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1 Introduction

Consider the differential equation

n—1

y(n) = ap(t) H cpj(y(])), (1.1)
j=0
where n > 2, a € {—1,1}, p: [a, +00[ = ]0, +00[ is a continuous function, a € R, ¢, : AY; =10, +o0|
are the continuous functions regularly varying, as y() — Y;, of order o4, j = 0,n—1, AYj is a
one-sided neighborhood of the point Y, Y; € {0, +oo}.
Equation (1.1) is a particular case of the equation

m n—1
y™ =" api(t) [ ors(?),
k=1 i=o

which is comprehensively studied by V. M. Evtukhov and A. M. Klopot [1,2], M. M. Klopot [3,4].
Here n > 2, ag, € {—1,1} (k = 1,m), px : [a,w[—]0,400] (k = 1,m) are continuous functions,
—00 < a <w < 400, i+ AY; —1]0,4+00[ (k =1,m, j = 0,n — 1) are continuous functions regularly
varying, as y/) — Y;, of order o;, AY; is a one-sided neighborhood of the point Y}, which is equal
either to 0 or to +oo.

From the above-mentioned results, the necessary and sufficient existence conditions of the so-
called Pyoo(Y0, ..., Y,_1, Ag)-solutions of equation (1.1) can be obtained for all Ay (—oo < A\g < +00).
Moreover, asymptotic representations as ¢ — 400 of such solutions and their derivatives of order up
to n — 1 can be established.

It follows directly from the definition of these solutions that the conditions

li (j)(t)—Y» (j=0,n—1) li M_)\ (1.2)
A e Y IO RIO |
hold.
However, the set of monotonous solutions of equation (1.1), defined in some neighborhood of +oo,
can also have the solutions for each of which there exists a number k& € {1,...,n} such that
y ") =c+0(1) (c#0) as t — +oo. (1.3)

When k = 1,2, or the functions ¢;(y?) (i = n — k + 1,n — 2) tend to the positive constants, as
y — Y}, a question on the existence of solutions of type (1.3) of equation (1.1) can be resolved without
any assumption like the last condition in (1.2). Otherwise, we will not be able to get asymptotic
formulas of these solutions and their derivatives of order up to n — 1 directly from equation (1.1).

Some results concerning the existence of solutions of type (1.3) have been obtained in Corollary 8.2
of the monograph by I. T. Kiguradze and T. A. Chanturiya [5, Ch. II, § 8, p. 207] for the equations
of general type. But these results provide for a considerably strict restriction to the (n — k + 1)-st
derivative of a solution. In order to get new results with less strict restrictions to the behaviour
of this and the subsequent derivatives of order < n — 1 in case k € {3,...,n} and not all o;(y?)
(i=n—k+ 1,n — 2) tend to a positive constant, as *) — Y;, we formulate the following definition.

Definition 1.1. A solution y of the differential equation (1.1) is called (for k € {3,...,n}) a P¥ __(Ao)-
solution, where —oo < Ag < 400, if it is defined on the interval [tg, +00[ C [a, +0o] and satisfies the
conditions (1) 12
. (n—k) (1) — . [y~ ()] _
Jm y () =c (e#0),  lm y=2) ()y (1) Ao- (1.4)

It is obvious that by virtue of the first relation in (1.4), for these solutions the following represen-
tations
ct7L—l—k+1

Tk oWl (= Lnk) as b oo (L5)

y () =

1For Y; = Zo0 here and in the sequel, all numbers in the neighborhood of AY; are assumed to have constant sign.



114 V. M. Evtukhov and K. S. Korepanova

hold, and ¢ € AY,,_g.

It readily follows from the form of equation (1.1) that y(™ (¢) has a constant sign in some neigh-
borhood of +oo. Then =Y (t) (I =1,k — 1) are strictly monotone functions in the neighborhood of
~+o0 and, by virtue of (1.3), can tend only to zero, as t — +o0. Therefore, it is necessary that

Yio1=0for j=n—-k+2,n. (1.6)
Let us introduce the numbers p; (j = 0,n — 1),

1 if Y; = 400, or Y; = 0 and AYj is a right neighborhood of the point 0,
Hi = -1 ifY; = —o0, or Y; = 0 and AYj is a left neighborhood of the point 0,

and assume that they satisfy the following conditions:

i1 >0 for j=0,n—k—1,
HjHj+1 J (1.7)
itjy1 <0 for j=n—-k+1,n—-2,

ofn—1 < 0. (1.8)

These conditions on p; (j = 0,n — 1) and « are necessary for the existence of P% _(Ag)-solutions of
equation (1.1) as long as for each of them in some neighborhood of +o0o

signy) (t) = p; (j=0,n—1), signy™(t) = a.

