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Abstract. The nonautonomous delay differential system

' (t) = f(t,x(t — 7)),
is considered, where 7 > 0, f : Rx R™ — R" is a continuous vector function
such that
ft+4r,2) = f(t,z), [(t,z)=V,F(t ).
Using the critical point theory, the conditions ensuring the existence of a
nontrivial 47-periodic solution of that system are established in the case,
where F'(t,z) is superquadratic in .
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1. INTRODUCTION

This paper studies the existence of periodic solutions for the first-order
delay differential equations (with superquadratic growth conditions)

() = f(t,x(t — 1)), (1.1)
where f € C(R x R™,R") and 7 > 0 is a given constant.

The results on the existence of periodic solutions for a functional differ-
ential equation were obtained by several authors, but there are only a few
results on periodic solutions to delay differential equations using critical
point theory. We refer the reader to [3-7,9-13] and the references therein.

In this paper, we study periodic solutions of (1.1) under some superquad-
ratic condition. We apply critical point theory directly in the study of
periodic orbits of the system (1.1); we do not reduce the original existence
problem (1.1) to an existence problem for an associated Hamiltonian system.

Throughout this paper, we always assume that:

(F1) f is periodic with respect to the first variable with the period 47
and is odd with respect to the phase variables, i.e.,

ft+drx) = f(t,2), [f(t,—2)=—f(t2)
for every t € R and x € R™;
(Fy) there exists a continuously differentiable T-periodic function F(¢, x) €
CY(R x R", R") with respect to t, such that V,F = f.
For our first result we assume the following:
(Hy) there is a constant v > 2 such that
0 < vF(t,z) < (x, f(t,x)) whenever x # 0.

Here and in the sequel, (-, <) : R™ x R™ — R denotes the standard
inner product in R™ and | - | the induced norm.

(Hz) there is a constant a; > 0 such that

|f(t7$)‘ < al((E,f(t,iC)), V|$‘ > 1
Remark 1. Set ag = min  F(t,z), a3 = max F(t,z). We have

|z|=1, t€[0,7] |z|<1, t€[0,7]
from (F3) and (H;) that

Flt,2) > aslal?, Vz| > 1

and

F(t,z) > ag|z|” — a3, Yz € R™
Remark 2. Choose ¢ > 2. By (F:) and (Hi), for any € > 0, there exists
ayg > 0 such that

F(t,x) < elz|* + aqlz|?, V(t,x) €[0,7] x R™

Theorem 1.1. Assume (F1)—(F») and (H1)—(Hz). Then the system (1.1)
possesses a nontrivial 41-periodic solution.



126 Chengjun Guo, Donal O’Regan, Chengjiang Wang and Ravi P. Agarwal

It is easy to see that (H;) does not include nonlinearities like
F(t,z) = [z[*(In(L + [z[))?, p,g> 1. (1.2)

In the theorem below we study periodic solutions of (1.1) under some su-
perquadratic condition which covers a case like (1.2). We assume F' satisfies
the following conditions:

1) F(t,x) >0, for all (t,z) € [0,47] x R™;

Va) F(t,z) = o(|z|?) as |z| — 0 uniformly in ¢;

&

(V1
(V2)
F(t,x) . . .
2 b
(V3) oz — tooas |z| = oo uniformly in ¢
(V4) there exist positive constants § > 1, 1 < A < 1 + £ 5 , C1, C2, C3
and ¢4 such that
(z, f(t,x)) — 2F (t,x) > c1]z|® — ¢a, (t,x) € [0,47] x R", (1.3)
If(t,2)| < eslz| + ca, (t,x) €]0,47] x R™. (1.4)

Theorem 1.2. Assume (Fy)—(Fs) and (V1)—(Va). Then (1.1) possesses a
nontrivial 47-periodic solution.

This paper is motivated by [6] where the existence and multiplicity of
periodic solutions for the delay differential equations

a'(t) = —f(z(t — 7))
have been discussed.

The paper is organized as follows. In Section 2, we establish a variational
structure for (1.1) with a periodic boundary value condition, and we show
that the existence of 47-periodic solutions is equivalent to the existence of
critical points of some variational functional defined on a suitable Hilbert
space. Our main results will be proved in Section 3.

