
Memoirs on Differential Equations and Mathematical Physics
Volume 71, 2017, 111–124

Vjacheslav M. Evtukhov and Kateryna S. Korepanova

ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF ONE CLASS OF n-th ORDER DIFFERENTIAL EQUATIONS



Abstract. We obtain the existence conditions and asymptotic representations of a certain class of
power-mode solutions of a binomial non-autonomous n-th order ordinary differential equation with
regularly varying nonlinearities and their derivatives of order up to n− 1.

2010 Mathematics Subject Classification. 34D05, 34C11.

Key words and phrases. Ordinary differential equations, higher order, asymptotics of solutions,
regularly varying nonlinearities.

ÒÄÆÉÖÌÄ. n-ÖÒÉ ÒÉÂÉÓ ÁÉÍÏÌÉÀËÖÒÉ ÀÒÀÀÅÔÏÍÏÌÉÖÒÉ ÜÅÄÖËÄÁÒÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍ-
ÔÏËÄÁÄÁÉÓÀÈÅÉÓ ÒÄÂÖËÀÒÖËÀÃ ÝÅËÀÃÉ ÀÒÀßÒ×ÉÅÏÁÄÁÉÈ ÃÀÃÂÄÍÉËÉÀ ÀÌÏÍÀáÓÍÈÀ ÄÒÈÉ
ÊËÀÓÉÓ ÀÒÓÄÁÏÁÉÓ ÐÉÒÏÁÄÁÉ ÃÀ ÍÀÐÏÅÍÉÀ ÌÀÈÉ ÀÓÉÌÐÔÏÔÖÒÉ ßÀÒÌÏÃÂÄÍÄÁÉ.
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1 Introduction
Consider the differential equation

y(n) = αp(t)

n−1∏
j=0

φj(y
(j)), (1.1)

where n ≥ 2, α ∈ {−1, 1}, p : [a,+∞[→ ]0,+∞[ is a continuous function, a ∈ R, φj : ∆Yj → ]0,+∞[
are the continuous functions regularly varying, as y(j) → Yj , of order σj , j = 0, n− 1, ∆Yj is a
one-sided neighborhood of the point Yj , Yj ∈ {0,±∞}1.

Equation (1.1) is a particular case of the equation

y(n) =

m∑
k=1

αkpk(t)

n−1∏
j=0

φkj(y
(j)),

which is comprehensively studied by V. M. Evtukhov and A. M. Klopot [1, 2], M. M. Klopot [3, 4].
Here n ≥ 2, αk ∈ {−1, 1} (k = 1,m), pk : [a, ω[→ ]0,+∞[ (k = 1,m) are continuous functions,
−∞ < a < ω ≤ +∞, φkj : ∆Yj → ]0,+∞[ (k = 1,m, j = 0, n− 1) are continuous functions regularly
varying, as y(j) → Yj , of order σj , ∆Yj is a one-sided neighborhood of the point Yj , which is equal
either to 0 or to ±∞.

From the above-mentioned results, the necessary and sufficient existence conditions of the so-
called P+∞(Y0, . . . , Yn−1, λ0)-solutions of equation (1.1) can be obtained for all λ0 (−∞ ≤ λ0 ≤ +∞).
Moreover, asymptotic representations as t → +∞ of such solutions and their derivatives of order up
to n− 1 can be established.

It follows directly from the definition of these solutions that the conditions

lim
t→+∞

y(j)(t) = Yj (j = 0, n− 1), lim
t→+∞

[y(n−1)(t)]2

y(n−2)(t)y(n)(t)
= λ0 (1.2)

hold.
However, the set of monotonous solutions of equation (1.1), defined in some neighborhood of +∞,

can also have the solutions for each of which there exists a number k ∈ {1, . . . , n} such that

y(n−k)(t) = c+ o(1) (c ̸= 0) as t → +∞. (1.3)

When k = 1, 2, or the functions φi(y
(i)) (i = n− k + 1, n− 2) tend to the positive constants, as

y(i) → Yi, a question on the existence of solutions of type (1.3) of equation (1.1) can be resolved without
any assumption like the last condition in (1.2). Otherwise, we will not be able to get asymptotic
formulas of these solutions and their derivatives of order up to n− 1 directly from equation (1.1).

Some results concerning the existence of solutions of type (1.3) have been obtained in Corollary 8.2
of the monograph by I. T. Kiguradze and T. A. Chanturiya [5, Ch. II, § 8, p. 207] for the equations
of general type. But these results provide for a considerably strict restriction to the (n − k + 1)-st
derivative of a solution. In order to get new results with less strict restrictions to the behaviour
of this and the subsequent derivatives of order ≤ n − 1 in case k ∈ {3, . . . , n} and not all φi(y

(i))
(i = n− k + 1, n− 2) tend to a positive constant, as y(i) → Yi, we formulate the following definition.

