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Abstract. For the quasi-linear neutral functional differential equation
the continuous dependence of a solution of the Cauchy problem on the ini-
tial data and on the nonlinear term in the right-hand side of that equation is
investigated, where the perturbation nonlinear term in the right-hand side
and initial data are small in the integral and standard sense, respectively.
Variation formulas of a solution are derived, in which the effect of pertur-
bations of the initial moment and the delay function, and also that of the
discontinuous initial condition are detected. For initial data optimization
problems the necessary conditions of optimality are obtained. The existence
theorem for optimal initial data is proved.
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INTRODUCTION

Neutral functional differential equation (briefly-neutral equation) is a
mathematical model of such dynamical system whose behavior depends on
the prehistory of the state of the system and on its velocity (derivative of
trajectory) at a given moment of time. Such mathematical models arise in
different areas of natural sciences as electrodynamics, economics, etc. (see
e.g. [1,2,4-6,12,13,16]). To illustrate this, we consider a simple model of
economic growth. Let N(t) be a quantity of a product produced at the
moment ¢ which is expressed in money units. The fundamental principle of
the economic growth has the form

N = (1) + 1), (0.1)
where C(t) is the so-called an apply function and I(t) is a quantity of
induced investment. We consider the case where the functions C(t) and
1(t) are of the form
C(t) =aN(t), ac(0,1), (0.2)

and

I(t) = oy N(t—0)+agN(t)+asN(t—0)+agN(t)+ayN(t—0), 6 >0. (0.3)
From formulas (0.1)—(0.3) we get the equation

l—«a

(&3] Qo - a3z - Qg
Nt)— —=N{t—0)— —=N@t)— —=N({t—-60)— —=N(t-—
SN = SEN(E = 0) = SN — NG 6) - St N (- 6)

which is equivalent to the following neutral equation:

#(t) = 23(t),

N(t) =

1—
#2(t) = axl(t)—%xl(t—Q)—%xQ(t)—
0 0 0
ag o Ay .o
— B2t —0) — L%t —0
"2t = 6) ~ it~ 6),

here 2! (t) = N(t).

Many works are devoted to the investigation of neutral equations, includ-
ing [1-7,12-14,17,19,25,28].

We note that the Cauchy problem for the nonlinear with respect to the
prehistory of velocity neutral equations is, in general, ill-posed when per-
turbation of the right-hand side of equation is small in the integral sense.
Indeed, on the interval [0, 2] we consider the system

' (t) =0,
{n'cQEt; = [#'(t—1)]? 0
with the initial condition
() =0, te€[-1,0), z'(0)=2%0)=0. (0.5)
The solution of the system (0.4) is
x5(t) = x3(t) = 0.
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We now consider the perturbed system

4 (t) = pi(t), ,
#(0) = [sh(t— 1)
with the initial condition (0.5). Here,

), tefo],
Pr() = {0, te(1,2).

The function ¢ (t) is defined as follows: for the given k = 2,3, ..., we divide
the interval [0,1] into the subintervals l;, ¢ = 1,...,k, of the length 1/k;
then we define ¢ (t) = 1, t € I, k(t) = —1, ¢t € ls and so on. It is easy to
see that

52

/gk(t) dt‘ = 0.

S1

lim max
k—oo 51,526[0,1]

Taking into consideration the initial condition (0.5) and the structure of the
function ¢ (t), we get

t

Ti(t) = /gk(s) ds for t €[0,1], zp(t) =xp(1) for t € (1,2]

0
and
23(t) = [ [ih(s —1)] ds =0 for t € [0,1],
/
ot = [ [ibts = 1)) ds = [ ts - s =

1

. TS

= [ lds=t—1 for te(1,2].

—

It is clear that

li Ly —zit) =0, 1 2(t) — x2(t)| £ 0.
Jm mex |z (t) — zp(t)| =0, lim max [c}(t) - 55()] #

Thus, the Cauchy problem (0.4)—(0.5) is ill-posed.

The present work consists of two parts, naturally interconnected in their
meaning.

Part I concerns the following quasi-linear neutral equation:

@(t) = A(t)i(o(t) + f(t,2(t), z(r(t))) (0.6)
with the discontinuous initial condition

z(t) = o(t), ©(t) =v(t), t <to, x(to) = wo. (0.7)
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We note that the symbol @(t) for ¢ < ¢ is not connected with the derivative
of the function ¢(t). The condition (0.7) is called the discontinuous initial
condition, since, in general, z(ty) # ¢(to).

In the same part we study the continuous dependence of a solution of
the problem (0.6)—(0.7) on the initial data and on the nonlinear term in the
right-hand side of the equation (0.6). Here, under initial data we mean the
collection of an initial moment, delay function appearing in the phase coor-
dinates, initial vector and initial functions. Moreover, we derive variation
formulas of a solution.

In Part II we consider the control neutral equation

i(t) = At)a(o(t) + f(t,z(t),z(7(t),u(t)))
with the initial condition (0.7). Here under initial data we understand the
collection of the initial moment tg, delay function 7(¢), initial vector z,
initial functions ¢(t) and v(t), and the control function u(¢). In the same
part, the continuous dependence of a solution and variation formulas are
used in proving both the necessary optimality conditions for the initial data
optimization problem and the existence of optimal initial data.

In Section 1 we prove the theorem on the continuous dependence of a
solution in the case where the perturbation of f is small in the integral
sense and initial data are small in the standard sense. Analogous theorems
without perturbation of a delay function are given [17,28] for quasi-linear
neutral equations. Theorems on the continuous dependence of a solution
of the Cauchy and boundary value problems for various classes of ordinary
differential equations and delay functional differential equations when per-
turbations of the right-hand side are small in the integral sense are given
in [10,11,15,18,20,21,23,26].

In Section 2 we prove derive variation formulas which show the effect of
perturbations of the initial moment and the delay function appearing in the
phase coordinates and also that of the discontinuous initial condition. Vari-
ation formulas for various classes of neutral equations without perturbation
of delay can be found in [16,24]. The variation formula of a solution plays
the basic role in proving the necessary conditions of optimality [11,15] and
in sensitivity analysis of mathematical models [1,2,22]. Moreover, the varia-
tion formula allows one to obtain an approximate solution of the perturbed
equation.

In Section 3 we consider initial data optimization problem with a general
functional and under the boundary conditions. The necessary conditions are
obtained for: the initial moment in the form of inequalities and equalities,
the initial vector in the form of equality, and the initial functions and control
function in the form of linearized integral maximum principle.

Finally, in Section 4 the existence theorem for an optimal initial data is
proved.
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1. CONTINUOUS DEPENDENCE OF A SOLUTION

1.1. Formulation of main results. Let I = [a, ] be a finite interval and
R™ be the n-dimensional vector space of points x = (x!,...,2™)T, where
T is the sign of transposition. Suppose that O C R™ is an open set and
let E; be the set of functions f : I x O? — R" satisfying the following
conditions: for each fixed (x1,72) € O? the function f(-,zy,22): [ — R"
is measurable; for each f € Ey and compact set K C O there exist the
functions my g (t), Ly k(t) € L(I,Ry), where Ry = [0,00), such that for
almost allt € I

|f<t,$1,$2>| S mf,K(t)a V(l’],.I'Q) S K27
‘f(t,xl,l‘g) _f(taylayQ)’ S

2
< Lf,K(t)Z|xi —yil, V(z1,22) € K?, V(y1,92) € K.
i=1

We introduce the topology in E; by the following basis of neighborhoods of
Zero:

{VK’(; : K C O is a compact set and § > 0 is an arbitrary number},

where

Vs = {5f €E;: A(Uf;K) < (5}7
t//

A((Sf;K):sup{’/éf(t,ml,xg)dt‘: tt"el, z; €K, i:1,2}.
t/

Let D be the set of continuously differentiable scalar functions (delay
functions) 7(t), t € R, satisfying the conditions

T(t) <t, 7(t)>0, teR; inf{r(a): T€D}:=7> —o0,
sup {7 (b): 7€ D} :=7 < +o0,

where 771(t) is the inverse function of 7(t).

Let E, be the space of bounded piecewise-continuous functions ¢(t) €
R™ t € I = [7,b], with finitely many discontinuities, equipped with the
norm |¢|lr, = sup{lp(t)|: t € 1}. By &1 ={p € E, : clo(l1) C O} we
denote the set of initial functions of trajectories, where p(I1) = {p(t) : t €
I,}; by E, we denote the set of bounded measurable functions v : I; — R™,
v(t) is called the initial function of trajectory derivative.

By 1 we denote the collection of initial data (to, 7,20, ¢, v) € [a,b) x D x
O x ®; x E, and the function f € Ey.

To each element 1 = (to, T, z0, 0,0, f) € A =[a,b) x DX O x P x E, x Ey
we assign the quasi-linear neutral equation

#(t) = A()a(o(1) + f(t,2(t), (7 (t))) (1.1)



Variation Formulas of Solution and Initial Data Optimization Problems . .. 7

with the initial condition

z(t) = (t), &(t) =v(t), t€[T,t0), x(to) = xo. (1.2)

Here A(t) is a given continuous n X n matrix function and ¢ € D is a fixed
delay function in the phase velocity. We note that the symbol &(t) for t < ¢o
is not connected with a derivative of the function ¢(t). The condition (1.2)
is called the discontinuous initial condition, since x(tg) # ¢(to), in general.

Definition 1.1. Let pu = (to, 7, o, p,v, f) € A. A function x(t) = z(t; u) €
O, t € [T,t1], t1 € (to,b], is called a solution of the equation (1.1) with
the initial condition (1.2) or a solution corresponding to the element u
and defined on the interval [7,¢;] if it satisfies the condition (1.2) and is
absolutely continuous on the interval [to,?;1] and satisfies the equation (1.1)
almost everywhere (a.e.) on [tg, t1].

To formulate the main results, we introduce the following sets:
W(K;a) = {65 € By s 3mspi(t), Lagc(t) € LULRy),

/ [msg,w(t) + Lsgxc(t)] dt < a},

T
where K C O is a compact set and « > 0 is a fixed number independent of
of;
Bltoo;0) = {to € I : |to — too| < 0},
Bi(xg0;0) = {xo € O : |zg — zoo| < 0},
V(r0;0) ={r €D : ||t —70ll1, <},
Vi(po; ) = {p € @1 : [l — wollr, <0},
Va(vo;8) ={v € Ey : ||v —vpl|r, < 6},

where too € [a,b) and zgy € O are the fixed points; 79 € D, pg € Py,
vg € F, are the fixed functions, § > 0 is the fixed number, Ir = [a,7].

Theorem 1.1. Let z((t) be a solution corresponding to po = (too, 70, Too,
©0, V0, fo) € A, t10 < b, and defined on [T, t1p]. Let K1 C O be a compact set
containing a certain neighborhood of the set cloo(I1) U zo([too, t10]). Then
the following assertions hold:

1.1. there exist numbers §; > 0, i = 0,1 such that to each element
H = (t(),T71'0,§0,/U, fO + 5f) € V(N0§K1»5070‘) =
= B(too; d0) x V(705 00) X B1(z00;d0) X Vi(wo;d0) x Va(vo;dg)x
X [fo+ W (K1) N Vi, )

there corresponds the solution x(t; u) defined on the interval [T, t10+
81) € I and satisfying the condition x(t;p) € Ky;
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1.2. for an arbitrary e > 0 there exists a number 62 = d2(e) € (0, §o] such
that the following inequality holds for any p € V(uo; K1, 92, a):

|2(t; ) — x(t; po)| < &, Vit € [ttio+61), &= max{too, to};

1.3. for an arbitrary e > 0 there exists a number §3 = d3(e) € (0, do] such
that the following inequality holds for any p € V(uo; K1, 93, a):

t104+01
|w(t; 1) — 2(t; po)| dt < e.
Due to the uniqueness, the solution z(t; t) is a continuation of the so-
lution zq(t) on the interval [T,t109 + d1].

In the space E,, — po, where £, = Rx D xR" x E, x E, X E;, we
introduce the set of variations:

S = {cm = (8to, 07, 80,09, 60,8f) € By — o+ |0to] < B, 16711, < B,

k
|(5£L’0| < Ba ||530||11 < ﬂv ||5’U||]1 < Bv 5f: Z)‘Z(Sfu

i=1
‘)\1|Sﬂa izlv"'ak}7

where 8 > 0 is a fixed number and 0 f; € Ey — fo, i =¢=1,...,k, are fixed
functions.

Theorem 1.2. Let z((t) be a solution corresponding to po = (too, 7o, Too,
©0, 0, fo) € A and defined on [T,t10], tio € (a,b), i = 0,1. Let K1 C O
be a compact set containing a certain neighborhood of the set clyg(I1) U
xo([too, t10]). Then the following conditions hold:

1.4. there exist the numbers €1 > 0, 61 > 0 such that for an arbitrary
(e,0u) € [0,e1] x S we have po+edp € A and the solution x(t; up +
edp) defined on the interval [T,t10 + 61] C I corresponds to that
element. Moreover, x(t; ug + edp) € Ky;

1.5. 12% sup {|x(t; po 4 €0u) — x(t; o) = t € [,t10 + 51]} =0,
g

t10+61
lim |(t; o + £6p) — @ (t; po)| dt =0

e—0
5_\

uniformly for Su € S, where t = max{to,to + €dto}.
Theorem 1.2 is the corollary of Theorem 1.1.
Let E, be the space of bounded measurable functions u(t) € R", t € I.

Let Uy C R” be an open set and Q = {u € E,, : clu(l) C Up}. Let @15 be
the set of bounded measurable functions p(t) € O, t € I, with clp(I;) C O.
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To each element w = (tg, 7, xg, p,v,u) € Ay = [a,b) x DXO x P11 X E, xQ
we assign the controlled neutral equation

i(t) = A@t)i(o(t) + f(t, z(t),z(7(t)), u(t)) (1.3)

with the initial condition (1.2). Here, the function f(t,z1,22,u) is de-
fined on I x O? x Uy and satisfies the following conditions: for each fixed
(71,22,u) € O% x Uy, the function f(-,z1,79,u) : I — R™ is measur-
able; for each compact sets K C O and U C Uy there exist the functions
mg,u(t), Lxu(t) € L(I, Ry ) such that for almost all ¢ € I,

|f(t,m1,:c2,u)’ S mK,U(t)a V($1,$27U) S K2 X Uv

2
|f(t, 1, @2,u1) = Ft g1, y2,u2)| < Lf,K(t)[Z i — il + w1 — ual|,
i=1

Y (21, 22) € K2, Y (y1,y2) € K2 (u1,usz) € U2

Definition 1.2. Let w = (to,7,x0,0,v,u) € Aj. A function x(t)
z(t;w) € O, t € [T,t1], t1 € (to,b], is called a solution of the equation
(1.3) with the initial condition (1.2), or a solution corresponding to the el-
ement w and defined on the interval [7,¢1] if it satisfies the condition (1.2)
and is absolutely continuous on the interval [to, ¢;] and satisfies the equation
(1.3) a. e. on [tg, 1]

Theorem 1.3. Let xo(t) be a solution corresponding to wo = (too, 70, Too,
©0, Vo, uo) € A1 and defined on [T, t10], t10 < b. Let K1 C O be a compact set
containing a certain neighborhood of the set clyo(I1) U zo([too, t10])- Then
the following conditions hold:

1.6. there exist the numbers 6; > 0,i = 0,1 such that to each element

w = (to, T, To, @, v,u) € v(wo;éo) =
= B(too; 60) X V (70; d0) x B1(z00; d0) X V1 (03 d0) X Va(vo; do) x V3 (uo; do)

there corresponds the solution x(t; w) defined on the interval [T, t10+
81) C I and satisfying the condition x(t; w) € K, where V3(ug; dp) =
{ueQ: |lu—uglr <do};

1.7. for an arbitrary € > 0, there exists the number d3 = d(g) € (0, do)
such that the following inequality holds for any w € \A/(wo; d2):

|’I,’(t,w) — ’I(t, w0)| <eg Vte rt\;t10 + 51], ?: maX{to,too};

1.8. for an arbitrary e > 0, there exists the number d3 = d3(¢) € (0,dp)
such that the following inequality holds for any w € V (wo; 03):

t10+d1
|z (t; w) — x(t;wo)| dt < e.

)
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In the space E,, — wg, where F,, = R x D x R" x ®y; x F, x F,, we
introduce the set of variations

- {(5w = (5to, 07, 620, 8, 00, 8u) € By — wo : |dto] < B, |67, < B

6ol < 8, I8¢l < B, 16vr, < B8, llsull: < 8.

Theorem 1.4. Let xo(t) be a solution corresponding to wo = (too, 70, Too,
©0, Vo, u0) € A1 and defined on [T,t10], tio € (a,b), i = 0,1. Let K3 C O
be a compact set containing a certain neighborhood of the set clygy(I) U
20([too, t10]). Then the following conditions hold:

1.9. there exist numbers e > 0, 01 > 0 such that for an arbitrary
(e,0w) € [0,e1] X 1 we have wy + edw € Ay, and the solution
x(t;wo + edu) defined on the interval [T,t10 + 61] C I1 corresponds
to that element. Moreover, x(t;wy + edw) € Kq;

1.10. liII(l]Sllp {|x(t; wo 4 edw) — z(t;wo)| = t € [t t10 + (51]} =0
e—

t10+061
lim / |z (t; wo + edw) — @ (t; wo)| dt =0

7

uniformly for dw € 3.
Theorem 1.4 is the corollary of Theorem 1.3.