Besides, for such solutions it follows from (1.5) that

if g, 0, S
Y1 = oo 1 Hn—k = for j=1,n—k. (1.9)
—o0 if pnp_p <0

The aim of the present paper is to obtain the necessary and sufficient existence conditions of
Pk o (Xo)-solutions (k € {3,...,n}) of equation (1.1) for Ag € R\ {0, 3,..., %3 1}, and to establish
asymptotic, as ¢ — 400, formulas of their derivatives of order < n — 1. Moreover, a question on the
quantity of the studied by us solutions will be solved.

Tt is significant to note that by virtue of the results obtained by V. M. Evtukhov [6], the solutions
of equation (1.1) satisfy the following a priori asymptotic conditions.

Lemma 1.1. Let k € {3,...,n} and A\g € R\ {0,1,..., %, 1}. Then for each P (Xo)-solution
y : [to, +oo[ = R of equation (1.1) the following asymptotic, as t — +o0, relations hold:

[ — Dt
TL it = D)do — (n—i — 1)]

i=l

g0 (1) ~ y" V) l=n—k+2,n—1). (1.10)

2 Auxiliary notations and the main results

In equation (1.1), each of the functions ¢; (j = 0,n — 1), being a regularly varying function of order
o, as y¥) — Yj, can be represented (see [7, Ch. I, § 1, p. 10]) in the form

;) =1y L;(yD) (j=0,n—1), (2.1)

where L; : AY; —]0,400[ (j =0,n — 1) is a slowly varying function, as y) — Y;. According to the
definition and properties of slowly varying functions,

L;i(\yY)

lim .
Y9y Lj(y(]))
y(J')eij

=1 foreach A>0 (j=0,n—1), (2.2)
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and these limit relations hold uniformly with respect to A on an arbitrary interval [c,d] C]0,+o0].
Moreover, by virtue of Theorem 1.2 (see [7, Ch. I, § 2, p. 10]), there exist continuously differentiable
functions Lg; : AY; —]0,+00[ (j = 0,n — 1), slowly varying as yU) — Y;, such that

Ly DL ()
i B yLy W) g (2.3)
y(j)*)}/j LOJ(y(])) y(j)*})/j LOJ(y(]))
y(j)eAYj y(]‘)EAYj

Examples of functions, slowly varying as y — Y{, are the functions

|1n|y||717 ln’Yz |1n|y\|, Y1, 72 ERa

In |y| )

exp (|In]yl|®), 0<vy3 <1, exp (m

as well as the functions that have a nonzero finite limit as y — Y{, and others.
We say that a continuous function L : AYy —]0, 400, slowly varying as y — Yp, satisfies the
condition Sy if
L(peltoMInlvly — 1)1 4 0(1)] as y = Yy (y € AYy),
where p = signy.

The condition Sy is necessarily satisfied for functions L that have a nonzero finite limit, as y — Yj,
for functions of the form

L(y) = |lyll™, L(y) = [ ]y[|" | In|In]y|||™,
where 1,72 # 0, and for many others.

Remark 2.1. If a function L : AYy — 10, 400[, slowly varying as y — Yy, satisfies the condition Sy,
then for each function [ : AYy —]0,4+00[, slowly varying as y — Y, we have

L(yl(y)) = Ly)[1 +o(1)] as y = Yo (y € AY)).

Remark 2.2 (see [8]). If a function L : AYy —]0,+o0o[, slowly varying as y — Y, satisfies the
condition Sy and y : [tg, +00[ = AY) is a continuously differentiable function such that

. _ y't)  €®)
Jmov® =Yooy =

[r+0(1)] as t — 400,

where r is a nonzero real constant, £ is a real function, continuously differentiable in some neighborhood
of 400 and such that &'(t) # 0, then

L(y(t)) = L(ulg@)]")[1 + o(1)] as ¢ — +o0,
where p = signy(t) in some neighborhood of +oc.

