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Abstract. For the linear homogeneous system of differential equations, coefficients of which are
represented by an absolutely and uniformly convergent Fourier series with slowly varying coefficients
and frequency, the conditions of existence of the linear transformation with coefficients of similar
structure leading this system to a block-diagonal form in a special case are obtained.

2010 Mathematics Subject Classification. 34C20, 34C25.

Key words and phrases. Linear systems of the differential equations, periodic solutions, slowly
varying parameters.

Mgbody.  ©0ggOIbE0S@Y®  FobEmmgdsms [®gogo gOmygemmgsbo  LolEgdolmgol, ®mdmol
3098030960900 Fo®M8mopa0bgds S0LmE@ P Y@Ms s msbsd®oE 3Mgdswo gPmogl 3F3Moggd0m
bgms (33000 3mg803E0gbHJd0m ©s LobBoMom, wswygbomos sbognmaog®o LEH®YJHYHol gmggo-
(30960900l 3Jmbg olgmo §Mx0g30 Fo@mEsJdbol s@Lgdmdol 30Mmdgd0, MmMIgmlsi gom L3gEosmg®
YgdnbggzsoTo gl LobEgds odyogl YxOYm-osymbogmy®d Rm®Isdwy.



The Block Separation of the Linear Homogeneous Differential System ... 127

1 Introduction

This article continues the research started by the author in [1] on the problem of the block separation
of the linear homogeneous system of differential equations, whose coefficients are represented by an
absolutely and uniformly convergent Fourier series with slowly varying in some sense coefficients and
frequency. Now we study a special case which by the conditions of the theorem proved in [1] is not
covered.

2 Basic notations and definitions
Let G={t,e: teR, € €[0,&], €0 € RT}.

Definition 2.1. We say that a function p(t, €), generally complex-valued, belongs to the class S(m;eg),
m € NU{0}, if t,e € G and

1) p(t,e) € C™(G) with respect to t;

dFp(t
2) % = e*pi(t,e), sup pi(t,e)| < +00 (0 < k < m).

Slowly variability of a function is understood in the sense of its belonging to the class S(m;ey).
As examples of functions of this class may serve, in general, complex-valued, bounded together with
their derivatives up to and including the order m functions that depend on the “slow time” 7 = &t:
sin T, arctg 7 etc.

Definition 2.2. We say that a function f(¢,¢,0(t,¢)) belongs to the class F(m;eo;6), m € N U {0},
if it can be represented as

f(t,e,0(t Z fn(t,e) exp(ind(t, )),

n=—oo
and

d¥f.(t,e)

= ek fun(t,e) (n€ Z,0 <k <m);

1) fa(t,e) € S(m;eo),

def
2) 1 fllFemicoi0) = Z Z sup|fnk (t,e)] < 4oo,

k=0n=—oc0

t

3) 0(t,e) = /(p(T, g)dr, o(t,e) € RT, o(t,e) € S(m;ep), igf(p(h&) > 0.
0

Some properties of functions from the class F(m;¢eo; 0) are described in [1].
For any function f(t,e,0) € F(m;ep;0) denote

27

Tu(f) = 5= [ Hte,u)expl—inu) du, 1(7) = £ = To().

0

We say that the function f(¢,e,0) € F(m;eo; 0) satisfies condition (A), if Fo( )=0.
Let A(t,e,0) = (a;js(t,€,0)) ;777 o= 1> @js € F(mie030) (j = 1,M; s =1,K). Denote

HAHF(m i€030) ma‘X Z Ha]l t 2 G)HF(m i€050)
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3 Statement of the problem

