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ÒÄÆÉÖÌÄ. n-ÖÒÉ ÒÉÂÉÓ ÀÒÀÀÅÔÏÍÏÌÉÖÒÉ ÜÅÄÖËÄÁÒÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ,
ÒÏÌËÄÁÉÝ ÂÀÒÊÅÄÖËÉ ÀÆÒÉÈ ÀáËÏÓ ÀÒÉÀÍ ßÒ×ÉÅ ÂÀÍÔÏËÄÁÄÁÈÀÍ, ÃÀÃÂÄÍÉËÉÀ ÆÏÂÉÄÒÈÉ
ÊËÀÓÉÓ ÀÌÏÍÀáÓÍÈÀ ÀÓÉÌÐÔÏÔÖÒÉ ßÀÒÌÏÃÂÄÍÄÁÉ.
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1 Introduction
Consider the differential equation

y(n) = α0p(t)y| ln |y||σ, (1.1)

where α0 ∈ {−1, 1}, σ ∈ R, p : [a, ω[→ ]0,+∞[ is a continuous function, −∞ < a < ω ≤ +∞1.
A solution y of the equation (1.1), which is nonzero on the interval [ty, ω[⊂ [a, ω[ , is said to be a

Pω(λ0)-solution if it satisfies the following conditions:

lim
t↑ω

y(k)(t) =

{
either 0,

or ±∞
(k = 0, n− 1), lim

t↑ω

(y(n−1)(t))2

y(n)(t)y(n−2)(t)
= λ0. (1.2)

We notice that the differential equation (1.1) is a special case of the differential equation of a more
general form

y(n) = α0p(t)φ(y),

where α0 and p are the same as in the equation (1.1) and φ : ∆Y0
→ ]0,+∞[ is a continuous and

regularly varying function as y → Y0 of the order γ, Y0 is equal either to zero or to ±∞, ∆Y0
is some

one-sided neighborhood of Y0.
The differential equation (1.1) belongs to the class of two-term non-autonomous equations with

regularly varying nonlinear function φ(y) as y → 0 and y → ±∞. In recent decades, the asymptotic
theory of such equations has been studied by many authors (see, e.g., monograph by V. Maric [8] and
the references therein concerning the second order equation; see also the papers by V. M. Evtukhov,
A. M. Samoilenko [6] and by V. M. Evtukhov, A. M. Klopot [4] for differential equations of order n).

In [6] and [4], for the two-term differential equations of n-th order with regularly varying nonlinear
function φ(y) as y → 0 and y → ±∞, the authors obtained asymptotic representation for all possible
types of Pω(λ0)-solutions and their derivatives up to the order n− 1, inclusive. However, the results
of these works do not cover the case where φ(y) = y| ln |y||σ is a regularly varying function of order
one. By such nonlinearity of the equation (1.1), not being a substantially non-linear, and due to the
asymptotic relation φ(y) = y1+o(1) as y → 0 (±∞), the differential equation is asymptotically close
to the linear differential equation

y(n) = α0p(t)y, (1.3)

and therefore is of theoretical interest.
In [3], for the equation (1.1), the asymptotic behavior of Pω(λ0)-solutions as t ↑ ω was investigated

when λ0 ∈ R \ {0, 1
2 , . . . ,

n−2
n−1}.

The aim of the present paper is to establish the existence conditions of Pω(λ0)-solutions of the
equation (1.1) in case λ0 = 0, and to obtain asymptotic representations as t ↑ ω for all such solutions
and their derivatives up to order n− 1, inclusive.

2 Auxiliary statements
To obtain our main results we need two lemmas, the first one is related to a priori asymptotic properties
of Pω(0)-solutions and the other is about the existence of vanishing at a singular point solutions of a
system of quasi-linear differential equations.

To state the first one, we introduce the function

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞.

From Lemma 10.6 introduced in [2, Ch. 3, § 10, pp. 143–144] we get the following statement.

