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ON THE NONLOCAL NONLINEAR
BOUNDARY VALUE PROBLEMS FOR SYSTEMS
OF GENERALIZED DIFFERENTIAL EQUATIONS

WITH SINGULARITIES

Abstract. The general nonlocal boundary value problem is considered for
systems of nonlinear generalized differential equations with singularities on
a non-closed interval. Singularity is understood in a sense that the vector-
function corresponding to the system may have unbounded variation with
respect to the time variable on the whole interval. The sufficient conditions
for the solvability of this problem are given.
ÒÄÆÉÖÌÄ. ÂÀÍÆÏÂÀÃÄÁÖË ÀÒÀßÒ×ÉÅ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄ-
ÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ ÓÉÍÂÖËÀÒÏÁÄÁÉÈ ÀÒÀÜÀÊÄÔÉË ÉÍÔÄÒÅÀËÆÄ
ÂÀÍáÉËÖËÉÀ ÆÏÂÀÃÉ ÓÀáÉÓ ÀÒÀËÏÊÀËÖÒÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÀ.
ÓÉÍÂÖËÀÒÏÁÀ ÂÀÉÂÄÁÀ ÉÌ ÀÆÒÉÈ, ÒÏÌ ÓÉÓÔÄÌÉÓ ÛÄÓÀÁÀÌÉÓ ÅÄØÔÏÒÖË
×ÖÍØÝÉÀÓ ÃÒÏÉÈÉ ÀÒÂÖÌÄÍÔÉÓ ÌÉÌÀÒÈ ÛÄÉÞËÄÁÀ äØÏÍÃÄÓ ÖÓÀÓÒÖËÏ
ÅÀÒÉÀÝÉÀ ÌÈÄË ÉÍÔÄÒÅÀËÆÄ. ÌÏÝÄÌÖËÉÀ ÀÌ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀÃÏÁÉÓ
ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ.
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1. Statement of the Problem and Basic Notations

In the paper we investigate the question on the solvability of the system
of generalized nonlinear differential equations

dx = dA(t) · f(t, x) (1.1)

under the general nonlinear boundary value problem

h(Hx) = 0, (1.2)

where A and H : ]a, b[→ Rn×n are the matrix-functions with components of
bounded variation on every closed interval from ]a, b[ , in addition, detH(t) ̸=
0 for t ∈ ]a, b[ ; f ∈ Carloc(]a, b[×Rn,Rn;A), and h : BVs([a, b];Rn) → Rn

is a continuous operator.
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The same question for the linear general and two-point boundary value
problems for systems of generalized linear differential equations are investi-
gated in [5]–[7].

The question on the existence of a solution of the problem (1.1), (1.2)
when the matrixA and vector-function f are regular, i.e. A∈BV([a, b],Rn×n)
and f ∈ Car([a, b]× Rn,Rn;A), is investigated in [1]–[3], where the Conti–
Opial type theorems for the solvability of the problem (1.1), (1.2) are ob-
tained.

Analogous and related questions are investigated in [11] (see also the
references therein) for the singular boundary value problems for ordinary
differential systems, and in [8], [12]–[14], [16] (see also the references therein)
for the regular boundary value problems for ordinary differential systems
and for functional differential equations.

To a considerable extent, the interest to the theory of generalized ordi-
nary differential equations has also been stimulated by the fact that this
theory enables one to investigate ordinary differential, impulsive and differ-
ence equations from a unified point of view (see e.g. [4], [9], [10], [15], [17],
[18] and the references therein).

Throughout the paper the following notation and definitions will be used.
R = ]−∞,+∞[ , R+ = [0,+∞[ ; [a, b] and ]a, b[ (a, b ∈ R) are the closed

and open intervals, respectively.
Rn×m is the space of all real n×m-matrices X = (xil)

n,m
i,l=1 with the norm

∥X∥ =

n,m∑
i,l=1

|xil|;

Rn×m
+ =

{
(xil)

n,m
i,l=1 : xil ≥ 0 (i = 1, . . . , n; l = 1, . . . ,m)

}
.

On×m (or O) is the zero n×m-matrix.
If X = (xil)

n,m
i,l=1 ∈ Rn×m, then |X| =

(
|xil|

)n,m
i,l=1

.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ =

Rn×1
+ .
If X ∈ Rn×n, then detX and X−1 are, respectively, the determinant of

X and the matrix inverse to X; In is the identity n× n-matrix.
d
∨
c
(X), where a < c < d < b, is the variation of the matrix-function

X : ]a, b[→ Rn×m on the closed interval [c, d], i.e., the sum of total variations
of the latter components xil (i = 1, . . . , n; l = 1, . . . ,m) on this interval; if
d < c, then

d
∨
c
(X) = −

c
∨
d
(X); V (X)(t) = (v(xil)(t))

n,m
i,l=1, where v(xil)(t0) =

0, v(xil)(t) =
t
∨
t0
(xil) for a < t < b, and t0 = (a+ b)/2.