2. VARIATIONAL STRUCTURE

By means of the transformation

t=— — 5 x(t) = y(s) (2.1)

the system (1.1) receives the form
7
y'(s) = g(s,y(s - 5))

9(s,y) = Q%f(gsy)

and g is 2m-periodic with respect to the first variable. Therefore, without

loss of generality, one can assume that 7 = 3 and f is 2m-periodic with

respect to the first variable. Thus (1.1) transforms to

(1) = f(t,x(t - g)) (2.2)

where
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and we seek for 2w-periodic solutions of (2.2) which, of course, correspond
to 4r-periodic solutions of (1.1).

Let C°°(S', R™) denote the space of 2r-periodic C* functions on R with
values in R". Any x € C*°(S!, R") has the following Fourier expansion in
the sense that it is convergent in the space L?(S!, R"),

—+o0
ap 1 .
z(t) = — + — ay cos kt + by sin kt), 2.3
where ag,ar, b € R™ (k=1,2,...).
Let z € L?(S, R"). If for every z € C>°(S!, R"),

/ (a(t), 2'(8)) dt = — / (y(0), () dt,
0 0

then y is called a weak derivative of x denoted by y = @(¢). Here and in
the sequel, (-, -) : R™ x R™ — R denotes the standard inner product in R™
and | - | the induced norm.

Let H= (S, R") be the closure of C°°(S1, R™) with respect to the Hilbert
norm

+00 3

laol® +> (1 + k) (Jarl® + [bx]*) |
k=1

[l (2.4)

H3(S',Rn) {

Now Hz(S!, R") can also be obtained by interpolation from the Sobolev

spaces H'(S', R™) and L?(S*, R™). More specifically, for any z € L?(S*, R"),
if z has a Fourier expansion with the convergence in the space L?(S!, R"),

then x has a representation as in (2.3). Thus, z € H%(Sl, R™), if and only

if z € L?(S1, R™), and

—+00
laol® + > (1 + k) (Jar|* + [be]?) < +oo.
k=1

For any z,y € H? (SY,R™), (-, -) can be explicitly expressed by

+oo

(@9 43 (1 gy = (@0,30) + ;(1 + k) ((ar, ar) + (br, br)), (2.5)

where
o 1 +oo B
t) = — + — ay cos kt + by, sin kt).
y(t) Ton ﬁ;( K k )

From the definition of Hz (S, R"), we have

+oo
laol® + > (1 + k) (Jar|* + [bxl*) < +o0. (2.6)
k=1



128 Chengjun Guo, Donal O’Regan, Chengjiang Wang and Ravi P. Agarwal

Furthermore, let L3S (R, R™) denote the space of 2m-periodic essentially
bounded (measurable) functions from R into R™ equipped with the norm

[#]|ge := esssup {|z(t)] : t € [0,2n]}.

E= {zeH%(Sl,Rn): :z:(t+g) = —m(t—ﬁ>}.

Set
2
Lemma 2.1. Let E = {z € Hz(SY, R"): x(t + 2)=—a(t—%)}. Then
1 +o0o
FE = {z(t) = ﬁ ; (agk_1 COS(2]€ — 1)t + bog_1 Sin(?k — 1)t> }, (27)

where ask_1,bop_1 € R™.

Proof. For

—+00
aq 1 .
z(t) = + — ay cos kt + by sinkt) € E,
(t) o ﬁ;( K k )

Vo

we have z(t) = —z(t + 7), and this implies

ap = —ao, ap = (-1)""ag, by =(=1)""b,
o (2.7) holds.
We define
27
1 . T
(Ax,y>:§/(x<t+§),y) dt, Vz,y € E, (2.8)
0
27
B(z) = / Pt (1)) dt (2.9)

and
I(z) = / B (:17 (t + g),x(t)) - F(t,x(t))} dt = % (Az,z) — ®(z), (2.10)
0

where Z(t) denotes the weak derivative of x(t). Then A has a sequence of
eigenvalues

cgm) < <D <D 0 M <@ <l < glm) L

with £0™) — 0o and €™ — —00 as m — 00. Let ¢’ be the eigenvector of
A corresponding to €@, j = 41,42, ..., 4+m,.... Set