Definition 1.1. A solution y of the differential equation (1.1) is called (for k ∈ {3, . . . , n}) a Pk
+∞(λ0)-

solution, where −∞ ≤ λ0 ≤ +∞, if it is defined on the interval [t0,+∞[⊂ [a,+∞[ and satisfies the
conditions

lim
t→+∞

y(n−k)(t) = c (c ̸= 0), lim
t→+∞

[y(n−1)(t)]2

y(n−2)(t)y(n)(t)
= λ0. (1.4)

It is obvious that by virtue of the first relation in (1.4), for these solutions the following represen-
tations

y(l−1)(t) =
ctn−l−k+1

(n− l − k + 1)!
[1 + o(1)] (l = 1, n− k) as t → +∞ (1.5)

1For Yj = ±∞ here and in the sequel, all numbers in the neighborhood of ∆Yj are assumed to have constant sign.
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hold, and c ∈ ∆Yn−k.
It readily follows from the form of equation (1.1) that y(n)(t) has a constant sign in some neigh-

borhood of +∞. Then y(n−l)(t) (l = 1, k − 1) are strictly monotone functions in the neighborhood of
+∞ and, by virtue of (1.3), can tend only to zero, as t → +∞. Therefore, it is necessary that

Yj−1 = 0 for j = n− k + 2, n. (1.6)

Let us introduce the numbers µj (j = 0, n− 1),

µj =

{
1 if Yj = +∞, or Yj = 0 and ∆Yj is a right neighborhood of the point 0,

−1 if Yj = −∞, or Yj = 0 and ∆Yj is a left neighborhood of the point 0,

and assume that they satisfy the following conditions:

µjµj+1 > 0 for j = 0, n− k − 1,

µjµj+1 < 0 for j = n− k + 1, n− 2,
(1.7)

αµn−1 < 0. (1.8)

These conditions on µj (j = 0, n− 1) and α are necessary for the existence of Pk
+∞(λ0)-solutions of

equation (1.1) as long as for each of them in some neighborhood of +∞

sign y(j)(t) = µj (j = 0, n− 1), sign y(n)(t) = α.

Besides, for such solutions it follows from (1.5) that

Yj−1 =

{
+∞ if µn−k > 0,

−∞ if µn−k < 0
for j = 1, n− k. (1.9)

The aim of the present paper is to obtain the necessary and sufficient existence conditions of
Pk
+∞(λ0)-solutions (k ∈ {3, . . . , n}) of equation (1.1) for λ0 ∈ R \ {0, 1

2 , . . . ,
k−3
k−2 , 1}, and to establish

asymptotic, as t → +∞, formulas of their derivatives of order ≤ n − 1. Moreover, a question on the
quantity of the studied by us solutions will be solved.

It is significant to note that by virtue of the results obtained by V. M. Evtukhov [6], the solutions
of equation (1.1) satisfy the following a priori asymptotic conditions.

Lemma 1.1. Let k ∈ {3, . . . , n} and λ0 ∈ R \ {0, 1
2 , . . . ,

k−3
k−2 , 1}. Then for each Pk

+∞(λ0)-solution
y : [t0,+∞[→ R of equation (1.1) the following asymptotic, as t → +∞, relations hold:

y(l−1)(t) ∼ [(λ0 − 1)t]n−l

n−1∏
i=l

[(n− i)λ0 − (n− i− 1)]

y(n−1)(t) (l = n− k + 2, n− 1). (1.10)

2 Auxiliary notations and the main results
In equation (1.1), each of the functions φj (j = 0, n− 1), being a regularly varying function of order
σj , as y(j) → Yj , can be represented (see [7, Ch. I, § 1, p. 10]) in the form

φj(y
(j)) = |y(j)|σjLj(y

(j)) (j = 0, n− 1), (2.1)

where Lj : ∆Yj → ]0,+∞[ (j = 0, n− 1) is a slowly varying function, as y(j) → Yj . According to the
definition and properties of slowly varying functions,

lim
y(j)→Yj

y(j)∈∆Yj

Lj(λy
(j))

Lj(y(j))
= 1 for each λ > 0 (j = 0, n− 1), (2.2)
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and these limit relations hold uniformly with respect to λ on an arbitrary interval [c, d] ⊂ ]0,+∞[ .
Moreover, by virtue of Theorem 1.2 (see [7, Ch. I, § 2, p. 10]), there exist continuously differentiable
functions L0j : ∆Yj → ]0,+∞[ (j = 0, n− 1), slowly varying as y(j) → Yj , such that

lim
y(j)→Yj

y(j)∈∆Yj

Lj(y
(j))

L0j(y(j))
= 1, lim

y(j)→Yj

y(j)∈∆Yj

y(j)L′
0j(y

(j))

L0j(y(j))
= 0. (2.3)

Examples of functions, slowly varying as y → Y0, are the functions

| ln |y||γ1 , lnγ2 | ln |y||, γ1, γ2 ∈ R,

exp
(
| ln |y||γ3

)
, 0 < γ3 < 1, exp

( ln |y|
ln | ln |y||

)
,

as well as the functions that have a nonzero finite limit as y → Y0, and others.
We say that a continuous function L : ∆Y0 → ]0,+∞[ , slowly varying as y → Y0, satisfies the

condition S0 if
L(µe[1+o(1)] ln |y|) = L(y)[1 + o(1)] as y → Y0 (y ∈ ∆Y0),

where µ = sign y.
The condition S0 is necessarily satisfied for functions L that have a nonzero finite limit, as y → Y0,

for functions of the form

L(y) = | ln |y||γ1 , L(y) = | ln |y||γ1
∣∣ ln | ln |y||

∣∣γ2
,

where γ1, γ2 ̸= 0, and for many others.