1.2. Preliminaries. Consider the linear neutral equation

&(t) = A(t)z(o(t)) + B(t)x(t) + C(t)z(1(t)) + g(t), t € [to,b], (1.4)
with the initial condition

a(t) = @(t), @(t) =v(t), t €T t), x(to) = o, (1.5)

where B(t), C(t) and g¢(t) are the integrable on I matrix- and vector-

functions.

Theorem 1.5 (Cauchy formula). The solution of the problem (1.4)—(1.5)
can be represented on the interval [tg,b] in the following form:
to
o(t) = ltoitzo + [ YAERDAMO(E) de+

a(to)

L/Y OO &+ [ Y(EDg©ds,  (10)
7(to0) to
where v(t) = o~ 1(t), v(t) = 77(t); V(&) and Y (E;t) are the matriz-
functions satisfying the system

{‘1’5(5;75) ==Y (&1)B(§) — Y (7(8): )C(v(£))7(8),

t (1.7)
Y(&:t) =W (&) + Y (v (€):t)Av(E))r(€)
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on (a,t) for any fized t € (a,b] and the condition

H, §=t,

0, &>t (18)

W@U=Y@ﬂ={

Here, H is the identity matriz and © is the zero matriz.

This theorem is proved in a standard way [3,9,15]. The existence of a
unique solution of the system (1.7) with the initial condition (1.8) can be
easily proved by using the step method from right to left.

Theorem 1.6. Let q be the minimal natural number for which the inequality
o (b) = 0l(o(b)) < a

holds. Then for each fixed instant t € (tg,b], the matriz function Y (§;t) on

the interval [to,t] can be represented in the form

q 1
W&ﬂ=w®ﬂ+§:Wf@%ﬂIIAWWOE%VWO- (1.9)

Proof. Tt is easy to see that as a result of a multiple substitution of the
corresponding expression for the matrix functions Y (£;¢), using the second
equation of the system (1.7), we obtain

Y(66)=U(E 0+ L€ )+Y (A€ DA €))7 ((€) | Aw() (&) =

= W(& 1)+ T ((E); ) AW (€)p(€) +Y (V(£): ) A(* () A(v(€)) i1/2(5):
= U(&1) + W (§); ) AW (E)r(§)+

+Y (1(€); ) A(r* (€) AW (€) A(W(€)) - v (€)
Continuing this process and taking into account (1.8), we obtain (1.9). O

Theorem 1.7. The solution x(t) of the equation

i(t) = At)a(o(t) +9(t), t € [to, 0]
with the initial condition

i(t) =v(t), telrto), x(to)=wo,

on the interval [to,b] can be represented in the form

£(t) = w0 + / Y ((€); ) AW(€))9(€)u(€) dé + / Y(€1)g(€)de,  (1.10)

a(to)
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where
Y(&st) = alg)H + Yt ©:0) [[ A0m @) om©. )
i=1 m=i
o(€:t) = {(1) Sy

Proof. In the above-considered case, B(t) = C(t) = ©, therefore the first
equation of the system (1.7) is of the form

We(&5t) =0, €€ [to,t].

Hence, taking into account (1.8), we have U(&;t) = a(&;t)H. From (1.6)
and (1.9), we obtain (1.10) and (1.11), respectively. O

Theorem 1.8. Let the function g : I x R™ x R™ — R"™ satisfy the following
conditions: for each fized (x1,22) € R™ xR"™, the function g( -, x1,x2) : [ —
R™ is measurable; there exist the functions m(t), L(t) € L(I,Ry) such that
for almost all t € I,

|g(t, 21, 22)| < m(t), V(x1,22) € R™ x R™,
|g(t,$1,1'2) 7g(t7y17y2)| <

2
< L(t)z IJJZ‘ —yi\, V(Jﬁl,a?g) e R" x Rn, V(yl,yg) € R™ x R".
1=1

Then the equation

i(t) = At)a(o(t) + g(t,z(t), z(1(1))) (1.12)
with the initial condition
x(t) = Qﬁ(t), ‘T(t) = U(t)v te [,7:7 tO)v x(tO) = Zo. (113)

has the unique solution x(t) € R™ defined on the interval [T, b] (see Definition
1.1).

Proof. The existence of a global solution will be proved by the step method
with respect to the function v(t). We divide the interval [tg,b] into the
subintervals [;,&41], i = 0,...,1, where & = to,& = vi(tg), i = 1,...,1,
£l+1 = b, l/l(to) = l/(to)7 Vz(to) = I/(l/(to)), SN

It is clear that on the interval [£y, &1] we have the delay differential equa-
tion

&(t) = g(t, x(t), z(7(t))) + A(t)v(o(t)) (1.14)
with the initial condition
z(t) = ¢(t), t€[7,%), () = zo. (1.15)

The problem (1.14)—(1.15) has the unique solution z;(t) defined on the in-
terval [T, 1], i.e. the function z;(¢) satisfies the condition (1.13) and on the
interval [£g,&1)] is absolutely continuous and satisfies the equation (1.12)
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a.e. on [£y, &1]. Thus, 2(t) = 21 (¢) is the solution of the problem (1.12)—(1.13)
defined on the interval [T, &;].
Further, on the interval [¢1, &) we have the equation

#(t) = g(t,2(t),x(7(t))) + A(t)2(o(t)) (1.16)
with the initial condition
z(t) = z1(t), t € [T, &) (1.17)
Here,
Z(t) _ ’U(t), te [7750)7
Z1(t), te [, &l
The problem (1.16)—(1.17) has the unique solution z5(t) defined on the in-
terval [T, &2]. Thus, the function z(t) = 2z2(¢) is the solution of the problem
(1.12)—(1.13) defined on the interval [T, &2].

Continuing this process, we can construct a solution of the problem
(1.12)—(1.13) defined on the interval [T, b]. O

Theorem 1.9. Let x(t), t € [T,b], be a solution of the problem (1.12)—(1.13),
then it is a solution of the integral equation

x(t) = zo + / Y ((€); ) AW(€)9(€)v(€) de+

o(to)
" / Y (€ 0)gt, 2(E), 2(r(€))) dE, ¢ € [to, 1), (1.18)

with the initial condition
z(t) = p(t), t €T, to), (1.19)
where Y (&;t) has the form (1.11).
This theorem is a simple corollary of Theorem 1.5.

Theorem 1.10. If the integral equation (1.18) with the initial condition
(1.19) has a solution, then it is unique.

Proof. Let x1(t) and z2(t) be two solutions of the problem (1.18)—(1.19).
We have

|ﬂ?1(t) — CEQ(t)| §

<Y1 [ 2©)J21(9) ~ aa@)] + [ (7)) - malr(©)|} dé <

t

< ||Y||{ 110+ L6© ] | - 22(6)| ds}7

to



14 Tamaz Tadumadze and Nika Gorgodze

where
V]l =sup {[Y(& )]« (&1) € IxT}.
By virtue of Gronwall’s inequality, we have x1(t) = x2(t), ¢ € [to, b]. O

Theorem 1.11. The solution of the problem (1.18)—(1.19) is the solution
of the problem (1.12)—(1.13).

This theorem is a simple corollary of Theorems 1.7-1.9.

Theorem 1.12 ( [24]). Let x(t) € Ki, t € I, be a piecewise-continuous
function, where K1 C O is a compact set, and let a sequence 6 f; € W(K71; ),
1=1,2,..., satisfy the condition

71— 00
Then

17— 00

hmmm{L7Y@wWﬁ@w@LMﬂa»d4:sh@ef}o

uniformly int € I.

Theorem 1.13 ( [24]). The matriz functions ¥(§;t) and Y (&;t) have the
following properties:

1.11. W(&;t) is continuous on the set I = {(,t): a <& <t <b};
1.12. for any fized t € (a,b), the function Y (&;t), € € [a,t], has first order
discontinuity at the points of the set

Itoit) = {o'(t) = o(0" (1) € [a,], i = 1,2, 0%(t) = t};
1.13. elirg_Y(G;t) = Y(£—;t), eliI?JrY(H;t) = Y (&+;t) uniformly with

respect to (§,t) € 1I;

1.14. Let &; € (a,b), i =0,1, & < & and & # 1(€0;&1). Then there exist
numbers §;, i = 0,1, such that the function Y (&;t) is continuous on
the set [50 - 50,50 + 50] X [El — 51,51 — 51] c 1II.

1.3. Proof of Theorem 1.1. On the continuous dependence of a solution
for a class of neutral equation. To each element p = (to, T, zo, @, v, f) € A
we assign the functional differential equation

y(t) = A(t)h(to,v,5)(a(t)) + f(to, 7, ¢, y)(t) (1.20)
with the initial condition
y(to) = o, (1.21)
where f(to, 7, ¢,9)(t) = f(t,y(t), h(to, v, y)(7(t))) and h(-) is the operator
given by the formula
p(t) fort e [T,to),

y(t) fort € [to,b)]. (1.22)

h(to, ¢,y)(t) = {
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Definition 1.3. An absolutely continuous function y(t) = y(t;u) € O,
t € [r1,m2) C I, is called a solution of the equation (1.20) with the initial
condition (1.21), or a solution corresponding to the element p € A and
defined on [r1, ro] if to € [r1,72], y(to) = xo and satisfies the equation (1.20)
a.e. on the interval [ry,7s].

Remark 1.1. Let y(t;u),t € [r1,72] be the solution of the problem (1.20)-
(1.21). Then the function

w(t; 1) = h(to, 0, y(+5 1)) (1), t € [F,ra]
is the solution of the equation (1.1) with the initial condition (1.2).
Theorem 1.14. Let yo(t) be a solution corresponding to po € A defined
on [r1,r2] C (a,b). Let K1 C O be a compact set containing a certain

neighborhood of the set Ko = cloo(l1) U yo([r1,72]). Then the following
conditions hold:

1.15. there exist numbers 6; > 0,4 = 0,1 such that a solution y(t;u)
defined on [rq — 01,72 + 61] C I corresponds to each element

= (to, 7, o, ,v, fo + ) € V(io; K1, do, ).
Moreover,
p(t) € Kyi,t € I1; y(t;u) € Ky, t € [ry —61,r2+ 1],
for arbitrary p € V(uo; Ky, 00, a);
1.16. for an arbitrary € > 0, there exists a number 02 = da2(e) € (0, o]
such that the following inequality holds for any p € V(uo; K1, 0o, @):
ly(t; w) — y(t; po)| < e, YVt € [r1—61,m2+61). (1.23)
Proof. Let €y > 0 be so small that a closed ep-neighborhood of the set Kj:
K(s) = {xER”: 3% € Ko |z — 7 gso}

lies in intK;. There exist a compact set Q: KZ(go) C Q C K? and a
continuously differentiable function y : R?" — [0, 1] such that

1 for (z1,22) € Q,

1.24
0 for (x1,72) & K? (1.24)

X(l"l,fﬂz) = {

(see Assertion 3.2 in [11, p. 60]).
To each element € A, we assign the functional differential equation
£(t) = A()h(to, v, 2)(a (1)) + g(to, 7,0, 2)(t) (1.25)
with the initial condition
2(to) = xo, (1.26)
where g(to, 7, @, 2)(t) = g(t, 2(t), h(to, v, 2)(7(t))) and g = xf. The function

g(t, x1, x2) satisfies the conditions

lg(t,z1, 22)| < My, (), Vo, € R™, i=1,2, (1.27)
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for Va!, 2/ € R™, i = 1,2, and for almost all t € T

2
|9(t, 2, @) — g(t, 27, 2%)| < Ly(t) Y |o; — a7, (1.28)
i=1

where
Lf<t) = Lf1K1 (t) +oumpy i, (t)a

2
1.29
ar=sup{ I (on o)l e R i=1,2) (1.29)

i=1
(see [15]).
By the definition of the operator h(-), the equation (1.25) for ¢ € [a, to]
can be considered as the ordinary differential equation

a(t) = A(t)v(a(t) +g(t, 21 (1), o(7(1))) (1.30)

with the initial condition

z1(to) = o, (1.31)
and for ¢ € [tg, b], it can be considered as the neutral equation
Za(t) = At)22(a(t) + g(t, z2(t), z2(7(1))) (1.32)
with the initial condition
zo(t) = p(t), 22(t) =v(t), t € [T,t0), 22(to) = xo. (1.33)

Obviously, if z1(t), t € [a,to], is a solution of problem (1.30)—(1.31) and
zo(t),t € [to,b], is a solution of problem (1.32)—(1.33), then the function

5 = Zl(t), t e [a,to),
Zg(t), te [to,b]

is a solution of the equation (1.25) with the initial condition (1.26) defined
on the interval I.
We rewrite the equation (1.30) with the initial condition (1.31) in the
integral form
¢

a)=a0+ [ [A©u(©) + 9(6 2 r©)] de. t€ latl, (130
to
and the equation (1.32) with the initial condition (1.33) we write in the
equivalent form
v(to)
) =wot [ YEDAEQ0(©) dst

to
t

+ / Y (€ 0)g(€ 22(E), 22(r(€)) dé, € [to,b],  (1.35)

to
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where
ZQ(t) = @(t)v te [?7 tO)

(see Theorem 1.9 and (1.11)).
Introduce the following notation:

H a
H, te [a,to),

Y (&t to) =Y (EE), to<t<min{v(ty),b}, (1.37)
o, min{v(tp),b} <t <b.

Using this notation and taking into account (1.34) and (1.35), we can rewrite
the equation (1.25) in the form of the equivalent integral equation

2(t) = w0 + / Y (&t 1) A(€)(o(£)) dé+

t
+ / Yo(€t.to)g(to, 0, 2)(€)de, te L. (1.38)
to

A solution of the equation (1.38) depends on the parameter
pehg=IxDx0x® xE,x (fo+W(Ki;a)) CE,

The topology in Ag is induced by the topology of the vector space E,,.
Denote by C(I,R™) the space of continuous functions y : I — R"™ with the

distance d(y1,y2) = |ly1 — y2|l1-
On the complete metric space C(I,R™), we define a family of mappings

F(-;p):CI,R") — C(I,R") (1.39)
depending on the parameter p by the formula

Ct) =((tz,p) =

t t

:xo—f—/Y(f,t,to)A(f)’U(O’(f))df-F/Yo(f,t,to)g(to,T,QD,Z)(f)dg

to tO

Clearly, every fixed point z(t; u),t € I, of the mapping (1.39) is a solution
of the equation (1.25) with the initial condition (1.26).
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Define the kth iteration F*(z; 1) by

Golt) = o + / Y (€t to) A(€)(0(£)) dé+

t
+/}/b(f;t7t0)g(t0a7_7§07<k71)(€) dé? k= 1727"'7
to

Co(t) = 2(t).
Let us now prove that for a sufficiently large k, the family of mappings
F¥(2; ) is uniformly contractive. Towards this end, we estimate the differ-
ence

|G (t) = GL(t)| = |Ce(ts 2/, ) — Gl 2", )| <

t
< [ Valest.t0) ko, 0,Gio1)(€) = gt 0, G (0| d <

t

< [L©[G© - G ©l+

a

+ [ hlto, ¢, Ge—1)(7(€)) —h(to,%él’c’_ﬁ(f(ﬁ))” g, k=1,2,..., (1.40)

(see (1.28)), where the function L;(€) is of the form (1.29). Here, it is

assumed that ¢{(§) = 2/(€) and /(&) = 2" (€).
It follows from the definition of the operator h(-) that

h(to, #, C1)(T(€)) = hlto, @, -1 (7(€)) = hlto, 0, Gy = GH-1)(7(€))-
Therefore, for £ € [a,7y(to)], we have

B(to, 0, Gy = G1)(7(€)) = 0. (1.41)
Let y(to) < b; then for & € [y(to), b], we obtain
[1(t0,0, Gy = G (F(O)] = [Gia (7(9)) = GL(F(O)],
sup { |G (7(8) = G (r(8)] : ¢ € [y(to). €]} <
<sup {[¢ioa(t) = G (0] + e fagl}. (1.42)

If 4(to) > b, then (1.41) holds on the whole interval I. The relation (1.40),
together with (1.41) and (1.42), imply that

[Gh&) = )] < sup {[Gh(&) = ()] + €€ fot]} <

t
<20l [ Lyeysup {|6i 16 - (@) €€ ot} der, k=12,....
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Therefore,
|Ge(t) = G ()] <
t &1
< 20l [ L6 dés [ Lo sup {[G (-G o) - € € 6} den

By continuing this procedure, we obtain

Gt — ()] < @IIYol) arn®)l2 = 2",

where
t &1 1
axlt) = [ Loteder [Li@)dea [ Ly de

By the induction, one can readily show that

%@=;(/M@%Y.

a

Thus,
d(F* (25 ), F* (2" ) =
k ~
=16 = ¢l < @2IIYol)) " ar®))12 = 2"[Ir = axll2" = 2" |I1-
Let us prove the existence of the number as > 0 such that

/Lf(t) dt <ag, Vfefot+rW(Kp;a).
T

Indeed, let (z1,72) € K? and let f € fo + W(K1; ), then
|f(t,m1,x2)| <myy i, (1) + msf i, (1) :=my i, (t), t €l
Further, let 2}, z;,” € K1, i = 1,2 then
|f(t, 2, 23) = f(t,27,23)
< |folt, 2, 25) = fo(t, 2, a5)| + [0 (t, 2, x5) — 6 f(t, 27, 23)] <

2 2

< (Lfo,Kl (t) + Lss .k, (t)) Z |£U; - l‘;/ =Ly k, (t) Z |:L‘; - JJ“,
i=1 =1

| <



20 Tamaz Tadumadze and Nika Gorgodze

where Ly g, (t) = Ly K, (t) + Lsy K, (t). By (1.29),

[ @t = [ (L ® + caampse, 0) de =

I

I
- / [Lf"’Kl (8) + Lo,y (8) + aa (mgo, i, (1) + Mg, 16, (t))} dt <
I

<ala; +1) +/ (Lo, (1) + army, i, (t)] dt = as.
T

Taking into account this estimate, we obtain @y < (2||Yo|a2)¥/k!. Conse-
quently, there exists a positive integer k1 such that ax, < 1. Therefore, the
k1st iteration of the family (1.39) is contracting. By the fixed point theorem
for contraction mappings (see [11, p. 90], [27, p. 110]), the mapping (1.39)
has a unique fixed point for each p. Hence it follows that the equation (1.25)
with the initial condition (1.26) has a unique solution z(t; i), ¢t € I.

