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INTRODUCTION

The boundary value problems for singular in phase variables second order
differential equations attract attention of many mathematicians and are
the subject of various investigations (see, e.g., [1-4,6,10,12-14,16,17] and
references therein). As for the singular in phase variables higher order
differential equations and differential systems, for them only the initial and
two-point problems [7,9], the Nikoletti perturbed problem [8] and the Kneser
type problem [15] are studied.

The construction of the theory of boundary value problems for singu-
lar in phase variables differential equations and systems requires a priori
estimates of solutions of singular in phase variables higher order differen-
tial inequalities and systems of differential inequalities, satisfying different
nonlinear boundary conditions. The present paper contains such estimates.

We have used the following notation.

x = (z;)f_; and X = (z1)},—, are the n-dimensional vector column and

the n x n-matrix with the components x; and z;; (i,k = 1,...,n) and the
norms
n n
loll =S Jail, X0 = Y fwanl;
i=1 ik=1

r(X) is the spectral radius of the matrix X;
Ry = [0, +oo[, Rot =]0, 4o00[;

R"™ is the n-dimensional real Euclidean space;
Ry, = {(z)y €R™: 21 >0,...,2, >0}

C([a, b]; R) is the space of absolutely continuous functions u : [a,b] — R;
C™([a, b]; R) is the space of m-times continuously differentiable functions
u : [a,b] = R whose derivative of m-th order is absolutely continuous;
C™([a,b]; RE, ) is the set of vector functions (u;)j, : [a,b] — Rf, with
absolutely continuous components u; : [a,b] = Roy (i =1,...,n).
1. HIGHER ORDER DIFFERENTIAL INEQUALITIES

In a finite interval [a, b] we consider the n-th order differential inequality

go(t,u(t),...,u" V(1)) <ul(t) <
< igk (tou(t), ..., u™ D)) u* D) (1.1)
k=1

with the boundary conditions
au V() < ulY(a) < BuVB) + By (i=1,...,n). 1.2
% > = Mi 0 ; y

Here gy, : [a,b] x Rf, — Ry (k= 0,...,n) are integrable in the first argu-
ment and continuous and nonincreasing in the last n arguments functions,
a; (i=1,...,n)and 5; (i =0,...,n) are constants such that

0<ai§5i<1(i:1,...,n)7 ﬁ0>0. (].3)
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We are mainly interested in the case where the differential inequality
(1.1) is singular in phase variables, i.e., in the case when there exists a set
of positive measure I C [a, b] such that

x1+--1-1finaogk(t’xl’ coyxp) =400 for tel (k=0,...,n).

A function u € C"~1([a, b]; R) is said to be a solution of the differen-

tial inequality (1.1) if

u V() >0 for a<t<b (i=1,...,n)

and almost everywhere on [a, b] the inequality (1.1) is fulfilled.

A solution of the differential inequality (1.1) satisfying the boundary
conditions (1.2) is called a solution of the problem (1.1),(1.2).

Before we give a theorem containing a priori estimates of solutions of the
above-mentioned problem, we prove a simple lemma dealing with estimates
of solutions of the differential inequality

u™(t) >0, (1.4)
satisfying the boundary conditions (1.2).

Lemma 1.1. An arbitrary solution u of the problem (1.4), (1.2) admits the
estimates

Yol < uF V@) < (0 + Bo) for a<t<b (k=1,...,n), (1.5)
where
w=0b-a)" " [JA-8)" (k=1,...,n), (1.6)
i=k
o0 = (b—a)" F[[ == (k=1....m), (1.7)
i=k ¢

and
b

(= / u™(s) ds. (1.8)

a

Proof. In view of (1.2), (1.8), we have
u™ (b)) = u Y (a) + € > apu™V(b) + £,
u™ D (b) < Buu™ D (b) + Bo + £,
and hence

1
1_671

u" =V (b) > ¢, uH0) < (Bo +£).

1—a,
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If along with this we take into account the inequality (1.4), it becomes
obvious that
u™ V() > u Y (a) > apu™Y(b) >
> qonl,  uTV() <uTY(b) < 4 (Bo + ) for a <t <b.