1We assume that a > 1 for ω = +∞ and ω − a < 1 for ω < +∞.
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Lemma 2.1. If n ≥ 2, then each Pω(0)-solution of the differential equation (1.1) satisfies the following
asymptotic relation as t ↑ ω:

y(k−1)(t) ∼ [πω(t)]
n−k−1

(n− k − 1)!
y(n−2)(t) (k = 1, . . . , n− 2), y(n−1)(t) = o

(y(n−2)(t)

πω(t)

)
, (2.1)

and in case lim
t↑ω

πω(t)y(n)(t)
y(n−1)(t)

(finite or equal to ±∞) exists, the following relation holds:

y(n)(t) ∼ −y(n−1)(t)

πω(t)
as t ↑ ω. (2.2)

Next, we consider a system of quasi-linear differential equations
v′k = h(t)

[
fk(t, v1, . . . , vn) +

n∑
i=1

ckivi

]
(k = 1, n− 1),

v′n = H(t)
[
fn(t, v1, . . . , vn) +

n∑
i=1

cnivi

]
,

(2.3)

in which cki ∈ R (k, i = 1, n), h,H : [t0, ω[→ R \ {0} are continuously differentiable functions, and
fk : [t0, ω[×Rn

1
2

(k = 1, n) are continuous functions satisfying the condition

lim
t↑ω

fk(t, v1, . . . , vn) = 0 uniformly in (v1, . . . , vn) ∈ Rn
1
2
, (2.4)

where
Rn

1
2
=

{
(v1, . . . , vn) ∈ Rn : |vi| ≤

1

2
(i = 1, n)

}
.

By Theorem 2.6 from [5] for the system of differential equations (2.3) the following lemma holds.

Lemma 2.2. Let the functions h and H satisfy the conditions

lim
t↑ω

H(t)

h(t)
= 0,

ω∫
t0

H(τ) dτ = ±∞, lim
t↑ω

1

H(t)

(H(t)

h(t)

)′
= 0.

Moreover, suppose the matrices Cn = (cki)
n
k,i=1 and Cn−1 = (cki)

n−1
k,i=1 are such that detCn ̸= 0 and

Cn−1 has no eigenvalues with zero real part. Then the system of differential equations (2.3) has at
least one solution (vk)

n
k=1 : [t1, ω[ [Rn

1
2

(t1 ∈ [t0, ω[) that tends to zero as t ↑ ω. Furthermore, if among
the eigenvalues of matrix Cn−1 there are m eigenvalues (taking into account the multiplicity) whose
real parts have a sign opposite to that of the function h(t) on the interval [t0, ω[ , then if the inequality
H(t)(detCn)(detCn−1) > 0 holds on [t0, ω[ , there exist m-parameter solutions of the system (2.3),
and there exists an m+ 1-parameter family when the opposite inequality holds.

3 Main results
In order to formulate the main results, let us introduce the following auxiliary functions:

P1(t) =

t∫
A1

p(τ) dτ, P2(t) =

t∫
A2

P1(τ) dτ,

JA(t) =

t∫
A

p(τ)πn−2
ω (τ)| ln |πω(τ)||σ dτ, I(t) =

t∫
a

JA(τ) dτ,
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where

A1 =


a, if

ω∫
a

p(τ) dτ = +∞,

ω, if
ω∫

a

p(τ) dτ < ∞,

A2 =


a, if

ω∫
a

|P1(τ)| dτ = +∞,

ω, if
ω∫

a

|P1(τ)| dτ < ∞.

A =


a, if

ω∫
a

p(τ)|πω(τ)|n−2| ln |πω(τ)||σ dτ = +∞,

ω, if
ω∫

a

p(τ)|πω(τ)|n−2| ln |πω(τ)||σ dτ < +∞.

When n = 2, i.e., in the case of a second order differential equation, the conditions of the existence
and asymptotic behavior of Pω(0)-solutions were obtained in [1].

Theorem 3.1. Let n = 2 and σ ̸= 1, then the differential equation (1.1) has Pω(0)-solutions if and
only if the following conditions hold:

lim
t↑ω

|P2(t)|
1

1−σ = +∞, lim
t↑ω

P 2
1 (t)|P2(t)|

σ
1−σ

p(t)
= 0, (3.1)

Moreover, each of these solutions admits the following asymptotic representations as t ↑ ω:

ln |y(t)| = µ|(1− σ)P2(t)|
1

1−σ [1 + o(1)],
y′(t)

y(t)
= α0P1(t)|(1− σ)P2(t)|

σ
1−σ [1 + o(1)], (3.2)

where µ = α0 sign[(1 − σ)P2(t)]. Furthermore, if the conditions (3.1) are valid, then the differential
equation (1.1) has a one-parametric (two-parametric) family of such solutions in the case where A1 = ω
(A1 = a).

For the case n > 2, the following theorem holds.