EY = ker(A),
E~ = the negative eigenspace of A,
E,j = the positive eigenspace of A.
Then E=E- @ E°® Et. O
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From the argument in [1,2], we have

Lemma 2.2. Assume (F1)—(F2) and (Hy)—(Hs3) (or (F1)—(F3) and (V1)-
(V4)) hold.  Then the functional I is continuously differentiable on
Hz (S, R") and I'(z) is defined by
2
. ™ 1 n
(I’(x),y)H%(S17Rn) :/ (x(t+§)—f(t,a:),y) dt, ye Hz(S', R™). (2.11)
0

In addition, we need the following observations, which are necessary in
the proof of Theorem 1.1 and Theorem 1.2.

Lemma 2.3. A is self-adjoint on E and ®'(x) € E forVz € E.

Proof. For any z,y € E, by the Riesz representation theorem, Az can be
viewed as a function belonging to E C Hz(S', R") such that (Az,y) =

(Az)(y)-
Combining (2.8) and y(t) = —y(t — 7), we have

<Am,y)E:/<fv(t+g>,y(t)> dt:—/(x(t—l—g),y(t)) dt =
0 0
2w 27
:—/(x(t),y'(t—g>)dt:/(x(t),y'(t—i—g))dt:(%/ly)];.
0 0

Thus A is self-adjoint on F.
Now Vz € E and y € H2(S*, R"), we have from (F}), (Fy) and (2.9)
that

(O (x(t+7)),y), = /f((t,x(t+7r)),y(t)) dt =
0

- / F((t (1)), y(b)) dt = — / Pt 2(0),y(0) dt = (@ (@(0)),y) -
0 0
Thus ®'(z) € E for Vo € E. O

Lemma 2.4. The existence of 2m-periodic solutions x(t) for (2.2) is equiv-
alent to the existence of critical points of the functional I.

Lemma 2.5 ( [8]). Let E be a real Hilbert space with E = E; @& Ey and
Ey = (Ey)*. Suppose I € C1(E, R) satisfy the (PS) condition, and
(C1) I(u) = 3(Lu,u)+b(u), where Lu=LiPiu+LyPou, L; : E; — E; is
bounded and self-adjoint, P; is the projector of E onto B, i=1,2;
(Ca) b is compact;
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(C3) there exist a subspace E C E and sets S C E, QC E and constants
a > w such that

(i) SC Ey and I|s > a;
(i) Q is bounded and I|pg < w;
(iii) S and 0Q link.
Then I possesses a critical value ¢ > a given by

¢ = inf sup I(g(1,u)),
9€l e

where

I'={geC([0,1] x E,E) : g satisfies (I'1)~(T's)},

9(0,u) =

(T2) g(t,u) =u for u € 0Q;

(T'3) g(t,u) = ?EWIy 4 x(t,u), where O(t,u) € C([0,1] x E,R) and x
18 compact.

3. PROOF OF THE MAIN RESULTS

In order to prove Theorem 1.1 and Theorem 1.2, the following result
in [8, p. 36, Proposition 6.6] will be used.

Proposition 3.1. There is a positive constant cg such that for x € E the
inequality

llzg, < colll| (3.1)

H3 (S1,R™)
holds, where 0 € [1, +00).

Lemma 3.1. Under the conditions of Theorem 1.1, I satisfies the (PS)
condition.

Proof. Assume that {z,}nen in H2(S',R") is a sequence such that
{I(zn)}nen is bounded and I'(z,) — 0, as n — 4o00. Then there exists a
constant d; > 0 such that

[I(zn)] < dy, ||I/(xn)||(H%(Sl7R"))* — 0 as n — oo, (3.2)
where (Hz (S, R"))* denotes the dual space of Hz (S, R").
We first prove that {2, }nen is bounded. Since z, € Hz(S', R"), we
have x, =29 + 2} + 2, e PO ET® E~.
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From (F3), (Hy) and (2.8)—(2.10), noting Remark 1, there exist two pos-
itive constants ds and ds such that

2w

2dy > 21(xy) — (I'(z0), Tn) = / [(zn, f(t,zn)) — 2F(t, 2,)] dt =
0
2
- / [(Jcn, f(t,xn)) —vF(t,x,) + (v — 2)F(t,xn)} dt >
0
2m
> / [do(v = 2len (O — ds] dt.  (3.3)
0
This implies
2 2 —~
/\xn Y dt < dl T2mds gy (3.4)
da(v—2)
Consider {||9U91||H%(S1 R") Fnen- Arguing indirectly, we suppose
is unbounded Then we have ||z | — 00.