This, according to the induction law and notations (1.6) and (1.7), results
in the estimate (1.5). O

Theorem 1.1. If along with (1.3) the conditions
b

/go(s,x,...,m)ds>0 for x>0, (1.9)
" b
xkﬂ_noo’;%/gk(s,x,...,x) ds <1 (1.10)

are fulfilled, then there exist positive constants § and p such that an arbitrary
solution of the problem (1.1),(1.2) admits the estimates

§<uF V)< p for a<t<b (k=1,...,n). (1.11)

Proof. By the inequality (1.10), there exists a positive number z such that
n b
(14—@)Z'yk/gk(s,xo,...,xo)ds< 1. (1.12)
T3

Suppose
Yo :min{l,’yOlw"?’VOn}v Wzmax{71,'~'a’7n}v
p= (@ +/80)’7a
70

and
b

5:70/90(53p7"'7p)d5'

Owing to (1.9), it is clear that § > 0.

Let u be an arbitrary solution of the problem (1.1), (1.2), and let £ be the
number given by the equality (1.8). Then by Lemma 1.1, the inequalities
(1.5) are valid. On the other hand, it follows from (1.1) and (1.5) that

n b
(< (£+5O)Z’Yk/gk(s7€'yo,...,KVO) ds (1.13)
k=1 Y

and

b
{> /go(s,(f—i—ﬁo)%...,(Z—i—,@o)'y) ds, (1.14)
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since g (k =0,...,n) are nonincreasing in the last n arguments functions.
Our aim is to prove that v admits the estimates (1.11). Let us first show
that .
(<=2, (1.15)
70
Assume the contrary that
>0
Yo
Then ¢ > xg. Thus taking into account the inequality (1.12), from the

inequality (1.13) we find

£<€(1+ )i /gksxo,...,azo)ds<€.

The obtained contradiction proves the validity of the estimate (1.15).
According to (1.5), (1.14) and (1.15), we have

G (ﬂ)%—ﬁo)v:p for a<t<b (k=1,...,n)
7o

and
b
uF () > by > yo/go(s,p,...,p)ds =0 for a <t <b.
Consequently, the estimates (1.11) are valid. O

As an example, we consider the differential inequality
Po(t)qo (u(t), . ..,u™(t)) <ul™(t) <
< p)q(ut), .., u™D (@) + Zpk W (t), (1.16)

where p : [a,0] = Ry (K = 0,...,n), p : [a,b] — R, are integrable
functions, and qo : Rf, — Roy, ¢ : Rf, — Roy are continuous and nonin-
creasing in all variables functions.

Corollary 1.1. If
b

/ s)ds > 0, Z'yk/ s)ds < 1, (1.17)

a

then there exist positive constants § and p such that an arbitrary solution of
the problem (1.16), (1.2) admits the estimates (1.11).

Proof. Let
go(t, 1, .., 2n) = po(t)qo(z1,. .., 2n),
p(t
gk (L, 21, .., xp) = Qq(zl, o) o) (E=1,...,n).
nxy
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Then the differential inequality (1.16) takes the form (1.1). On the other
hand, by virtue of (1.17), the functions gy, : [a,b] xRf, — Ry (k=0,...,n)
satisfy the conditions (1.9) and (1.10). If now we apply Theorem 1.1, then
validity of Corollary 1.1 becomes evident. O

Note that in the conditions of Theorem 1.1 or Corollary 1.1, the dif-
ferential inequality under consideration may have singularities of arbitrary
orders in phase variables. For example, In Corollary 1.1 as gy and g we can
take the functions

n

n
Qo(21,- -, 2n) = lo1 HCE;/\(” exp (402 H xj_“()j>7
i=1 j=1
n n
q(x1,. . xn) = qo(T1,. .., 2p) +€1Haci_>‘i exp (Eg 1_[36]._“’)7
i=1 j=1

where Ao, Ai, poi, i (1= 1,...,n), Lok, £k (k= 1,2) are positive constants.

2. FIRST ORDER DIFFERENTIAL INEQUALITIES

Let us consider the differential inequality

o(u'(t) — p(t)u(t) — q(t,u(t))) >0 (2.1)
with the boundary condition
o(u(a) — au(b) — ag) >0, (2.2)

where p : [a,b] — R is an integrable function, ¢ : [a,b] X Rg; — R4 is an
integrable in the first argument and continuous and nonincreasing in the
second argument function, o € {—1,1}, @ > 0 and ag > 0 are constants.