Theorem 3.2. Let n ≥ 3 and suppose that

lim
t↑ω

πω(t)J
′
A(t)

JA(t)
(3.3)

exists (finite or equal to ±∞). Then the differential equation (1.1) has Pω(0)-solutions if and only if
the following conditions hold:

lim
t↑ω

πω(t)JA(t) = 0, lim
t↑ω

πω(t)J
′
A(t)

JA(t)
= −1, lim

t↑ω
I(t) = ±∞, (3.4)

and each of these solutions admits the following asymptotic representations as t ↑ ω:

y(k−1)(t)

y(n−2)(t)
=

[πω(t)]
n−k−1

(n− k − 1)!
[1 + o(1)] (k = 1, n− 2), (3.5)

ln |y(n−2)(t)| = α0|n− 2|σ

(n− 2)!
I(t)[1 + o(1)], (3.6)

y(n−1)(t)

y(n−2)(t)
=

α0|n− 2|σ

(n− 2)!
JA(t)[1 + o(1)]. (3.7)

Moreover, when the conditions (3.4) are satisfied, the differential equation (1.1) has an n−1-parametric
family of solutions that admits asymptotic representations (3.5)–(3.7) as t ↑ ω in case ω = +∞, and
it has two-parametric family of solutions with such representations in case ω < +∞.
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Proof. Necessity. Let y : [ty, ω[→ R be an arbitrary Pω(0)-solution of the equation (1.1). Then by
the definition of Pω(λ0)-solution there exists t0 ∈ [ty, ω[ such that ln |y(t)| ̸= 0 on the interval [t0, ω[
and, by Lemma 2.1, the asymptotic relations (2.1) hold. According to the first asymptotic relation of
(2.1), we have the asymptotic representations (3.4) from which, in particular, we get

y(t) ∼ πn−2
ω (t)

(n− 2)!
y(n−2)(t), y′(t) ∼ πn−3

ω (t)

(n− 3)!
y(n−2)(t) as t ↑ ω.

This implies that
y′(t)

y(t)
∼ n− 2

πω(t)
as t ↑ ω

and therefore
ln |y(t)| ∼ (n− 2) ln |πω(t)| as t ↑ ω.

By virtue of these asymptotic relations, from (1.1) we get

y(n)(t) =
α0

(n− 2)!
p(t)πn−2

ω (t)|(n− 2) ln |πω(t)||σy(n−2)(t)[1 + o(1)] as t ↑ ω,

i.e.,
y(n)(t)

y(n−2)(t)
=

α0|n− 2|σp(t)πn−2
ω (t)

(n− 2)!
| ln |πω(t)||σ[1 + o(1)] as t ↑ ω. (3.8)

Since (y(n−1)(t)

y(n−2)(t)

)′
=

y(n)(t)

y(n−2)(t)

[
1− [y(n−1)(t)]2

y(n)(t)y(n−2)(t)

]
and, by the definition of Pω(0)-solution,

lim
t↑ω

[y(n−1)(t)]2

y(n)(t)y(n−2)(t)
= 0,

we have (y(n−1)(t)

y(n−2)(t)

)′
∼ y(n)(t)

y(n−2)(t)
as t ↑ ω.

Therefore, the asymptotic relation (3.8) can be written as(y(n−1)(t)

y(n−2)(t)

)′
=

α0|n− 2|σp(t)πn−2
ω (t)

(n− 2)!
| ln |πω(t)||σ[1 + o(1)] as t ↑ ω.

Integrating this relation from t0 to t, we obtain

y(n−1)(t)

y(n−2)(t)
= c0 +

α0|n− 2|σ

(n− 2)!

t∫
t0

p(τ)πn−2
ω (τ)| ln |πω(τ)||σ[1 + o(1)] dτ, (3.9)

where c0 is a constant, or taking into account the choice of limit integration A in the function JA, we
get

y(n−1)(t)

y(n−2)(t)
= c+

α0|n− 2|σ

(n− 2)!
JA(t)[1 + o(1)] as t ↑ ω,

where

c = c0 +
α0|n− 2|σ

(n− 2)!

A∫
t0

p(τ)πn−2
ω (τ)| ln |πω(τ)||σ[1 + o(1)] dτ.

In the case where A = a, the integral on the right-hand side of (3.9) tends to ±∞ as t ↑ ω, and then
(3.9) can be written as

y(n−1)(t)

y(n−2)(t)
=

α0|n− 2|σ

(n− 2)!
JA(t)[1 + o(1)] as t ↑ ω. (3.10)
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We will show that in case A = ω, when the integral on the right-hand side of (3.9) tends to zero as
t ↑ ω, the relation (3.10) also holds, i.e., c = 0. Indeed, if c ̸= 0, then from (3.9) we have

y(n−1)(t)

y(n−2)(t)
= c+ o(1) as t ↑ ω.

