
(
t, xn(t), x

′
n(t), I

α−βFx(t),Fx(t)
)
− f

(
t, x(t), x′(t), Iα−βFx(t),Fx(t)

)
.
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Then lim
n→∞

∥dn∥ = 0. It follows from the relation (see (2.2))

∣∣Fxn(t)−Fx(t)
∣∣ ≤ ∣∣∣f(t, xn(t), x

′
n(t), I

α−βFxn(t),Fxn(t)
)
− f

(
t, xn(t), x

′
n(t), I

α−βFx(t),Fxn(t)
)∣∣∣

+
∣∣∣f(t, xn(t), x

′
n(t), I

α−βFx(t),Fxn(t)
)
− f

(
t, xn(t), x

′
n(t), I

α−βFx(t),Fx(t)
)∣∣∣

+ |dn(t)|
≤ L1

∣∣Iα−β(Fxn(t)−Fx(t))
∣∣+ L2

∣∣Fxn(t)−Fx(t)
∣∣+ |dn(t)|

≤
( L1T

α−β

Γ(α− β + 1)
+ L2

)
∥Fxn −Fx∥+ ∥dn∥, t ∈ J, n ∈ N,

that
∥Fxn −Fx∥ ≤ ∆∥Fxn −Fx∥+ ∥dn∥, n ∈ N.

Therefore
∥Fxn −Fx∥ ≤ ∥dn∥

1−∆
, n ∈ N,

and so lim
n→∞

∥Fxn −Fx∥ = 0. Hence F is continuous.
It remains to prove that estimate (2.3) is valid. Let x ∈ C1(J). Then (2.2) and (H1) give

|Fx(t)| ≤
∣∣f(t, x(t), x′(t), Iα−βFx(t),Fx(t))− f(t, x(t), x′(t), 0,Fx(t))

∣∣
+
∣∣f(t, x(t), x′(t), 0,Fx(t)− f(t, x(t), x′(t), 0, 0)|+ |f(t, x(t), x′(t), 0, 0)

∣∣
≤ L1

∣∣Iα−βFx(t)
∣∣+ L2|Fx(t)|+ |f(t, x(t), x′(t), 0, 0)|

≤ ∆∥Fx∥+ |f(t, x(t), x′(t), 0, 0)|, t ∈ J.

In particular,
∥Fx∥ ≤ ∆∥Fx∥+ max

{
|f(t, x(t), x′(t), 0, 0)| : t ∈ J

}
and (2.3) follows.

3 Auxiliary results
We investigate the fractional differential equation

cDαu(t) = (Fu)(t). (3.1)

The following result gives the relation between the solutions of problems (3.1), (1.2) and (1.1), (1.2).

Lemma 3.1. Let (H1) hold. If u is a solution of problem (3.1), (1.2), then u is a solution of problem
(1.1), (1.2).

Proof. Let u be a solution of problem (3.1), (1.2). In view of (2.2), we see that

cDαu(t) = f
(
t, u(t), u′(t), Iα−βcDαu(t), cDαu(t)

)
for t ∈ J.

Hence u is a solution of equation (1.1), because Iα−βcDαu = cDβu. Since u satisfies the boundary
condition (1.2), u is a solution of problem (1.1), (1.2).

In order to prove that problem (3.1), (1.2) has a solution, we introduce an operator Q : C1(J)×R →
C1(J)× R by the formula

Q(x, c) =
(
c+ Iα(Fx)(t)− t

T
Iα(Fx)(t)

∣∣∣
t=T

, c+ ϕ(x)
)
,

where ϕ is from (1.2).
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Lemma 3.2. Let (H1) hold. If (x, c) is a fixed point of the operator Q, then x is a solution of problem
(3.1), (1.2) and c = x(0).
Proof. Let (x, c) be a fixed point of Q. Then

x(t) = c+ Iα(Fx)(t)− t

T
Iα(Fx)(t)

∣∣∣
t=T

, t ∈ J, (3.2)

ϕ(x) = 0. (3.3)

It follows from (3.2) that x(0) = c, x(T ) = c, x ∈ C1(J) and
cDαx(t) = cDαIα(Fx)(t) = (Fx)(t), t ∈ J.