Let us prove that the mapping F*(z(-; uo); - ) : Ao — C(I,R™) is contin-
uous at the point u = o for an arbitrary £ = 1,2,.... To his end, it suffices
to show that if the sequence p; = (toi, Ti, Toi, Pi, Vi, fi) € Mo, @ = 1,2,. ..,
where f; = fo + df;, converges to uo = (too, 70, Zoo, Yo, Vo, fo), i.e. if

lim (|t0i —too| + I7i — 7ol +
11— 00
+ |l‘0i - Qfoo| + ||<Pz - <P0||11 + ||Ui - U0||11 + A(df“Kl)> =0,

then

lim F*(2(-5p0); i) = F¥(2(-5 p0); o) = 2(+; o). (1.43)

i—>00
We prove the relation (1.43) by induction. Let &k = 1, then we have

|¢H(t) = 20(8)| < |zoi — woo|+
t

n ] [y €t a@ute©)ds — [ ¥(Estiton) A€un(o() df]+

toi

t
+’/Y0(§§t>t0i)gi(t0i77'i7802’720)(5) dg—

toi

t
/Yo(f;tatoo)go(tooﬁm900,2’0)(5)d€‘ =
too

= |zo; — woo| + ai(t) + bi(t), (1.44)
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where

CHt) = Gt 20, ), 20(t) = 2(t; po),

9i = Xfi = 90 +6gi;, go=xfo, d9; = xfs;
t

a;(t) = ‘ /Y(ﬁ;t,tOi)A(E)vi(U(f))dé— /Y(é;t,too)A(ﬁ)vo(U(é))dé‘;

toi
t

bi(t) = ‘/Yo(f;t,tm)gi(touTu,%‘,Zo)(f) dg—

toi

t
- /Yo(f;t,too)go(t()o,ﬁo, ©o,20)(€) df‘-

too

First of all, let us estimate a;(t). We have

a; (t) S

/ Y<s;t,too>A<§>vo<a<s>>ds\+

+ [ ¥t t0)A©)0(0(©) - Y€t too) A€ un(o(€))| de =
I

= a; (1) + aiz(t). (1.45)
Obviously,
lim a;1(t) =0 uniformly in ¢ € I. (1.46)
1—> 00
Furthermore,
aip(t) < / Y (&t toi) — Y (&t too)| |A(E)vi(a(€))] dé+
T

+ / V(€1 10)A©)| [vi(0(€)) — vo(o(€))] dé <
I
< Al sl s (8) + Y A] s — wollr,. (1.47)

where

aiz(t) = / [Y(&t,t0i) — Y (& ¢, too) | dé.
T

Let to; < too, and let a number iy be so large that v(tg;) > too for i > ig.
Then taking into account (1.37), we have

too v(too)
ais(t) = / V(6 t) — Hde + / V(&) de <
toi v(to:)

<|IY = H||(too — to:) + [IY || (v(to0) — v(t0s)),
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therefore,

lim a;3(t) = 0 uniformly in 1. (1.48)

1— 00

Let tg; > top. Choose a number i so large that v(tgg) > to; for i > ig. Then

to: v(toi)
ais(t) = / H - Y(&:1)]de + / V(&) de.
too v(too)

This implies (1.48). Taking into account (1.46)—(1.48), we obtain from
(1.45) that

lim a;(t) =0 uniformly in 1. (1.49)

17— 00

Now, let us estimate the summand b;(t). We have

bi(t) <

too
/Y()(§§tat0i)go(t0077'074)00’30)(5) d§‘+
toq

t
+’/[YO(S;t;tOi)gi(tOi;Ti7@i720)(£)_

toi

— Yo (&: ¢, t00)g0(too, To, @o, Zo)(f)] d€ = bi1(t) + bia(t).  (1.50)

Obviously,
lim b;1(t) = 0 uniformly in 1. (1.51)

1—> 00

Furthermore,

t
bia(t) = ‘/Yo(f;t, toi) [gi(tomﬁ,sﬁiazo)(f) - Qo(tOi,Tm%Zo)(f)} dg+

toq

¢
+ [ Yo(&; L, toi) [go(tomm ©i, 20)(&) —g0(too, To, o, Zo)(f)} d§+

toi
t

+/ [Yo(f;t,tm) — Yo(&:t,t0o) | 9o(too, 70, ¥0, 20) (€) df‘ <

toq

3
< bh(), (1.52)
j=1
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where

)

¢
bip(t) = /%(5?1571501)5%@0@,%%‘720)(5) dg§
toq

t
b, (t) = /Yo(ﬁ;tﬂfm) {go(toum%,zo)(f) - go(too,TmsOo,Zo)(f)] d€'7

toq
t

bih(t) = /[Yo(ﬁ;t,tm) —Yo(f;t,too)}go(tooﬁo,900720)(5) d§‘~

toi

Now, let us estimate the expressions b, (t). We have

t
biy(t) = ’/Yo(&t,tm) {591‘(?501‘,71',%,20)(5) - 6gi(t0i77i7900720)(§)] dé+
to;

t
+/Yo(ﬁ;t7t0¢)59i(touﬂ',sﬁo,Zo)(f) df‘ <

toq

< 11 Log s ()]s, 3, 20) (1€)~ hto, , 20) (1) de-+

/Y0(53t,tm)(Sgi(touTiv@0720)(5) dﬁ‘ =
t/

+ max
t,,t” el

= biy + bip(t). (1.53)

It is easy to see that

b, < Yol / Lo 16, (6)] 0:(m:(£)) — olmi(€))| dé <
I

< i — eolln / Lig. 1, (€) dE.

1
The sequence
[t e i=12....
1
is bounded, therefore

zliglo biz = 0.
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Furthermore,

B2, (1) <
zz()_t;gggl

JR GRS d5‘+

+ max ’/Y(f;t)(;gi(tomﬁa@o,Zo)(f)df‘ = b%, + by (t).
t/

t el

The function ¢g(§), £ € I, is piecewise-continuous with a finite number of
discontinuity points of the first kind, i.e. there exist subintervals (6,,04+1),
qg=1,...,m, where the function ¢q(t) is continuous, with

m—1

h =7, Opy1 =0, I1 = U [eq’9q+1) U 0, O]

g=1

We define on the interval I the continuous functions z;(t), ¢ =1,...,m+1,
as follows:

21(t) = po1(t), -, 2m(t) = pom (),
zo(a), telr,a),
R W
where
Po(fg+), t € [T, 0q],
@Oq(t) = ‘PO(t)v te (queq-‘rl)v g=1,...,m
©0(0g+1—), T € [Og41,0]
One can readily see that bY, satisfies the estimation

"

bs, < Z Joax, /59i(f720(t)’2m1 (7:(1))) dt‘ <

mi=1 1

!

/ 51 (£, 20(8), zams (0(1))) dt’+

m

< max
) t el

"
m t
+ max

Joex, /‘(Sgi(t,ZO(t),ZmI(Ti(t))>—(Sgi(t,Zo(t)72m1(’7'0(t)))‘dt’ <

mi1= t

!’

/591- (t, 20(t), 2m, (10(1))) dt‘—i—

+30 [ Lapra®)lam, (7)) = 2y (o0 de <
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g

[ 0200,z (o (0) dt\+

m

< max
t el
mi=1

43 ma [z (5(0) 2, (0(®)] [ Loy ()t (150

mi=1 7
Obviously,
A(0gi;s K1) = A(x0fi; K1) < A(3fi; K1)
(see (1.24)). Since A(df;; K1) — 0 as i — oo, we have
lim A(dg;, K1) = 0.

i—00
This allows us to use Theorem 1.12; which in turn, implies that
t//

/égi(t,zo(t),zml(m(t))) dt| =0, Vmi=1,...,m.
t/

lim max
i—oot/ tel

Moreover, it is clear that

Jim max |20, (7i(£)) = 2, (T0(£))| = 0.

The right-hand side of inequality (1.54) consists of finitely many summands,
and therefore
lim b%, = 0.
1— 00
For b{,(t), in the analogous manner, we get
m+1

b, (1) <
12(t) < 1t,1}t15;t§1

mi1=

/ Y(£7 t)591 (57 20 (5)7 Zmy (TO (f))) d€’+

m—+1

IV ma amy (550)) = 2, (0] [ Loy (8t
mi=1 T

from which we have

lim bl (¢) = 0 uniformly in I
71— 00

(see Theorem 1.12).

Thus,
Zlirgo b2 (t) = 0 uniformly in 1.
Consequently,
Zlggo bl (t) = 0 uniformly in I. (1.55)
Next,

bin(t) < ||V /Lfo(t)‘h(ton%‘aZO)(Ti(t)) — h(too, ¥0, 20)(10(t))| dt <
I
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< ||Y|{ [ B30 (O]t s 20) ((0) = ltos o, 20) 70| e+
+

Ly, (t ‘htoZ,wo,ZO)(ﬂ(ﬁ)) h(too, po, 20) (T ())‘dt}

< [I¥]]

f—/H~\

Lfo (t)‘h(tom i — o) (T (t))| dt+

+ /Lfo (t)‘h(tou ®0, 20)(Ti(t)) — h(too, ¥o, 20)(Ti(t))’+
I

+ [ L1u(0]Btta0 o0, 0) ) = o, s 20) o)

I

¥ llos = ol [ L o)+t + 05}

(see (1.22) and (1.36)). Introduce the notation
poi = min {7 (too), vi(toi) },  6oi = max {7;(too), vi(to:)}-
We prove that
hIIl ’Yi(tOO) = hm ")/l(toz) = ’}/O(too).
1— 00 1— 00
The sequences {7;(to0)} and 7;(to;) are bounded. Without less of generality,
we assume that
lim v;(to0) =70, lim i (to:) = 7.
11— 00 11— 00
We have

too = 7i(7i(too)) = 7i(7i(too)) — To(7i(too)) + 7o (7vi(too))-
Clearly,

lim | 7;(7i(to0)) — To(7i(too))| < lim [|7; — 79|z, = 0.
71— 00 1—> 00

Passing to the limit, we obtain tgg = 79(70). The equation 74(t) = too has
a unique solution 7o (t00), i-e. Yo = vYo(too)-
Further,
to; = Tl(’)/?(toz)) = 7}('71@01)) - 7_0(71(7507)) + To(ryi(t()i))'
Hence we obtain tgg = 70(71), i-e. v1 = Yo (too)-
Thus,
lim (po; — Ooi) = 0.

71— 00
Consequently,

004
br = [ Ly (0]t 50, 20) (0 ~ it 0, 20) (0| e — 0.

PO
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Introduce the notation

p1; = min {7;(to0),Y0(too) }, 61, = max {7;(too), vo(too) }-
For b?,,, we have
01;

s = [ Lso(8)]htos 90, 20) (1) = it o0, 20) ()| .
Pli
Analogously, it can be proved that

1—»00

Thus, b%, — 0. Consequently,

b2, (t) — 0. (1.56)
Finally, we have
too too
wl0) < | [ IV(€60) -~ Hhs (€ de| < 1Y 1| [ (@)
tos toi
i.e.
lim b3,(t) = 0 uniformly in I.
1— 00
Therefore,

lim |¢}(t) — 20(t)| = 0 uniformly in T
1— 00

(see (1.44), (1.45), (1.49)—(1.52), (1.55), (1.56)). Assume that the relation
(1.43) holds for a certain k > 1. Let us prove its fulfilment for k + 1.
Elementary transformations yield

|Chra(8) = 20(8)] < |woi — wool + ai(t) + bir (1), (1.57)

where

t
bir(t) = ’/Yo(5;t,tm)gi(tomﬂ‘,%Kii)(f) d§—
to;

t
- /Yo(fst,too)gi(tooﬁo, ©o0,20) (&) df’

too

(see (1.44)). The quantity a;(t) has been estimated above, it remains to
estimate b;x(t). We have

ba(t) < Yol /

I
t

+’/Y<)(§;t,tOi)gi(tOi,Ti,901‘730)(5) d§—

toq

9i(toi Ti, i, Cb)(€) — gi(tonﬂ,%,zo)(f)‘ d§+
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t
/Yo(ﬁ;tﬂfoo)gi(too,707%00720)(5) dﬁ’ = b}, () + bi(2).

toi
The function b;(t) has been estimated above. It is not difficult to see that
the following inequality holds for b;x(¢):

bar(t) < 2|¥o] 116G — =0l / Ly (t)dt.
I

By the assumptions,
lim /¢ — =0l = 0.
1—00

Therefore,
lim b;(t) = 0 uniformly in 1.
1—> 00

Thus, we obtain from (1.57) that

T lchy: — 20l =0
We have proved (1.43) for every k = 1,2,.... Let the number é; > 0 be

so small that [r; — d1,72 + 01] C I and |2(¢; uo) — 2(r1; p0)| < €0/2 for
t € [ry — 1,71 and |z(t; po) — 2(r2; o)| < e9/2 for t € [ra, 79 + 01].

From the uniqueness of the solution z(¢; ), we can conclude that
z(t; po) = yo(t) for t € [r1,r2]. Taking into account the above inequali-
ties, we have

(Z(t; 110), b (too, o, 2 (- ;Mo)(%(ﬂ))) € K*(20/2) CQ, t€[r1—61,r2401).

Hence,

X(Z(t;ﬂo)ah(toovsﬁmz(';#0)(70(15)))) =1, te[r1—6b1,m2+ 0],

and the function z(¢; o) satisfies the equation (1.20) and the condition
(1.21).
Therefore,

y(t; po) = 2(t; o), t € [r1 — 01,72 + 01].

According to the fixed point theorem, for e¢/2 there exists a number d§y €
(0,£0) such that a solution z(t; 1) satisfying the condition

|2(t; ) — 2(t; po) | < %0 tel,

corresponds to each element pu € V' (uo; K1, do, @).
Therefore, for t € [ry — 01,72 + 01]
z(t;p) € K (o), V€ V(po; K1, 0do,).
Taking into account the fact that ¢(t) € K(eg), we can see that for ¢t €
[r1 — 01,72 + d1], this implies

X(Z(t;/z)ﬁ(to,%Z(-;u)(T(t)))) =1, Yp € V(uo; Ki,d0,0q).
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Hence the function z(¢; i) satisfies the equation (1.20) and the condition
(1.21), ie.

y(t;p) = 2(t; p)eint Ky, ¢ € [r1—d1,r2+61], peV(uo; K1,00, ). (1.58)
The first part of Theorem 1.14 is proved. By the fixed point theorem, for
an arbitrary € > 0, there exists a number do = d2(¢) € (0, dp) such that for
cach p € V(po; K1, 02, a),
whence using (1.58), we obtain (1.23). O

Proof of Theorem 1.1. In Theorem 1.14, let 71 = tgg and r9 = tgg. Ob-
viously, the solution xo(t) satisfies on the interval [tgg,t10] the following
equation:

y(t) = A(t)h(too, vo, 9)(a(t)) + foltoo, 7o, po, y)(¢).
Therefore, in Theorem 1.14, as the solution yo(t) we can take the function
zo(t),t € [too, t1o)-

By Theorem 1.14, there exist numbers §; > 0,7 = 0,1, and for an arbi-
trary € > 0, there exists a number d; = d2(e) € (0, o] such that the solution
y(t;pu), t € [too — 1,t10 + 1], corresponds to each p € V(uo; K1, dp, ).
Moreover, the following conditions hold:

p(t) € Ky, te iy y(tip) € Ky,
ly(t: 1) — y(t; pmo)| <&, t € [too — 01, t10 + 6], (1.59)
€ Vug; K1, 62, ).
For an arbitrary p € V(po; K1, do, ), the function

e, t €7, to),
w(t;p) = {y(t;u), t € [to,t1 + 61].

is the solution corresponding to u. Moreover, if ¢t € [tA7 ti0 + d1], then
x(t; po) = y(t; o) and x(t; u) = y(t;p). Taking into account (1.59), we
can see that this implies 1.1 and 1.2. It is easy to notice that for an arbi-
trary p € V(po; K1, 6o, ), we have

t10+61 t
ot ) = ot o) e = [ [o(®) = o(t)] e+

t10+01
et 1) — a(t: o) dt + / (@ (ts 1) — (s o) dt <
t

<lle = ollr, (b —7) + Nlto — too| + max |z(t; p) — x(t; po|(b—7),
te[t,ti0+01]

+

w\\ﬂ)

where
t =min{to,too}, N =sup{|z’ —2"|: 2’,2" € K1}.
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By 1.1 and 1.2, this inequality implies 1.3. O

1.4. Proof of Theorem 1.3. To each element w € Ay we correspond the
equation

y(t) = A(t)h(to, v, 9)(o(t)) + f(to, 7, 0,9, u)(t)
with the initial condition (1.21).