Remark 2.1. If a function L : ∆Y0 → ]0,+∞[ , slowly varying as y → Y0, satisfies the condition S0,
then for each function l : ∆Y0 → ]0,+∞[ , slowly varying as y → Y0, we have

L(yl(y)) = L(y)[1 + o(1)] as y → Y0 (y ∈ ∆Y0).

Remark 2.2 (see [8]). If a function L : ∆Y0 → ]0,+∞[ , slowly varying as y → Y0, satisfies the
condition S0 and y : [t0,+∞[→ ∆Y0 is a continuously differentiable function such that

lim
t→+∞

y(t) = Y0,
y′(t)

y(t)
=

ξ′(t)

ξ(t)
[r + o(1)] as t → +∞,

where r is a nonzero real constant, ξ is a real function, continuously differentiable in some neighborhood
of +∞ and such that ξ′(t) ̸= 0, then

L(y(t)) = L(µ|ξ(t)|r)[1 + o(1)] as t → +∞,

where µ = sign y(t) in some neighborhood of +∞.

Remark 2.3 (see [2]). If a function L : ∆Y0 → ]0,+∞[ , slowly varying as y → Y0, satisfies the
condition S0 and a function r : ∆Y0 ×K → R, where K is compact in Rn, is such that

lim
y→∆Y0
y∈∆Y0

r(z, v) = 0 uniformly with respect to v ∈ K,

then

lim
y→∆Y0
y∈∆Y0

L(ve[1+r(z,v)] ln |z|)

L(z)
= 1 uniformly with respect to v ∈ K,

where v = sign z.
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Besides these facts about the functions, regularly and slowly varying as y(j) → Yj (j = 0, n− 1),
we need the following auxiliary notations:

γ = 1−
n−1∑

j=n−k+1

σj , ν =

n−2∑
j=n−k+1

σj(n− j − 1), a0j = (n− j)λ0 − (n− j − 1) (j = 1, n),

C =

n−2∏
j=n−k+1

∣∣∣∣∣ (λ0 − 1)n−j−1

n−1∏
i=j+1

a0i

∣∣∣∣∣
σj

, 2 M(c) =

n−k∏
j=1

∣∣∣ c

(n− j − k + 1)!

∣∣∣σj−1

,

I(t) = φn−k(c)M(c)

t∫
A

p(τ)τνφ0(µ0τ
n−k) · · ·φn−k−1(µn−k−1τ) dτ,

where

A =



a1 if
+∞∫
a1

p(τ)τνφ0(µ0τ
n−k) · · ·φn−k−1(µn−k−1τ) dτ = +∞,

+∞ if
+∞∫
a1

p(τ)τνφ0(µ0τ
n−k) · · ·φn−k−1(µn−k−1τ) dτ < +∞,

a1 ≥ a such that µj−1t
n−k−j+1 ∈ ∆Yj−1 (j = 1, n− k) for t ≥ a1.

The following assertions hold for equation (1.1).

Theorem 2.1. Let γ ̸= 0, k ∈ {3, . . . , n} and λ0 ∈ R \ {0, 1
2 , . . . ,

k−3
k−2 , 1}. Then, for the existence of

Pk
+∞(λ0)-solutions of equation (1.1), it is necessary that c ∈ ∆Yn−k and along with (1.6)–(1.9) the

conditions

λ0 < 1, a0j+1 > 0 (j = n− k + 1, n− 2), (2.4)

lim
t→+∞

tI ′(t)

I(t)
=

γ

λ0 − 1
(2.5)

hold. Moreover, each solution of that kind admits along with (1.3) and (1.5) the asymptotic represen-
tations (1.10) as t → +∞ and

|y(n−1)(t)|γ
n−1∏

j=n−k+1

Lj

( [(λ0−1)t]n−j−1

n−1∏
i=j+1

a0i

y(n−1)(t)
) = αµn−1γCI(t)[1 + o(1)]. (2.6)

Here we have the asymptotic, as t → +∞, representations (1.10) and (2.6), written out implicitly.
Let us define conditions under which asymptotic, as t → +∞, representations of Pk

+∞(λ0)-solutions
of equation (1.1) and their derivatives of order ≤ n− 1 can be written out in explicit form.