These facts together with (3.3) imply that x is a solution of (3.1), (1.2) and c = x(0),

Lemmas 3.1 and 3.2 show that for the solvability of problem (1.1), (1.2) we need to prove that the
operator Q admits a fixed point. Really, if (x, c) is a fixed point of Q, then x is a solution of (1.1),
(1.2). To this end, we first define an operator K : C1(J)× R× [0, 1] → C1(J)× R as

K(x, c, λ) =
(
c, c+ ϕ(x) + (λ− 1)ϕ(−x)

)
.

Let
Ω1 =

{
(x, c) ∈ C1(J)× R : ∥x∥1 < M, |c| < M

}
.

where M is a positive constant.
Lemma 3.3. The relation

deg(I − K( · , · , 1),Ω1, 0) ̸= 0

is valid, where “deg” stands for the Leray–Schauder degree and I is the identical operator on C1(J)×R.
Proof. It is not difficult to show that K is a completely continuous operator and since

K(−x,−c, 0) = (−c,−c+ ϕ(−x)− ϕ(x)) = −(c, c+ ϕ(x)− ϕ(−x)) = −K(x, c, 0)

for x ∈ C1(J) and c ∈ R, K( · , · , 0) is an odd operator.
Assume that K(x, c, λ) = (x, c) for some (x, c) ∈ C1(J)× R and λ ∈ [0, 1]. Then

x(t) = c, t ∈ J, (3.4)
ϕ(x) + (λ− 1)ϕ(−x) = 0. (3.5)

In view of (3.4), it follows from (3.5) that ϕ(c) + (λ− 1)ϕ(−c) = 0. If c ̸= 0, then properties (i) and
(ii) of ϕ ∈ M give ϕ(c)ϕ(−c) < 0, which contradicts ϕ(c) + (λ − 1)ϕ(−c) = 0. Hence c = 0, and
so x = 0. We have proved that K(x, c, λ) ̸= (x, c) for (x, c) ∈ ∂Ω1 and λ ∈ [0, 1]. By the Borsuk
antipodal theorem and the homotopy property,

deg
(
I − K( · , · , 0),Ω1, 0

)
̸= 0,

deg
(
I − K( · , · , 0),Ω1, 0

)
= deg

(
I − K( · , · , 1),Ω1, 0

)
.

Combining these relations we give the conclusion of Lemma 3.3.

Finally, let an operator H : C1(J)× R× [0, 1] → C1(J)× R be defined as

H(x, c, λ) = (H1(x, c, λ),H2(x, c)),

where H1 : C1(J)× R× [0, 1] → C1(J), H2(x, c) : C
1(J)× R → R,

H1(x, c, λ)(t) = c+ λ
(
Iα(Fx)(t)− t

T
Iα(Fx)(t)

∣∣∣
t=T

)
,

H2(x, c) = c+ ϕ(x).

It is clear that
H(x, c, 0) = K(x, c, 1), H(x, c, 1) = Q(x, c) (3.6)

for (x, c) ∈ C1(J)× R.
The following result states that H is completely continuous.
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Lemma 3.4. Let (H1) hold. Then H is a completely continuous operator.

Proof. Step 1. H is continuous.
Let {xn} ⊂ C1(J), {cn} ⊂ R, {λn} ⊂ [0, 1] be convergent sequences and let lim

n→∞
∥xn − x∥1 = 0,

lim
n→∞

cn = c, lim
n→∞

λn = λ, where x ∈ C1(J), c ∈ R, λ ∈ [0, 1].
By Lemma 2.2, lim

n→∞
∥Fxn −Fx∥ = 0. Since

∣∣∣∣Iα(Fxn)(t)−
t

T
Iα(Fxn)(t)

∣∣∣
t=T

− Iα(Fx)(t) +
t

T
Iα(Fx)(t)

∣∣∣
t=T

∣∣∣∣
≤ ∥Fxn −Fx∥

( t∫
0

(t− s)α−1

Γ(α)
ds+

T∫
0

(T − s)α−1

Γ(α)

)
ds ≤ 2Tα

Γ(α+ 1)
∥Fxn −Fx∥

and∣∣∣∣Iα−1(Fxn)(t)−
1

T
Iα(Fxn)(t)

∣∣∣
t=T

− Iα−1(Fx)(t) +
1

T
Iα(Fx)(t)

∣∣∣
t=T

∣∣∣∣
≤ ∥Fxn −Fx∥

( t∫
0

(t− s)α−2

Γ(α− 1)
ds+ 1

T

T∫
0

(T − s)α−1

Γ(α)

)
ds ≤ Tα−1

Γ(α)

(
1 +

1

α

)
∥Fxn −Fx∥,

it is easy to verify that lim
n→∞

∥H1(xn, cn, λn) − H1(x, c, λ)∥1 = 0. This fact together with
lim
n→∞

H2(xn, cn) = H2(x, c) gives lim
n→∞

H(xn, cn, λn) = H(x, c, λ) in C1(J) × R. Hence H is con-
tinuous.