An absolutely continuous function u : [a,b] — R4 is said to be a so-
lution of the problem (2.1),(2.2) if it satisfies the condition (2.2) and
almost everywhere on [a, b] satisfies the differential inequality (2.1).

Along with (2.1), (2.2), we consider the boundary value problem of peri-
odic type:

v'(t) = p(t)u(t) + q(t, v(t)), (2.3)
v(a) = av(d) + ap. 2.4
The following theorem holds.

aexp < /b (s) ds> <1 (2.5)

b
/q(s,m) ds >0 for x>0, (2.6)

Theorem 2.1. If

and
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then the problem (2.3),(2.4) has a unique solution v, and an arbitrary solu-
tion u of the problem (2.1),(2.2) admits the estimate

o(u(t) —v(t)) >0 for a<t<b. (2.7)
To prove the theorem, we need the following simple lemma.

Lemma 2.1. Let ty € [a,b] and ¢ > 0. Then the differential equation (2.1)
under the initial condition

v(tg) = ¢ (2.8)

has a unique solution v in the interval [tg,b], and an arbitrary solution u of
the differential inequality (2.1), satisfying the condition

U(u(to) — c) >0,
admits the estimate
o(u(t) —v(t)) >0 for to <t <b. (2.9)

Proof. The unique solvability of the problem (2.1), (2.8) in the interval [¢g, b]
follows from the fact that ¢ > 0 and the function ¢ : [a,b] x Roy — Ry is
nonincreasing in the second argument.

Applying now Lemma 4.3 from [5], the validity of the estimate (2.9)
becomes evident. O

Proof of Theorem 2.1. For the sake of definiteness we assume that o = 1
since the case where 0 = —1 is considered analogously.

If ¢ : [a,b] x Ro; — R is a continuous and nonincreasing in the second
argument function, then by Theorem 7 of [11], the conditions (2.5) and (2.6)
guarantee the unique solvability of the problem (2.3), (2.4). If, however, ¢
is integrable in the first and continuous and nonincreasing in the second
argument, then using the method of proving of the above-mentioned theo-
rem, we can show that the conditions (2.5) and (2.6) again guarantee the
existence of a unique solution v of the problem (2.3), (2.4).

Let u be an arbitrary solution of the problem (2.1), (2.2). If

u(a) > v(a),

then by Lemma 2.1, the estimate (2.7) is valid.
To prove the theorem, it remains to show that the inequality

u(a) < v(a) (2.10)

cannot take place.
Assume the contrary that the inequality (2.10) is valid. Then either

u(t) <wv(t) for a <t <b, (2.11)
or there exists to € ]a, b[ such that
u(to) > v(to). (2.12)



A Priori Estimates of Solutions of Nonlinear Boundary Value Problems ... 113

Let the inequality (2.11) be fulfilled. Then in view of (2.1), almost ev-
erywhere on [a, b] the inequality

u'(t) > p(t)ult) + q(t, v(t)) (2.13)

is fulfilled since q is the nonincreasing in the second argument function.
Put

w(t) = v(t) —u(t).
Then in view of the conditions (2.2), (2.4), (2.10) and (2.13),we have
0 < w(a) < aw(b)
and
w'(t) < p(t)w(t) for almost all ¢ € [a, b].

From these inequalities with regard for the condition (2.5) we find

w@%ﬁﬂp(iMQd%wm)Sawp<;ﬂﬁdaw@)<w@)

The obtained contradiction proves that the inequality (2.11) cannot take
place. Consequently, for some ty € ]a, b] the inequality (2.12) is fulfilled.