Theorem 2.2. Let γ ̸= 0, k ∈ {3, . . . , n}, λ0 ∈ R \ {0, 1
2 , . . . ,

k−3
k−2 , 1} and the functions Lj (j =

n− k + 1, n− 1), slowly varying as y(j) → Yj, satisfy the condition S0. Then, in case of the existence
of Pk

+∞(λ0)-solutions of equation (1.1), the following condition

+∞∫
a2

τk−2|I(τ)
n−1∏

j=n−k+1

Lj(µjτ
a0j+1
λ0−1 )|

1
γ dτ < +∞ (2.7)

2Here and in the sequel, it is assumed that
l∏
m

= 1 if m > l.
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holds, where a2 ≥ a1 such that µj−1t
a0j

λ0−1 ∈ ∆Yj−1 (j = n− k + 2, n) for t ≥ a2, and each solution of
that kind admits along with (1.5) the following asymptotic, as t → +∞, representations:

y(n−k)(t) = c+
µn−1(λ0 − 1)k−2

n−1∏
i=n−k+2

a0i

W (t)[1 + o(1)], (2.81)

y(l−1)(t) =
µn−1(λ0 − 1)n−ltn−l−k+2

n−1∏
i=l

a0i

W ′(t)[1 + o(1)] (l = n− k + 2, n− 1), (2.82)

y(n−1)(t) = µn−1
W ′(t)

tk−2
[1 + o(1)], (2.83)

where

W (t) =

t∫
+∞

τk−2

∣∣∣∣γCI(τ)

n−1∏
j=n−k+1

Lj

(
µjτ

a0j+1
λ0−1

)∣∣∣∣ 1
γ

dτ.

Theorem 2.3. Let γ ̸= 0, k ∈ {3, . . . , n}, λ0 ∈ R \ {0, 1
2 , . . . ,

k−3
k−2 , 1}, c ∈ ∆Yn−k, the conditions

(1.6)–(1.9), (2.4), (2.5), (2.7) hold and the functions Lj (j = n− k + 1, n− 1), slowly varying as
y(j) → Yj, satisfy the condition S0. In addition, let the inequality σn−1 ̸= 1 hold and the algebraic
relative to ρ equation

k−1∑
j=2

σn−j

λ0 − 1

j−1∏
l=1

a0n−l

λ0 − 1

k−2∏
l=j

(
ρ+

a0n−l

λ0 − 1

)
=

(
ρ− σn−1 − 1

λ0 − 1

) k−2∏
l=1

(
ρ+

a0n−l

λ0 − 1

)
(2.9)

have no roots with a zero real part. Then for λ0 ∈ ]−∞, k−2
k−1 [ \{0,

1
2 , . . . ,

k−3
k−2} (λ0 ∈ [k−2

k−1 , 1[), equation
(1.1) has a (n−k+m+1)-parameter ((n−k+m)-parameter, respectively) family of Pk

+∞(λ0)-solutions
that admit asymptotic, as t → +∞, representations (1.5) and (2.8i) (i = 1, 2, 3), where m is a number
of roots (taking into account divisible) with a negative real part of the algebraic equation (2.9).

Proof of Theorems 2.1–2.2. Let y : [t0,+∞[→ ∆Y0 be an arbitrary Pk
+∞(λ0)-solution of equation

(1.1). Then, as it has been proved before formulations of the theorems, c ∈ ∆Yn−k, the conditions
(1.6)–(1.9) hold and the asymptotic relations (1.3) and (1.5) are true. It follows from (1.5) that

y(j+1)(t)

y(j)(t)
=

n− j − k

t
[1 + o(1)] (j = 0, n− k − 1) as t → +∞.

Now, by taking into account representations (2.1) of the functions φj(y
(j)) (j = 0, n− k − 1),

regularly varying as t → +∞, and the fact that relations (2.2) hold uniformly with respect to λ on an
arbitrary interval [d1, d2] ⊂ ]0,+∞[ , we have

φj−1

( ctn−j−k+1

(n− j − k + 1)!
[1 + o(1)]

)
=

∣∣∣ ctn−j−k+1

(n− j − k + 1)!
[1 + o(1)]

∣∣∣σj−1

Lj−1

( ctn−j−k+1

(n− j − k + 1)!
[1 + o(1)]

)
=

∣∣∣ c

(n− j − k + 1)!

∣∣∣σj−1

tn−j−k+1Lj−1(µj−1t
n−j−k+1)[1 + o(1)]

=
∣∣∣ c

(n− j − k + 1)!

∣∣∣σj−1

φj−1(µj−1t
n−j−k+1)[1 + o(1)] (j = 1, n− k) as t → +∞.