X(t−) and X(t+) are, respectively, the left and the right limits of the
matrix-function X : ]a, b[→ Rn×m at the point t ∈ ]a, b[ (we assume X(t) =
X(a+) for t ≤ a and X(t) = X(b−) for t ≥ b, if necessary).
d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).
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BV([a, b],Rn×m) is the set of all matrix-functions of the bounded varia-
tion X : [a, b] → Rn×m (i.e.,

b
∨
a
(X) < +∞).

∥X∥s = sup
{
∥X(t)∥ : t ∈ [a, b]

}
.

BVs([a, b],Rn×m) is the normed space (BV([a, b],Rn×m), ∥ · ∥s).
BVloc(]a, b[ ,Rn×m) is the set of all matrix-functions X : ]a, b[→ Rn×m

such that
d
∨
c
(X) < +∞ for every a < c < d < b.

If a < α < β < b and X∈BV([α, β],Rn×m), then Xα,β∈BV([a, b],Rn×m)
is a matrix-function defined by

Xα,β(t) =


X(α−) for a ≤ t < α,

X(t) for α ≤ t ≤ β,

X(β+) for β < t ≤ b.

Let G ∈ BVloc(]a, b[ ,Rn×n). By BVG([a, b],Rn) we denote the set of all
vector-functions x ∈ BVloc(]a, b[ ,Rn) for which there exist the finite limits
lim

t→a+
G(t)x(t) and lim

t→b−
G(t)x(t). It is evident that xG ∈ BV([a, b],Rn) for

every x ∈ BVloc(]a, b[ ,Rn), where the vector-function xG : [a, b] → Rn is
defined by

xG(t) =


G(t)x(t) for a < t < b,

lim
t→a+

G(t)x(t) for t = a,

lim
t→b−

G(t)x(t) for t = b.

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

If I ⊂ R is an interval, then C(I,Rn×m) is the set of all continuous
matrix-functions X : I → Rn×m.

If B1 and B2 are normed spaces, then an operator g : B1 → B2 (nonlin-
ear, in general) is positive homogeneous if

g(λx) = λg(x)

for every λ ∈ R+ and x ∈ B1.
s1, s2, sc : BV([a, b],R) → BV([a, b],R) are the operators defined, respec-

tively, by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

d1x(τ) and s2(x)(t) =
∑

a≤τ<t

d2x(τ) for a < t ≤ b,

and

sc(x)(t) = x(t)− s1(x)(t)− s2(x)(t) for t ∈ [a, b].
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If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s <
t ≤ b, then

t∫
s

x(τ) dg(τ) =

∫
]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue–Stieltjes integral over the open in-

terval ]s, t[ with respect to the measure µ(sc(g)) corresponding to the func-

tion sc(g). If a = b, then we assume
b∫
a

x(t) dg(t) = 0; so that
t∫
s

x(τ) dg(τ)

is the Kurzweil–Stieltjes integral (see [20], [22], [24]). Moreover, we put
t∫

s+

x(τ) dg(τ) = lim
ε→0, ε>0

t∫
s+ε

x(τ) dg(τ)

and
t−∫
s

x(τ) dg(τ) = lim
ε→0, ε>0

t−ε∫
s

x(τ) dg(τ).

L([a, b],R; g) is the space of all functions x : [a, b] → R, measurable and
integrable with respect to the measure µ(gc(g)) for which∑

a<τ≤b

|x(t)|d1g(τ) +
∑

a≤τ<b

|x(t)|d2g(t) < +∞,

with the norm

∥x∥L,g =

b∫
a

|x(t)| dg(t).

If gj : [a, b] → R (j = 1, 2) are nondecreasing functions, g(t) ≡ g1(t) −
g2(t), and x : [a, b] → R, then

t∫
s

x(τ) dg(τ) =

t∫
s

x(τ) dg1(τ)−
t∫

s

x(τ) dg2(τ) for a ≤ s ≤ t ≤ b.