0
{||x”HH%(51,Rn)}n€N H?2(S!,Rn)
Note dim(EY) < 400, and this implies that there are constants b; and by
such that

nl

bullonllzy, < llzf < baflzp Ly, - (3-5)

H%(S',Rn)
From (3.5), we have

lznllLy, > |29y, — +oo as ||1791||H%(51,Rn) — 4o00. (3.6)
We have from (3.4) and (3.6) that
M /|mn |"dt>/| D1 dt— 400, a5 #1561 ey 00 (37)

This is a contradiction. Hence {||z }nen is bounded. Therefore

nHH%(Sl,R")
there exists a constant M7 > 0 such that

129013 51 ey < M (3.8)

We have from (H;) and (3.3) that
2dy > 2I(xy,) — (I'(z), ) =

2

:/[(gcn,f(t,xn)) —2F(t,xn)] dtz/(l—%)(a:n,f(t,xn)) dt. (3.9)
0

0
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This implies from (H3) and (3.9) that

2m
-~ 21/d1 1
M} = > ny f(t ) dt > — t, )| dt. .10
i == [ fta)az - [ ree)la 310
0 |zn|>1
‘We now show that
[@nllpge < M3. (3.11)

If not, by passing to a subsequence, without the loss of generality, assume
that there exist ¢,, and t,, such that

where Mi‘ > 2 is a constant such that % > 1, and % < |zn ()] <

M for t € (fn,tn) C [0,27]. (In fact, suppose we cannot find a t,, such
~ __ 27

that |z, (t,)] < % Then from (3.4) we have Mg > [ |z, (t)]" dt >
0

27 ~ —
z,(t)| dt > M Mj, a contradiction.
04y
0

From (F») and (Hi), noting Remark 2, for any € > 0, there exists a

constant ds > 0 such that
|f(t,z)| < Elz| +dy, Y|z| <1, uniformly in ¢. (3.12)

Set
2m

v

0
We have from (2.11) and (3.2) that li_>m A, =0.

Hence, by the periodicity of z,,(t) and f(t, z,(t)) with respect to ¢, (3.10)
and (3.12), there exists a constant ds > 0 such that

Za(s+ g) — £(5,zn(s))| ds.

23

YL L P [ gleotds <
tn 27 " 27
< [ JEn(s)lds < [ |gn(s)|ds = [ |an(s+ 5 )| ds =
%{JJ S S O/JJ S S O/x (S 2)’ S
27
:/ x'n(s+ g) — f(s,2,(9)) +f(s,;z:n(s))’ds <
0
2

]

0

(54 5) = Fsan()]ds+ [ | F(s.0()]ds =
0
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_{ / £ (s, 2n(s))| ds + / £ (5, 2n(8))|ds| + A <

[zn|>1 |zn|<1

< (a1M + da) + Ay, (3.13)

where a1, dg and M5 are constants independent on n. However, we have
A, — 0and M} — oo, as n — oo, which leads to a contradictions. Hence

there exist two positive constants ¢, M3 such that

* * —

—, MM .
|2nllge < (a1 M3 +dy) + £+ ;ﬂ 4 — My (3.14)

This shows that (3.11) holds.
Using (Hy), (H2), (2.9) and (3.11), there exists a constant C3 > 0 such
that

21T
”I:”H%(SHR") > <Il(zn)amrt> = <AITJ{,LE:> - / [(Jfﬁ,f(t,xn))] dt >
0
> <sz,x;s>—( [+ )|x:|f<t,xn>|dtz
|zn|>1 |z |<1
> (afaf) = [ latllftaa)ldi - G, (3.15)
|zn|>1
27
[ [ —- —(I"(xn),z,) = _<Aa:;,:c;>+/[(x;,f(t,:cn))] dt >
0
>—<Axn,wn>—( [+ )|w:||f<t,xn>|dt>
|25 |>1 [zn|<1
> (A, zy) — / | [f(taa) dt — Gy (3.16)
|<Tn|21