Therefore, by virtue of (1.1), we obtain

y(n)(t)

φn−1(y(n−1)(t)) · · ·φn−k+1(y(n−k+1)(t))

= αM(c)p(t)φ0(µ0t
n−k)φ1(µ1t

n−k−1) · · ·φn−k(c)[1 + o(1)] as t → +∞. (2.10)



118 V. M. Evtukhov and K. S. Korepanova

It follows from the second relation in (1.4) that

y(n)(t)

y(n−1)(t)
=

1

(λ0 − 1)t
[1 + o(1)] as t → +∞. (2.11)

Then, by virtue of (1.7), the first inequality in (2.4) is true, namely, λ0 < 1.
Furthermore, Lemma 1.1 implies that the asymptotic relations (1.10) hold, and therefore

y(j+1)(t)

y(j)(t)
=

a0j+1

(λ0 − 1)t
[1 + o(1)] (j = n− k + 1, n− 2) as t → +∞. (2.12)

Hence, by virtue of (1.7) and the first inequality in (2.4), the second one in (2.4) is true.
Taking into account (2.1) and (1.10), we rewrite (2.10) as

y(n)(t)|y(n−1)(t)|γ−1

n−1∏
j=n−k+1

Lj(y(j)(t))

= αM(c)Cp(t)tνφn−k(c)

n−k−1∏
j=0

φj(µjt
n−k−j)[1 + o(1)]. (2.13)

Integrating this relation from t0 to t if A = a1 and from t to +∞ if A = +∞, we have
t∫

B

y(n)(τ)|y(n−1)(τ)|γ−1

n−1∏
j=n−k+1

Lj(y(j)(τ))

dτ = αM(c)Cφn−k(c)

t∫
B

p(τ)τν
n−k−1∏
j=0

φj(µjτ
n−k−j)[1 + o(1)] dτ

= αM(c)Cφn−k(c)

t∫
A

p(τ)τν
n−k−1∏
j=0

φj(µjτ
n−k−j) dτ [1 + o(1)]

= αCI(t)[1 + o(1)] as t → +∞, (2.14)

where B ∈ {t0,+∞}.
Let us compare the integral occurring on the left-hand side with the expression |y(n−1)(t)|γ

n−1∏
j=n−k+1

L0j(y(j)(t))

.

Taking into account (2.3), the second condition in (1.4) and (2.11), by the l’Hospital rule in the Stolz
form, we have

lim
t→+∞

|y(n−1)(t)|γ
n−1∏

j=n−k+1

L0j(y(j)(t))

t∫
B

y(n)(τ)|y(n−1)(τ)|γ−1

n−1∏
j=n−k+1

Lj(y(j)(τ))

dτ

= µn−1 lim
t→+∞

n−1∏
j=n−k+1

Lj(y
(j)(t))

n−1∏
j=n−k+1

L0j(y(j)(t))

[
γ −

n−1∑
j=n−k+1

(y(j)(t)L′
0j(y

(j)(t))

L0j(y(j)(t))

y(j+1)(t)

y(j)(t)

y(n−1)(t)

y(n)(t)

)]

= µn−1γ.

By virtue of this limit relation and (2.3), from (2.14) we obtain

|y(n−1)(t)|γ
n−1∏

j=n−k+1

Lj(y(j)(t))

= αµn−1γCI(t)[1 + o(1)] as t → +∞.

Hence, taking into account (1.10) and the properties of regularly varying functions, we establish the
asymptotic representations (2.6), as t → +∞. In addition, they, together with (2.13), imply that

y(n)(t)

y(n−1)(t)
=

I ′(t)

γI(t)
[1 + o(1)] as t → +∞,
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and, by virtue of (2.11), the limit relation (2.5) holds. Thus assertions of Theorem 2.1 are true.
Let us additionally suppose that the functions Lj (j = n− k + 1, n− 1), slowly varying as t → +∞,

satisfy the condition S0. Then, by virtue of (2.11) and (2.12), the assertions

y(j+1)(t)

y(j)(t)
=

1

t

[ a0j+1

λ0 − 1
+ o(1)

]
as t → +∞ (j = n− k + 1, n− 1)

hold, and therefore, by Remark 2.2 and the second inequality in (2.4), we have

Lj

(
[(λ0 − 1)t]n−j−1

n−1∏
i=j+1

a0i

y(n−1)(t)

)
= Lj(µjt

a0j+1
λ0−1 )[1 + o(1)] as t → +∞ (j = n− k + 1, n− 1).

It follows from the obtained relations and (2.6) that for t → +∞

y(n−1)(t) = µn−1

∣∣∣∣γCI(t)

n−1∏
j=n−k+1

Lj

(
µjt

a0j+1
λ0−1

)∣∣∣∣ 1
γ

[1 + o(1)].

This, together with (1.10), implies that

y(l−1)(t) =
µn−1[(λ0 − 1)t]n−l

n−1∏
i=l

a0i

×
∣∣∣∣γCI(t)

n−1∏
j=n−k+1

Lj

(
µjt

a0j+1
λ0−1

)∣∣∣∣ 1
γ

[1 + o(1)] (l = n− k + 2, n− 1) as t → +∞.

Integrating this relation for l = n− k + 2 from t∗ to t, where t∗ = max{a2, t0}, we have

y(n−k)(t) = y(n−k)(t∗)

+
µn−1[(λ0 − 1)]k−2

n−1∏
i=n−k+2

a0i

t∫
t∗

τk−2

∣∣∣∣γCI(τ)

n−1∏
j=n−k+1

Lj

(
µjτ

a0j+1
λ0−1

)∣∣∣∣ 1
γ

[1 + o(1)] dτ.