Theorem 1.15. Let yo(t) be a solution corresponding to wo = (to, 70, Too,
©0, V0, ug) € A1 and defined on [r1,rs] C (a,b). Let Ko C O be a compact
set containing a certain neighborhood of the set cloo(I1) Uyo([r1,r2]). Then
the following conditions hold:

1.17. there exist numbers §; > 0, i = 0,1 such that to each element
w = (th T,T0, P, , ’LL) € ‘7(1110, 60)
there corresponds the solution y(t;w) defined on the interval [ry —
01,72+ 61] C I and satisfying the condition y(t;w) € Ks;
1.18. for an arbitrary € > 0 there exists a number d3 = d2(g) € (0, o]
such that the following inequality holds for any w € V(wq;dp

|ly(t;w) — y(t;wo)| <&, Vi€ [ry—b1,ma+ 1)
Theorem 1.15 is proved analogously to Theorem 1.14.

Proof of Theorem 1.3. In Theorem 1.15, let ry = tg9 and ro = t19. Ob-
viously, the solution xo(t) satisfies on the interval [tog,t10] the following
equation:

§(t) = A(t)h(too, vo, §) (0 (8)) + f (t00, T0s %0, Y5 o) (¢)-

Therefore, in Theorem 1.15, as the solution yo(¢) we can take the function
xo(t),t € [too,t10]. Then the proof of the theorem completely coincides with
that of Theorem 1.1; for this purpose, it suffices to replace the element p by

the element w and the set V(uo; K1, 09, @) by the set V(wo; dp) everywhere.
O

2. VARIATION FORMULAS OF A SOLUTION

Let Dy ={r € D: 7(t) > e =const >0, t € R} and let E}l) be the
set of functions f : I x O? — R™ satisfying the following conditions: the
function f(¢, -) : O? — R™ is continuously differentiable for almost all ¢ € I;
the functions f(t,z1,z2), fz, (t,21,22) and fy, (¢, 21, 22) are measurable on

I for any (z1,2) € O?; for each f € E](cl) and compact set K C O, there
exists a function my i (t) € L(I,R,), such that
‘f(tamth)’ + ‘fw1<t,$1,l‘2)‘ + |f$2(t7x17$2)| S mf,K(t)

for all (z1,72) € K? and almost all t € I.
To each element

= (to, 7,0, 0,0, f) € Ao = [a,b) Xx D1 x O X &1 x E, xEJ(cl)
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we assign the neutral equation

#(t) = A(t)a(o(t)) + £ (t,=(t), 2(7(t)))

with the discontinuous initial condition

z(t) = ¢(t), &(t) =o(t), t€T,to), x(to) = zo.

Let Mo = (too,To,JL‘oo, ©o, Vo, fo) € Ay be a given element and l‘o(t) be the
solution corresponding to pg and defined on [7, t10], with a < too < t19 < b.

In the space Eﬁl) — o, Where E,(}) =RxD; xR" x E, x E, x Ej(cl), we
introduce the set of variations:

Sy = $0u = (dto, 07, 60, 6, 00,8 f) € BV — g -
I3

k
[6to] < B, 167I|1, < B, [6z0] < B, 5o =Y A\ibps,
1=1

k
18ullr, < B, 8F =D Nidfi, NI < B, i=1,... .k},

i=1

where dp; € E, — o, 0f; € E](cl) — fo,1=1,...,k, are fixed functions.

The inclusion Ej(tl) C Ey holds (see [15, Lemma 2.1.2]), therefore, accord-
ing to Theorem 1.2, there exist numbers 6; > 0 and €; > 0 such that for
arbitrary (e,d0u) € (0,e1) x Qo the element g + edp € A, and there corre-
sponds the solution x(t; o + €dp) defined on the interval [T, ¢19 + 01] C 1.

Due to the uniqueness, the solution z(t; to) is a continuation of the so-
lution zo(¢) on the interval [7,t19 + d1]. Therefore, the solution zo(t) is
assumed to be defined on the interval [T, %19 + d1].

Let us define the increment of the solution xo(t) = x(t; o) :

Ax(t;edp) =x(t; po+edp) —xo(t), V(t,e,du) €T, t1o+1]%x(0,e1) xS,

Theorem 2.1. Let the following conditions hold:

2.1. vo(too) < tio, where yo(t) is the inverse function to 1o(t);

2.2. the functions vo(o(t)) and vo(t) are continuous at the point too; the
function o(t) is absolutely continuous and the function $o(t) is
bounded;

2.3. for each compact set K C O there exists a number mg > 0 such
that

1fo(2)| < mk, Vz=(t,x,y) € I x K*

2.4. there exist the limits

lim fo(2) = fy, z € (a,too] x 0?,

Z—Z20

[fo(z1) = fo(22)] = fo1, 2i € (toosY0(too)] x O%, i=1,2,

(21,22)—(210,220)
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where
20 = (t00: Zoo, ¢0(10(t00))), 210 = (70(f00), Zo(70(t00))s Too),
220 = (70(t00), Zo(v0(t00)), o (too))-

Then there exist numbers €5 € (0,¢1) and d2 € (0,91) such that for
arbitrary

(t,2,61) € [t10 — G2, t10 + 6] X (0,€2) x 5,
where

Sy ={op € Sy 6ty <0, 67(10(teo)) > 0}
we have

Ac(t; e8p) = eda(t; 6n) + o(t; £6p), (2.1)
where
6a(t;811) = {¥ (too—:1) [voton) — Altoo)vo(or(ton)) — f5 | -
— Y (70(too) = t)fo_l%(too)}&oJr
+Y (0(t00) =5 1) fo170(f00)07 (70 (t00))+

—|—/Y(s;t)5f[s] ds + B(t;0p), (2.2)

t

and

B(t; 1) = W(too; ) [d0 — vo(too)dto]+
Yo (too)
[ Y0 onalslin(ro(s)or(s) dst

too

n / Y (5: ) foy [s]0 (70(5))57(5) ds+

v(too)

+ / Y (0(5):£) fors 0 (80 ()50(s) dst

To(too)

+ / Y(v(s);t)A(v(s))v(s)ov(s)ds (2.3)

a(too)
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Here, U(s;t) and Y (s;t) are n x n matriz functions satisfying the
system
Ws(s;t) = =Y (s:t) for, [] — Y (70(5); 1) fows [10(5)]F0(s),
Y(sit) = W(s;t) + Y (v(s); 1) A(v(s))v(s),
s € [too — 02,t], t € [too,t10 + J2]
and the condition
H, s=t
U(s;t) =Y (s;t) = ’ ’
(5:1) = ¥ >{&s>m
H is the identity matriz and © is the zero matriz, v(s) is the inverse
function to o(s),

foa, 8] = fou, (5. 20(s), 20(70(s))), 0f[s] =0 (s,70(s), z0(70(5)))-

Some Comments. The function dx(¢;du) is called the variation of the
solution xq(t), t € [t10 — 02, t10 + 2], and the expression (2.2) is called the
variation formula.

Theorem 2.1 corresponds to the case where the variation at the point tgg
is performed on the left.

The expression

—Y (70(too)—; t) fo1¥0(too)dto
is the effect of the discontinuous initial condition and perturbation of the
initial moment tgg.

The expression

Y (70(too)—3t) fo170(too) T (o0 (too))+

70 (t00)
+/(MWMWWMMﬁdH/YsHmHMMDM)

too ~o(too)

is the effect of perturbation of the delay function 74(t) (see (2.2) and (2.3)).
The addend

Y (too—;t) {Uo(too) —A(too)vo(o(too)) *fo_} to+ T (too; t) [6z0—vo(too)dto]

is the effect of perturbations of the initial moment tgp and the initial vec-
tor xgg.
The expression

too

Y (70(5);t) foxa [70(8)]70(5)dp(s) ds+

7o(too)
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is the effect of perturbations of the initial functions ¢g(t) and vg(s) and the
function fo(t, z,y).

If @0 (t()o) = 200, then fO_l =0.1If Yo (too) = tlo, then Theorem 2.1 is valid
on the interval [t19, t10+02]. If v0(too) > t10, then Theorem 2.1 is valid, with
02 € (0,071) such that t19 + d2 < Yo (teo); in this case Y (yo(too)—;t) = O.

Finally, we note that the variation formula allows us to obtain an ap-
proximate solution of the perturbed equation

i(t) = A(t)i(o(t) + fo(t, z(t), x(7o(t) + €7 (t)))+
+edf (t, x(t), z(1o(t) + 5(57’(75)))
with the perturbed initial condition
z(t) = oo(t) +edp(t), x(t) =wvo(t) +edv(t), t € [T,too + &dto),
x(too + €dto) = o + £0xp.
In fact, for a sufficiently small € € (0, e3) it follows from (2.1) that
x(t; po + edp) = xo(t) + edx(t; o).

The matrix function Y (§;t) for any fixed t € [t19 — d2,¢10 + d2] has first
order discontinuity at the points of the set

{0(t),02(t), oL at(t), . },
where o'(t) = o(0'=1(t)), i = 1,2,...; 0°(t) = t,0'(t) = o(t) (see Theo-
rem 1.13).

Theorem 2.2. Let the conditions 2.1-2.3 of Theorem 2.1 hold. Moreover,
there exist the limits

lim fo(2) = fo, z € [too,Y0(too)) x O,

zZ—r 20

lim [fO(Zl) - fO(ZQ)] = f(;i_la zZi € [PYO(tOO)J)) X 023 1=1,2.

(21,22)—(210,220)
Then there exist numbers g5 € (0,e1) and d2 € (0,01) such that for arbitrary
(t,&‘,(SM) S [tlo — (527t10 + 52] X (0,52) X %;_,

where
S5 = {6 e Syt dtg >0, 67(70(too)) < 0},

formula (2.1) is valid, where
5.13(t; 5/.L) = {Y(t00+; t) |:’U0(t00) - A(tOO)UO(U(tOO)) - fa_} —
— Y ((too)+: 1) oo (too) fato+

+ Y (0(too)+;t) for Y0 (t00) 67 (Y0 (o)) +

+/Y(s;t)5f[s] ds+ B(t;0p).

too



Variation Formulas of Solution and Initial Data Optimization Problems . .. 35

Theorem 2.2 corresponds to the case where the variation at the point tgg
is performed on the right.

Theorem 2.3. Let the assumptions of Theorems 2.1 and 2.2 be fulfilled.
Moreover,

fo =15 = Jo» for =15 = fon
and

t0o,Y0(too) € {o(t10), 0 (t10), - .- }-

Then there exist numbers eo € (0,e1) and d2 € (0,01) such that for arbitrary
(t,e,0u) € [t10 — d2,t10 + 02] X (0,£2] X o formula (2.1) holds, where

2 (t: 61) = { ¥ (t00 ) [v0 too) — Altoo)o(o (to0)) — fo -

=Y (70(too); t)foﬂ"o(too)}&o-i-
+ Y (70(t00); t) forYo(too)dT (Yo (too) )+

+ /Y(s;t)éf[s] ds+ B(t;0p).

too

Theorem 2.3 corresponds to the case where the variation at the point tgg
two-sided is performed. If the function fy(¢,x,y) is continuous, then

fo=fo (too, ¢o(too), po(To(too)))

and

for = fo (70(to0), zo(v0(ta0)), Zoo) — fo (70 (too), Zo(70(t0o)), o (too))-

Let the function f(t,x1,72,u) be defined on I x O? x Uy and satisfy
the conditions: for almost all ¢ € T the function f(¢,z,y,u) is continuously
differentiable with respect to (x1, z2,u) € O? x Uy; for any fixed (21, x2,u) €
Os x Uy the functions f(t,x1,29,u), fo,(t,21,29,u), fo,(t,21,22,u),
fu(t, 1, 22, u) are measurable, for any compacts K C O and U C Uy there
exists mg,y(t) € L(I, R4+) such that

‘f(t,$1,$2,u)|+’fxl (t,{L’l,x2,u)|+|fm2(t,$17$2,U)|+|fu(t,‘T17$2,U)| S
<my(t)

for all (w1, 72,u) € K2 x U and almost all t € I.

Let wo = (too, 70, Zoo, Yo, Vo, uo) € A1 be the given element and z((t) be
the solution corresponding to wp and defined on [7,¢10], with a < tgg <
t19 < .
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In the space E,, — wg we introduce the set of variations

Sy = {5w — (8to, 07, 00, 8¢p, 8, 511) € By — 1w -
k
‘5t0| é ﬁv ”57—”12 S 57 \5330\ S Bv 6‘)0 = Z)\z(s%a
1

Nl < B i =1k, (60, < B, foulr < 8}

There exist numbers §; > 0 and €1 > 0 such that for arbitrary (e, dw) €
(0,e1) X 3 the element wy + edw € Ay and there corresponds the solution
x(t; wo + edw) defined on the interval [T, t19 + §1] C I4.

Due to the uniqueness, the solution z(t; ) is a continuation of the so-
lution xo(t) on the interval [7,t19 + 81]. Therefore, the solution z((t) is
assumed to be defined on the interval [7,t19 + d1].

Let us define the increment of the solution xo(t) = x(t; wy) :

Ax(t;edw) =z (t; wo+edw) —xo(t), V(¢ e, 0w) €T, t10+01]%x(0,e1) % 3.

Theorem 2.4. Let the following conditions hold:

2.5. vo(too) < tio, where yo(t) is the inverse function to 1o(t);

2.6. the functions vo(o(t)) and vo(t) are continuous at the point too; the
function po(t) is absolutely continuous and the function ¢o(t) is
bounded;

2.7. for each compact sets K C O and U C Uy there exists a number
mg,u > 0 such that

|fo(z)| <miu, Vz=(t,z,y,u) €I x K> x U;
2.8. there exist the limits

lim fo(2) = fy, 2z € (a,too] x 0?,

Z—r20

[fo(z1) = fo(22)] = fo1. 2 € (too, yo(too)] x O, i=1,2,

1m
(21,22)—=(210,220)
where
20 = (too, 00, Po(10(t00))), 210 = (70(t00), To(v0(t00)), Zoo),
220 = (Y0(to0), zo(Y0(t00)), o (teo)),  fo(z) = f(z, uo(t)).

Then there exist numbers €5 € (0,e1) and 02 € (0,91) such that for
arbitrary (t,e,0w) € [t19 — d2,t10 + 2] X (0,e2) x I3, where

(3; = {(5w € &30 0ty <0, (ST(’}/Q(too)) > 0}
we have

Ax(t;edw) = edx(t; dw) + o(t; edw), (2.4)
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where
Sz (t; ow) = {Y(too—; £) [vo(too) — A(too)vo(o(teo)) — fg] _

— Y (y0(too)—; t)f&ﬁo(too)}5to+
+ Y (70(too)—;t) fo170(t00)d7 (Y0 (t00))+

+ [ Y(sit)oulslduts) ds + 5(tsow),

and
B(t; dw) = B(t; p).
Theorem 2.5. Let the conditions 2.5-2.7 of Theorem 2.4 hold. Moreover,
there exist the limits

lim fo(2) = fif, 2 € [too,Y0(too)) x O,

zZ—r 20

lim [fo(z1) = fo(z2)] = fdis 2 € [o(teo), b) x O, i

(21,22)—(210,220)

1,2,

where fo(z) = f(z,uo(t)). Then there exist numbers eo € (0,e1) and Ja €
(0,01) such that for arbitrary

(t,s,éw) S [tlo — (52,t10 + (52} X (0,52) X %;,
where
%; = {5’11) € &g 1 Oty > 0, 5T<’70(t00>) < 0},

formula (2.4) is valid, where
s (t: 6w) = {¥ (too+:1) w0 (ton) — Altoo)uo(or(too)) — fif | -

— Y (o(too)+: 1) oo (too) foto+
+ Y (70(too)+;t) for Y0 (to0) 67 (Y0 (too)) +

+ /Y(S;t)fou[S] ds + B(t; 0p).

too

Theorem 2.6. Let the assumptions of Theorems 2.4 and 2.5 be fulfilled.
Moreover,

o =1 =T, fo=1Ffh=7In
and

t0o,Y0(too) € {o(t10), 0 (t10), - .- }-
Then there exist numbers o2 € (0,e1) and 02 € (0,061) such that for arbitrary

(t75,5w) € [tlo — (52,t10 + (52] X (0762] X %3
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formula (2.4) holds, where
2 (t; 5w) = {¥ (to0; ) [v0(ton) — Altoo)vo (o (too)) — Jo| -

=Y (70(too); t)f()ﬁ"o(too)}&o-i-
+ Y (70(t00); t) forYo(too)dT (Yo (too) )+

t
+ [ Y(si0) faulslou(s) ds-+ (6 6w).
too
2.1. Proof of Theorem 2.1. First of all, we note that Lemma 2.1 formu-

lated below is a consequence of Theorem 1.14.