This representation for ω = +∞ (i.e., πω(t) = t) contradicts the last relation of (2.1), and if ω < +∞,
by integration we obtain

ln |y(n−2)(t)| = c1 + o(1) as t ↑ ω (c1 = const),

which is in contradiction with the first condition of (2.1) (when k = n− 2).
Therefore, in each of two possible cases under consideration the asymptotic relation (3.10) holds,

that is, (3.7) holds, and by the use of the last asymptotic relation of (2.1), the first condition of (3.4)
is satisfied.

Moreover, from (3.10) and (3.8) it follows that

y(n)(t)

y(n−1)(t)
=

J ′
A(t)

JA(t)
[1 + o(1)] as t ↑ ω.

Then
πω(t)y

(n)(t)

y(n−1)(t)
=

πω(t)J
′
A(t)

JA(t)
[1 + o(1)] as t ↑ ω (3.11)

and, by virtue of the existence of the limit (3.3) (finite or equal to ±∞) and using Lemma 2.1, we
conclude that (2.2) holds, whereby from (3.11) follows the validity of the second condition of (3.4).

Finally, integrating (3.10) from t0 to t we get

ln |y(n−2)(t)| = c+
α0|n− 2|σ

(n− 2)!

t∫
t0

JA(τ)[1 + o(1)] dτ.

Since, by the definition of Pω(0)-solutions, lim
t↑ω

ln |y(n−2)(t)| = ±∞, the third condition of (3.4) is
fulfilled and it can be written as (3.6).

Sufficiency. Let n ≥ 3 and the conditions (3.4) hold. We will show that in this case the differential
equation (1.1) has Pω(0)-solutions admitting asymptotic representations (3.5)–(3.7) as t ↑ ω, and we
find out the quantities of solutions with such representations.

Since
πω(t)JA(t) =

πω(t)JA(t)

I(t)
I(t),

from the conditions (3.4) we get

lim
t↑ω

πω(t)JA(t)

I(t)
= 0. (3.12)

Moreover, by the L’Hospital rule,

lim
t↑ω

I(t)

ln |πω(t)|
= lim

t↑ω
πω(t)JA(t) = 0. (3.13)

Applying now to the equation (1.1) transformations

y(k−1)(t)

y(n−2)(t)
=

[πω(t)]
n−k−1

(n− k − 1)!
[1 + vk(t)] (k = 1, n− 2),

y(n−1)(t)

y(n−2)(t)
=

α0|n− 2|σ

(n− 2)!
JA(t)[1 + vn−1(t)],

ln |y(n−2)(t)| = α0|n− 2|σ

(n− 2)!
I(t)[1 + vn(t)],

(3.14)
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we obtain the system of differential equations

v′k =
n− k − 1

πω(t)
(vk+1 − vk)−

α0|n− 2|σ

(n− 2)!
JA(t)(1 + vk)(1 + vn−1) (k = 1, n− 3),

v′n−2 = − vn−2

πω(t)
− α0|n− 2|σ

(n− 2)!
JA(t)(1 + vn−2)(1 + vn−1),

v′n−1 = −J ′
A(t)

JA(t)
(1 + vn−1)−

α0|n− 2|σ

(n− 2)!
JA(t)(1 + vn−1)

2

+
J ′
A(t)

JA(t)
(1 + v1)

| ln |π
n−2
ω (t)
(n−2)! (1 + v1)||σ

|n− 2|σ| ln |πω(t)||σ
∣∣∣1 + α0|n− 2|σ

(n− 2)!

I(t)(1 + vn)

ln |π
n−2
ω (t)
(n−2)! (1 + v1)|

∣∣∣σ,
v′n =

JA(t)

I(t)
(1 + vn−1)−

JA(t)

I(t)
(1 + vn).