We consider the system of differential equations

dx
L= Hi(p)x1 + p(Bu(t,e,0)z1 + Bia(t,,0)x2),

dt (3.1)

dx
7; = Hy(p)xs + (B2 (t,€,0)x1 + Baal(t, €, 0)z2),
where 1 = colon(x11,...,21N, ), 2 = colon(za, ..., Tan,),
ipp 0 0 0 ireg 0 0 0
1 ipp 0 0 1 re 0 0
Hl(@) S e 5 HQ(QO) =] e e
0 0 ipp 0 0 0 e 0
0 o .- 1 ipy 0 0o -+ 1 ire

are the Jordan blocks of dimensions Ny and No, respectively (N1 +No = N); p,r € Z; Bji(t,¢,0) are
the (N; x Ni)-matrices with elements from the class F'(m;e;0); ¢(t,¢) is the function appearing in
the definition of the class F'(m;e;0); p € (0,1). In this sense, we are dealing with the resonance case.
Just as in [1], we study the question of the existence as well as the properties of the transformation

of the form
x5 = le(t, g, 9, H)gl + LjQ(t, g, 9, u)gg, ] = 1, 2, (32)

where the elements Lj; (j,k = 1,2) of (N; x Nji)-matrices belong to the class Fi(m — 1;e1;6) (0 <
g1 < g9), reducing the system (3.1) to the form
dz;

ﬂ = DN1 (taeaoau)ila

d ~
d7t2 = DN2(t3530nU')x23 (33)

where the elements Dy, (j = 1,2) of (N; x N;)-matrices also belong to the class F'(m — 1;;0).
Performing in the system (3.1) the transformation

ipb iro
zy = ey, x3=¢€""Yyo,

where y; = colon(y11,...,Y1n,), Y2 = colon(ya1, . .., Y2n,), We obtain
1 _ B )y + B 0
o mhn + p(Bui(t,e,0)y1 + Bia(t,e,0)y2), @0
J N N )
% = Jn,y2 + pu(Bai(t,e,0)y1 + Baa(t, €, 0)y2),
where
0 O 0 0 0 O 0 0
1 0 0 0 1 0 0 0
R R R e
0 0 0 0 0 0 0 0
0 0 1 0 0 O 1 0

are the Jordan blocks of dimensions N1 and Nj, respectively, whose diagonal elements are equal to
zero, and all elements of matrices Bji (¢, €, 6) belong to the class F(m;eg;6).

Thus, the problem of the existence of transformation (3.2) reduces to the problem of the existence
of the transformation

Yy = 21 +NQ12(t,€a9mu)227 Y2 = H’QZl(tagaaﬂu‘)Zl +227 (35)
leading the system (3.4) to the form

dz1 dzo
E :DNl(t,E,07H)Zl7 E :DNg(t7€797N)227
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where Dy, , Dy, are matrices of dimensions (N7 x N71) and (N2 x N3), respectively.
The matrices @12, Q21 must satisfy the system of matrix-equations

dQ;x
dt

= JNJ.ij — ij;JNk + éjk(t,& 9)
+ (B (t,e,0)Qjk — Qi Bri(t,e,0)) — p*QinBijQjk, j,k=1,2 (j #k).  (3.6)
Then _ -

Dy, = Jn, + pBi1(t,e,0) + p?Bia(t,e,0)Qa1(t, 6,0, 1),
DN2 = JN1 + MEQQ(t7E,0) + M2§21(t7679)Q12(t,€, 97/L)

It is easy to see that the system (3.6) is divided into two independent matrix-equations, each of
which has the form
dX

o = I X = Xk + F(t,e,0) + n(A(t,e,0)X — XB(t,e,0)) — W’ XR(t,e,0)X, (3.8)

(3.7)

where X = (xjs)j:LM; s=1,K>

0 0 0 0 0 0 0 0
10 00 10 0 0
Ju= | s Tk =
0 0 0 0 0 0 0 0
0 0 10 0 0 10

are the Jordan blocks of dimensions M and K, respectively, whose diagonal elements are equal to
zero, F' = (fjs);—1ar. s=110 A = (4)s)j s=17r> B = (0js); o7 B = (rjs) =7, =737~ All elements
of matrices F', A, B, R belong to the class F(m;eq;6).

Therefore the problem of the existence of transformation (3.5), where all elements of matrices Q12,
Q21 belong to the class F(m — 1;e*;6) (0 < £* < g9), reduces to the problem of the existence of a
particular solution X of the equation (3.8) such that z;, € F(m —1;¢%;0) (j =1,M; s =1, K).