Lemma 2.1. Let yo(t) be a solution corresponding to po € A and defined
on [r1,r2] C (a,b). Let K1 C O be a compact set containing a certain
neighborhood of the set clyo(I1) U yo([r1,r2]). Then there exist numbers
g1 > 0 and 61 > 0 such that for an arbitrary (t,0u) € (0,e1) X S, we have
to+edp € A, and the solution y(t; po +edu) defined on [ry —d1,m2+01) C I
corresponds to this element. Moreover,

gO(t) S Kl, te .[1; y(t;,uo + 8(5/1,) S Kl, te [7‘1 — 5177'2 + (51];

li . — .
lim y(#; o + £6p1) = y(; o),
uniformly in (t,0p) € [r1 — 01,72 + 1] X Se.

The solution y(¢; uo) on the interval [ry — 01,72 + 61] is a continuation
of the solution yo(t). Therefore, in what follows, we can assume that the
solution yo(t) is defined on the whole interval [r1 — d1, 72 + 01].

Let us define the increment of the solution yo(t) = y(t; o) :

Ay(t) = Ay(t;edp) = y(t; po + £0p) — yo(t),
V(t,e,0p) € [r1 — d1,r2 + 01] x (0,€1) X .
Obviously,
ILm Ay(t;edp) =0, (2.5)
uniformly in (¢,0p) € [r1 — 01,72 + 1] X So.

Lemma 2.2. Let vo(too) < r2 and let the conditions of Theorem 2.1 be
fulfilled. Then there exists a number o € (0,e1) such that for any (¢,6u) €
(0,e2) x S5 the inequality

max  |Ay(t)| < O(edp) (2.6)

t€(too,r2+01]

is valid. Moreover,

Ay(toy) = 5{5350 — [Altoo)vo (o (tao)) + fo_]éto} + o(ebp). (2.7)
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Proof. Let €5 € (0,e1) be so small that for any (¢,d0u) € (0,e2) x S, the
following relations are fulfilled:

T(t) = T()(t) + €5T(t> < tg:=toyg + edty, VtE [to,too]. (28)

The function Ay(t) on the interval [tog, 72 + 01] satisfies the equation

3
Ay(t) = A(t)h(too, e6v, Ay) (o () + Y Wilt; dp),

i=1
where

Wi (t;eop) = A(t) [h(tm v, 90 + Ay)(a(t)) — h(too, v, 50 + Ay)(U(t))},
Wa(t;edu) = folto, 7,0, y0 + Ay)(t) — foltoo; 7o, o, yo)(t),

WB(t; 56”) = E(Sf(t(% T, ¥ Y0 + Ay)(t)a
vi=vg +edv, @ :i= o+ edp.

We now consider the linear nonhomogeneous neutral equation

3
5(t) = Ao (0) + 3 Wilt: edp) (2.9)

i=1
with the initial condition
2(t) = edv(t), t€[7,to), =z(to) = Ay(to).

Due to the uniqueness it is easily seen that z(t) = Ay(t), t € [too, r2 + 91]-
According to Theorem 1.7, the solution of the equation (2.9) can be written
in the form

Ay(t) = Ay(too) + ¢ / Y (1(€); 1) A(w(€))(€)F0(€) dE+

a(too)
3
+3° [ YiEowile o de
=1
where Y (§;t) has the form (1.11). Hence
3

|Ay(#)] < [Ay(too)| + el Y] [ Alla[v(too) — too] + Y[ Wiledu), (2.10)

i=1
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where
ro+ds t
Wi(edp) = / |Wi(t;edp)|dt, W2(t;t00755ﬂ):/|W2(§;€5M)|df,
too tDO

ro+d2
Walesu) = [ Waltieomlde, A =sup {|A()] s t< 1},
too

Y]] = sup {|Y(§§t)| t (€,1) € [too, 2 + 61] X [too, T2 + 51]}-
Let us prove equality (2.7). We have

Ay(too) = y(too; to + €6p) — xoo =
too

— 200 + £820 + / AWD)[o(o (1)) + 0(0(8))] di+

to
too

+/f0(t,y(t§uo+65u),g0(7'(t)))dt+

e / 51 (t,y(t: o + £81), o(7(8))) dt — 00 =
= 5[51’0 — A(too)vo(a'(too))(sto] + 0(65/1,)+
4 / Jolt,uo(t) + Ay(t), o(r(t))) di+
k too

+eYon [ 8t + Ay, oG ®) . 211

=1
It is clear that if t € [tg, too], then
lim (¢, y0(t) + Ay(t), ¢(t)) = 2o
e—0

(see (2.5)). Consequently,

lim sup
€20 ¢ty too]

folt0(8) + Ay(), 9(7(1)) — fi | = 0.
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This relation implies that

too

[ foltwo(®) + By(e), plr(e)) di =

! too
— ety to+ [ foltsan(®) + By(t),plr(e)) - fi ) dt =

to
= —efy dto + o(edp). (2.12)
Further, we have

too too

Il [ (65t on(e) + a0, o)) dt < o [msge ®de. (213)

From (2.11), by virtue of (2.12) and (2.13), we obtain (2.7).
Now, let us prove inequality (2.6). To this end, we have to estimate the
expressions Wy (edu), Wa(t; too, edp) and Wz(edp). We have

v(too)
Wi (ebu) < || A L/)‘Q(U(U;Mo—Feéu)-‘UOQTU))“€5U(U(U) d.

v(to)

Using the step method, we can prove the boundedness of |y (¢; o +edp)||,t €
[r1 — 01,72 + 61] uniformly in dp € Q5 i.e. there exist M > 0 such that

‘y(a(t); o+ 261) — vo (0 (t)) — 2dv(a(t))] < M,
t € [v(to),v(teo)], Vou € .

Moreover,
too
v(too) — v(to) = /ﬂ(t) dt = O(gdp).
to
Thus,
Wi(edu) = O(edp). (2.14)

Let us estimate Wa(t; tog, £6). It is clear that

to

To(to) — (to) = / $0(€) de = / $0(€)dé > 0

7o (v (to)) to—edT(v(to))
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and vy(tg) > too (see (2.8)). For t € [tog,7(t0)], we have 7(t) < to and
To(t) < too, therefore we get

Wl too, £0p0) < / Ly 16, (€)[|A5(€)] + 19 (7(€)) — ol (€)]] de <

7()

S/Lfo K (€ )der‘ / |oo(s)| ds| + O(edp) =
70(§)

::/mexa y(€) dé + O(ep). (2.15)

For ¢ € [y(t0), Y0(too)], we have

t
Wa(t; oo, €6p) = Wa(7y(to); too, 0pt) + / Wa(&;e0p) d§ <

~(to)
~o(too)
<Ot + [ Walgiedn)de < O(edp) + 2, olton) — 1 (t0).
~(to)
Next,
too too
o) = 1tta) = [ 50l de = / S0(6) de =
T0(v(t0)) 7o (7 (t0))+ed7(v(to))—edT(v(t0))
too
- / $0(€) d€ = O(edp,)
to—ed7(v(to))
Consequently,

Wg(t;too,E(S/J) = O(E(S,u), te [’y(to),’}/()(too)]. (2.16)

For t € (’Yo(too),Tl + 51], we have

Wa(t; to, e61) = Wa(v0(too); to, o) + / Wa(&;edu) d€ <
Yo (too)
v(too)

§0(65u)+’ / Wz(ﬁ;eéu)d€'+

Yo(too)
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t
/ O Lo 12 ()| Ay (r |d£’

+ /‘yo yo(To(ﬁ))’di‘S
v(too) 7(too)
O(edp) + 2mx, [v0(too) — v(too)|+
t ri+d T(€)
# [ XL @ ©N8w@N e+ [ | [ linte)las] e =
too too  710(§)

= O(e0p) + 2mus, | [y(too) = 7(to)]| + [ (too) = 0(too)| | +

t

+ [ X)L A BY(O) | de

too
where x(&) is the characteristic function of I. Next,

o) = () = [ 4(6) ¢ < - tan o) = O(eB10)

to

and
70(v(too))
|7(to0) — 70(too)| = ‘ / Yo(t) dt‘ =
too
7(7(t00))—6(v(t00))
. ‘ [ a0 dt\ — O(etp).
too

Thus,

Wa(t; to, €0 p) :O(E(SM)+/X(’Y(g))LfoJﬁ(7(5));7(5)|Ay(£)‘dg' (2.17)

too

Finally, we note that
Wg(t;aé,u) = O(E(S,u), te [too,?"g + (51] (2.18)

(see (2.12)).
According to (2.7), (2.14)—-(2.18), inequality (2.10) directly implies that

|Ay(t)] < Oebu) + / Lo 1er (6) + X(1E) Lo 1 (1()3(6)] Au(e)] d
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By virtue of Grounwall’s lemma, we obtain

|Ay(t)] <

t t

< O(eon)exp { [ @de+ [xGE@L0x0@5E dg} <

t()() tOD

< exp {2/Lf0,K1(f) df}-
T

The following assertion can be proved by analogy with Lemma 2.2. (I

Lemma 2.3. Let vo(too) < 12 and let the conditions of Theorem 2.2 be
fulfilled. Then there exists the number eq € (0,21) such that for any (t,6u) €
(0,29) x ST the inequality

max  |Ay(1)] < O(=in)
te(to,r2+61]

is valid. Moreover,
Ay(too) = E{(Sl‘o — [A(too)’l)o(O’(too)) + fg_] 5t0} + O(€(5u).
Proof of Theorem 2.1. Let r; = tgg and ro = t19 in Lemma 2.1. Then

_Jwol(t), telT too),
mo(t) = {yo(t)» t € [too, t10],

and for arbitrary (g,0u) € (0,e1) x S5

o(t) = po(t) +edp(t), te[T,to),

x(t; po +edp) =
(tipo #) {y(t;uo+€5u)’ t € [to,t10 + 01]

(see Remark 1.1). We note that du € S5, i.e. to < too, therefore

edp(t), t €T, to),

Az(t) = S y(t; po +€dp) — @o(t), t € [to,too),
Ay(t), t € [too, t10 + 01
edv(t), t €T, to),

Ax(t) = §(t; po + edp) — vo(t), t € [to, too),
Ay(t), t € [too, t1o + d1].

By Lemma 2.2, we have
\Ax(t)| < O(E(SM), V(t,e,éu) S [too,tlo + 51] X (0761) X %2_, (2.19)
Az(too) = 5{5x0 — [A(too)vo(o(too)) + f(;]éto} Vo(sdp).  (2:20)
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The function Axz(t) satisfies the equation
Az(t) = At)Az(o(t)+
+ fou[t]Az(t) + foy[t]Ax(mo(t)) + €0 f[t] + Ralt] + Ro[t], (2.21)
where
Ra[t] = fo(t,zo(t) + Ax(t), zo(7(1))) + Ax(r(t))—
— Jolt] = fou, [t]Az(E) = fox, [t] Az (7o (1)),
Ralt) = 2 [ (1 w0 (t) + Ax(t), wo(r(t)) + Aa(r(1)) ) — 3£1]].

By using the Cauchy formula, one can represent the solution of the equation
(2.21) in the form

Ax(t) = U(too; t) Az(too)+

t

2
+5/Y(f;t)5f[f] dé + Z Ri[t;too], t € [too, t10 +01],  (2.22)

too i=—1
where
Roaftitoo] = [ Y0(©:0A((€)iAe) B de
a(too)
Ro[t;too] = / Y (70(€); 1) fows [10(€)]70(§) Az (€) d8,
To(too)

t

Rift: too] = / Y(EORIE dE, i = 1,2,
too

By Theorem 1.13, we get
®(too; t) Ax(too) =
= e®(too; t){5$0 — [A(too)vo(o(too)) + f()_]5to} + o(t; op) (2.23)

(see (2.20)).
Now, let us transform R_;[t;too]. We have

Royltstoo] = ¢ / Y ((€): ) AW (€))iA€)Su(€) de+

a(too)

+ / Y (u(€); 1) A(€)(€) Ax(€) de =
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too

o / Y (1(€); ) A(w(€))i(€)50(€) dE + o{t; o) +
o(too)

too

" / Y (1(€): 1) A())i(€) x

to

x [A4(©) (v(0(€)) + £0v(0(€))) + folto, 7.2, 50 + Ay)(E)+
28 f(to, 7, 0,0 + Ay)(E) — vo(€)] dt =

+e / Y (v(8); 1) A(w(£))2(§)0v(§) d§ — Y (v(too) =3 1) A(v(ton)) X
a(too)
x U(too) [A(too)vo(o(too)) + fo — volteo)]6to + o(t;edp) =

o / Y (v DIA€)50(€) dé + £[¥ (too—: ) — B(too: £)] x
o(too)

X [Uo(too) A(too)vo((f(t()o)) — f(j]éto + 0(5(5/1) (224)

(see (1.7)).
For Ry[t;too], we have

Rolt: too] = / Y (30(6): £) fous 110 () 50(€)00(€) de+

7o(too)

too

+ / Y (10(E):£) fors 10 (€)Fo(€) A (€) dé =

to

too

—c / Y (0(E): 1) fors 010 (E)8i0(€) d€ + olt: 1)+

7o (too)

too

+ / Y (0(6): £)fosa 10 () Ho(€) Aa(€) de. (2.25)

to

Let a number d; € (0,01) be so small that vo(too) < t10 — d2. Since
Yo (too) > 7(to), therefore for t € [t19 — d2,t10 + J2], we have

1[t; too] = Z ot
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where
~(to) Yo (too)
al = [ rlgtde asll= [ rignae,
too v(to)

t

aslt] = / rlEtde, it = Y(E DR
~Yo(too)

Introducing the notation,

folé;s] =
= fo(& z0(&)+sAx(€), mo(10(§)) +5(20(T(€)) —z0(T0(£))+A2(7(£)))),
9[5, S] = f0m1[£;8] - fOzl[g]a P[f%s} = fOzQ[é—; S] - fOxg [5]7

Then we have

1

&W—/iﬁw}
— [{Foas[655180(€) + fons 5] (0 (€) ~20(m() + A(r(€))) } -
0
- f 11[5]A$(£) — [ :62 Afﬂ T 0 dS A.’t
0 0 O |:0/ :|

n [ [ s ds] (20(7(€)) — zo(ro(€)) + Aa(r(€))+
0

+ fous [€1{ [20(7(6)) = 20(r0(€))] + [Aa(7(&)) — Aa(ro(€))] }-

Taking into account the latter relation, we have

[t] = Zau[tL

where
~(to) 1
o t] = / Y (& D)0 A(E) de, 0r]¢ / ole
too 0
~(to)

anlt] = [ Y(&0m1E[2o(r(€) ~ 2a(r(©) + Aa(r()] de

too

47
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e = / plé; s] ds,

v (%o)

anlt] = [ V{60l [Bo(r(6) - Au(ro(e))] e,
’)('tho)
analt] = / Y (€:1) fon [€] [0 (7(€)) — 20(ro(€))] d.
Further, :
Yo(to) — y(to) = / Fo(§) d€ = / Fo(§) d§ > 0.
70 (v(to)) to—edT(v(to))

Therefore. for & € (too,¥(to)), we have 7(€) < to, 70(§) < to. Thus,
20(7(£)) — zo(10(€)) = o(7(£)) = ¢o(10(E))

and
Az(7(€)) — Ax(10(€)) = e[dp(7(£)) — (70 (€))]-
The function ¢o(t),t € I is absolutely continuous, therefore for each fixed
Lebesgue point 19(§) € I we get
7(8)
eo(7(£)) — wo(70(8)) = / Po(s) ds = eo(10(£))07(8) +v(&;€6p), (2.26)
70(§)

i Y (&5 €01)

e—0 S
Thus, (2.26) is valid for almost all points of the interval (tgg,¥(to)). From
(2.26), taking into account the boundedness of the function ¢g(t), we have

where

= 0 uniformly for dp € 35 . (2.27)

[o(r(€)) ~ po(rol€))] < Oty and | TS| < const. (29

According to (2.19) and (2.26)—(2.28). for the expressions ay;[t], i =1,...,4,
we have

o [t]] < IVI0(e0m)a(ebp), lonslt]] < [V [O(e0m)pa(ebn),

pe
lasft]| < o(edp), onalt] = 5/Y(§;t)f0x2 [€]po(10(€))07 () dE,

too

where

b1
Os(edp) = // fozy (& 20(€) + sAz(E), o(T0(€)))+
0

too
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+5(ip0((€)) = #0(m0(6)) = 28(70(€))) = fous (€ 20(E), w0 (ro(©))) | ds

P2(€5ﬂ)—/b/1

too O

Jows (& 20(€) + sAz(E), o(70(8))) +

+ 5(0(7()) = w0l () = Bip(70(€))) -
— foas (€ 70(8), p0(70(€))) | ds de,

t

Y1(t;ep) = /Y(ﬁ;t)fo;cz[ﬁh(f;ew) d€.

too
Obviously,
(t: 260 Yo (too) (& o)
ZEZ <y [ ol [T e
too

By the Lebesgue theorem on the passage under the integral sign, we have

i 0t = fg o) = 2522 <o
uniformly for (¢,du) € [too, Yo(too)] X S5 (see (2.26)).
Thus,
aqi[t] = o(edp), i=1,2,3; (2.29)
7(to)
arlt) =¢ [ Y(&0) forsn(no(€)d(€) d + ofticon).
too
It is clear that
Yo (too)
o [ V(@0 nl0(m(€)57(9) de = olt et
7 (to)
i.e.
Yo (too)
aull=c [ V(&0 forlElinlr(©)5r(€) de +oltizon).  (230)
too