If G = (gik)
l,n
i,k=1 : [a, b] → Rl×n is a nondecreasing matrix-function

and D ⊂ Rn×m, then L([a, b], D;G) is the set of all matrix-functions X =
(xkj)

n,m
k,j=1 : [a, b] → D such that xkj ∈ L([a, b], R; gik) (i = 1, . . . , l; k =

1, . . . , n; j = 1, . . . ,m);
t∫

s

dG(τ) ·X(τ) =

( n∑
k=1

t∫
s

xkj(τ)dgik(τ)

)l,m

i,j=1

for a ≤ s ≤ t ≤ b,

Sj(G)(t) ≡
(
sj(gik)(t)

)l,n
i,k=1

(j = 1, 2) and Sc(G)(t) ≡
(
sc(gik)(t)

)l,n
i,k=1

.
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If D1 ⊂ Rn and D2 ⊂ Rn×m, then Car([a, b]×D1, D2;G) is the Carathé-
odory class, i.e., the set of all mappings F = (fkj)

n,m
k,j=1 : [a, b] ×D1 → D2

such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . ,m} and k ∈ {1, . . . , n}:
(i) the function fkj( · , x) : [a, b] → D2 is µ(sc(gik))-measurable for

every x ∈ D1;
(ii) the function fkj(t, · ) : D1 → D2 is continuous for µ(sc(gik))-almost

every t ∈ [a, b] and for every t ∈ Dgik , and

sup
{
|fkj( · , x)| : x ∈ D0

}
∈ L([a, b], R; gik)

for every compact D0 ⊂ D1;
Carloc(]a, b[×D1, D2;G) is the local Carathéodory class, i.e., the set of

all mappings F = (fkj)
n,m
k,j=1 : ]a, b[×D1 → D2 the restriction of which

on every closed interval [α, β] belongs to Car([α, β] × D1, D2;G) for every
a < α < β < b.

If Gj : [a, b] → Rl×n (j = 1, 2) are nondecreasing matrix-functions,
G(t) ≡ G1(t)−G2(t), and X : [a, b] → Rn×m, then

t∫
s

dG(τ) ·X(τ) =

t∫
s

dG1(τ) ·X(τ)−
t∫

s

dG2(τ) ·X(τ) for a ≤ s ≤ t ≤ b,

Sk(G)(t) ≡ Sk(G1)(t)− Sk(G2)(t) (k = 1, 2),

Sc(G)(t) ≡ Sc(G1)(t)− Sc(G2)(t).

If G1(t) ≡ V (G)(t) and G2(t) ≡ V (G)(t)−G(t), then

L([a, b], D;G) =
2∩

j=1

L([a, b], D;Gj),

Car([a, b]×D1, D2;G) =
2∩

j=1

Car([a, b]×D1, D2;Gj),

Carloc(]a, b[×D1, D2;G) =
2∩

j=1

Carloc(]a, b[×D1, D2;Gj).

If G ∈ BV([a, b];Rn×n) and X : [a, b] → Rn×m), then

B(G,X)(t) ≡ G(t)X(t)−G(a)X(a)−
t∫

t0

dG(τ) ·X(τ).

The inequalities between the matrices are understood componentwise.
Below we assume that

A1(t) ≡ V (A)(t) and A2(t) ≡ V (A)(t)−A(t).
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A vector-function x ∈ BVloc(]a, b[ ,Rn) is said to be a solution of the
system (1.1) if

x(t) = x(s) +

t∫
s

dA(τ) · f(τ, x(τ)) for a < s ≤ t < b.

Under a solution of the problem (1.1), (1.2) we mean solutions x of the
system (1.1) such that x ∈ BVH([a, b],Rn) and the equality h(xH) = 0
holds.

We say that the operator g : BVloc(]a, b[ ,Rn) → Rn) has some prop-
erty in the set BVloc(]a, b[ ,Rn) if the operator gα,β : BV([α, β],Rn) → Rn,
defined by gα,β(x) = g(xα,β), has the same property for every α, β ∈ ]a, b[
(α < β); If, moreover, B ∈ BVloc(]a, b[ ,Rn×n), then we say that the prob-
lem

dx = dB(t) · x for t ∈ ]a, b[ , g(x) ≤ 0

has some property in BVloc(]a, b[ ,Rn), if the problem
dx = dBα,β(t) · x for t ∈ [α, β], gα,β(x) ≤ 0

has the same property for every α, β ∈ ]a, b[ (α < β).
In particular, we say that the operator g : BVloc(]a, b[ ,Rn) → Rn) is

continuous in the set BVloc(]a, b[ ,Rn) if
lim

k→+∞
g(xk;α,β) = g(x0;α,β) for every a < α < β < b,

where x0 ∈ BVloc(]a, b[ ,Rn) and xk ∈ BVloc(]a, b[ ,Rn) (k = 1, 2, . . . ) is an
arbitrary sequence such that

lim
k→+∞

xk;α,β(t) = x0(t) uniformly on [α, β] for a < α < β < b.