In [1], the conditions of the existence of such a solution are obtained when one of the sets of
assumptions I, I [l is fulfilled.

I (1) M < K;
(2) Vi(F) =0, where Vi = colon(vyy (¢, €), ..., v1m (2, €),

v1(t,€) ZFO fsx—jrs(te,0)) (1 =1,M);

s=1

) igf|F0(b1K(t7s,6))| >0

I (1) M = K;
(2) Va(F) =0, where Vo = colon(vay (t,€), ..., v (¢, €),

vo;(t,€) ZFO fsk—jts(t,€,0)) (j =1, M);

s=1

3) igf‘Fo(alM(t,e,G) — blM(t,&e))’ >0

. (1) M > K;
(2) V3(F) =0, where V3 = colon(vsy(t,€),...,v3K(t,€),

v3;(t,€) ZFO fsx—j+s(t,€,0)) (1= );

s=1

(3) igf|Fo(a1M(t,e,9))| > 0.
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In this paper it is assumed that the condition (2) in each of sets I, I, Ill is satisfied. But instead
of the condition (3) it is accordingly supposed that

Fo(blK(t,E,e)) =0 (M < K),
Fo(alM(t,€,0)71)1]»[(75,8,9)) EO (M K),
To(arn(t,e,0) =0 (M > K).

4 Auxiliary results

As in [1], along with the equation (3.8) we consider an auxiliary matrix-equation

o(t,e) wa JuE —EJk + F(t,e,0) + p(A(t,e,0)= — EB(t,¢,0)) — p’ZR(t, e, 0)Z, (4.1)

where t, ¢ are considered as constants, = = (5]-5)].:1, TR F, A, B, R are the same as in the
equation (3.8).

In accordance with the Poincaré method of small parameter [2], we construct an approximate
2m-periodic with respect to 6 solution of the equation (4.1) in the form of the sum

29—
E= ZEtsG (4.2)

where E, = (&,55) =T s=T. K" The coefficients =, are determined from the following chain of linear
nonhomogeneous matrix differential equations:

d=

o(t,e) d“eo = JuZo — EoJk + F(t,¢,0), (4.3)
d= -
plt.e) — 91 = JuE1 — E1Jk + A(t,£,0)2 — 2 B(t, £, 6), (4.4)
o(t,e) — W = JmEe — EoJi + A(t,e,0)21 — E1B(t,¢,0) — ZoR(t, €, 0)=0, (4.5)
dz, _ - -
o(t,e) e JuE, —EL Ik + Alt,e,0)=,_1 — E,_1B(t,¢,0)
v—2
— Y EiR(t,e,0)8, 51, v =32 L
=0

First, we consider the case M < K.
In scalar form, the equation (4.3) can be written as a following system of differential equations:

d
Qﬁ(t, 5) g;gK = flK(taea 9)3
p(t,e) Kogrc _ =& -1,k + fix(t,e,0) (j=2,M),
d&o,1s —_— '
(p(t,é‘) dé = 760,1,5-&-1 + fls(t7€70) (S = I’K - 1)7
%oga _ 0) (j=20 s=TK_1
o(t,e) w0 —&0,j-1,s — E0,4,s41 T fis(t6,0) (j=2,M; s=1,K—1).

The condition | (2) ensures the existence of a 2w-periodic with respect to 6 solution of the equation
(4.3) of the form

Zo(t,e,0) = CSV(t,€) + Ly (F(t,¢,0)), (4.7)
where the (M x K)-matrix C(gl)(t ¢) has the form
Mt e) 0 0 0 -~ 0
CW(ey= | @ He) @t o0 0 0 (4.8)
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with c(()ll) (t,e),.. .,c(()ll\)/[(t,e) as yet unknown scalar functions of the class S(m;eq), L1(F(t,¢,0)) =
(&o,5s(t, €, 9))j:1,fM; 17> and &o ;s are defined from the following equalities:

g(),lK(t7579) =I(fix(t,e,0)) + pik(t,e),

€o,jr(t,6,0) = 1(&0 -1,k (t,6,0) + fix(t,6,0)) +pjx(t,e) (j =2,M),

Coa1(t,e,0) = I(fi1(t,,0) 50,12(15,5,9)) + p11(t,e),

€o.s(t,e,0) = I(frs(t.e,0) — E0,1.541(t,6,0)) + prs(tie) (s=1,K — 1),

€0,35(t,6,0) = I(Co,5-1,5(t,2,0) = &0j.s11(t:6,0) + fis(t,2,0)) +pjs(t,e) (G =2,M; s=T,K —1),

where pjs(t,€) are the functions from the class S(m;eo) determined from the condition: all right-hand
sides of the equations in (4.6) must satisfy condition (A). It is easy to verify that p;s(¢,e) can be
represented as some linear combinations of functions T'o(fag(t,€,0)) (a =1,M; =1, K).

We now define the matrix C’él) (t,e) from the condition
Vi(A(t,e,0)Z0 — EoB(t,e,0)) =
By virtue of (4.7), this condition can be rewritten as
Vi(A(t,,0)CS — CSVB(t,e,0)) = (Ll(F(t, £, 0)B(t,e,0) — At, e, 0)L(F(t, e, 9))). (4.9)

In scalar form, the condition (4.9) can be written as a triangular with respect to céll), .. .,céﬁ\)/l

system of linear algebraic equations:

Zg tscoz —h(l)(ts) j=1M,

where g( )( €), h§1)(t75) € S(m;ep) and g](;)(t@) =To(bik(t,€,0)) (j =1, M) are the know functions.
Suppose that

g (te)=0 (j,l=T,M, 1<), (4.10)
h(t,e)=0 (j =T1,M). (4.11)
Then
Vi(A(t,€,0)Co — CoB(t,e,6)) =0 (4.12)
for any matrix Cj of the form (4.8). Besides,
Vi (A(t, e, 0)L1(F(t,e,0)) — Li(F(t,e,0)B(t,e, 9)) —0. (4.13)

Therefore the equation (4.9) is satisfied for any matrix C(()l) of the form (4.8).
The equalities (4.12), (4.13) ensure the existence of a 2m-periodic with respect to § solution of the
equation (4.4) having the form

E1(t,e,0) = CM(t,€) + Ly (A(t,e,0)Z0 — S0 B(t,,0)), (4.14)
where
V(¢ e) 0 0 0 -+ 0
C,fl)(tﬁ): 0512)(75,5) cgll)(t,s) 0 0 -~ 0
dite) ehyate) o ke 0 o0

The solution (4.14) can be written as

Ei(te,0) = C(t,€) + Ly (A(t2,0)C" — C§VB(t,2,0)) + Fi(t, e,0), (4.15)
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where F(t,e,0) = L1(AL1(F) — L1(F)B) does not depend on Cél)
We write down the conditions of the existence of a 2m-periodic with respect to 8 solution of the
equation (4.5):
Vv (A(t, £, 0)E, — E1B(,¢,0) — EoR(t,¢, 9)50) —0.

Taking into account the equalities (4.7) and (4.15), this condition can be rewritten (for brevity, we
omit the arguments ¢, €, 6) as

vi(act —cWB) + 1 (ALl(ACél) —c{VB) — Ly(ACSV — cg”B)B) +Vi(AF, — F\B)
Vi(CSVRCSY) = Vi (Ly (F)RCSY + CV RLy(F)) = Vi (L (F)RLy (F)) = 0. (4.16)

Due to (4.12), the condition (4.16) can be rewritten as
Vi (ALl(ACél) —cVB) — Ly(ACSY — cgl)B)B)
—Vi(Li(F)RCY + CSVRLy (F)) = Vi(CSVRCV) + UM =0, (4.17)

where UM = UM(t, ) is the known M-vector that does not depend on C(l)
(1 ) (1)

In scalar form, the equation (4.17) can be written as a nonlinear with respect to cgy’, ..., ¢y
system of algebraic equations

oW (t e cly),....cl) =0, j=T1, (4.18)

with quadratic nonlinearities.
Suppose that the system (4.18) has a solution 0811)7 . 7081]\)4 such that