From (3.11), (3.12) and (3.15), (3.16), we have

+ -
||xn ||H%(51,R") + Hxn ||H%(SI,R") Z
2 <A$:,I$> - <A1‘;va;> - 2||xn”L§§’, / |f(t,.’En)‘ dt — 253 >
Iwnlzl
—+112 _ — 112 _ YV _ ~
> Gl 12y gy — 61714 g1 ey — 20005005 —2Cs, (317)

where £; is the smallest positive eigenvalue and £_1 is the largest negative
eigenvalue of the operator A, respectively.
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From (3.8) and (3.17), there exists a positive constant Dy > 0 such that

0
190 4 g1 ) 2
N 10 3 gr oy
+ €312,

>
H3(81,Rn) —

2 (175,13 on ey + 125 8 e

+
Z et g1,y T 120 54 (0, oy

> 1ot l 3 g1 ey + ]

> §1||3€+||fq2 (51.R")

+&llenl g

Hz(S1 Rm)

~ &l '

> &f|zn | 2a1M2 M; —2C;, (3.18)
here £ = min{&;, —£_1}. We have from (3.18) that

Ellza?

H%(S',Rn)

HZ(Sl R”) QHCL'n” (S1,Rm) 20,1M2 M3 - 2C3 < 0.

This implies that {||gvn||H%(S1 Rn)}neN is bounded. Going, if necessary, to
a subsequence, we can assume that there exists x € Ej such that z;, —
as n — +oo in H%(Sl,R”), which implies x,, — 2 uniformly on [0, 27].
Hence (I'(zn) — I'(2))(zn — 2) = 0 and ||, — 2|2 — 0. Set

27

o = / (F(t,zn(t)) — F(t, (1)), a(t) — 2(1)) dt.

0

It is easy to check that ® — 0, as n — +00. Moreover, an easy computation
shows that

(I'(zn) = I'(2)) (20 — z) = (A(z — 2), (3, — 7)) — P.

By (2.5), (2.8) and (2.10), this implies ||z, — :13||H%(S1 Ay 0. O

Proof of Theorem 1.1. The proof will be divided into two steps.
Step 1. Choose ¢>2. By (H;), for any €>0, there exists M >0 such that

F(t,z) < &z + Mz|?, ¥(t,z) €0, g] x R". (3.19)

From (3.1) and (3.19), for x € E; = E™, there exists a positive constant ¢,
such that

27

I<x>=%<Ax,x>— [ P2yt > 5 (an,a) - @l + Mol ) >

H [

H2(S1 R™)

ACEI Mllallty o ) (320)

S’l Rn
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Choose € = ;qu, p = (851 )q 2 and denote by B, the closed ball in

H%(SI,R”) of radius p centered at the origin. Let S = 0B, N Ey, then
I(z) >a= 51’)2 for all x € S, and (C3)(i) of Lemma 2.5 holds.

=1land By = BE- @ E°, Q =

Step 2. Let e € ET with ||e]]

H2(S1 R™)
E~ @ E° @ span{e}.
For x = 20 4+ 2~ € E», then
1 2m
I(x + ve) = 3 (A(x + ~ve), (x + ve)) — /F(t,x+'ye)dt =
0

27

72 1

=3 (Ae, ey + 5 (Az™,27) — /F(t,x + ve) dt. (3.21)

0

By (Hy), it is clear that I(x) < 0 on x € Ey. Since EV is finite dimensional,
there exists b; > 0 such that

AR el gy <Bilelzrs TAIE Nl 3 g0 oy < Billa®lle (322)
for all z° € EY. Moreover, by (Hy),
F(t,z) > Rla|? — by, ¥(ta)e {0, g] x R, (3.23)
We have from (3.23) that
2
[ P+ ayde = Rle + alfs - baze >
0

> 07 (1201 + ™ 17 + 77 llellza) —bo2m. (3.24)
By (2.10) and (3.24), for all v > 0 and = € Ey we get