We set

h(t) =
1

πω(t)
, H(t) =

JA(t)

I(t)
,

δ1(t) =
α0|n− 2|σ

(n− 2)!
πω(t)JA(t), δ2(t) =

πω(t)J
′
A(t)

JA(t)
+ 1,

δ3(t) =
α0|n− 2|σ

(n− 2)!(n− 2)

I(t)

ln |πω(t)|
, δ4(t, v1) =

ln | 1+v1
(n−2)! |

(n− 2) ln |πω(t)|
,

and rewrite this system in the form
v′k = h(t)

[
fk(t, v1, . . . , vn)− (n− k − 1)vk + (n− k − 1)vk+1

]
(k = 1, n− 3),

v′n−2 = h(t)
[
fn−2(t, v1, . . . , vn)− vn−2

]
,

v′n−1 = h(t)[fn−1(t, v1, . . . , vn)− v1 + vn−1],

v′n = H(t)[vn−1 − vn],

(3.15)

where

fk(t, v1, . . . , vn) = δ2(t)(1 + vk)(1 + vn−1) (k = 1, n− 3),

fn−2(t, v1, . . . , vn) = δ1(t)(1 + vn−1)
2 − δ2(t)(1 + vn−1),

fn−1(t, v1, . . . , vn) = δ1(t)(1 + vn−1)(1 + vn−1)− δ2(t)(1 + vn−1)

+ (1 + v1)
[
1 +

πω(t)J
′
A(t)

JA(t)
|1 + δ4(t, v1)|σ

∣∣∣1 + δ3(t)(1 + vn)

1 + δ4(t, v1)

∣∣∣σ].
Here, by the conditions (3.4) and (3.13),

lim
t↑ω

δi(t) = 0 (i = 1, 2, 3) (3.16)

and
lim
t↑ω

δ4(t, v1) = 0 uniformly in v1 ∈
[
− 1

2
,
1

2

]
. (3.17)

Taking into account these limit relations, we choose a number t0 ∈ ]a, ω[ such that for t ∈ [t0, ω[ and
|v1| ≤ 1

2 , |vn| ≤ 1
2 the inequalities

|δ4(t, v1)| ≤
1

2
,

∣∣∣δ3(t)(1 + vn)

1 + δ4(t, v1)

∣∣∣ ≤ 1

2

hold. Next, we consider the system (3.15) on the set

Ω = [t0, ω[×Rn
1
2
, where Rn

1
2
=

{
(v1, . . . , vn) ∈ Rn : |vi| ≤

1

2
, i = 1, n

}
.
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The right-hand sides of (3.15) are continuous on this set, the functions h, H are continuously differ-
entiable on the interval [t0, ω[, and by the conditions (3.16), (3.17),

lim
t↑ω

fk(t, v1, . . . , vn) = 0 uniformly in (v1, . . . , vn) ∈ Rn
1
2
.

Hence, the system of differential equations (3.15) is a quasilinear system of differential equations of
the type (2.3).

We show that for (3.15) all conditions of Lemma 2.2 are satisfied.
By virtue of the definition of functions I and JA,

t∫
t0

H(τ) dτ ∼ ln |JA(t)| −→ ±∞ as t ↑ ω.

Moreover,
H(t)

h(t)
=

πω(t)JA(t)

I(t)
,

1

H(t)

(H(t)

h(t)

)′
= 1 +

πω(t)J
′
A(t)

JA(t)
− πω(t)JA(t)

I(t)

and therefore, in view of the second conditions of (3.4) and (3.12), we obtain

lim
t↑ω

H(t)

h(t)
= 0, lim

t↑ω

1

H(t)

(H(t)

h(t)

)′
= 0.

Thus the conditions (2.4) of Lemma 2.2 are satisfied for the system (3.15).
The matrices Cn−1 and Cn of dimension (n− 1)× (n− 1) and n× n (respectively) from Lemma

2.2, in the case of the system of differential equations (3.15), have the form

Cn−1 =



−(n− 2) n− 2 0 . . . 0 0 0
0 −(n− 3) n− 3 . . . 0 0 0
0 0 −(n− 4) . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . −2 2 0
0 0 0 . . . 0 −1 0
−1 0 0 . . . 0 0 1


, Cn =

(
Cn−1 0n−1

en−1 −1

)
,

where 0n−1 is a zero column vector of dimension n − 1 and en−1 is a unit row vector of dimension
n− 1 with the last component equal to one.

These matrices are such that

detCn−1 = (−1)n−2(n− 2)!, detCn = (−1)n−1(n− 2)!

and
det[Cn−1 − ρEn−1] = (−1)n−1(ρ+ n− 2)(ρ+ n− 3) · · · (ρ+ 1)(ρ− 1),

where En−1 is the identity matrix of dimension (n − 1) × (n − 1). Hence, in particular, we get that
the matrix Cn−1 has n−1 nonzero real eigenvalues from which n−2 are negative and one is positive.

