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VARIATION FORMULAS OF SOLUTION FOR
NEUTRAL FUNCTIONAL-DIFFERENTIAL EQUATIONS
WITH REGARD FOR THE DELAY FUNCTION
PERTURBATION AND THE CONTINUOUS
INITIAL CONDITION

Abstract. Variation formulas of solution are obtained for linear with re-
spect to prehistory of the phase velocity (quasi-linear) neutral functional-
differential equations with variable delays. In the variation formulas, the
effect of perturbation of the delay function appearing in the phase coordi-
nates is stated.
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Let I = [a, b] be a finite interval and R™ be the n-dimensional vector space
of points z = (z1,...,2™)T, where T is the sign of transposition. Suppose
that O C R™ is an open set, and Ey is the set of functions f : I x 0% —
R" satisfying the following conditions: the function f(¢,-) : O? — R”»
is continuously differentiable for almost all ¢ € I; the functions f(¢,z,y),
fz(t,z,y) and f,(t,z,y) are measurable on I for any (z,y) € O?; for each
f € E and compact set K C O, there exists a function mys x (t) € L(I,Ry),
R, = [0,00), such that

[f (&2, 9)| + [fa(t 2, 9)| + |y (& 2, y)] < myp k()
for all (x,y) € K? and almost all ¢t € I.
Further, let D be the set of continuous differentiable scalar functions
(delay functions) 7(t),t € I, satisfying the conditions:
T(t) <t, 7({)>0, inf{r(a): 7€ D}:=7> —c0.

Let ® be the set of continuously differentiable initial functions ¢(t) € O,
tel, = [?, b]
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To each element p = (to, 7, ¢, f) € A =[a,b) x D x ® x Ey we assign the
quasi-linear neutral functional-differential equation

#(t) = A(t)a(o(t) + £ (t,=(t), 2(7(t))) (1)

with the continuous initial condition
x(t) = o(t), te [T, to), (2)

where A(t) is a given continuous matrix function of dimension n x n; ¢ € D
is a fixed delay function.

Definition 1. Let u = (to,7,¢, f) € A. A function z(t) = z(t;u) € O,
t € [T, t1], t1 € (to,b], is said to be a solution of equation (1) with the initial
condition (2), or a solution corresponding to the element y and defined on
the interval [T, ¢1], if z(t) satisfies condition (2) and is absolutely continuous
on the interval [to, 1] and satisfies equation (1) almost everywhere on [tg, t1].

Let po = (too, 70, Po, fo) € A be the given element and z((t) be a solution
corresponding to po and defined on [T, ¢1¢], with a < tgg < t10 < b.
Let us introduce the set of variations

V= {aﬂ — (8to, 67,80,8f) : |dto] < a, 07| < e,

k k
o= Nboi, 6f =S Nbfi, N <, i = 1,k}.

i=1 i=1

Here
Sto €R, 67 € D —19, ||67| =sup {|o7(t)|: t I}
and
Sp; € ® — o, 8fi € Ef — fo, i=1,k,

are the fixed functions and a > 0 is a fixed number.

There exist the numbers 6; > 0 and £; > 0 such that for arbitrary
(e,0p) € (0,e1] x V the element po + edp € A and there corresponds the
solution x(t; po + edp) defined on the interval [7,t19 + d1] C 11 ( [1, Theo-
rem 2]).

Due to the uniqueness, the solution z(t; p) is a continuation of the so-
lution z((t) on the interval [7,t19 4+ 01]. Therefore, the solution z((¢) is
assumed to be defined on the interval [T, t19 + d1].

Let us define the increment of the solution

zo(t) = z(t; po) © Ax(t;edp) = 2(t; po + edp) — wo (),
V(t,{-j, 5”’) € [’/7_\7t10 + 51} X (0351] x V.
Theorem 1. Let the following conditions hold:
1) the function fo(t,x,y), (t,z,y) € I x O? is bounded;