By virtue of the first condition in (1.4), we find that

lim
t→+∞

t∫
t∗

τk−2

∣∣∣∣I(τ) n−1∏
j=n−k+1

Lj

(
µjτ

a0j+1
λ0−1

)∣∣∣∣ 1
γ

[1 + o(1)] dτ = const

and therefore, by the comparison criterion, the assertion (2.7) holds. Using Proposition 6 of the
monograph [9, Ch. V, § 3, p. 293] on the asymptotic calculation of integrals, for the (n − k)-th
derivative of a solution we get the representation form (2.81).

Consequently, the asymptotic relations (1.3), (1.10) and (2.6), as t → +∞, can be rewritten in the
form (2.8i) (i = 1, 2, 3). The proof of Theorems 2.1–2.2 is complete.

Proof of Theorem 2.3. Let us show that, for this c from the hypothesis of the theorem, equation (1.1)
has at least one Pk

+∞(λ0)-solution that is defined on some interval [t0,+∞[⊂ [a,+∞[ and admits the
asymptotic representations (1.5) and (2.8i) (i = 1, 2, 3), as t → +∞. Moreover, consider the problem
on evaluating a number of such solutions. At the same time note that by virtue of the first inequality
in (2.4), in case λ0 > 1, the differential equation (1.1) does not have Pk

+∞(λ0)-solutions.
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Applying the transformation

y(l−1)(t) =
ctn−l−k+1

(n− l − k + 1)!
[1 + vl(t)] (l = 1, n− k),

y(n−k)(t) = c+
µn−1(λ0 − 1)k−2

n−1∏
i=n−k+2

a0i

W (t)[1 + vn−k+1(t)],

y(l−1)(t) =
µn−1(λ0 − 1)n−ltn−l−k+2

n−1∏
i=l

a0i

W ′(t)[1 + vl(t)] (l = n− k + 2, n− 1),

y(n−1)(t) = µn−1
W ′(t)

tk−2
[1 + vn(t)],

(2.15)

to equation (1.1), we obtain the system of differential equations

v′l =
n− l − k + 1

t
[−vl + vl+1] (l = 1, n− k − 1),

v′n−k =
1

t

[
µn−1(λ0 − 1)k−2

c
n−1∏

i=n−k+2

a0i

W (t)[1 + vn−k+1]− vn−k

]
,

v′n−k+1 =
W ′(t)

W (t)

[
− vn−k+1 + vn−k+2

]
,

v′l =
1

t

a0l
λ0 − 1

[1 + vl+1]

−1

t
(n− l − k + 2)[1 + vl]−

W ′′(t)

W ′(t)
[1 + vl] (l = n− k + 2, n− 1),

v′n =
1

t

[(
− 2 + k − W ′′(t)t

W ′(t)

)
[1 + vn]

+
αp(t)φ0

(
ctn−k

(n−k)! [1 + v1]
)
· · ·φn−1(µn−1t

2−kW ′(t)[1 + vn])

µn−1t1−kW ′(t)

]
.

(2.16)

Consider the resulting system on the set Ωn = [t0,+∞[×Rn
1
2

, where Rn
1
2

= {(v1, . . . , vn) ∈ Rn :

|vj | ≤ 1
2 , j = 1, n} and t0 ≥ a2 is chosen, by virtue of (2.7), so that for t > t0 and (v1, . . . , vn) ∈ Rn

1
2

the conditions hold:

ctn−j−k+1

(n− j − k + 1)!
[1 + vj(t)] ∈ ∆Yj−1 (j = 1, n− k),

c+
µn−1(λ0 − 1)k−2

n−1∏
i=n−k+2

a0i

W (t)[1 + vn−k+1(t)] ∈ ∆Yn−k,

µn−1(λ0 − 1)n−jtn−j−k+2

n−1∏
i=j

a0i

W ′(t)[1 + vj(t)] ∈ ∆Yj−1 (j = n− k + 2, n− 1),

µn−1
W ′(t)

tk−2
[1 + vn(t)] ∈ ∆Yn−1.

As the functions φj(y
(j)) (j ∈ {0, . . . , n− 1} \ {n− k}) are representable as (2.1) and the relations

(2.2) hold uniformly with respect to λ on an arbitrary interval [d1, d2] ⊂ ]0,+∞[ , and in addition,
by virtue of the continuity of the function φn−k(y

(n−k)), (2.7) and the fact that the functions Lj



Asymptotic Behaviour of Solutions of One Class of n-th Order Differential Equations 121

(j = n− k + 1, n− 1), slowly varying as t → +∞, satisfy the condition S0, we have

φj

( ctn−k−j

(n− k − j)!
[1 + vj+1]

)
= φj

( ctn−k−j

(n− k − j)!

)
(1 + vj+1)

σj
(
1 +Rj(t, vj+1)

)
=

∣∣∣ c

(n− k − j)!