Step 2. H takes bounded sets into bounded sets.
Let U ⊂ C1(J) and V ⊂ R be bounded, ∥x∥1 ≤ V for x ∈ U , |c| ≤ V for c ∈ V, where V is a

positive constant. Then M1 = sup{|f(t, x(t), x′(t), 0, 0)| : t ∈ J, x ∈ U} < ∞. In view of (2.3), we
have ∥Fx∥ ≤ M for x ∈ U , where M = M1/(1−∆). Hence (for u ∈ U , c ∈ V, λ ∈ [0, 1], t ∈ J)

|H1(x, c, λ)(t)| ≤ V +M

( t∫
0

(t− s)α−1

Γ(α)
ds+

T∫
0

(T − s)α−1

Γ(α)
ds

)
≤ V +

2MTα

Γ(α+ 1)
,

∣∣∣ d
dt H1(x, c, λ)(t)

∣∣∣ ≤ M

( t∫
0

(t− s)α−2

Γ(α− 1)
ds+ 1

T

T∫
0

(T − s)α−1

Γ(α)
ds

)
≤ MTα−1

Γ(α)

(
1 +

1

α

)
,

and therefore

∥H1(x, c, λ)∥1 ≤ V +
MTα−1

Γ(α)

(
1 +

2T + 1

α

)
. (3.7)

Due to the properties (i) and (ii) of ϕ and −V ≤ x(t) ≤ V for t ∈ J , x ∈ U , we see that ϕ(−V ) ≤
ϕ(x) ≤ ϕ(V ), and therefore

|H2(x, c)| = |c+ ϕ(x)| ≤ W for u ∈ U , c ∈ V, (3.8)

where W = V + max{|ϕ(−V )|, ϕ(V )}.
From (3.7) and (3.8) we conclude that H maps U × V × [0, 1] into a bounded set in C1(J)× R.

Step 3. For each bounded U ⊂ C1(J) the family {Iα−1(Fx) : x ∈ U} is equicontinuous on J .
Let U be a bounded set in C1(J). As in Step 2, ∥Fx∥ ≤ M for x ∈ U , where M > 0. Let x ∈ U
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and 0 ≤ t1 < t2 ≤ T . Then

∣∣∣Iα−1(Fx)(t)
∣∣
t=t2

− Iα−1(Fx)(t)
∣∣
t=t1

∣∣∣ = ∣∣∣∣
t2∫
0

(t2 − s)α−2

Γ(α− 1)
(Fx)(s)ds−

t1∫
0

(t1 − s)α−2

Γ(α− 1)
(Fx)(s)ds

∣∣∣∣
=

∣∣∣∣
t1∫
0

(t2 − s)α−2 − (t1 − s)α−2

Γ(α− 1)
(Fx)(s)ds+

t2∫
t1

(t2 − s)α−2

Γ(α− 1)
(Fx)(s)ds

∣∣∣∣
≤ M

( t1∫
0

(t1 − s)α−2 − (t2 − s)α−2

Γ(α− 1)
ds+

t2∫
t1

(t2 − s)α−2

Γ(α− 1)
ds

)

=
M

Γ(α)

(
tα−1
1 + 2(t2 − t1)

α−1 − tα−1
2

)
<

2M

Γ(α)
(t2 − t1)

α−1.

Since tα−1 is a continuous function on J , we see that the family {Iα−1(Fx) : x ∈ U} is equicontinuous
on J .

To summarize, H is continuous by Step 1 and it follows from Steps 2 and 3 and the Arzelà-Ascoli
theorem that H1 is relatively compact in C1(J). Besides, (3.8) implies that H2 is relatively compact
in R. Consequently, H is completely continuous.

The following two results give bounds for fixed points of H.

Lemma 3.5. Let (H1) and (H2) hold. Then there exists S > 0 such that the estimate

∥x∥1 < S, |c| < S, (3.9)

holds for fixed points (x, c) of the operator H( · , · , λ) with λ ∈ [0, 1].