2

1
I(xz +ve) < §<A(m+ve),(m+*ye)> —/F(t,x—i—ve)dtﬁ
0
<2 (dee) + 2 (Aemam) — JAN(IO12, |, +7%) +a2r <
- ’ 2 H?(S1,Rn) =
||A||7 f 1,.—2 20(12 2\, 7
<Atz o A0, o, +9)Ba2m <
[1A]l+* E L=y >
<-— [Ea Y (st e )+b227r. (3.25)
Let

327'( /527T
=24/ —— and =2 .
AT e T
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Then I(x + ve) < 0 if either v > ~4, or HIHH%(Sl,Rn
Ilpg <0, where Q = {ye;y € [0,11]} & (B, N E2). By Lemma 2.5, S and
0Q link and (Cs)(ii) and (Cs)(iii) of Lemma 2.5 hold.

From (H;), (C1) and (C3) of Lemma 2.5 are true, so by Lemma 2.5, T
has a nonconstant critical point z* such that I(z*) > @ > 0. Now z* is a
2mr-solution of (2.2), hence z* is a 47-solution of (1.1). O

Lemma 3.2. Under the conditions of Theorem 1.2, I satisfies the (PS)
condition.

Proof. We have from (Fy), (2.8)—(2.10) and (1.3) of (V4) that

| > 5. Consequently,

27
2dy > 21(zy) — (I'(z), 20) = / (@, f(t, 30)) — 2F (t, @y)] dt >
0
27
> / 1|20 (8)]7 — eo] dt. (3.26)
0
This implies
2
/|xn(t)|ﬁ dp < 2t 2me o (3.27)
0 “
Consider {”x%HH%(sl,Rn)}"EN' Arguing indirectly, we suppose
{||x91|\H%(517Rn)}n€N is unbounded. Then we have ||x%||H%(S17Rn) — 0.

Note that dim(E®) < +o0o, and this implies that there are constants b; and
by such that

b2l < [l22] < bl - (3.28)

H%(S',Rn)
From (3.28), we have

Hanng > ”x%”LZﬂ — 400 as ”x%HH%(Sl,R") — 400. (3.29)
We have from (3.27) and (3.29) that
27 27
M, Z/\xn(t)\ﬁdt2/|x%(t)|5dt—>+oo as HxBLHH%(Sl Rn)—H—oo. (3.30)
0 0

This is a contradiction. Hence {||« )}nEN is bounded. Therefore

H?2(S1,R"
there exists a constant M; > 0 such that

< M. (3.31)

0
1291113 1oy <

_ _B=1
Let a = m s then

i @ (3.32)

l<a<1+2t o<l o
)\a—lza—ﬁ, a> 1.
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Using (3.1) and (3.32), we have (here 2 4+ 1 =1)

95 03 g0 oy = ()it > (Awif ) / |7 )| de >

21

> aota) - [l ar)

0

1

2 =
(Jrira)'
0
27

> Gtatat) = [Ifra) elel,

0

Q=

Q=

by (333)

713 oy 2 — (), 7) 2 (A a7 —/\x,:uftxn)\dtz

> _(Azs, 7)) </|ftxn|°‘dt);(/|xn|"dt> >

() ( / Ifta?n)ladt) oozl g1y (339

By (1.4) of (V3) and (3.1), there exist two constants C; > 0 and Co > 0
such that

27 2m 2m

Jisanrar [leafoa + e de < [ lo,Pede+ <
0 0 0
21 % 2m 1,%
<c§(/|xn5dt> </|:cn|<“‘”ﬁ"—ldt) +Ci =
0 0
3 1-4
([ mla) ([ esta)
[zn|>1 [zn]|>1
3 1-4
+( / |mn|ﬂdt> ( / |xn|<m>fldt) <
|zn|<1 |zn|<1
27 1
o Aa—1 B )\a 1 ~ ~
SCS(Cﬁ(giID) (/|£L’n| dt) ||.’)3n|| 7(51R) + C1 + Cs. (335)
0

From (3.27) and (3.33)—(3.35), we have
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195 3 oy 195 4 gy = (AT 2} — (A 27)

1
a “ + —
-( / )t dt) o (1 g e+ 195 ) 2
0

> &z +”i]2(sl RmY

H2(S1 Rn)

Eallen 2,y g ey

1

— 2 [Dollzal?t, 4 Crt 52] N

SEp (3.36)

H2 (st, Rn)’

where

Do = ¢§ (canan )" (M) .