1 1
a@”,..., o))

> 0. (4.19)
oy, ... el

inf | det
G
Then the equation (4.5) has a 27w-periodic with respect to 6 solution Es(t, €, 8) belonging to the class
F(m;eo;0).
We now consider the equation for the vector-function =,,5 and distinguish in it explicitly the
terms which depend on 2,41, =,:

d=, _ _ - -
</7(t7€) T—H = JM.:,/_;'_Q — :y+2JK —+ A(t,@, 0):41,4_1 — Zy+1B(t,€, 0)
v—1
— EoR(t,e,0)2, —E,R(t,e,0)Z, ZE (t,e,0)2,_;. (4.20)
=1
For o = 0,v + 1, we have
Za(t,e,0) = CV(t,e) + Za(t,e,0), (4.21)

where C&l)(t, £) is the (M x K)-matrix of the form (4.8), and Z,(¢, £, 6) is the known vector-function
belonging to the class F'(m;eq;0).

We suppose that the matrices Zy(t,¢,0),Z1(¢,¢,0),...,ZE,-1(t, €, 0) are completely defined, includ-
ing the matrix C’l(,l_)l(t, ¢), and the matrix Cﬁl)(t, £), Cl(iir)l(t7 ¢) have to be defined.

We write down the conditions of the existence of a 2m-periodic with respect to 8 solution of the

equation (4.20) as follows:

Vl (A(t, g, 0)5,,_;,.1 — Ey+1B(t, g, 9) — E.()R(t, g, G)Ey)
v—1
~Vi(E R(t,e,0)Z0 + Y EiR(t,e,0)2,1) = 0. (4.22)
=1
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Represent the matrix E,,_H as
Zo =300 + BN, (4.23)

where Effll is a 2m-periodic with respect to 8 solution of the equation

dE,
o(t,e) daﬂ = JuEBus1 — Bup1Ji + Alt,e,0)C D (t,e) — CV(t,e)B(t, €, 0) (4.24)
and l(,:i is a 2mw-periodic with respect to 6 solution of the equation

v

1
d=, - - = = - -
o(t,e) d9+1 = JnSui1 — Spiidi + At e, 02, —E,B(t,2,0) — S ER(t,e,0)S,_1_;.
=1

The condition of the existence of a 2m-periodic with respect to 6 solution of the equation (4.24)
has the form
Vi(A(t e, 0)CLY = GV B(t,2,0)) =

By (4.12), this equality holds for any matrix C, of the kind

cp1(t,e) 0 0 0 --- 0
Cy(t7€) _ Cu2(t75) Cl,l(t7<€) 0 0o --- 0
CuM(t,E) Cu. M 1('&)5) Cyl(t,E) 0 0

Therefore the equation (4.24) has a 27-periodic with respect to 6 solution of the kind

=0, = Li(A(t,e,0)C) — CVB(t,e,6)).

Taking into account (4.21) and (4.23), the condition (4.22) can be rewritten as

Vi(A(t,e,0)CY, = C1B(t2,0) + Vi (Alt,2, ) B, + BT — BV + EUY)B(te,0))
= V1 (BoR(t,e,0)2, + ELR(t,£,0)Z0) + Vi'(t,e) =0, (4.25)

where Vi*(t, ) is the known M-vector belonging to the class S(m;eg).
Based on (4.12), (4.21) and (4.23), we can rewrite (4.25) as

Vi (A(t, e,0)L1 (A(t,e,0)C) — CVB(t,2,0)) — Ly (A(t,e,0)C) — CVB(t,2,0)) B(t, e, a))
—Vi(Li(F)R(t,e,0)C) + CVR(t,&,0) Ly (F))
—Vi(CoR(t,,0)CP + CVR(t,2,0)Co) + ZM (t,e) =0, (4.26)

where Z(M(t,¢) is the known M-vector belonging to the class S(m; ).
It is not difficult to establish the validity of the relations

a M+1-p

ij Z Ta4+1—3,1+8-1Y1s if ﬂ <M,
j=1 =1
0, if 8> M,

(XRY )as =

where X, Y are the (M x K)-matrices of the kind (4.8). It follows that in a scalar form the equation
(4.26) can be written as

2

aq)(l (t,e, c(l), . c(l)
oL our) &) =2(te), j=1,M, (4.27)
AtV v
0l
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where u(-l)(t, ¢) are the known functions belonging to the class S(m;eg). By the condition (4.19), the

j
system (4.27) has a unique solution c,(jll) (t,e),..., c(ull\)/f(t, ¢) belonging to the class S(m;eg).