Proof. Let H(x, c, λ) = (x, c) for some (x, c) ∈ C1(J)× R and λ ∈ [0, 1]. Then

x(t) = c+ λ
(
Iα(Fx)(t)− t

T
Iα(Fx)(t)

∣∣∣
t=T

)
, t ∈ J, (3.10)

ϕ(x) = 0. (3.11)

By (H2), ∣∣f(t, x(t), x′(t), 0, 0)
∣∣ ≤ A

(
1 + |x(t)|ρ + |x′(t)|µ

)
≤ A

(
1 + ∥x∥ρ1 + ∥x∥µ1

)
, t ∈ J,

and therefore (see (2.3)))

∥Fx∥ ≤ A(1 + ∥x∥ρ1 + ∥x∥µ1 )
1−∆

. (3.12)

Due to (3.11), we have x(ξ) = 0 for some ξ ∈ J [12]. Hence (3.10) gives

c = −λ

(
Iα(Fx)(t)

∣∣∣
t=ξ

− ξ

T
Iα(Fx)(t)

∣∣∣
t=T

)
,

and therefore

x(t) = λ

(
Iα(Fx)(t)− Iα(Fx)(t)

∣∣∣
t=ξ

− t− ξ

T
Iα(Fx)(t)

∣∣∣
t=T

)
, t ∈ J.

Then

|x(t)| ≤ ∥Fx∥
( t∫

0

(t− s)α−1

Γ(α)
ds+

ξ∫
0

(ξ − s)α−1

Γ(α)
ds+

T∫
0

(T − s)α−1

Γ(α)
ds

)
≤ 3Tα

Γ(α+ 1)
∥Fx∥,

|x′(t)| ≤ ∥Fx∥
( t∫

0

(t− s)α−2

Γ(α− 1)
ds+ 1

T

T∫
0

(T − s)α−1

Γ(α)
ds

)
≤ Tα−1

Γ(α)

(
1 +

1

α

)
∥Fx∥, t ∈ J.
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In particular,

∥x∥ ≤ 3Tα

Γ(α+ 1)
∥Fx∥, ∥x′∥ ≤ Tα−1

Γ(α)

(
1 +

1

α

)
∥Fx∥.

Hence
∥x∥1 ≤ Tα−1

Γ(α)

(
1 +

3T + 1

α

)
∥Fx∥ (3.13)

and (see (3.12)))
∥x∥1 ≤ K

(
1 + ∥x∥ρ1 + ∥x∥µ1

)
, (3.14)

where
K =

ATα−1

(1−∆)Γ(α)

(
1 +

3T + 1

α

)
.

Since (note that ρ, µ ∈ (0, 1)) lim
v→∞

v
K(1+vρ+vµ) = ∞, there exists S > 0 such that

v > K(1 + vρ + vµ) for all v ≥ S.

The last inequality together with (3.14) gives ∥x∥1 < S. In view of c = x(0), we get |c| < S. Since S
is independent of x, c, λ, estimate (3.9) follows.

Lemma 3.6. Let (H1) and (H3) hold and let

W =
(B + C)Tα−1

(1−∆)Γ(α)

(
1 +

3T + 1

α

)
< 1.

Then the estimate
∥x∥1 ≤ S1, |c| ≤ S1,

holds for fixed points (x, c) of the operator H( · , · , λ) with λ ∈ [0, 1], where

S1 =
ATα−1

(1−∆)(1−W )Γ(α)

(
1 +

3T + 1

α

)
.

Proof. Let H(x, c, λ) = (x, c) for some (x, c) ∈ C1(J) × R and λ ∈ [0, 1]. Analysis similar to that in
the proof of Lemma 3.5 shows that c = x(ξ) for some ξ ∈ J and estimate (3.13) is valid. From (H3)
and (2.3) we have

∥Fx∥ ≤ A+B∥x∥+ C∥x′∥
1−∆

≤ A+ (B + C)∥x∥1
1−∆

,

and therefore

∥x∥1 ≤ Tα−1

(1−∆)Γ(α)

(
1 +

3T + 1

α

)(
A+ (B + C)∥x∥1

)
=

ATα−1

(1−∆)Γ(α)

(
1 +

3T + 1

α

)
+W∥x∥1.