Remark 2.3 (sce [2]). If a function L : AYy; —]0,4o0[, slowly varying as y — Yj, satisfies the
condition Sy and a function r : AYy x K — R, where K is compact in R™, is such that

lim 7(z,v) =0 uniformly with respect to v € K,
y*)AYO
yEAYy

then

L [147r(z,v)]In |z|
lim (ve )
yEAY)

=1 uniformly with respect to v € K,

where v = sign z.
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Besides these facts about the functions, regularly and slowly varying as y/) — Y; (j=0,n—-1),
we need the following auxiliary notations:

n—1 n—2

y=1= Y o5 v= Y ojn—j—1), ay=m—-Hr—(n—j—1) (j=Tn),
j=n—k+1 j=n—k+1
n—2 ()\0 _ 1)'Il—j—1 i 9 n—k I gj—1
o= T |Bei— 2 o =-Tl g5l
j=n—k+1 H ao; j=1
i=j+1

I(t) = pn—k(c)M(c) /P(T)T”Sﬁo(ﬂoT”f’“) o Oneg—1 (pn—k—17) dT,

A
where
—+oo
o i / P(T)T 00 (10" *) - k1 (ftn—k—17) dT = +00,
— ai
A= oo

400 if / p(T)TV(p0<MoT"_k> o Op—k—1(fp—k—17) dT < 00,

ai

a1 > a such that ,uj,lt"_k_j“ €AY;1 (j=1,n—k)fort>a.
The following assertions hold for equation (1.1).

Theorem 2.1. Let v # 0, k € {3,...,n} and Ao € R\ {0, 1 Srees k 2,1} Then, for the existence of

P* o (Xo)-solutions of equation (1.1), it is necessary that ¢ € AY,_y and along with (1.6)~(1.9) the
conditions

)\0<].7 aoj+1>0 (]:nfk+1,n72), (24)

() o
AT T a1 (2:5)

hold. Moreover, each solution of that kind admits along with (1.3) and (1.5) the asymptotic represen-
tations (1.10) as t — 400 and

V@) _
- = afin—17CI(#)[1 + o(1)]. (2.6)
H I» ([O\U l)t]" iz y(n—l)(t))
j=n—k+1 _71__[+1a01

Here we have the asymptotic, as t — 400, representations (1.10) and (2.6), written out implicitly.
Let us define conditions under which asymptotic, as t — +oo, representations of Pf_oo()\o)—solutions
of equation (1.1) and their derivatives of order < n — 1 can be written out in explicit form.

Theorem 2.2. Let v # 0, k € {3,...,n}, \g € R\ {0, 1 Sreees k 2,1} and the functions L; (j
n—k+1,n—1), slowly varying as yU ) — Y, satisfy the condition Sy. Then, in case of the existence
of ’Pﬁoo()\o)—solutions of equation (1.1), the following condition

—+oo

n—1 )
[rm TT Ll dr < 4o (27)

j=n—k+1

az

1
2Here and in the sequel, it is assumed that [[ = 1 if m > I.
m
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204 N
holds, where ay > ay such that uj,ltkozl €AY;_1 (j=n—k+2,n) fort> as, and each solution of
that kind admits along with (1.5) the following asymptotic, as t — +o00, representations:

e o — 1 k—2
YR () = c+ & 17(172 ) W (t)[1 + o(1)], (2.81)
aopg
i=n—k+2
B -1 n—lyn—Il—k+2
y=D(p) = En 1A M) f W H[1+o01)] l=n—k+2,n—1), (2.8,)
aop;
1=l
_ W' (t
YD) = et S (14 0(1)], (2.85)
where
t not N E
Wi(t) = /kaz ~CI(T) H L; (Mjr A0—1) dr.
Foo j=n—k+1

Theorem 2.3. Let v # 0, k € {3,...,n}, Ao € R\ {0, 3 Sreees k 271} c € AY, _, the conditions

(1.6)~(1.9), (2.4), (2.5), (2.7) hold and the functions L; (j = n—k+1,n—1), slowly varying as
y) — Y;, satisfy the condition So. In addition, let the inequality o,—1 # 1 hold and the algebraic
relative to p equation

j—1 k—2 k—2
On—j aon—1 ( aon—1 ) _ ( N On—1— 1) ( aon—1 ) 2.9
ZAO—I AO—1E”+AO—1 P -1 EP+AO—1 29)
have no roots with a zero real part. Then for Ao €]—o0, E=2[\{0, 3,..., 523} (X € [£=2,1]), equation

(1.1) has a (n—k+m++1)-parameter ((n—k~+m)-parameter, respectively) family of P¥ _(Xo)-solutions
that admit asymptotic, as t — +o0o, representations (1.5) and (2.8;) (i = 1,2,3), where m is a number
of roots (taking into account divisible) with a negative real part of the algebraic equation (2.9).