On the basis of (2.28) and (2.29), we obtain

Yo(too)

oalt] = ¢ / Y (€:1) fors [€]60(r0()7(€) dE + olt;ebp).  (2.31)

too
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Let us now transform as[t]. We have

where

Oégl[t] =

agg[t]

agg[t]

3
= Zazi(t;55u)7
~Yo(too)
Y (&) [fo (g, x0(&) + Ax(§), zo(7(8)) + Al‘@'(f))) — folé] ] dg,
v(to)
Yo (too)
—— [ Y(&nhmgac©d,
v(to)
Yo(too)
—— [ V(€D sl Balro(e)) e

(o)

If € € (7(f0),70(too)), then

|Az(§)] < O(edp),

2o(7(€)) + Ax(r(§)) = y(7(§); £0p) = yo(7(€)) + Ay(7(£); 2dp),

(€
z0(70(§)) = wo(70(£)),

therefore,

ie.

lim

ag[t] = o(t;edp),
lim (& 20(¢) + Ax (), 2o(7(©) + Aa(r(€))) =
= lim (& 20(8),y0(70())) = 210,

5—>’Yo(t00)—

lim (& xo(€),z0(r0(€)) = lm (& x0(§),00(0(€))) = 220,

&—70(too)—

sup | fo(& wo(€) + Aa(€),wo(r(€)) + Aa(r(€))) -

€0 ¢e[v(to) 0 (t00))

— fo(&:70(€), w0(0(©)))] = for-

It is clear that

too

7o(ton) — 7(te) = / 50(6) dé =
To(v(to))

too tOO

50(€) de = / 50(€) de = O(ebp) > 0

T(v(to))—ed7(v(t0)) to—edT(y(to))
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It is not difficult to see that
~o(too)
ao[t] = / Y (&) fo1 dE + o(t;edp) =

v(to)

too

= [ YO0l Sarin(€) de +ofticon) =

7o (v(to))

too
= / Y (70(8)s ) for190 (&) d€ + oft; edp) =
too—e(67 (70 (t0o0))—dto)+o(edp)
= Y (7(too)—; 1) fo170(too) (7 (Y0 (too)) — Sto) + o(t; edp).
For & € [y(to),v0(too)], we have Ax(79(&)) = edp(10(€)), therefore

~o(to)
asll === [ V(&0 fonlebolnl) de-
~(to)
~o(too)
- / Y (€1) fom [€] Ao (£)) dE =
~Yo(to)
_ / Y (10(6): £)fowa 10 (€)H0(€) A (€) de + oft: 1),
Consequently,
as[t] = €Y (v0(too)—; t) fo170 (too) (67 (0 (t0o)) — 0to) =
= [ Y003 ) fors b @0 2a() de + ofticon). (232

Transforming the expression aslt] for t € [t19 — d2,t10 + 2], we have

4
asft] = Z asilt],

where
t

anlt] = / Y (€ 6)61 [ Ax(€)de,

~Yo(too)
t

aslt] = [ Y& OmlE][zo(r(©)) ~ mo(r(©) + Ax(r(e)] e,

Yo(too)
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asslt] = / Y (€:1) fou [€] [ Aa(r(€)) — Ax(ro(€))] de,

Yo(too)
t

asall) = [ V(&S l8an(r(©)) — zo(r(©)] de.
Yo (too)
For each Lebesgue point 79(&) of the function & (t),¢ € [too, t10 + 02], we get
7(£)
20(7(§)) — 2o(70(£)) = / o (£) d§ = eio(10(£))07(€) +7(&;€0p), (2.33)
70(£)

where
iy 1(&5€0K)
e—0 £
From (2.32), taking into account the boundedness of the function zg(t), we
have

= 0 uniformly for du € Q3. (2.34)

|20(7(€)) — z0(r0(€))| < O(ebp1) and \@\ <const.  (2.35)
Further,
T(€)
[An(r(©) = Ax(r(©)] < [ AGa(s)]ds <
T0(§)
T(§)
< [ 146 |Aslo(s)]ds <
T0(&)
T(§)
< / Lot (5) (182(5)| + [o(r(5) = wo(ro(s))] + [Aa(r(s))]) ds <
T0(&)
7(&)
< 1Al [ As(o(s)|ds -+ ofé; <t
7(§)

If [o(m0(£)), o(T(£))] C [to, ¥(to)], then
Ax(o(s)) = edv(o(s)).
Thus, in this case we have
|Aa(7(€)) — Ax(ro(€))] = ol&; =0p).
It [o(r0(€)), o(7(€))] € [v(to), v{tn)), then
|Aa(o(5))] = [io(s); o + 201) — vo(a(s))|
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and
|Az(7(€)) — Ax(19(€))] = O(& ebp).
It is clear that if £ € [vo(v(t0)), v(¥(too))], then

[0(70(€)), a(7(€))] C [v(to), v(too)]

with
gig% [Yo(¥(to)) — v(¥(too))] = 0,
therefore
¥(v(too))
Y (§:1) foy [Ax(7(€)) — Ax(ro)(€)] d§ = o(edp).
Yo (v(t0))

Continuing this process analogously for az3[t], we get
asslt] = o(t;edu).
According to (2.32) and (2.34), for the above expressions we have

lasi[f]] < [V 10(e61)8s(e0m),  |asalt]] < 1Y O(e511)pa(edp),

aalt] =Taltiedn) += [ V(6D on[€lin(ra(€)67() de
Yo (too)
where
t10402
O3(edp) =

Yo (too)

wal (57 -'L'O(f) + SALU(&)? x0(70(§>))+

+5(20(r(€)) — 20(0(€)) + Aa(r(€)) ) -
= foun (€ 20(€) 20(9)) | e,

t10+02
p3(edp) =

Yo (too)

Joua (& 20(€) + sA(€), w0(70(€))) +

+ 5 (20(7(€)) — wo(r0(©)) + Aa(r(€)) ) -
= foua (&:20(6), 20(8)) |

t10+02
5t 2op) = / Y (€:1) foma [€17(6: 25) de.

Yo (too)
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Obviously,
3t <o) e 3(E: cm)
t;e ;€
[ 22 <y / [ FouslE] | F2 e
~o(too

By the Lebesgue theorem on the passage under the integral sign, we have

lim 03(e0p) = lim pesy = 0

and
lim ’M‘ -0
e—0 £
uniformly for (¢,8u) € [vo(too),t10 + d2] (see (2.33)).
Thus,
%) [t] = O(t; 55#)3 L= ]-7 23
t
calt] ¢ [ Y(&t)fon io(rol€)3(€) d + ofti ).
Yo (too)
Consequently,

aslf] = ¢ / Y€1) fom [€li0 (70 (€))07(€) dé + o(t:e0p).  (2.36)

~Yo(too)

On the basis of (2.31), (2.32) and (2.36),

Yo (too)

Raftitoo] =2 [ Y(EOfons[6100(ro(€))67(6) de+
+ Y (70(too)—; t) fo1 70 (t00) (67 (70 (o)) — dto) —
- / Y (0(E):£) fors 0 (€)1 0 (€) A (€) dE X

x e / Y (€:1) fora [€)i0 (r0(€))57(€) d + o(t:01).  (2.37)

Yo (too)

Finally, let us estimate Rs[t;too]. We have

k
| Ra[t; tool| < eal[Y[| D Bi(edp),

i=1
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where
Bi(edp) =
t10+02
= [ Losri(©[182(©)] + faolr(©) - ara©)] + |Aa(r©)] ] de.
It is cleoaor that
Biedp) <
y(to)
< [ Logoa(©][OC0) + ol (€) — ool ©)] + elilr(©)] ] de+
’Yoo(ioo)
b [ L O[O0 + an(r(€) — aolml€)] + | Ba(r(©))]] de+
v(to)
ti0+02
b [ Lo (©[0C0) + [s0(r(9) — mu(r(€)] + O(etno)] e
Yo(too)
Obviously,
lim §(edy) = 0.
Thus,
Ralt; too] = o(t;edp) (2.38)
From (2.22), by virtue of (2.23)—(2.25), (2.37) and (2.38), we obtain (2.1),
where dz(t; ) has the form (2.2). O

2.2. Proof of Theorem 2.2. Let vy = tgp and ro = t19 in Lemma 2.3.

Then
{%w,mﬁmm
yo(t), t € [too, t10],
and for arbitrary (g,0u) € (0,e1) X &

@(t) = po(t) +edp(t), te [T, to),

x(t; po +edp) =
( ’ ) {y(t§MO + 5(5//6)7 te [to,tlo + 51].

We note that du € %;, i.e. tg > tgg, therefore

E(S(p(t), te [7/:, too),

Az(t) =  @(t) —zo(t), t € [toosto),
Ay(t), te [to,tlo + 51],
sév(t), te [7/'\, too),

Az(t) = { vo(t) + edu(t) — do(t), t € [too,to),
Ay(t), t € [to,t10 + d1].
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By Lemma 2.3, we have
|Az(t)] < O(edp), V(t,e,0p) € [to, tro + 61] x (0,e1) x ST, (2.39)
Az(to) = {—:{&EO — [A(too)vo (o (too)) + f0+]5t0} + o(=6p). (2.40)
The function Az(t) satisfies the equation (2.21) on the interval [tg, t10+1;]
therefore, by using the Cauchy formula, we can represent it in the form

t

Az(t) = U(to; t) Ax(to) +€/Y(€;t)5f[€] dé+ ) Riltito],  (2.41)

to i=—1

t e [to,tlo + (51]

Let 5 € (0, d2) be so small that vo(tgo) < t10—J2. The matrix function is
continuous on [tog, Yo (too)] X [t10 — d2, t10 + 2] (see Theorem 1.13), therefore

D (t; 1) Az (o) =
= e (too; ) {60 — [A(too)vo(o(ton)) + fi |0t} + olt:00)  (242)

(see (2.40)).
Let us now transform R_;[t;to]. We have

too

Roltsto] = / Y (1(€); ) A((€))i(€)Fu(€) de-+

a(to)
+ / Y (u(€): 1) A((€)(€) A(€) d =

= [ Y00 040()()60() de +olt b+

o(too)
+ / Y (1(€); ) A(w(£))i(€) x

X [A(ﬁ)(vo(a(ﬁ)) +edv(a(§))) + fo(f,xo(f)ﬂo(m(f)))} d§ =
=€ / Y(l/(f), t)A(V(&))Z/(f)(S’U(f) d§ + E[Y(t00+; t) - (b(too; t)} X
o (too)

X [Uo(too) — A(too)'l}o(a'(t()o)) — f0+:| 5t0 + 0(65/1) (243)



Variation Formulas of Solution and Initial Data Optimization Problems . .. 57

For Rylt; to], we have

too

Rolt:to] = ¢ / Y (40(6): ) foma 1o ()0 (€) 50 €) dé +

To(to)
to

+ / Y (10(6): ) fosa 110 (€) o) A (€) d =

too

too

oy / Y (0(6): ) foms 110 (E)F0(€)50(€) dé + olts 2671) +

70 (too)
+ / Y (0(E): 1) fors o ()0 (€) A (€) de. (2.44)

In a similar way, with inessential changes one can prove
Yo (too)
Raftito] == [ Y€1) onal€lin(m(€)dm(€) dé+
too

+ Y (70(too)—; ) fo1 70 (too) (37 (Yo (ton)) — o) —

- / Y (0(6):£) fors 10 (€) 0 (€) A (€) dE x

x e / Y (€:1) fom [€)i0 (r0(€))57(€) dE + o(t:26)  (2.45)

Yo(too)
and
Ra(t;tg) = o(t;edp). (2.46)
Obviously,
t t
 [Yioorigas == [vignorigas +ottieon).  (2a1)
to too

Bearing in mind (2.42)—(2.47), from (2.41), we obtain (2.1) and the variation
formula.

In the conclusion we note that the Theorems 2.3-2.6 can be proved by
the scheme using in the proof of Theorems 2.1 and 2.2.

3. INiTIAL DATA OPTIMIZATION PROBLEM

3.1. The Necessary conditions of optimality. Let tg1, to2,t1 € (a,b) be
the given numbers with tg; < tge < t1 and let Xg C O, Kg C O, K; C O,
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U C Uy be compact and convex sets. Then
DQZ{TGD: 62>7"(t)>61>0},
®1={peE,: p(t)EKy, tel,}, Py={veEE,: v(t)€K;, tel},
O ={ueQ: ult)el, tel}.
Consider the initial data optimization problem
#(t) = A(t)a(o(t) + f(t, 2(t), z(7(1)), u(t), t € [to, t],
z(t) = p(t), () =v(t), t€[T,to), z(to)= w0,
qi(to,xo,x(tl)) =0, i=1,...,1,
¢ (to,xo,z(tl)) — min,
where
w = (to, T, To, P, v,u) € Wi = [to1,t02) X Da x Xg x &1 X &g X
and z(t) = z(t;w); ¢*(to,xo, ), i = 0,...,l, are the continuously differen-
tiable functions on the set I x O2.

Definition 3.1. The initial data w = (to, 7, 2o, @, v,u) € Wp are said to
be admissible, if the corresponding solution x(t) = x(t; w) is defined on the
interval [7,¢1] and the conditions hold

qi(to,.’bo,x(tl)) = 0, 1= ]., ceey l,
hold.

The set of admissible initial data will be denoted by W7g.

Definition 3.2. The initial data wg = (teo, 70, Zoo, Yo, Vo, uo) € Wip are
said to be optimal, if for any w = (to, 7, o, @, v,u) € Wio we have

°(too, oo, zo(t1)) < ¢°(to, zo, x(t1)),
where zo(t) = z(t;wo), z(t) = z(t; w).

The initial data optimization problem consists in finding optimal initial
data wq.

Theorem 3.1. Let wy € Wig be optimal initial data and too € [to1,t02).
Let the following conditions hold:

(a) Y0(too) < ta;

(b) the functions vo(o(t)) and vo(t) are continuous at the point too; the
function po(t) is absolutely continuous and the function ¢o(t) is
bounded;

(c) for each compact sets K C O and U C Uy there exists a number
mg,u > 0 such that

lfo(2)| <mgu, Vz=(t,z1,12,u) € I x K* x U;
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(d) there exist the limits
lim fo(z) = fi", 2z € [too, toz) x O?,

zZ—r 20

lim [fo(z1) = fo(22)] = foh, 2 € o(too),t1) x O%, i=1,2,

(21,22)—=(210,220)
where
20 = (o0, Zoos po(To(te0))), 210 = (Y0(too), To(Y0(te0)); oo),
220 = (70(t0o), 2o(Y0(t00)), wo(too)),  fo(z) = f(2,uo(t)).

Then there exist a vector m = (mp,...,m) # 0, mo < 0, and a
solution (x(t),¥(t)) of the system

P(t) = x(t) + (v () Al (1)) (1), t € ftoo, 1], (3.1)
X(t) = ¢(t) = 07 t> 1t

such that the conditions listed below hold:
3.1. the condition for x(t) and ¥(t)

x(t1) = ¥(t1) = mQoq,
where
Q=1("...,d"", Qos = Qz(too, w00, 0(t1));
3.2. the condition for the optimal initial moment tyg
TQot, + (¥ (too+) — X (too))vo(too)—
= (too+) (Altoo)vo(a(teo)) + fof ) — ¥ (v0(too+)) foi¥(too) < 0;
3.3. the condition for the optimal initial vector xog
(TQoao + ¥(tao)) w00 > (TQozy + ¥ (t0o)) o, Vo € Xoj
3.4. the condition for the optimal delay function 1o(t)
Yo (too)

wnltoo ) fitoo + [ 900 fonaltlnlmo(®)r®) e+

too
ty

+ / D(t) fous [0 (T0(t))T0(t) dt >
7o (too)

7o (too)

> (0(toot)) fii (0 (foo)) + / () foua )00 (ro(6))7 (1) dit+

too
ty

+ / U (t) fous [HlE0(To(t))7(t) dt, V7 € Doy ={7 € Da: 7(70(to0)) < too};

Yo(too)
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3.5. the condition for the optimal initial function g (t)

Y(70(t)) fows [Y0 () F0(t) o (t) dt >
To(too)
> [ 6O o boOo(0pt) b, Vo € s
70(too)

3.6. the condition for the optimal initial function vy(t)

/ P (1) AW ()i (Yo () di >

o(too)
> / D) A () p(t)o(t) dt, Yo e o;
o(too)

3.7. the condition for the optimal control function ug(t)

/w(t)f()u[t}uo(t) dt > /¢(t)f0u[t]u(t) dt, Yu € Q.
Here

foult] = fu(t,20(t), 2o (10(t)), uo (1)),

Theorem 3.2. Let wy € Wig be optimal initial data and tog € (to1,to2)-
Let the conditions (a), (b), (c) hold. Moreover, there exist the limits

lim fo(z) = fy, 2 € (to1,too] x O,
zZ—r2z0

lim [fo(z1) = fo(22)] = fo1, i € (too,Y0(too)] X O?, i =1,2,

(21,22)—(210,220)
Then there exist a vector m = (mo,...,m) # 0, mo < 0, and a solution
(x(t),¥(t)) of the system (3.1) such that the conditions 3.1, 3.3 and 3.5-3.7
are fulfilled. Moreover,
TQote + (¥ (too—) — X (t0o))vo(too) — ¥ (too—) (A(teo)vo(o(too) + fo ) —
—¥(v0(too—)) fo17(foo) = 0,
Yo (too)
wlnltoo-fiitoo+ [ 00 for loo(r(t)mo(t) der

too
t1

[ O ol 0)rale) de 2

Yo (too)
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~Yo(too)

> Y(v0(too—)) for7(v0(to0)) + / Y(t) fou, [t)Po(10(2))7(t) dt+

+ / w(t)f()zg [t]xo(To(t))T(t) dt, V’TGDQQ:{’TGDQ : ’T(’Y()(too))>t00}.
Yo(too)

Theorem 3.3. Let wy € Wig be optimal initial data and tog € (to1,to2)-
Let the conditions of Theorems 3.1 and 3.2 hold. Moreover,

fo=1="F fa="1f5="Ian
and

too, vo(too) & {U(tl),OQ(tl), )

Then there exist a vector m = (wg,...,m) # 0, 1o < 0, and a solution
(x(t),9¥(t)) of the system (3.1) such that the conditions 3.1, 3.3 and 3.5-3.7
are fulfilled, Moreover,

~

7Qoty + (¥ (too) — x(too))vo(too) — ¥ (too) (A(too)vo(o(too)) + fo)—

~

= (v0(too)) for¥(too) = 0,

Yo (too)

b(v0(too)) fortoo + / Y(t) fou, [tlPo(T0(t))T0(t) dt+

too

+ / () foua [0 (ro (1) o (1) dit >

~o(too)
o (too)
> (0(t00)) For 7 (o foo)) + / () fous [0 (7o) (1) di+

t1
+ / 'I/J(t)foxz [ﬂ.’bo(’l’o(t))’r(t) dt, V7€ Ds.
Yo (too)
3.2. Proof of Theorem 3.1. Denote by G the set of such elements w €

W1+ = [too,tog) X D21 X Xo X (1)1 X (I)Q X Ql to which there COI‘I‘GSpODdS
the solution z(t;w), t € [7,t1]. On the basis of Theorem 3.3, there exist

~

V(wo; dp) such that
‘70(’11)0; (50) = ‘7(100; (50) n W1+ C Go.