∣∣∣σj

φj(µjt
n−k−j)(1 + vj+1)

σj
(
1 +Rj(t, vj+1)

)
(j = 0, n− k − 1),

φj

(
µn−1(λ0 − 1)n−j−1tn−j−k+1

n−1∏
i=j+1

a0i

W ′(t)[1 + vj+1]

)

=

∣∣∣∣ (λ0 − 1)n−j−1

n−1∏
i=j+1

a0i

∣∣∣∣σj

φj

(
µjt

n−k−j+1W ′(t)
)
(1 + vj+1)

σj
(
1 +Rj(t, vj+1)

)

=

∣∣∣∣ (λ0 − 1)n−j−1

n−1∏
i=j+1

a0i

∣∣∣∣σj

φj(µjt
a0j+1
λ0−1 )(1 + vj+1)

σj
(
1 +Rj(t, vj+1)

)
(j = n− k + 1, n− 2),

φn−1

(
µn−1t

2−kW ′(t)[1 + vn]
)
= φn−1(µn−1t

2−kW ′(t))(1 + vn)
σn−1

(
1 +Rn−1(t, vn)

)
= φn−1(µn−1t

1
λ0−1 )(1 + vn)

σn−1
(
1 +Rn−1(t, vn)

)
,

φn−k

(
c+

µn−1(λ0 − 1)k−2

n−1∏
i=n−k+2

a0i

W (t)[1 + vn−k+1(t)]

)
= φn−k(c)

(
1 +Rn−k(t, vn−k+1)

)
,

where the functions Rj(t, vj+1) (j = 0, n− 1) tend to zero, as t → +∞ uniformly with respect to
vj+1 ∈ [− 1

2 ,
1
2 ].

It follows from the form of W (t) and (2.7) that

lim
t→+∞

W ′(t)t

W (t)
= k − 1 +

1

λ0 − 1
,

lim
t→+∞

W ′′(t)t

W ′(t)
= k − 2 +

1

λ0 − 1
,

and both of these limits are nonzero in case λ0 ∈ ] − ∞, 1[ \{0, 1
2 , . . . ,

k−2
k−1}. Therefore, using the

aforementioned representations and (2.5), the system of equations (2.16) can be rewritten in the form

v′l =
n− l − k + 1

t
[−vl + vl+1] (l = 1, n− k − 1),

v′n−k =
1

t

[
− vn−k + Yn−k,1(t, v1, . . . , vn)

]
,

v′l =
1

t

[
− a0l

λ0 − 1
vl +

a0l
λ0 − 1

vl+1 + Yl,1(t, v1, . . . , vn)
]

(l = n− k + 1, n− 1),

v′n =
1

t

[ n−k∑
j=1

σj−1

λ0 − 1
vj +

n−1∑
j=n−k+2

σj−1

λ0 − 1
vj +

σn−1 − 1

λ0 − 1
vn +

2∑
i=1

Yn,i(t, v1, . . . , vn)
]
,

(2.17)

where

Yn−k,1(t, v1, . . . , vn) =
µn−1(λ0 − 1)k−2

c
n−1∏

i=n−k+2

a0i

W (t)(1 + vn−k+1),

Yn−k+1,1(t, v1, . . . , vn) =
W ′(t)t

W (t)
− k + 1− 1

λ0 − 1
,



122 V. M. Evtukhov and K. S. Korepanova

Yl,1(t, v1, . . . , vn) =
W ′′(t)t

W ′(t)
− k + 2− 1

λ0 − 1
(l = n− k + 2, n− 1),

Yn1(t, v1, . . . , vn) =
1

λ0 − 1

( n−1∏
j=0

(
1 +Rj(t, vj+1)

)
− 1

) n∏
j=1

j ̸=n−k+1

(1 + vj)
σj−1

+
(
− 2 + k − W ′′(t)t

W ′(t)
+

1

λ0 − 1

)
[1 + vn],

Yn2(t, v1, . . . , vn) =
1

λ0 − 1

( n∏
j=1

j ̸=n−k+1

(1 + vj)
σj−1 −

n∏
j=1

j ̸=n−k+1

vjσj−1 − 1
)
.

At the same time we note here that

lim
t→+∞

Yj,1(t, v1, . . . , vn) = 0 (j = n− k, n)

uniformly with respect to (v1, . . . , vn) ∈ Rn
1
2

, and

lim
|v1|+···+|vn|→0

Yn,2(t, v1, . . . , vn)

|v1|+ · · ·+ |vn|
= 0

uniformly with respect to t ∈ [t0,+∞[ .
The characteristic equation of the matrix consisting of coefficients of v1, . . . , vn in system (2.17),

n−1∏
l=k

(ρ+ (n− l))
(
ρ+

a0n−k+1

λ0 − 1

)

×
[ k−1∑

j=2

σn−j

λ0 − 1

j−1∏
l=1

a0n−l

λ0 − 1

k−2∏
l=j

(
ρ+

a0n−l

λ0 − 1

)
−
(
ρ− σn−1 − 1

λ0 − 1

) k−2∏
l=1

(
ρ+

a0n−l

λ0 − 1

)]
= 0,

has a zero root if a0n−k+1

λ0−1 = 0 (in case λ0 = k−2
k−1 ), n − k negative roots ρl = −(n − l) (l = k, n− 1)

and k− 1 roots of the algebraic equation (2.9), among which there are no any roots (according to the
hypothesis of the theorem) with a zero real part.