Thus, for (3.15) the conditions of Lemma 2.2 are satisfied. According to this lemma, (3.15) has at
least one solution (vk)

n
k=1 : [t1, ω[→ Rn (t1 ∈ [t0, ω[), which tends to zero as t ↑ ω. Moreover, among

the eigenvalues of the matrix Cn−1 we have n− 2 positive and one negative, and detCn detCn−1 < 0.
By Lemma 2.2, if the inequality h(t) > 0 (resp., h(t) < 0) holds on the interval [t0, ω[ , then (3.15)
has (n− 2)-parametric (resp., one-parametric) family of solutions vanishing at ω in case H(t) < 0 on
[t0, ω[, and n− 1-parametric (resp., two-parametric) family of solutions in case H(t) > 0 on [t0, ω[ .

For the final conclusion on a number of vanishing solutions, as t ↑ ω, of the system (3.15) it is
necessary to determine the signs of functions h and H on [t0, ω[ .

Since h(t) = π−1
ω (t), by the definition of πω we have

signh(t) =

{
1 if ω = +∞,

−1 if ω < +∞.



10 Mousa Jaber Abu Elshour

For the function H, according to the definition of I we have

H(t) =
JA(t)

I(t)
=

|JA(t)|∫ t

a
|JA(τ)| dτ

> 0 if t ∈ [t0, ω[ .

Using the obtained sign conditions for the functions h and H, we arrive at the following final conclusions
about a number of vanishing solutions as t ↑ ω for the system of differential equations (3.15):

(1) if ω = +∞, then the system of differential equations (3.15) has n − 1-parametric family of
vanishing solutions as t → +∞;

(2) if ω < +∞, then the system of differential equations (3.15) has two-parametric family of van-
ishing solutions as t ↑ ω.

Using the substitution (3.14), every solution (vk)
n
k=1 : [t1, ω[→ Rn of (3.15) which tends to zero

corresponds to a solution y : [t1, ω[→ R of the differential equation (1.1) which admits as t ↑ ω the
asymptotic representations (3.5)–(3.7). Using these representations and the condition (3.4), it is not
difficult to see that each such solution is Pω(

n−i−1
n−i )-solution of (1.1).

Remark 3.3. When checking the fulfillment of the conditions (3.4), we may consider that owing to
the first of these conditions, the second and third conditions are equivalent, respectively, to

lim
t↑ω

p(t)πn
ω(t)| ln |πω(t)||σ = 0 and

ω∫
a

p(t)|πω(t)|n−1| ln |πω(t)||σ dt = +∞.

Finally, pay attention to the fact that Theorem 3.2 covers the case σ = 0, that is, when the
equation (1.1) is a linear differential equation of the form (1.3).

For (1.3), by Theorem 3.2 and with regard for Remark 3.3, the following corollary holds.

Corollary 3.4. Let n ≥ 3 and suppose that the limit (3.3) exists (finite or equal to ±∞). Then the
linear differential equation (1.3) has Pω(0)-solutions if and only if the following conditions hold:

lim
t↑ω

πn−1
ω (t)p(t)

t∫
A

πn−2
ω (τ)p(τ) dτ

= −1,

ω∫
a

|πω(τ)|n−1p(τ) dτ = +∞, lim
t↑ω

πn
ω(t)p(t) = 0, (3.18)

and for each such solution the following asymptotic representations take place as t ↑ ω:

y(k−1)(t)

y(n−2)(t)
=

[πω(t)]
n−k−1

(n− k − 1)!
[1 + o(1)] (k = 1, n− 2), (3.19)

ln |y(n−2)(t)| = − α0

(n− 2)!

t∫
a

p(τ)πn−1
ω (τ) dτ [1 + o(1)], (3.20)

y(n−1)(t)

y(n−2)(t)
= − α0

(n− 2)!
p(t)πn−1

ω (t)[1 + o(1)]. (3.21)

Moreover, when the conditions (3.18) are satisfied, the differential equation (1.3) has n− 1-parametric
family of Pω(0)-solutions with the representations (3.19)–(3.21) in case ω = +∞, and in case ω < ∞
(1.3) has two-parametric family.

This corollary in case ω = +∞ complements the results for linear differential equations with
asymptotically small coefficients given in [7, Ch. 1, Section 6, pp. 184–186].
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