Thus, all the matrices Z,(t,¢,6) (v = 0,2¢ — 1) are completely defined and belong to the class
F(m;eo;0). Therefore, by (4.2), the matrix E(t,¢,0, 1) is also completely defined Vu € (0,1) and
belongs to the class F(m;eq;6).

Lemma 4.1. Let the equation (3.8) satisfy the following conditions:
(1) M < K;
(2) Vi(F(t,2,0)) = 0;
(3) the equalities (4.10), (4.11) hold;
(4) the system (4.18) has a solution satisfying the condition (4.19).
Then there exists py € (0,1) such that for any p € (0, p1) there exists a transformation of the form
X =Z(t,e,0, 1) + P(t,e,0, )Y U(t, e, 0, ), (4.28)

where the matriz Z(t,e,0, 1) is defined by the equality (4.2) and the elements of the (M x M)-matriz
® and those of the (K x K)-matriz U belong to the class F(m;eg;0) ¥V € (0, p1), which reduces the
equation (3.8) to the form

dY q q
S =Y Yk + (Z U“(t,a);/)y - Y(Z Ulg(t,zs)ul)
=1 =1
+ €(U1 (t7 &, 05 M)Y - YU?(tv g, 05 ,LL)) + qu+1 (Wl (ta & 07 M)Y - YW?(tv & 97 .U’)>
+eH; (t> €, 97 I'L) + :u’2qH2 (ta g, 07 /j/) + /’[/YRI (t7 g, 97 M)K (429)

where the elements of matrices Uy, Up (I = 1,q) belong to the class S(m;eq), and the elements of
matrices Uy, Uz, Wi, Wy, H1, Ha, Ry of the corresponding dimensions belong to the class F(m —
1;520;0).

Proof. Substituting N
X =Z(t,e,0, 1)+ X

in (3.8), where X is a new unknown matrix, we obtain

dX _
—— = JuX — XJg +eHs(t,e,0, 1) + p*THy(t, e, 0, 1)

dt
+ (zq:Pz(t,e, 9)MZ>)~( - X(Zq: Qlt.e, 9)“1)
=1 =1

+ T (W (e, 0,m) X — XW3(te,0,p) + p* X R(t,e,0)X. (4.30)

By Lemma 1 from [1], using the substitution of the kind

X = (EM + i D(t,e, G)MZ)Y<EK + i W (t, e, e)ﬂl)a
I=1 =1

where E);, Ex are the identity matrices of dimensions M and K, respectively, the elements of the
(M x M)-matrices ®; and those of (K x K)-matrices ¥; (I = 1, q) belong to the class F(m;e;0), we
reduce the equation (4.30) to the form (4.29). O

We now consider the case M = K. The condition Il (2) ensures the existence of a 2w-periodic with
respect to 6 solution of the equation (4.3), which is of the form

So(t,e,0) = CP (t,e) + Ly(F(t,z,0))
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with
D (t,e) 0 0
) )
C§P(t,e) = | o2 (t.e) e (te) 0 ) (4.31)
2 2 2
cSu(te) e i(te) o c(te)

where the linear matrix-operator Lo(F') can be constructed similarly to the operator Li(F). The
matrix 052) is defined from the equation

Va(A(t,2,0)C? — C? B(t,¢,0)) = Vs (LQ(F(t, £,0)B(t,2,0) — A(t, 2, 0)Lo(F(t, e, 9))). (4.32)

In scalar form, the condition (4.32) can be written as a triangular with respect to C’éf), co Cé?g[
system of linear algebraic equations:

J

2 2 2 .
S g (te)ey) = 0P (te), j=1,M,
=1

where gﬁ) (t,e),hgg) (t,e) € S(m;ep) and gﬁ) (t,e) = Tolarn(t,e,0) — bip(t,e,0)) (j =1, M) are the
know functions.
Suppose that

Then
V2(A(t’ &, 0)00 - C’OB(ta &, 0)) =0

for any Cj of the kind (4.31), and
Va(La(F(t,2,0))B(t,2,0) — At,2,0)La(F(t,,0)) ) = 0.

Therefore the equation (4.32) is satisfied for any C((JQ) of the kind (4.31).
Similarly to the case M < K, we define the matrix 052)(t, ¢) from the equation

Va(AL2(ACE - € B) - La(ac - ' B)B)

— Va(Ly(F)RCS? + CP RLy(F)) = Va(CSPRCP) + U =0, (4.35)

where U?) = U?)(¢,¢) is the known M-vector, which does not depend on C’éz).
(2) (2)

In scalar form, the equation (4.35) can be written as a nonlinear with respect to cgy’, ..., ¢y
system of algebraic equations

@gZ)(t,s,céi),...,cé%\)/[) =0, j=1,M, (4.36)

with quadratic nonlinearities.
Suppose that the system (4.36) has a solution 0621)7 ... ,c((ﬁv)[ such that

2 2

> 0. (4.37)
oy, ... e

inf | det
G

Lemma 4.2. Let the equation (3.8) satisfy the following conditions:
(1) M=K;
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(2) Va(F(t,e,0)) =0
(3) the equalities (4.33), (4.34) hold;
(4) the system (4.36) has a solution satisfying the condition (4.37).

Then there exists pa € (0,1) such that for any p € (0, pg) there exists a transformation of the
form (4.28), where the matriz E(t,¢,0, 1) is defined by (4.2) and the elements of the (M x M)-matriz
® and those of the (K x K)-matriz U belong to the class F(m;eo;0) ¥V u € (0, p2), which reduces the
equation (3.8) to the form (4.29).

Proof of Lemma 4.2 is similar to that of Lemma 4.1.

Finally, we consider the case M > K.

The condition Il (2) ensures the existence of a 2w-periodic with respect to 8 solution of the equation
(4.3), which has the form

So(t,e,0) = C (t,e) + Ly(F(t,,0))

with
0 0 0
0 0 0
(3)
C(()?’)(t,e): cor (t€) 0 0 ) (4.38)
te) e -0
cm(tie) e i(te) o et e)

where the linear matrix-operator L3(F) is constructed similarly to the operator L;(F'). The matrix
Cég) is defined from the equation

Vs(A(te,0)C — CB(t,¢,0)) = Vs (Lg(F(t, £,0))B(t,e,0) — A(t, e, 0)Ls(F(t, e, 9))). (4.39)

In scalar form, the condition (4.39) can be written as a triangular with respect to cé?i), .. 06‘2

system of linear algebraic equations:

1,K

) )

j
Zg]l (t,e Coz = h(g)(t €), j=

where g(l (t,e), h(g) (t,e) € S(m;ep) and g( )(t e) = Tola1n(t,€,0)) (j = 1, K) are the known func-
tions.
Suppose that

Then
Vg (A(t,&, 9)00 — C()B(t,&, 0)) =0

for any Cy of the kind (4.38) and
Va(La(F(t,2,0)B(t,2,0) — Alt,=,0)Ly(F\(t,2,0))) =

Therefore the equation (4.39) is satisfied for any Cé?’) of the kind (4.38).