By Lemma 2.1, the function v admits the estimate (2.9). From (2.4),
(2.9) and (2.10), we find

u(a) < v(a) = av(b) + ag < au(b) + ag,

which contradicts the inequality (2.2). The obtained contradiction proves
that the inequality (2.10) cannot take place. Thus the theorem is pro-
ved. ]

In conclusion of this section we consider the problem
o(u/'(t) — p(t)u(t) + q(t u(t))) <0, (2.14)
o(u(a) — au(b) + ag) <0, (2.15)
and the differential equation
V(1) = p(t)u(t) — a(t. (1)) (2.16)
with the boundary condition
v(a) = av(b) — ap. (2.17)

As above we assume that p : [a,b] — R is an integrable function, and
q : [a,b] x Rox — Ry is an integrable in the first and continuous and
nonincreasing in the second argument function, o € {—1,1}, @ > 0 and
Q) > 0.

On the basis of Theorem 2.1, the following statement can be proved.
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Theorem 2.2. If along with (2.6) the inequality
b

aexp (/p(s) ds) >1 (2.18)
is fulfilled, then the problem (2.16), (2.17) has a unique solution v, and an
arbitrary solution u of the problem (2.14), (2.15) admits the estimate (2.7).

If q(t,z) = q(t), then the differential inequalities (2.1), (2.14) and the
differential equations (2.3) and (2.16) have the following forms

o(u'(t) = pt)u(t) — q(t)) =0, (2.19)

o(u'(t) — p(t)u(t) + q(t)) <0, (2.20)

V() = p(t)o(t) +q(t), (2.21)

V(1) = p(t)o(t) — (). (2.22)

It is easy to see that for the unique solvability of the problem (2.21), (2.4)

(of the problem (2.22),(2.17)) it is necessary and sufficient the inequality
b

1~ aexp ( / p(s) ds) £0 (2.23)

to be fulfilled.
Let the inequality (2.23) hold. Put

b
A(p,a) =1— aexp </p(s) 0ls>7 (2.24)
9(p, a)(t, s) =
. t
ex T)dT for a <s<t<hb,
xom = ([ ror) seetE
= s , (2.25)
e
ex TdT+/ TdT) for a<t<s<hb.
Ap.a) p(/p() p(7)
Then the solution of the problem (2.21), (2.22) admits the representation
t b
Qo
v(t) = exp(/p7d7>+/ p,a)(t,s)q(s)ds,
0= (r) o(p, 0)(t, )a(s)

a a

and the solution of the problem (2.22),(2.17) admits the representation

Mﬂ=—A$Mew(jﬂﬁﬁ)—jmn®@$ﬂ$%

a
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On the other hand, in view of the fact that the number « is positive, (2.24)
and (2.25) imply

A(p,a)g(p,a)(t,s) >0 for a <s<t<b. (2.26)
If along with this we take into account the fact that the function ¢ is nonneg-

ative, then it becomes evident that Theorems 2.1 and 2.2 yield the following
propositions.

Corollary 2.1. If the inequality (2.5) (the inequality (2.18)) is fulfilled,
then an arbitrary solution of the problem (2.19),(2.2) (of the problem
(2.20), (2.15)) admits the estimate (2.7), where

(07

u(t) = m exp (a/tp(S) d8> + a/b |9(p, @)(t, )]a(s)ds for a <t <b.

Lemma 2.2. Let p be a constant sign function, satisfying the condition
(2.23). Then

b
/ ’g(p,a)(t7s)p(s)| ds < atl —|—2|a — 1 ‘2((5’;))‘ for a <t <b, (2.27)

a+1l—]a—1]
2

b
A(p, 1)
a/lg(p,oz)(t7s)p(s)|ds > ‘A(p, a)‘ for a <t<b. (2.28)

Proof. Due to the fact that p is of constant sign and the condition (2.26),
there exists a number o¢ € {—1,1} such that

b
/ |g(p, a)(t, s)p(s)} ds = oqw(t) for a <t <b, (2.29)

where
b

w(t) = / o(p, ) (t, $)p(s) ds.