B—1

From (3.31) and (3.36), there exists a positive constant Dy > 0 such that

D (17513 1oy + 17 D3 oy + 19013 g ) =
= o I +||an sty T EMNRN 4 o e 2
2105 3 g0y + 10 gt sy + SHE ey 2
_glnfn;(sl oy~ E-1ll7 nn;(sl oy FEIR -

26, [DollealPL 8yt )

1 >
H?Z(S1,Rm) H?2(S',R™) —

+112 2 9 B
> E(I7E 17 g oy 1575 1y 102 )
1
N Aa—1 ~ =~
_2ca[pollxn||H%(SlﬁRn)+01+02] 2l g1 ey (337)

From (3.37), we have

i
Dy > lleall,, =26 | Dollea |} +Ci+ G|

(S1,R") 3 (S1,R")

Since 0 < (/\a D < 1, this implies that {lznll 1 (S1.R) tne

Using an argument similar to that in the proof of Lemma 3.1, we have

|z, — a:||H2(Sl Ay 0. O

N is bounded.

Proof of Theorem 1.1. The proof will be divided into two steps.

Step 1. By (Va), (V3) and (1.4) of (V4), for any € > 0, there exists M =
M (e) > 0 such that

F(t,z) < e|z> + Mlz|™, V(t,z) e {o, g} x R". (3.38)
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From (3.1) and (3.38), for z € E; = E*, we have

27
1
I(z) = 3 (Az, ) —/F(t,a?)dt >
0
2 2 A+1
I, 3 gy~ (191, gy + erea M ) (339)

Choose ¢ = %, p = (81\/[’501”1)ﬁ and denote by B, the closed ball in

Hz(S', R") of radius p centered at the origin. Let S = 0B, N £y, then
I(z) >a= 51p2 for all € S, and (C3)(i) of Lemma 2.5 holds.

Step 2. Let e € E™ with |le HHz(sl amy = land By = E~ @ EO.
For x = 2% + 2 € Es, then
1 2m
I(x + ~ve) = §<A(Jc+’ye),(m+'ye)> —/F(t,x—I—fye)dt:
0
27
7 |
=5 (Ae,e) + 5 (Az=,27) — | F(t,x + ve) dt. (3.40)
0

By (V4), it is obvious that I(x) < 0 on # € E,. Since E° is finite dimen-
sional, there exists a; > 0 such that

ANz lell 3 <allel Lz,

S (3.41)

l[Allz ||fr°|| < ay[|2” e

(St,Rn)

for all 20 € EY. Moreover, by (V2) and (V3), there exists a positive constant
a9 such that

F(t,x) > a%|z|> — @y, V(t,x) €[0,7] x R". (3.42)
It follows from (3.42) that
27
/F(t,ye—i—x) dt > @ ||ye + 2| — da2m >
0
>af([|2°)Z2 + la™ 172 +72llelz2) — @27, (3.43)
By (3.43), for all v > 0 and = € Fy we get

2m

(A(z + ve), (z 4+ ve)) — /F(t,:z: +7e) dt <
0

DO =

I(x +ve) <

2
1 o~
= 7? (Ae,e) + 5 (Az™,27) = AN (I2°17, +72) +ap2r <

HZ(SI Rn)
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||A||’Y f— -2 02 2\ | ~
< 1= 12712, oy — ||A||(|| 12 4 g0 oy +77) 227 <
1Al - .
< || ||H2(Sl ) +a2m. (3.44)
Let
a27r 2(1271’
=2 and v, =
\/ IAl -
Then I(z + ve) <0, if either v > 71, or |acH > v9. Consequently,

51,Rn
Ilsg < 0, where @ = {ve;vy € [0,71]} & (B, r(WEg).) By the definition of
linking, S and 0Q link and (Cs)(ii) and (C3)(iii) of Lemma 2.5 hold.
From (V2)-(V3), (Cy) and (C3) of Lemma 2.5 are true, thus by Lem-
ma 2.5, I has a nonconstant critical point 2* such that I(z*) > & > 0. Now

*

x* is a 2m-solution of (2.2), hence x* is a 47-solution of (1.1). O
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