The Block Separation of the Linear Homogeneous Differential System ... 137

Define the matrix 083) (t,€) from the equation

Va(ALs(ACSY — Cf¥ B) — Ly(ACS — ¢ B)B)
— Va(L3(F)RCS + C RL3(F)) - Va(CSVRCY) + U®) =0,  (4.42)

where U®) = UG)(¢,¢) is the known M-vector, which does not depend on C(gS).
(3) (3)

In scalar form, the equation (4.42) can be written as a nonlinear with respect to ¢y, ..., o
system of algebraic equations

oW (t e, ey, . cip) =0, j=1K, (4.43)

with quadratic nonlinearities.
Suppose that the system (4.43) has a solution céﬁ% .. c,(f}z such that

3 3
a@?,..., o)

> 0. (4.44)
3 2
8(0(()1), .. cé&)

inf | det
G

Lemma 4.3. Let the equation (3.8) satisfy the following conditions:
1) M > K;
(2) Va(F(t,¢e,0)) =
(3) the equalities (4.40), (4.41) hold;
(4) the system (4.43) has a solution, which satisfy the condition (4.44).

Then there exists us € (0,1) such that for any p € (0, u3) there exists a transformation of the
form (4.28), where the matriz E(t,e,0, 1) is defined by (4.2) and the elements of the (M x M)-matriz
® and those of the (K x K)-matriz U belong to the class F(m;eo;0) Vi € (0, pus), which reduces the
equation (3.8) to the form (4.29).

Proof of Lemma 4.3 is similar to that of Lemma 4.1, too.

Introduce the matrices

Ui(t,e, p) = ZUllte Us(t,e, p) = ZUlgte ,

where Ujy,Ue (I = 1,q) are defined in Lemma 4.1.

Lemma 4.4. Let the equation (4.29) satisfy the following conditions:

(1) eigenvalues \;(t,e, 1) (j =1, M) of the matriz Jy + Ur(t,e, 1) and Xos(t,e,p) (s = 1,K) of
the matriz Ji + Us(t, e, u) are such that

igf\Re(Alj(tvs,u)—Ags(t,&u))\ZVOM"O (70>0, 0<q<q j=1,M; s=1K);

(2) there exist a (M x M)-matriz Py(t,e, p) and a (K x K)-matriz Pa(t,e, 1) such that

(a) all the elements of these matrices belong to the class S(m;eg) C F(m;eo;0);
(b) Hpj_l(taﬁﬂ)”}(m%ﬂ) S Ml/“Lia: Ml S (07+OO)) ac [O7QL .] = 172;

(C) Pfl(JM-’-ﬁl)Pl :Al(t,&f,u), PQ(JK+6[2)P;1 = AQ(t,E, ,u), where A1 :diag()\u, ey )\1M);
Ay = diag(Aa1, ..., Aok );

3) ¢g>qp+a—-1/2.
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Then there exist uy € (0,1) and K4 € (0,400) such that for any u € (0, pg) the matriz differential
equation (4.29) has a particular solution Y (t,e,0, 1) all elements of which belong to the class F(m —
L;e1(p); 0), where e1(p) = min(eg, Kqp2?t201),

Proof of Lemma 4.4 is completely analogous to that of Lemma 3 in [1].

The following Lemma is an immediate consequence of the above ones.

Lemma 4.5. Let the equation (3.8) satisfy all conditions of Lemma 4.1 (in case M < K), or Lem-
ma 4.2 (in case M = K), or Lemma 4.3 (in case M > K), and the equation (4.29), obtained from (3.8)
by means of the transformation (4.28), satisfy all conditions of Lemma 4.4. Then there exist us € (0,1)
and K5 € (0,400) such that for any u € (0, us) the equation (3.8) has a particular solution belonging
to the class F(m — 1;e2(p);0), where ea(u) = Ksp??22=1 and qo, o are defined in Lemma 4.4.

5 The basic result

Based on the above reasoning in Section 3 and Lemma 4.5 we obtain the following result.

Theorem. Let each of the equations (3.6) satisfy all conditions of Lemma 4.5. Then there exist
e € (0,1) and Kg € (0,+00) such that for any pu € (0, ug) there exists a transformation of the
form (3.2) with coefficients from the class F(m — 1;e3(p);0), where e3(p) = Kep??22=1 (qq, o are
defined in Lemma 4.4), which reduces the system (3.1) to the block-diagonal form (3.3). The matrices
Dn,, Dy, are defined by (3.7).
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