On the other hand, in view of the equalities (2.24) and (2.25), we find
t

w(t) = Al(;’z) exp (/p(s) ds) 1

a

Hence it is clear that
min {w(a)|, [w(d)[} < [w(t)] < max {|w(a)], w(b)]}.
However,
_ozA(p,l) w(b) = —
Alp,a) A(p,a)

w(a) =



116 Ivan Kiguradze

Thus,

min{a, 1}\ ;))‘ < |w(t)| < max{a, 1}’

A A(p,1

(p (p’)‘foragtgb,
Alp, A(p,a)
according to which from the equality (2.29) it follows the estimates (2.27)
and (2.28). O

3. SYSTEMS OF DIFFERENTIAL INEQUALITIES

In this section, we establish a priori estimates of solutions of the system
of differential inequalities

qi (t,ui(t)) < oi(ui(t) — pi(t)ui(t)) <

n

< Zpik (t,ur(t) + - 4 un () ) up(t)+
k=1

+q0(t,u1(t),...,un(t)) (i=1,...,n), (3.1)
satisfying the boundary conditions
o (ul(a) - aluZ(b)) 2 0, g; ('LLZ((L) - 51’&1({))) S 50 (Z = ]., ‘e ,n). (32)

Here
o; € {—1,1}, a; >0, ﬁz > 0,

ai(ﬁi—ai)>0 (izl,...,n), 50>0, (33)

p; : [a,b) = R (i =1,...,n) are integrable functions, ¢; : [a,b] X Roy — R
and pi @ [a,b] X Roy — Ry (i,k = 1,...,n) are integrable in the first
and continuous and nonincreasing in the second argument functions, and
q : [a,b] x Rf, — Ry is an integrable in the first and continuous and
nonincreasing in the last n arguments function.

A vector function (u;)j-; : [a,b] — Rf, with absolutely continuous com-
ponents u; : [a,b] = Roy (i =1,...,n) is said to be a solution of the
system (3.1) if it satisfies that system almost everywhere on [a, b].

A solution of the system (3.1), satisfying the boundary conditions (3.2),
is said to be a solution of the problem (3.1), (3.2).

We investigate the problem (3.1), (3.2) in the case, where

b
/qi(s7x)ds>0 for >0 (i=1,...,n) (3.4)

and

(o ([ra) 1) <0 6=t 63
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Let g be the operator given by the equalities (2.24) and (2.25). Suppose

hzk(ac) =
b

:max{/|g(pi,ﬁi)(t,S)|pik(s,x)ds: aStSb} (i,k=1,...,n) (3.6)

a

and
H(z) = (hin(x));,_, for > 0. (3.7)
Theorem 3.1. Let along with (3.3)—(3.5) the condition
xgrfoor(H(ac)) <1 (3.8)

be fulfilled. Then there exist positive constants § and p such that an arbitrary
solution (u;)?_; of the problem (3.1), (3.2) admits the estimates

0<wu(t)y<p for a<t<b (i=1,...,n). (3.9)

To prove this theorem, along with the results from Section 2 we need the
following lemma.

Lemma 3.1. Let hj, : Roy — Ry (4,k = 1,...,n) be nonincreasing func-
tions, and h; (i =1,...,n) be nonnegative constants. Let, moreover, there
exist a positive number xy such that
r(H(z0)) < 1, (3.10)
where H is a matriz function given by the equality (3.7). Then arbitrary
positive numbers x1,...,T,, satisfying the system of inequalities
n
2 <3 hap(wr+ -+ an)zi +h (i=1,...,n), (3.11)
k=1

satisfy the inequality

le<x0+||E H(zo)) 1”2/1 (3.12)
i=1

as well, where E is a unit n X n-matriz, and (E — H(:ro))’1

inverse to the matrizc E — H(xg).

is a matriz,

Proof. Assume the contrary that

le>xo+HE H(xo)) 1HZh (3.13)

i=1
Then from (3.10) we have

x; < Zhik(xo)fﬂk +hi (i=1,...,n)
k=1

since h; (i,k =1,...,n) are nonincreasing functions. Consequently,

(E — H(x))Z < h, (3.14)
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where
T=(2)j—y, h=(h)i,.

The nonnegativeness of the matrix H(xg) and the condition (3.10) guar-
antee the nondegeneracy of the matrix £ — H(xg) and the nonnegativeness
of the matrix (E — H(xq)) " .