On the set ‘701(20;50) =1[0,dp) X ‘70(11)0;50), where zg = (0, wy)), we define
the mapping

P: ‘701(20; 50) — R;;—H (32)
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by the formula

P(2) = Q(to, zo, z(t;w)) + (5,0...,0)" =
= (qo (t1,xo, x(h;w)) +5,¢" (t1,xo, x(ty; w))7 L (thxo,x(tl;w)))T,

z = (s,w).

Lemma 3.1. The mapping P is differentiable at the point zog = (0,wq) and

dP,,(0z) = {QOtO + Qoz [Y (too+;t1) — ¥ (too; t1)]vo(too)—
— QuaY (too+ t1) [Altoo) o o (too)) + fif | -

— QozY (Y0 (too)+; tl)f(ﬁ%(too)}&o + {QOxo + Qo2 ¥ (too; tl)}5$0+

+ QOz{Y(’Yo(too)+; t1) foi 0 (too )07 (o (too)) +

o (too) too
+/YwhmmM%ﬁ®ﬁﬂﬂﬁ+/YmhMmM%ﬁﬁﬁﬂﬂﬁ}%

too Yo(too)

too

+Qm{/’n%mmmmmmmmwwﬁ+

7o (too)

too

+ / Y(z/(t);t1)f012[1/(t)]1)0(t)5v(t)dt}+

a0(too)

+Q0x/Y(t;t1)f0u[t]5u(t) dt + (ds,0,...,0). (3.3)

too

Proof. Obviously, for arbitrary (z,6z) € (0,80) X [Vo1(20;60) — 2o], we have
20 +€dz € ‘701(20; 00)-
Now we transform the difference

P(zp +edz) — P(z9) =

= Q(too +ebto, woo + €0z, 2(t1; wo + 5571))) — Qo +¢(8s,0,...,0)7.
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It is easy to see that

Q(too + dtoo, Too + 0o, x(t1; wo + dw)) — Qo

& Q(to+5§6t0, o0 +££070, o (1) +& (2(tr; w0+55w)—x0(t1))> de =

I
O\H
Sl

—c [Q%ato + Qouy 70 + Qoo (ty; 6w)} + aledw),

where

1 1

aedw) = E/ [Q1,(£5€) — Qo | Sto dE + E/ [Quo(8;€) — Qoao | 0o dE+

0 0
1

te [ [Qulest) — Qoslda(ti; 6w) d + ofebw) | Qos(e;€) dE,
/i /

Qto( &, é‘) -
= Q4 (too + e€btg, xoo + €€dxg, xo(t1) + €($(t1; wp + edw) — Jio(tl))) .
Clearly, a(edw) = o(edw). Thus
P(z0+¢€dz) — P(2) =
— [ Quia6to + Qury 60 + Qoad(t; dw) + (35,0,...,0)T| + of=8w).
On the basis of Theorem 2.5, we have (3.3).

The set Vo1(z0;00) is convex and the mapping (3.2) is continuous and
differentiable. In a standard way we can prove the criticality of point zq
with respect to the mapping (3.2), i.e. P(z9) € 9P (Vp1(20;d0)) [10, 15].
These conditions guarantee fulfilment of the necessary condition of critical-

ity [10,15]. Thus, there exists the vector m = (o, ..., ) # 0 such that the
inequality

mdP,,(dz) <0, dz € Cone (‘701(20; 80) — 20), (3.4)

is valid, where dP,,(dz) has the form (3.3).
Let us introduce the functions

X(t) =7mQoz Y (t;t1), ¥(t) = 7QosY (t;t1). (3.5)

It is clear that the functions x(¢) and ¥ (¢) satisfy the system (3.1) and the
conditions

X(t1) = Y(t1) = 1Qox, X(t1) =(t1) =0, t>t;. (3.6)
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Taking into consideration (3.3))—(3.5) and (3.6), from (3.4) we have

{ﬂ'QOto + [¢(too+) — x(too)]vo(too)—

— ¢(too+) [A(too)voo (o (too)) + fo | — ¢(70(t00+))f(ﬁ70(t00)}5t0+
+ {7Qoa, + X(too) }6z0 + 1 (70 (tao)+) fei %0 (t00) 07 (Y0 (o)) +

Yo(too) too

+/¢(t)f0m[t]' (7(t))or(t) dt+/¢(t)f0m[t]iﬂo(T(t))fST(t) di+
Yo(too)

/ $00(8) fara OO8R(0) dt + [ 0000 fara OO0 (0) do+

o(too) a(too)

+ /Q/J(t)fOU[t](Su(t) dt + mpds, Vdz € Cone (‘701(20; do) — Zo). (3.7)

too

The condition 6z € Cone(Vo1(z0;80) — 20) is equivalent to ds € [0, 00),
Oty € [0,00),

dxg € Cone B 3200,(50 NXo— .’1300) D Xo — X0,

67 € Cone (V (79 : 60) N D2y — 79) D Da1 — To,

(
(V(
dp € Cone <V1(<Po,5o )N @1 — ) D Py — ¢,
ov € Cone (Vg(vo do) N Py — vo) D ®y — vy,

ou € Cone (Vg(u0,5 )Ny — uo) D 01 — up.

Let 0ty = 0,67 = 0,0x9 = 0,09 = dv = 0,0u = 0, then from (3.7) we
have wds < 0, Vds € [0, 00), thus my < 0.
Let 6s = 0,67 = 0,dz9 = 0,dp = dv = 0, Ju = 0, then we have

{WQOtO + [1(too+) =X (t00)] vo(too) =¥ (too+) [A(too)voo (o (too)) + fo ] —

- 1/J(70(t00+))f$%(too)}5to <0, Yty € [0,00).

From this we obtain the condition for tqg.

If s =0, 6tg = 0, 7 = 0, dp = dv = 0, du = 0, then we obtain the
condition for xgg. Let ds =0, dtg =0, dzg =0, dp = dv = 0, du = 0, then
we have the condition for the optimal delay function 7o(t) (see 3.4). Let
0s =0, 0tg =0, =0, dzg =0, dv =0, ju = 0, then from (3.7) follows the
condition for the initial function o(t). If §s = 0, §tg =0, 67 = 0, dzg = 0,
0 =0, du = 0, then we obtain the condition for vy(¢). Finally, we consider
the case, where ds = 0, dtg = 0, 67 = 0, dxg = 0, dp = 0, v = 0, then
we have the condition for the optimal control ug(¢). Theorem 3.1 is proved
completely. O
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In the conclusion we note that the Theorems 3.2 and 3.3 are proved
analogously by using the corresponding variation formulas.

4. THE EXISTENCE THEOREM OF OPTIMAL INITIAL DATA

4.1. Formulation of the main result. Let ¢g1, tp2,t1 € (a,b) be the given
numbers with ty; < tg2 < t1 and let Xy C O, Ky C O, U C Uy be compact

sets. Then @ is the set of measurable initial functions ¢(t) € Ky, t € Iy,
D={ueQ: ul)el, tel}.
Consider the initial data optimization problem

(t) = A()a(o(t) + f(t, (), 2(r(t)), u(t)), t € [to,t],
z(t) = o(t), (t) = v(t)v t€[r,to), x(to) = o,
¢ (to, w0, 2(t1)) =0, i=1,...,1,
J(w) = (to,ato, (t1)) — min,
where
w = (to, T, To, P, v,u) € Wa = [to1,to2] X Da X X X P12 X Pg X Q9
and z(t) = z(t; w). The set of admissible elements we denote by Wag.

Theorem 4.1. There exists an optimal element wq if the following condi-
tions hold:

4.1. W20 7é @,’
4.2. there exists a compact set Ko C O such that for an arbitrary w €
Wao,
x(t;w) € Ko, t € [T, 1];
4.3. the sets
P(t7x1) = {f(t7$17x27u) : (I27u) € KO X U}a (tvxl) €Ix0
and
Pi(t,xy,29) = {f(t,xl,xg,u) T u € U}, (t,z1,29) € I X 0?
are convex.

Remark 4.1. Let Ky and U be convex sets, and
[t 1, 22,u) = B(t,z1)z2 + C(t, 21)u.
Then the condition 4.3 of Theorem 4.1 holds.

4.2. Auxiliary assertions. To each element w = (to, 7, o, p,v,u) € Wh
we correspond the functional differential equation

q(t) = A(t)h(to, v, 4)(o(t) + f (£ a(t), h(to, 0. q)(7(1)), () (4.1)
with the initial condition
q(to) = wo. (4.2)
Let K; C O, @ = 3,4 be compact sets and let K4 contain a certain neigh-
borhood of the set K3.
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Theorem 4.2. Let g;(t) € K3,i = 1,2,..., be a solution corresponding to
the element w; = (to;, Ti, Toi, Pi, Vi, wi) € Wo, i = 1,2,..., defined on the
interval [to;,t1]. Moreover,

hm tOi = too, hm ||7—7, — ’7'0”[2 = 0, hm Toi = Zo0- (43)
i—00 i—00 i—00

Then there exist numbers § > 0 and M > 0 such that for a sufficiently large
ig the solution ;(t), i > ig, corresponding to the element w;, © > ig, s
defined on the interval [too — d,t1] C I. Moreover,

Uilt) € Ka, [dhi(t)] < M, t € [too — 6, 11]
and

Yi(t) = qi(t), t € [toi,t1] C [too — 6, t1].

Proof. Let € > 0 be so small that a closed e-neighborhood of the set K3 :
Ki(e) ={r € O: 37 € K3, |x —Z| < €} is contained int K4. There
exist a compact set Q C R™ x R™ and a continuously differentiable function
X : R x R™ — [0, 1] such that

X(x1,22) = {17 (z1,72) € @, (4.4)
0, (z1,22) ¢ K4 X [KoU Ky]

and

Ks(e) x [KoUK3(e)] € Q C Ky x [KoU Ky.
For each ¢ = 1,2, ..., the differential equation

h(t) = A(t)h(tos, vi, ) (0 () + G (8, (1), hltoi, i, ) (7:(t)), wi(1)),
where
o(t, 1, x2,u) = x(z1, 22) f(E, 21, T2, 1),
with the initial condition
Y(toi) = oi,
has the solution v;(¢) defined on the interval I (see Theorem 1.15). Since
(qi(t), h(toi, i, a:)(13(1))) € K3 x [Kog U K3] C Q,t € [to;, t1],

therefore

x(¢i (), h(toi, i i) (T:(t)) =1, t € [toi, ta),
(see (4.6)), i.e.

o (t, qi(t), h(tos, pi, ¢i) (i (1)), ui(t)) =
= f(t,qi(t), h(toi, pi, @) (Ti(t)), wi(t)), t € [tos, t1].
By the uniqueness,
P (t) = qi(t), t € [toi,t1]- (4.5)
There exists a number M > 0 such that

i) <M, tel, i=1,2,.... (4.6)
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Indeed, first of all we note that

62, 0ilt), hltor, i ) (1), wa(0) | <
< sup {|@(t, z1,22,u)| : t €1, 21 € Ky, 33 € K4 UKy, UEU} = Ny,
i=1,2,....

It is not difficult to see that if ¢ € [a,v(to;)), then

|[vbi(t)] = ‘A(t)vi(ai(t)) + ¢(t7¢z‘(t)ah(tou<Pi,1/1i)(7'z‘(t)),ui(t))‘ <
< ||A[[N2 + N1 = M;y,
where
Ny =sup{|z|: z € K1 }.
Let t € [o(to;), 02(to;)), then
()] < Al [¢a(o(®)] + N1 < [[A| My + Ny = M.

Continuing this process, we obtain (4.6). Further, there exists a number
09 > 0 such that for an arbitrary ¢ = 1,2,..., [to; — do,t1] C I, and the
following conditions hold:

toi

[itto) = 0500 < [ [|AGICtorvi i) o (o)) +

t

+ ‘¢(87¢i(5),h(f0¢7%,%)(Ti(f))aui(s)) H ds <€, t € [toi — do, toi];
This inequality, with regard for ¥;(to;) € K3 (see (4.5)), yields

(i(t), h(tos, i, 1i) (1:(t))) € Ks(e) x [Ko U K3(e)], t € [to; — o, 1],
i.e.

X(wl(t)a h(tOia ¢l7wl)(Tl(t))) = 17 te [tOl - 607t1]a 1= 1a 27 ety
Thus, 1;(t) satisfies the equation (4.1) and the conditions ;(to;) = o,
P;i(t) € Ky, t € [to; — do,t1], 1.e. ;(¢) is the solution corresponding to the
element w; and defined on the interval [to; — dg,t1] C I. Let § € (0,6),
according to (4.3), for a sufficiently large ig, we have

[toi — do0,t1] D [too — 6, t1] D [tos, t1], @ > io.
Consequently, ;(t),7 > ig are the solutions defined on the interval [too —
d,t1] and satisfy the conditions ;(t) € Ky,
|9hi(t)| < M, t € [too — 6, 1],
Yi(t) = qi(t), t € [tos, t1]. U
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Theorem 4.3 ( [8]). Let p(t,u) € R™ be a continuous function on the set
I xU and let

P(t) = {p(t,u) : ueU}
be the convex set and
p; € L(I,R™), pi(t) € P(t) a.e. onlI, i=1,2,....

Moreover,

lim p;(t) = p(t) weakly on I.

i—00
Then
p(t) € P(t) a.e. on I

and there exists a measurable function u(t) € U, t € I such that

p(t,u(t)) = p(t) a.e. on I.
4.3. Proof of Theorem 4.1. Let w; = (toi, T3, Toi, Vi, Vi, U;) € Wag, i =
1,2,..., be a minimizing sequence, i.e.

lim J(w;) = J= inf J(w).