Proof of Theorems 2.1-2.2. Let y : [to, +00o[— AYy be an arbitrary P¥ __(Ag)-solution of equation
(1.1). Then, as it has been proved before formulations of the theorems, ¢ € AY,,_, the conditions
(1.6)—(1.9) hold and the asymptotic relations (1.3) and (1.5) are true. It follows from (1.5) that
G+D) — i
y ot _n—j—k e
0@ ; [14+0(1)] (j=0,n—k—1) as t — +oc.

Now, by taking into account representations (2.1) of the functions ¢;(y)) (j = 0,n —k — 1),
regularly varying as ¢ — +o00, and the fact that relations (2.2) hold uniformly with respect to A on an
arbitrary interval [dy, d2] C]0, 4+00[, we have

Ctn—j—k+1

Pj—1 (m [1 + 0(1)])
ct" J—k+1 oj—1 Ctnfjkarl
_’n—j—k+1) [1—|—O(1)} J l(m[l—FO(l)D
=l T et T o)
- ’m ajil‘Pj—l(ﬂj—ﬂ”*j*kH)[l +o(1)] (j=1,n—k) as t — +oo0.

Therefore, by virtue of (1.1), we obtain

y ™ (t)
Pn-1 (YD () - ka1 (Y TED(D))
= aM(c)p(t)eo(pot™ ") o1 (uit"F 1) - o _w(e)[1 + 0(1)] as t — +oo. (2.10)
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It follows from the second relation in (1.4) that
y™) 1
y=D(t) (Ao — 1)t

Then, by virtue of (1.7), the first inequality in (2.4) is true, namely, A\ < 1.
Furthermore, Lemma 1.1 implies that the asymptotic relations (1.10) hold, and therefore

[14+0(1)] as t = 4o0. (2.11)

G+ (¢
yy(j)(t()) - (/\C;(’]j)t M+0(1)] j=n—Fk+1Ln—2) as t — +oc. (2.12)

Hence, by virtue of (1.7) and the first inequality in (2.4), the second one in (2.4) is true.
Taking into account (2.1) and (1.10), we rewrite (2.10) as
—k—

() (£) |y (=D ()7~
! ,fff'y o _ M (c)Cp(t)t” ¢n—k( H (it TR + o(1)]. (2.13)
[T Liy9() =0

j=n—k+1

Integrating this relation from ¢y to ¢ if A = a; and from t to +o00 if A = 400, we have

n n—1 y—1 4 n—k—1
JEEEWTRONT e @0 4@) [ oo TT st + o1
BT L9 3 <o
j=n—k+1
t n—k—1 ‘
— aM()Cn_i(c) / p) TT st 4)dr [1+ o(1)
A 7=0
=aCI(t)[1+0o(1)] as t — 400, (2.14)

where B € {tg, +00}.

(n—1)
Let us compare the integral occurring on the left-hand side with the expression J” O

T Lo

Taking into account (2.3), the second condition in (1.4) and (2.11), by the l’Hospital_rule in the Stolz
form, we have

"D @
n—1

I1 lLoj(y‘”(t))

j=n—k+

lim
t—+4o00

[ RO @ g
BT L)

j=n—k+1
n—1
I L,y9"®) . ) ; |
= fiy lim IR : N . (y(J)(t)Laj(y(”(t)) Y1 (1) y<n71)(t)>
= Un—1 0o n—1 - : ) & =
o Loj(yD (1)) i Y Loy @) Yy (t)  y™(t)

j=n—k+1

= Hn-17-
By virtue of this limit relation and (2.3), from (2.14) we obtain
"D r

T Lo

j=n—k+1

= ap,—17CI(t)[1 + o(1)] as t = +oo.