If we multiply both sides of the inequality (3.14) by (E — H(zo))™!, we
obtain

Z < (E — H(xg)) 'h.
Thus

Z.’L‘i S (E — H(l‘o))_l Zh“

which contradicts the inequality (3.13). The obtained contradiction proves
the validity of the estimate (3.12). O

Proof of Theorem 3.1. According to the condition (3.8), there exists a pos-
itive number z( such that the inequality (3.10) holds.
(3.3) and (3.5) imply

oi(oven ([ nore) 1) <0 =1em. a9

On the other hand, by virtue of Theorems 2.1, 2.2 and the conditions (3.4)
and (3.15) for any ¢ € {1,...,n} the problem

vi(t) = pi(t)o(t) + oigi(t, vi 1)),

vi(a) = a;v;(b)

has a unique solution v;.
Put

A 760 ex i\S S
b= s e (a/m( s + (3.16)
b
+ max {/}g(pi,ﬂi)(t,s)|q0(5,51, vy 0p)ds agtgb} (i=1,...,n),
§ = min{éy,...,0,}, p:x0+||(EfH(xo))71HZhi. (3.17)

Let (u;); be a solution of the problem (3.1), (3.2). Our aim is to prove
that this solution admits the estimates (3.9).
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For each ¢ € {1,...,n} the function w; is a solution of the problem
o (uj(t) — pi(t)ui(t)) > qi(t, wi(t)),
ag; ('U/Z(CL) - azul(b)) 2 0.

Hence by virtue of the conditions (3.4), (3.15) and Theorems 2.1 and 2.2 it
follows that

ui(t) > vi(t) for a <t <b
and, consequently,
ui(t) > 9; for a <t <b (i=1,...,n). (3.18)
According to (3.1), (3.2), and (3.18), for each ¢ € {1,...,n} the function
u; is a solution of the problem

g; (u;(t) 7pz(t)uz(t)) S Zpik(tywl +-+ l’n)fﬂk + QO(ta 51; AR 5n)7
k=1

oi(ui(a) — Bi(t)ui(b)) < Po,
where
zp =max{u,(t):a <t <b} (k=1,...,n). (3.19)
Hence by virtue of the condition (3.5) and Corollary 2.1 it follows that

" b
ui(t) < (i, Bi)(t, 8) | pik (s, 21 + - -+ ) ds |xp+
;(/!gp |pi (s, 1 ) k

a

M(lf'(jﬁiﬂ exp </pl(s) ds)+

a

_|_

b
+/‘g(pi,ﬁi)(t,s)‘qo(s,él,...,6n)d5 for a <t <b.

If along with this estimate we take into account the notations (3.6) and
(3.16), then it becomes clear that the numbers z1, . .., x, satisfy the system
of inequalities (3.11). By Lemma 3.1 these numbers satisfy the inequality
(3.12) as well.

Due to (3.17) and (3.19), the estimates (3.12) and (3.18) result in the
estimates (3.9). O

Corollary 3.1. Let the functions p; (i =1,...,n) are of constant sign,
pi(t,2) = [pi®)lpoie(@) G,k =1,...,), (3.20)
and let along with (3.3)—~(3.5) the condition
wgrfoor(Ho(x)) <1 (3.21)
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be fulfilled, where poir : Rox — Ry (i,k = 1,...,n) are nonincreasing
functions and

i 1+ i 1 1)
by = (B LB B )
2 A(pi, Bi)
and A is a functional, given by the equality (2.24). Then there exist positive

constants 6 and p such that an arbitrary solution (u;)?_, of the problem
(3.1), (3.2) admits the estimates (3.9).

ik=1

Proof. By Lemma 2.2, the estimates

b

/’ (pi, Bi)(t, s)pi(s)| ds <

a

<ﬁi+1+|ﬂz_1“ pm)
- 2 A(pi, Bi)
are valid, according to which (3.6) and (3.20) result in the inequalities

ﬂz+1+|6z_1| pzv)
hik(@) < 2 ’A (vis )

Hence in view of (3.7) and (3.22) it is obvious that
H(z) < Hy(x) for x>0

for a<t<b (i=1,...,n)

poir(x) for x>0 (i,k=1,...,n).

and, consequently,
r(H(z)) <r(Hy(z)) for > 0.

Thus the inequalities (3.21) yield the inequality (3.8).
If now we apply Theorem 3.1, then the validity of Corollary 3.1 becomes
evident. ]
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