2) there exists the limit

ZILH;O fo(2) = fo, z=(t,z,y) € (a,too] x O,



where zg = (too, @o(too), o(To(too)))-
Then there exist the numbers e € (0,e1) and d2 € (0,81) such that
Ax(t;edp) = edx(t; op) + o(t;edp) (3)
for arbitrary (t,e,8u) € [too, t10 + d2] X (0,e2] x V—, where V- ={dp €V :
dtop < 0} and
dx(t;6p) =Y (too—; 1) [Sbo(too) — A(too)po(o(too)) — fo_}§t0+
+ B(t;6p), (4)
B(t;6p) = ¥(toost)de(too)+

too

+ / Y (0(3); ) foy () 0 (5)50(s) s+

+ / Y (o(s): 1) A(0(s))8(s)dp(s) ds-+

O'(too)

+ [ Ysit)plsli(m()7(s) dst

too
¢
+ [ Ys0osls)ds, (5)
too
lirr(l) @ =0 uniformly for (t,0u) € [too,t10 + 2] X V7,
E—r

Y (s;t) and U(s;t) are the n X n-matriz functions satisfying the system

Ws(s;t) = =Y (s51) fou [t] — Y (70(5)5t) foy[v0(5)]F0(5),
Y(s;t) = W(s;t) + Y(o(s);t)A(a(s))o(s), s € [too,t],

and the condition

U(s;t) =Y(s;t)

H, s=t,
e, s>t
foyls] = foy(s:20(5), 20(70(5))),  6f[s] = 0 (s,20(s), 20(10(5)));

~o0(8) is the function, inverse to To(t), o(s) is the function, inverse to o(t), H
is the identity matrix and © is the zero matriz.

Some comments. The function dx(¢;du) is called the variation of the
solution xo(t),t € [too, t10+ 2], and the expression (4) is called the variation
formula.
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The addend

/ Y (s;t) foy[s]Eo(10(s))d7(s) ds

in formula (5) is the effect of perturbation of the delay function 7o(¢).
The expression

Y (too—s ) [ Po(too) — Altoo)0( (too)) — fi |3t

is the effect of the continuous initial condition (2) and perturbation of the
initial moment tgg.
The expression

0

W(too; )dep(too) + Y (70(8);t) foy[v0(5)]Y0(5)dep(s) ds+

70(to0)
+ / Y (o(s); 1) A(e(s))(s)dp(s) ds + / Y (s:1)3f[s] ds
o (too) 00

in formula (5) is the effect of perturbations both of the initial function ¢ (t)
and of the function fy(t, z,y).

Variation formulas of solutions for various classes of neutral functional-
differential equations without perturbation of delay function can be found
in [2-4]. The variation formula of solution plays the basic role in proving the
necessary conditions of optimality and under sensitivity analysis of mathe-
matical models [5-8]. Finally, it should be noted that the variation formula
allows one to get an approximate solution of the perturbed equation

z(t) = A(t)z(o(t))+
+fo (t, x(t), z(1o(t) + 66T(t))) + €5f(t, x(t), z(1o(t) + €5T(t)))
with the perturbed initial condition
z(t) = po(t) +dp(t), te [T, too + edtol.
In fact, for a sufficiently small € € (0, &3] it follows from (3) that
x(t; po + edp) = xo(t) + edx(t; dp).
Theorem 2. Let the following conditions hold:

1) the function fo(t,x,y), (t,z,y) € I x O? is bounded;

2) there exists the limit

lim fo(z) = fi7, 2 € [too, b) x O°.

zZ— 20
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Then for each to € (too,t10) there exist the numbers eo € (0,e1) and 02 €
(0,81) such that for arbitrary (t,e,0u) € Eo,tw + 0] X (0,e2] x VT, where
Vt={6ueV: §ty >0}, formula (3) holds, where

z(t; ) = Y (too+; 1) (#(too) — Altoo)o(o(too)) — fo)dto + B(t; o).
The following assertion is a corollary to Theorems 1 and 2.

Theorem 3. Let the assumptions of Theorems 1 and 2 be fulfilled. More-
over, fy = fi = fo and too & {o(t10),0%(t10)), ... }. Then there exist
the numbers eo € (0,e1) and d2 € (0,01) such that for arbitrary (t,e,du) €
[t10 — d2,t10 + 02] X (0,e2] X V' formula (3) holds, where

8 (t;6) = Y (too; 1) (@ (too) — Altoo)@o(o(too)) — fo)dto + B(t; dp).

All assumptions of Theorem 3 are satisfied if the function fo(t,x,y) is
continuous and bounded. Clearly, in this case

fo=fo (too, wo(too), po(To(too))).
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