Hence, taking into account (1.10) and the properties of regularly varying functions, we establish the
asymptotic representations (2.6), as t — +o00. In addition, they, together with (2.13), imply that

y () I
Ym0~ AI(0)

[1+0(1)] as t — +oo,
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and, by virtue of (2.11), the limit relation (2.5) holds. Thus assertions of Theorem 2.1 are true.
Let us additionally suppose that the functions L; (j = n — k + 1,n — 1), slowly varying as t — 400,
satisfy the condition Sp. Then, by virtue of (2.11) and (2.12), the assertions

y(j+1)(t) _ 1 {aoj_H
t

GI0) )\0_14—0(1)} as t—+oo (j=n—k+1,n-1)

hold, and therefore, by Remark 2.2 and the second inequality in (2.4), we have

Ao — Dtn—i—1 20541 e
L, (wzﬂ"-“(ﬂ) — Lyt )14 o(1)] as t = +o0 (j=n—kF Lu—1).
H [
i=j+1

It follows from the obtained relations and (2.6) that for ¢ — +o00

n—1 1

20541 ¥
W) = pna|yCI®) [T Ly (st )| 11+ 0],
j=n—k+1

This, together with (1.10), implies that

_ Hn—1[(do — DY

y=D (1) —
I aoi
=1

1

n—1
a0j+1 v
c1@) [T £i(mt™e)
j=n—k+1

X l4+0o1)] Il=n—k+2,n—1) as t = +oo.

Integrating this relation for [ = n — k 4 2 from ¢, to ¢, where t, = max{as,to}, we have

y R (t) =y ()

t n—1 1
pn—1[(Ao — 1)]]672 — Q041 [ Y
1 il ro2her@) IT Li(wm )| L+ o()dr.
aoi i j=n—k+l
i=n—k+2
By virtue of the first condition in (1.4), we find that
t n—1 1
lim [ 7%72|I(7) H L; (p o ) ’ [14 o(1)]dr = const
{00 _ o A
t J=n=

and therefore, by the comparison criterion, the assertion (2.7) holds. Using Proposition 6 of the
monograph [9, Ch. V, § 3, p. 293] on the asymptotic calculation of integrals, for the (n — k)-th
derivative of a solution we get the representation form (2.8;).

Consequently, the asymptotic relations (1.3), (1.10) and (2.6), as t — +00, can be rewritten in the
form (2.8;) (¢ = 1,2,3). The proof of Theorems 2.1-2.2 is complete. O

Proof of Theorem 2.3. Let us show that, for this ¢ from the hypothesis of the theorem, equation (1.1)
has at least one P (Ao)-solution that is defined on some interval [to, +00[C [a, +oo[ and admits the
asymptotic representations (1.5) and (2.8;) (¢ = 1,2,3), as t — +o00. Moreover, consider the problem
on evaluating a number of such solutions. At the same time note that by virtue of the first inequality
in (2.4), in case A\g > 1, the differential equation (1.1) does not have P¥__()¢)-solutions.
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Applying the transformation

Ctn7l7k+1

YD () = TR l+u@®) (=T,n—Fk),

/jfnfl(>\0 - 1)k_2

n—1

y"R(t) = c+

ao;
i=n—k42 (2.15)

- _ 1 )n—lyn—l—k+2 —

_ Hn 1(Ao n71) t W' [ +v(t)] Il=n—k+2,n—1),
I ao:
i=l

Yyt = pn_y % 1+ vn ()],

y0 (1)

to equation (1.1), we obtain the system of differential equations

—l—-k+1 JE—
= vt u] (=Tn—k—1),

t
1 [ o1 Mg — 1)F2
'U;hlc = n & l(ni)l ) W(t)[l + Un—k-i-l] — Un—k|,
& H ap;
/(ti):n—k—i-Z
%
U1 = 7W(t) [— Up—k+1 + 'Unflc+2];
a 2.16
'Ul/ _ = 0l [1 + 'Ul+1] ( )
Do — 1
1 W (t)

—g(n—l—k+2)[1+vl]— l+vy] (=n—-k+2,n-1),

v;:% |:(2+k w{;;i((i))t)[lJrvn]

ap(t)eo (G [L+01]) - @nm1 (a1 27 ($)[1 + v,))
i i 1 F W (1) |

w(t)

Consider the resulting system on the set Q" = [tg, +oo[ xR, where R} = {(vq,...,v,) € R" :
2 2
lvjl <%, j=T1,n}and ty > as is chosen, by virtue of (2.7), so that for t > t; and (vi,...,v,) € R%‘
the conditions hold:

Ctn—j—k+1
(n—j—k+1)!