Definition 1.1. Let a matrix-function H ∈ BVloc(]a, b[ ,Rn×n) be such
that detH(t) ̸= 0 for t ∈ ]a, b[ . Let, moreover, l : BVloc(]a, b[ ,Rn) →
Rn and l0 : BVloc(]a, b[ ,Rn) → Rn

+ be, respectively, linear continuous
and positive homogeneous continuous operators in the set BVloc(]a, b[ ,Rn).
Then by O(]a, b[ , l, l0;A,H) we denote the set of all matrix-functions P ∈
Carloc(]a, b[×Rn,Rn×n) satisfying the Opial condition with respect to the
set of four (l, l0;A;H), i.e.,

(i) there exists Φ ∈ Lloc(]a, b[ ,Rn×n
+ ;A) such that

|P (t, x)| ≤ Φ(t) on the set ]a, b[×Rn;

(ii) det
(
In + (−1)j

(
djB(t) + djH(t) ·H−1(t)

))
̸= 0 (1.3)

for a < t < b (j = 1, 2)

and the problem
dx =

(
dB(t) + dH(t) ·H−1(t)

)
· x, |l(x)| ≤ l0(x)



147

has only the trivial solution in ]a, b[ for every B∈BVloc(]a, b[ ,Rn×n)
for which there exists a sequence zk ∈ BVloc(]a, b[ ,Rn (k = 1, 2, . . . )
such that

lim
k→+∞

t∫
c

dB(H,A)(τ) · P (τ, zk(τ)) = B(t) uniformly into ]a, b[ .

Remark 1.1. In particular, the condition (1.4) holds if∥∥djB(H,A)(t) · Φ(t)∥∥ < 1 for t ∈ ]a, b[ (j = 1, 2).

guarantees the condition (1.3).

Remark 1.2. If H(t) ≡ In, then Definition 1.1 coincides with the Opial class
definition for the regular case on every closed interval [α, β] (see [2]).

We will assume that H ∈ BVloc(]a, b[ ,Rn×n) is a matrix-function such
that detH(t) ̸= 0 for t ∈ ]a, b[ . Note that we can consider the case in which
the matrix function H is regular only in the right and left neighborhood of
the points a and b, respectively. In this case we assume that H(t) = In if
the point t does not belong to these neighborhoods.

2. Formulation of the Main Results

Theorem 2.1. Let f = (fl)
n
l=1 and fk = (fkl)

n
l=1∈ Carloc(]a, b[×Rn,Rn;A)

(k = 1, 2, . . . ),∣∣fkl(t, x)| ≤ f0l(t, x) for µ(v(ail))− for almost all t ∈ ]a, b[ , x ∈ Rn

(i, l = 1, . . . , n; k = 1, 2, . . . )

and
lim

k→+∞
fkl(t, x) = fl(t, x) for µ(v(ajil)) for almost all t ∈ ]a, b[ , x ∈ Rn

(j = 1, 2; i, l = 1, . . . , n; k = 1, 2, . . . ),

where fl ∈ Carloc(]a, b[×Rn,Rn; ail) (i, l = 1, . . . , n). Let, moreover, for
every natural k, the system

dx = dA(t) · fk(t, x)
under the condition (1.2) has a solution xk such that

lim
t→a+

sup
{∥∥xk,H(a+)− xk,H(t)

∥∥ : k = 1, 2, . . .
}
= 0,

lim
t→b−

sup
{∥∥xk,H(b−)− xk,H(t)

∥∥ : k = 1, 2, . . .
}
= 0

and
sup

{
∥xk(t)∥ : k = 1, 2, . . .

}
≤ ψ(t) for a < t < b,

where ψ ∈ BVG([a, b],Rn). Then the sequence xk (k = 1, 2, . . . ) contains a
subsequence, convergent in the open interval ]a, b[ , and its limit is a solution
of the problem (1.1), (1.2).
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Theorem 2.2. Let the conditions∣∣f(t,H−1(t)x)− P (t, x)x
∣∣ ≤ α

(
t, ∥x∥

)
for t ∈ ]a, b[ , x ∈ Rn,

and ∣∣h(x)− l(x)
∣∣ ≤ l0(x) + l1

(
∥x∥v

)
in BVloc(]a, b[ ,Rn)

be fulfilled, where l : BVloc(]a, b[ ,Rn) → Rn and l0 : BVloc(]a, b[ ,Rn) → Rn
+

are, respectively, linear continuous and positive homogeneous continuous
operators in BVloc(]a, b[ ,Rn); P ∈ O(]a, b[ , l, l0;A,H) and a nondecreas-
ing in the second variable matrix– and vector-functions, respectively, α ∈
Carloc(]a, b[×R+,Rn

+;A) and l1 ∈ C(R,Rn
+) are such that

lim
ρ→+∞

1

ρ

b−∫
a+

dV (A)(t) · α(t, ρ) < 1 for a < α < β < b,

and

lim
ρ→+∞

l1(ρ)

ρ
< 1.

Then the problem (1.1), (1.2) is solvable.
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