Hence
(1−W )∥x∥1 ≤ ATα−1

(1−∆)Γ(α)

(
1 +

3T + 1

α

)
,

which implies ∥x∥1 ≤ S1 and |c| ≤ S1 because c = x(0).

4 The main results and examples
Theorem 4.1. Let (H1) and (H2) hold. Then problem (1.1), (1.2) has at least one solution.

Proof. Let S > 0 be from Lemma 3.5 and let

Ω =
{
(x, c) ∈ C1(J)× R : ∥x∥1 < S, |c| < S

}
.
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By Lemma 3.4, the restriction of H to Ω × [0, 1] is a compact operator and Lemma 3.5 shows that
H(x, c, λ) ̸= (x, c) for (x, c) ∈ ∂Ω and λ ∈ [0, 1]. Hence it follows from the homotopy property that

deg
(
I −H( · , · , 0),Ω, 0

)
= deg

(
I −H( · , · , 1),Ω, 0

)
.

In view of (3.6) and Lemma 3.3 (for M = S in Ω1), we have

deg
(
I −H( · , · , 0),Ω, 0

)
= deg

(
I − K( · , · , 1),Ω, 0

)
̸= 0,

deg
(
I −H( · , · , 1),Ω, 0

)
= deg

(
I − Q( · , · ),Ω, 0

)
,

and so
deg (I − Q

(
· , · ),Ω, 0

)
̸= 0. (4.1)

Consequently, there exists a fixed point (u, c) of Q and, by Lemmas 3.1 and 3.2, u is a solution of
problem (1.1), (1.2).

Theorem 4.2. Let (H1) and (H3) hold and let W < 1, where W is from Lemma 3.6. Then problem
(1.1), (1.2) has at least one solution.

Proof. Let S1 be from Lemma 3.6 and let

Ω =
{
(x, c) ∈ C1(J)× R : ∥x∥1 < S1 + 1, |c| < S1 + 1

}
.

By Lemma 3.6, H(x, c, λ) ̸= (x, c) for (x, c) ∈ ∂Ω and λ ∈ [0, 1]. Analysis similar to that in the proof
of Theorem 4.1 shows that relation (4.1) holds. Hence there exists a fixed point (u, c) of Q and u is a
solution of problem (1.1), (1.2).

Example 4.1. Let r ∈ C(J), ρ, µ ∈ (0, 1) and k >
√
2Tα−β/Γ(α− β + 1). Then the function

f(t, x, y, v, z) = r(t) + |x|ρ + |y|µ arctan y +
1

k + |v|
+

(x+ y) ln(1 + |z|)
2 + x2 + y2

satisfies condition (H1) for L1 = 1/k2, L2 = 1/2 and condition (H2) for A = max{∥r∥, π/2, 1/k}. By
Theorem 4.1 there exists at least one solution u of the equation

cDαu = r(t) + |u|ρ + |u′|µ arctanu′ +
1

k + cDβu
+

(u+ u′) ln(1 + |cDαu|)
2 + u2 + (u′)2

(4.2)

satisfying the boundary condition (1.2).
For instance, if ϕ(u) = min{u(t) : t ∈ J}, then there exists at least one solution u of (4.2) fulfilling

u(0) = u(T ), min{u(t) : t ∈ J} = 0.

Example 4.2. Let T = 1, α = 3/2, β ∈ (1, 3/2), |k| < Γ(5/2 − β)/4 and r, r1, r2 ∈ C[0, 1], ∥r1∥ +
∥r2∥ < 3

√
π/44. Then the function

f(t, x, y, v, z) = r(t) + r1(t)x+ r2(t)y + kv +
y ln(1 + |z|)
1 + 4y2

satisfies condition (H1) for L1 = |k|, L2 = 1/4 (note that ∆ < 1/2) and condition (H3) for A = ∥r∥,
B = ∥r1∥, C = ∥r2∥. Since

W =
(B + C)Tα−1

(1−∆)Γ(α)

(
1 +

3T + 1

α

)
=

22(∥r1∥+ ∥r2∥)
3(1−∆)

√
π

≤ 44(∥r1∥+ ∥r2∥)
3
√
π

< 1,

by Theorem 4.2 there exists at least one solution u of the equation

cD3/2u = r(t) + r1(t)u+ r2(t)u
′ + kcDβu+

u′ ln(1 + |cD3/2u|)
1 + 4(u′)2

satisfying the boundary condition (1.2).
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