- Ao — 1 k—2
ca F (Ao —1) W[+ vn—pt1(t)] € AY—y,

n—1

[1+vi(t)] €AYy (j=1,n—k),

ao;
i=n—k+2
pin1(Ng — 1) Ign Ik
n—1
aog
=7

W/ (#)[1+v(t) €AYy (j=n—k+2,n—1),

W' (t
Hn—1 tk_(g) []- + Un(t)] S Aynfl.

As the functions ¢, (y)) (j € {0,...,n—1}\ {n — k}) are representable as (2.1) and the relations
(2.2) hold uniformly with respect to A on an arbitrary interval [d;,ds] C]0,+o00[, and in addition,
by virtue of the continuity of the function ¢, (y("=*)), (2.7) and the fact that the functions L;
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(j=n—-k+1,n—1), slowly varying as t — 400, satisfy the condition Sy, we have

ctnfkfj Ctnfkr 7

%‘(m 1 +vj+1]> = %(m)(l +vj41)% (1 +Rj(t,vj+1))
¢ 7 o . D ———
= ‘m @i (pt" ) (L 4 vi40)7 (14 R(t,0541)) (5 =0,n—k=1),
n— Ao — 1 nijiltnfjfk""l
(pj<NL 1(Ao nzl W’(t)[l+vj+1]>
H a4
i=j+1
No— L) i
= ‘(On—l) @j(ﬂjt k J+1W/(t))(l+vj+1) ’(1+Rj(t,vj+1))
ag;
i=j+1
Ao — )i 40j+1 ) S —
= ‘(Onl) L)D](th XUJ*I )(1 +Uj+1)aj (1 + Rj(t7v]+l)) (] =n— k + 1’n _ 2)’
ag;
i=j+1

Pr1 (17 FW ()L + va]) = @no1 (1" W () (1 + v2)7"* (14 Rp—1(t,vn))
= on—1(n—1t20"1)(1 + v,)7" " (1 + Rn-a(t, 'Un))a

k=2
wn_k<c+ pn1 00 = D7 gy 4 vn_kﬂm]) = o b1+ R ity n511)),

n—1

Qo;
i=n—k+2
where the functions R;(t,vj4+1) (j = 0,n — 1) tend to zero, as t — +oo uniformly with respect to

vi+1 € [=3, 3]
It follows from the form of W (t) and (2.7) that

W' (t)t 1
=k—-14+ ——
t%lgloo W(t) + Ao — 1’
W"(t)t 1
=k—-24+ ——
0 NPV
and both of these limits are nonzero in case Ao €] — 00,1[\{0, 3, .. u} Therefore, using the
aforementioned representations and (2.5), the system of equations (2. 16) n be rewritten in the form

k1 B
”f:%[—UH'WH] (I=1,n—-k-1),

/ —
Up—k =

| =

[ — Un—k + Yn—k,l(ta Uty alun)]7
(2.17)

1 a Qa —_—
’Ullzg |:_)\0()_Z1Ul+>\ 0_llvl+1+)/l,1(t7vl7"'avn):| (l:n_k+1?n_1)a

1 , L
;L ;I:ZA —1 j+ Z )\03711 J+ /\0171 Un+ZYnZtU17..., ):|)

j=n—k+2

where

pn—1(Ao — 1)F=2

n—1
C H aopg
1=n—k+2
W (t)t
—k 1—
W (t) + Ao — 1"

W) (14 vn—gt1),

Ynfk:,l(t7 Viy.-- 7Un) =

Yn—k+1,1(ta V.- 7vn) =
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W"(t)t 1 E—
Yia(t = —k+2-— l=n—-k+2,n-1
l,l( U1, 7'Un) W/(t) + Ao — 1 ( n +2,n )a
n—1 n
1 )oi-1
Varltvn, o 00) = 1oy (J];[O (14 R;(t,v,11)) — 1) H (1 + ;)7
j#
W ()t 1
otk )1 ,
+( + Wﬁ)+M—1[+w
Ynz(t,’Ul,...,’Un)— O_1< H 1+1} Oj—1 __ 1_[1 ’UjO'j_l—l).
J:
k4 j#n—k+1
At the same time we note here that
tilin }/jl(t v1,..,00) =0 (j=n—k,n)
uniformly with respect to (vi,...,v,) € R?, and
2
1 Yng(t ’Ul,...,’Un)_
[o1 ]+ +|vn|=0 |1] 4+ -+ + |vg]
uniformly with respect to t € [tg, +00f.
The characteristic equation of the matrix consisting of coefficients of vy, ..., v, in system (2.17),

—~ Aon—
[T(o+ (=) (p+5ntit)
Pl Ao —1
o = a i a o = a
n—j On—I ( On—I ) B ( _ Yn-17 ) ( On—I ) -0
i o1 &—1E’HNP1 VI § A v
has a zero root if % =0 (in case A\g = £=2), n — k negative roots p = —(n — 1) (I = k,n— 1)

and k — 1 roots of the algebraic equation (2.9), among which there are no any roots (according to the
hypothesis of the theorem) with a zero real part.