Consequently, we get the system of differential equations that for λ0 ∈ ] − ∞, 1[ \{0, 1
2 , . . . ,

k−2
k−1}

satisfies all assumptions of Theorem 2.2 in [10]. This theorem implies that the system (2.17) has at
least one solution (vj)

n
j=1 : [t1,+∞[→ Rn

1
2

(t1 ∈ [t0,+∞[) that tends to zero as t → +∞. By virtue of
the transformation (2.15), each solution of this kind corresponds to a Pk

+∞(λ0)-solution of equation
(1.1) that admits the asymptotic representations (1.5) and (2.8i) (i = 1, 2, 3) as t → +∞.

Moreover, in accordance with this theorem, if there are m (taking into account divisible) roots
with a negative real part of the algebraic equation (2.9), then in case λ0 ∈ ]−∞, k−2

k−1 [ \{0,
1
2 , . . . ,

k−3
k−2}

(λ0 ∈ ]k−2
k−1 ; 1[) there exists an (n− k+m+1)-parameter ((n− k+m)-parameter, respectively) family

of Pk
+∞(λ0)-solutions of equation (1.1) with the found representations.

Consider now the case λ0 = k−2
k−1 . Applying the change of variables


vj = zj (j = 1, n− k),

vn−k+1 = zn,

vj+1 = zj (j = n− k + 1, n− 1),

(2.18)
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we reduce (2.16) to the system of differential equations

z′l =
n− l − k + 1

t
[−zl + zl+1] (l = 1, n− k − 1),

z′n−k =
1

t

[
− zn−k + Zn−k,1(t, z1, . . . , zn)

]
,

z′l =
1− k

t

[
− a0lzl + a0lzl+1 + Zl,1(t, z1, . . . , zn)

]
(l = n− k + 1, n− 2),

z′n−1 =
1− k

t

[ n−k∑
j=1

σj−1zj +

n−1∑
j=n−k+2

σj−1zj−1

+(σn−1 − 1)zn−1 +

2∑
i=1

Zn,i(t, z1, . . . , zn)
]
,

z′n =
W ′(t)

W (t)
[−zn + zn−k+1],

(2.19)

where

Zj,m(t, z1, . . . , zn) = Yj,m(t, v1, . . . , vn−k, vn−k+2, . . . , vn, vn−k+1) (m = 1, 2, j = n− k, n)

are such that
lim

t→+∞
Zj,1(t, z1, . . . , zn) = 0

uniformly with respect to (z1, . . . , zn) ∈ Rn
1
2

, and

lim
|z1|+···+|zn|→0

∂Zn,2(t, z1, . . . , zn)

∂zk
= 0 (k = 1, n)

uniformly with respect to t ∈ [t0,+∞[ .
It follows from the form of W (t) and (2.7) that lim

t→+∞
W (t) = 0,

lim
t→+∞

W ′(t)t

W (t)
= 0,

+∞∫
t0

W ′(t)dt

W (t)
= ±∞ and W ′(t)

W (t)
< 0 as t > t0.

The characteristic equation of the matrix consisting of coefficients of z1, . . . , zn−1 (the coefficient
of zn differs from 0) in system (2.19),

n−1∏
l=k

(ρ+ (n− l))
[ k−1∑
j=2

(1− k)σn−j

j−1∏
l=1

((1− k)a0n−l)

k−2∏
l=j

(ρ+ (1− k)a0n−l)

−
(
ρ− (1− k)(σn−1 − 1)

) k−2∏
l=1

(ρ+ (1− k)a0n−l)
]
= 0,

has n− k negative roots ρl = −(n− l) (l = k, n− 1) and k − 1 roots of the algebraic equation (2.9),
as λ0 = k−2

k−1 , among which there are no any roots (according to the hypothesis of the theorem) with
a zero real part.

Consequently, system (2.19) satisfies all assumptions of Theorem 2.6 in [10]. Hence it has at least
one solution (zj)

n
j=1 : [t1,+∞[→ Rn

1
2

(t1 ∈ [t0,+∞[) that tends to zero as t → +∞. By virtue of
transformations (2.15) and (2.18), each solution of this kind corresponds to the Pk

+∞(k−2
k−1 )-solution

of equation (1.1) that admits asymptotic representations (1.5) and (2.8i) (i = 1, 2, 3) as t → +∞.
As ρl = −(n − l) (l = k, n− 1) are negative roots, then, in accordance with this theorem, there

certainly exists an (n− k)-parameter family of such solutions. Moreover, there exists an (n− k+m)-
parameter family of solutions with the above found representations, where m is a number of roots
(taking into account divisible) with a negative real part of the algebraic equation (2.9), as λ0 = k−2

k−1 .
The proof of the theorem is complete.
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