71— 00 weWso

Without loss of generality, we assume that

hm t()i = too, hm To; = Too-

1—> 00 11— 00
The set Dy C C(I2,R™) is compact and the set ®2 C L(I;,R™) is weakly
compact (see Theorem 4.3), therefore we assume that

lim 7;(t) = 70(¢t) uniformly in ¢t € Iz = [a,7],
71— 00

and
lim v;(t) = vo(t) weakly in ¢t € I,
1— 00
the solution z;(t) = z(t;w;) € Kj is defined on the interval [to;,t1]. In
a similar way (see proof of Theorem 4.2) we prove that |#;(t)] < N3, t €
[toi, t1], @ = 1,2,..., N3 > 0. By Theorem 4.2, there exists a number § > 0
such that for a sufficiently large ig the solutions x;(t), i > ip, are defined on
the interval [tgg — J,¢1] C I. The sequence z;(t), t € [too — J,t1], ¢ > o, is
uniformly bounded and equicontinuous. By the Arzela—Ascoli lemma, from
this sequence we can extract a subsequence which will again be denoted by
x;(t), © > ig, such that
lim x;(t) = z¢(t) uniformly in [tgg — 0, t1].
71— 00
Further, from the sequence &;(t), i > ip, we can extract a subsequence which
will again be denoted by ;(¢), i > ig, such that

lim @;(t) = o(t) weakly in [too — 9, t1].
1—> 00
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Obviously,

xo(t) = lm x;(¢) =
1—> 00
¢

t
= hm |:£L'i(t00 — 5) + / .’L'Z(S) d8:| = xo(too — (5) + / Q(S) ds.
1—00

too—0 too—9

Thus, ©o(t) = o(t), i.e.
E}m xl(t) = l’o(t) Weakly in [tgo — (S, tﬂ.
Further, we have
zi(t) = oit
—&-/{A(s)h(t()i,vi,gbi)(a(s))—&-f(s,xi(s), h(toi, @i,xi)(n(s))mi(s))} ds =

= x0; + V1 (t) + Vai + 014(t) + 024, t € [too,t1], @ > o,

where

D14 (t /A h(toi,vi, ;)(0(s)) ds,

0t / F(s,2:(5), h(tor, 0 20) (7:(s), ws(5)) ds,

o= [ 10,05, Mo ) o). ) s

Obviously, ¥9; — 0 and #3; — 0 as i — co.
First of all, we transform the expression 14;(t) for t € [too, t1]. For this
purpose, we consider two cases. Let t € [tog, ¥(f00)], we have

D1(t) = 93 (1) + 012 (1),

where
t

2D (t) = / A($)h(ton, vi, ) (0 () ds,

2
92 (1) / 9
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99(5) = A(3) [Btor, vi, ) (0(5)) = hltoo, vis ) (o(5))] -

It is clear that

t1
102 (1)) < / 10 (s)] ds, t € [too, ta]. (47)
too

Suppose that v(tg;) > too for ¢ > i, then

957 (5) =0, s € [too, 1)) U (867, 1],

where
t(()i) = min {V(tOi)a V(tOO)}, téi) = max {V(t()i), l/(too)}.
Since
: (2) _ (1) _
ilggo(tm to; ) =0,
therefore
lim ﬁg) (t) = 0 uniformly in ¢ € [too, t1] (4.8)
11— 00
(see (4.7)).
For 0942 (1), t € [too, v(too)], we get
o(t)
90 (1) = / A(v(s))h(too, vi, 0:)(s)0(s) ds =
O’(too)
o(t)
= / A(v(s))v(s)vi(s) ds.
a(too)
Obviously,
o(t) t
lim ¥4;(t) = / A(v(s)v(s)vo(s) ds = /A(s)vo(a(s))ds, (4.9)
11— 00
a(too) too
t € [too, o(too)]
(see (4.8)).

Let t € [Z/(too), t1], then
90 (8) = 00 (v(too)) + 9\ (8),

where

o~

9D (1) = / A($)h(tos, vi, 1) (0(s)) ds.
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Further,
a(t)
9D (1) / A()h(too, vi, i) (0(5)) ds = / A((s))i(t)is(5) ds
tog) too
Thus, for t € [v(too), t1], we have
v(too)
lim 9 (4) = /A() ) dt + / A(s)ig(o(s))ds.  (4.10)
11— 00
too too

Now we transform the expression 60y;(t) for t € [too,t1]. We consider two
cases again. Letting t € [too, Yo(too)], we have

emw=%ﬂw+%ﬂm

o) (1) t/fsxz Btoo, i, 2:)(7a(s)), us(s)) ds,

042 (1) / 6

%?@)=f@:WG)MMn@mMMn@unwﬂ—
— f(s,2:(5), h(too, pi, ) (1:(5)), ui(s)).

It is clear that

tio

1052 (t))| g/|e§§>(s)|ds, t € [too, ta].
too

Suppose that v;(tg;) > too for ¢ > ig, then

0 (s) =0, s € [ton, t5)) U (t57, ta],

where
3) _ . (4 A (4) _ (4 A
ty;; = min {’Yz(tOz)a %(too)}, 1y, = max {%(tOZ)v Vl(tOO)}'
Since
lim (t(4) t(()?)) =0
i—00
therefore

lim 9(2)( t) = 0 uniformly in ¢ € [too, t10]-

71— 00
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For 651 (1), t € [too, Y0 (too)], we have
7i (t)
01 () = / F(u(s),2s(7i(5)), Bltoos @i, 23)(5), ws(i(5)) ) ¥i(s) ds =
7i(too)

=08 (1) + 67 (t), i > i,

where
70 (t)
017 (t) = / F(v0(5), 20 (70(9)), @i(8), i ((5))) Fo(s) ds,
70 (too)
7i (t)
00(0) = [ 10050505, Alton. ) 5), s 5)) ) s~
7i(too)
70(t)
- / F(v0(s), mo(Y0(s)), wi(s), ui(7i(s))) o (s) ds.
7o (too)

For t € [too, Yo (too)], we obtain

017 (1) = 7700)f(w<s>,xi<w<s>>,h(too,%xi><s>,ui<%<s>>)%<s> ds+
"
+ [ [, eits) uitts)) -
7o (too)
= F(0(),20(10(5)): (), s (3()) |3 5) s
- ﬂ/(t)f(vi<s>,xi<vi<s>>,h(tomgoz-,xn(s),ui(%(s)))ws) ds.
7o (t)

Suppose that ||7; — 70|| < & as i > ig, then
Jim £ (7i(s), 2i (7)), w2, u) = £ (q0(5), 70(70(5)), 72, u)
uniformly in (s, 22, u) € [T0(too), too] X Ko x U, we have
Z11}11010 GS) (t) = 0 uniformly in ¢ € [too, Yo(too0)]-
From the sequence

fi(s) = f(70(s),20(10(s)), i(s), ui(7i(s))), i >0, t€ [ro(ton),tool;
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we extract a subsequence which will again be denoted by f;(s),i > ig, such
that

lim f;(s) = fo(s) weakly in the space L([r0(to0), too], R").

1— 00

It is not difficult to see that
fi(s) € P(y0(s),20(70(5))), s € [70(too), too]-
By Theorem 4.3,
fo(s) € P(70(s),z0(70(s))) a-e. s € [7o(too), oo

and on the interval [19(f00), too] there exist measurable functions ¢g1(s) €
Ko, up1(s) € U such that

fo(s) = f(70(5),20(70(5)), po1(s), uo1(s)) a.e. s € [1o(ton), too)-
Thus,

To(t)
lim 0 = Tim 0 (1) = / fols)io(s) ds =
71— 00 12— 00
70(too)
T()(t)
- / £ (0(8), 20(r0(5)), 9o1(5), o () 3o (s) ds =
70 (too)

= /f(S,l‘o(S),(,001(T0(8)),U01(7’0(8))) dS, te [too,’)/()(too)]. (411)

too

Let t € [’)/()(too),tl], then

650 (8) = 6% (0 (to0)) + 69 (1),

where

t

09 (1) = / £ (5 24(5), hltoo, o, 22) (7a(s)), us(s)) ds.

Yo (too)
It is clear that
7i(t)
0% (1) = / £ (i(5)s @i (33(5)), Altoos 0, 2:) (5), wilya(s)))Fa(s) ds =
7i(7v0(too))

=00 (1) + 60 (t), i >,
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where

To(t)
000 = [ £((0) z0(r0(5), (s) ws(5) o) d,

/OOTi(t)
0 (t) = / F (), 23 (5(9)), Moo, 1 ) (), wi (i (5))) 3 () ds—

7i (Yo (t00))

70(t)
- / £ (10(), 0(v0(5)), 2o(), i (3:(5)))F0 (5) ds.

For t € [v0(too), t1], we have

01 () = / F(n(8),2i(3(5)), htoo, i ) (), i (7i(5))) i (s) ds+
[ [70us)mitn(s)mis) ustits) o)
o 7 (0(5), ol +70(5)), vo(5), wi(3:(5))) o (s) | ds+
+ Ti/()f(%(s),fﬁi(%(S»ah(toov%axi)(s)vUi(%‘(s)))%(s) ds.
7o(t)

Thus,
609 (t) = 0 uniformly in ¢ € [yo(too), t1]-
From the sequence
fi(s) = f(70(5), 20 (70(5)), zo(s), ui(7i(s))), @ > o, t € [too,To(t1)],

we extract a subsequence which will again be denoted by F;(s), i > i, such
that

Zlggo fi(s) = fo(s) weakly in the space L([too,To(t1)],R").
It is not difficult to see that
fi(s) € Pi(70(s),z0(70(5)), 2o(s)), s € [too, To(t1)]-
By Theorem 4.3,
fo(s) € P (’70(8),3;‘0(’)/0(3)),330(5)) a.e. s € [too, T0(t1)]

and on the interval [tog, 7o (¢1)] there exists a measurable function ugs(s) € U
such that

fo(s) = f(vO(s),xo('yO(s)),xo(s),uog(s)) a.e. s € [too, T0(t1)]-



Variation Formulas of Solution and Initial Data Optimization Problems . .. 75
Thus, for t € [vo(too), £1], we have
lim 6} (t) = lim 6} (v0(too)) + lim 67 (t) =
1—>00 1—00 1—>00
Yo (too)
= / f(s, xo(s), zo(10(s)), uoz(s)) ds+

too
t

+ / f(s,xo(s),xo(m(s)),u02(7'0(s))) ds, t € [v(too), t1]. (4.12)
Yo(too)
We introduce the following notation:
0o(s) = P, s € [T, 7o(too)) U (too, toz],
wo1(s), s € [10(too), too),
ﬂ, S € [a,too) U (th b],
ug(s) = € uo1(10(s)), s € [too, To(too)]s
ug2(70(s)), s € (y0(too), 1),
where p € Ky and & € U are the fixed points
1), t€F to),
xo(t) _ 900( ) [ OO)
vo(t), t € [too,t1];
l‘o(t) = ’Uo(t), t c [?, too),

Clearly, wo= (to0, T0, 00, ©0, Vo, to) € Wa. Taking into account (4.9)—(4.12),
we obtain

20(t) =70 + [ [A()0(00(6) + £ (5,20(5). (o (5)), wo() ] s,

t € [too, t1o],
and
0= lim ¢'(toi, woi, z:(t1)) = ¢" (too, oo, To(t1)), i=1,...,1,
1—> 00

i.e. the element wy is admissible and z¢(t) = z(t; wp), t € [T, t1].
Further, we have

J= Zlggo ¢ (toi, zoi» zi(t1)) = ¢° (too, woo, zo(t1)) = J(wy).

Thus, wy is an optimal element.

ACKNOWLEDGEMENT

The work was supported by the Shota Rustaveli National Science Foun-
dation (Grant No. 31/23).



76

10.

11.

12.

13.

14.

15.

16.

17.

18.

Tamaz Tadumadze and Nika Gorgodze

REFERENCES

. C. T. H. BAKER, G. A. BocHAROV, AND F. A. RIHAN, Neutral delay differential
equations in the modelling of cell growth. J. Egyptian Math. Soc. 16 (2008), No. 2,
133-160.

. C. T. H. BAKER, G. BoCHAROV, E. PARMUZIN, AND F. RIHAN, Some aspects of causal
& neutral equations used in modelling. J. Comput. Appl. Math. 229 (2009), No. 2,
335-349.

. R. BELLMAN AND K. L. COOKE, Differential-difference equations. Academic Press,
New York—London, 1963.

. E. N. CHukwu, Differential models and neutral systems for controlling the wealth of
nations. Series on Advances in Mathematics for Applied Sciences, 54. World Scientific
Publishing Co., Inc., River Edge, NJ, 2001.

. R. D. DRIVER, A functional-differential system of neutral type arising in a two-
body problem of classical electrodynamics. Internat. Sympos. Nonlinear Differential
Equations and Nonlinear Mechanics, pp. 474-484, Academic Press, New York, 1963.

. R. D. DRIVER, Topologies for equations of neutral type, and classical electrodynamics.
(Russian) Differential equations with deviating argument (Proc. Fourth All-Union
Conf., Kiev, 1975) (Russian), pp. 113-127, 303. Izdat. “Naukova Dumka”, Kiev,
1977.

. A. DOMOSHNITSKY, A. MAGHAKYAN, AND SH. YANETZ. About nondecreasing solutions
for first order neutral functional differential equations. E. J. Qualitative Theory of
Diff. Equ., 2012, No. 3, 1-15.

. I. EKLAND AND R. TEMAM, Convex analysis and variational problems. (Russian)
“Mir”, Moscow, 1979.

. R. GaBasov AND F. KIRILLOVA, The qualitative theory of optimal processes.

(Russian) Monographs in Theoretical Foundations of Technical Cybernetics. Izdat.

“Nauka”, Moscow, 1971.

R. V. GAMKRELIDZE AND G. L. HARATISHVILI, Extremal problems in linear topolog-

ical spaces. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 781-839.

R. V. GAMKRELIDZE, Principles of optimal control theory. (Russian) Izd. Tbiliss.

Gos. Univ., Tbilisi, 1975.

I. GYORI AND J. WU, A neutral equation arising from compartmental systems with

pipes. J. Dynam. Differential Equations 3 (1991), No. 2, 289-311.

J. HALE, Theory of functional differential equations. Second edition. Applied Math-

ematical Sciences, Vol. 3. Springer-Verlag, New York-Heidelberg, 1977.

G. A. KAMENSKII, Existence, uniqueness, and continuous dependence on initial values

of the solutions of systems of differential equations with deviating argument of neutral

type. (Russian) Mat. Sb. (N.S.) 55 (97) (1961), 363-378.

G. L. KHARATISHVILI AND T. A. TADUMADZE, Formulas for the variation of a solution

and optimal control problems for differential equations with retarded arguments.

(Russian) Sovrem. Mat. Prilozh. No. 25, Optimal. Upr. (2005), 3-166; translation in

J. Math. Sci. (N. Y.) 140 (2007), No. 1, 1-175.

G. KHARATISHVILI, T. TADUMADZE, AND N. GORGODZE, Dynamic mathematical

model of output the production and neutral optimal problem. Rep. Enlarged Sess.

Semin. I. Vekua Appl. Math. 17 (2002), No. 1-2, 36-38.

G. KHARATISHVILI, T. TADUMADZE, AND N. GORGODZE, Continuous dependence and

differentiability of solution with respect to initial data and right-hand side for differ-

ential equations with deviating argument. Mem. Differential Equations Math. Phys.

19 (2000), 3-105.

I. T. KIGURADZE, Boundary value problems for systems of ordinary differential equa-

tions. (Russian) Translated in J. Soviet Math. 43 (1988), No. 2, 2259—-2339. Itogi



Variation Formulas of Solution and Initial Data Optimization Problems . .. e

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Rus-
stan), 3-103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.,
Moscow, 1987.

V. KOLMANOVSKII AND A. MYSHKIS, Introduction to the theory and applications
of functional-differential equations. Mathematics and its Applications, 463. Kluwer
Academic Publishers, Dordrecht, 1999.

M. A. KRASNOSEL'SKIT AND S. G. KREIN, On the principle of averaging in nonlinear
mechanics. (Russian) Uspehi Mat. Nauk (N.S.) 10 (1955), No. 3(65), 147-152.

Y. KURCVEIL’ AND Z. VOREL, Continuous dependence of solutions of differential
equations on a parameter. (Russian) Czechoslovak Math. J. 7 (82) (1957), 568-583.
G. I. MARCHUK, Mathematical modelling of immune response in infectious diseases.
Mathematics and its Applications, 395. Kluwer Academic Publishers Group, Dor-
drecht, 1997.

N. N. PETROV, The continuity of solutions of differential equations with respect to a
parameter. (Russian) Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom. 19 (1964),
No. 2 29-36.

I. RAMISHVILI AND T. TADUMADZE, Formulas of variation for a solution of neutral
differential equations with continuous initial condition. Georgian Math. J. 11 (2004),
No. 1, 155-175.

S. A. RODRIGUEZ, J.-M. DIOoN, AND L. DUGARD, Stability of neutral time delay
systems: a survey of some results. Advances in automatic control, 315-335, Kluwer
Internat. Ser. Engrg. Comput. Sci., 754, Kluwer Acad. Publ., Boston, MA, 2004.

A. M. SAMOILENKO, Investigation of differential equations with irregular right-hand
side. (Russian) Abh. Deutsch. Akad. Wiss. Berlin Kl. Math. Phys. Tech. 1965, No.
1, 106-113.

L. ScHWARTZ, Analyse mathématique. I. (French) Hermann, Paris, 1967; Russian
translation: Mir, Moscow, 1972.

T. A. TADUMADZE, N. Z. GORGODZE, AND 1. V. RamMisuviLI, On the well-posedness of
the Cauchy problem for quasilinear differential equations of neutral type. (Russian)
Sovrem. Mat. Fundam. Napravl. 19 (2006), 179-197; translation in J. Math. Sci.
(N.Y.) 151 (2008), No. 6, 3611-3630.

(Received 9.10.2014)

Authors’ addresses:

Tamaz Tadumadze

1. Department of Mathematics, Faculty Exact and Natural Sciences

of I. Javakhishvili Thilisi State University, 13 University St., Thilisi 0186,
Georgia.

2. 1. Vekua Institute of Applied Mathematics of I. Javakhishvili Thbilisi

State University, 2 University St., Thilisi 0186, Georgia.

E-mail: tamaz.tadumadze@tsu.ge

Nika Gorgodze

A. Tsereteli Kutaisi State University, Department of Mathematics, 59

King Tamari St., Kutaisi 4600, Georgia.

E-mail: E-mail: nika_gorgodze@yahoo.com