Consequently, we get the system of differential equations that for Ag €] — 00,1[\{0, 3, ..., %
satisfies all assumptions of Theorem 2.2 in [10]. This theorem implies that the system (2.17) has at
least one solution (v;)7_; : [t1, +0o[— R% (t1 € [tg, +00]) that tends to zero as t — +oc0. By virtue of

2
the transformation (2.15), each solution of this kind corresponds to a P¥__(Ag)-solution of equation
(1.1) that admits the asymptotic representations (1.5) and (2.8;) (i =1,2,3) as t — 4o0.

Moreover, in accordance with this theorem, if there are m (taking into account divisible) roots

with a negative real part of the algebraic equation (2.9), then in case \g €] — o0, k 2[\{0,1,..., %
(Mo €] Z 2:1[) there exists an (n — k 4+ m + 1)-parameter ((n — k 4+ m)-parameter, respectively) family

of P¥_(\o)-solutions of equation (1.1) with the found representations.

Consider now the case A\g = % . Applying the change of variables

vi =2 (j=1,n—k),
bt = (218)
Vjt+1 = Zj G=n—-k+1,n-1),
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we reduce (2.16) to the system of differential equations
, n—Il—-k+1

: [—Zl+21+1] (l: 1,n—k—1),

[— 2ok + Zn-ki(t, 21, .., 20)],

1-k -
2] = — [—aozzl+a0121+1 +Z171(t,21,...,zn)] (l=n—-k+1,n-2),

/
Zp_ {E 0j—1%5 + E Oj-12j-1
j=n— k+2

+(Jn71 - 1)Zn71 + Z Zn,i(t; Zlye-- 7Zn)} )
i=1

(2.19)

. (1)
Zn = W(t) [_Zn + Zn—k-&-l],

where
Zim(t, 21,y 2n) = Ym (01, oy Unky Unkt 2, - s Uns Un—k+1) (m=1,2, j=n—k,n)
are such that
t_l}in Zia(t,z1,...,2n) =0

uniformly with respect to (z1,...,2,) € R%, and
2

lim 8Zn,2(t, ARERE ,Zn)
|21 |4+ 4] 2n | —0 0z

uniformly with respect to t € [tg, +00].
It follows from the form of W (t) and (2.7) that t_lgn W(t) =

()t /W/ dt adW/(t)<Oast>t
1m +00 I .
troo Wt W (t) 0

The characteristic equation of the matrix consisting of coefficients of z1,...,2z,-1 (the coefficient
of z, differs from 0) in system (2.19),

k—1 k—

[Leo+m-n][>a0- anJH 1~ F)aon 1>H<p+<1—k>a0m>
1=k

Jj=2 =
—(P—(l—k’ On— 1_1 HP“‘l— aOn—l) =0,

has n — k negative roots p = —(n —1) (I = k,n — 1) and k — 1 roots of the algebraic equation (2.9),
as \g = % , among which there are no any roots (according to the hypothesis of the theorem) with
a zero real part.

Consequently, system (2.19) satisfies all assumptions of Theorem 2.6 in [10]. Hence it has at least
one solution (z;)7_; : [t1, +oo[ = ]Rg (t1 € [to,+oo[) that tends to zero as t — 4o00. By virtue of

transformations (2.15) and (2.18), each solution of this kind corresponds to the P¥__(£=2)-solution

of equation (1.1) that admits asymptotic representations (1.5) and (2.8;) (¢ = 1,2,3) as t — +o0.

As pp = —(n—1) (I = k,n — 1) are negative roots, then, in accordance with this theorem, there
certainly exists an (n — k)-parameter family of such solutions. Moreover, there exists an (n — k +m)-
parameter family of solutions with the above found representations, where m is a number of roots
(taking into account divisible) with a negative real part of the algebraic equation (2.9), as A\g = %
The proof of the theorem is complete.
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