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Abstract. In the paper, two-dimensional boundary value problems of
statics of elastic mixtures are investigated. Using the potential method and
the theory of singular integral equations, existence and uniqueness theorems
are proved. Parallelly, Fredholm type equations are obtained for all the
considered problems. By the aid of these equations, explicit solutions are
constructed for the half-plane, the disk and the exterior to a disk.
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INTRODUCTION

Since the early sixties, the theory of elastic mixtures has become very
popular in mechanics and engineering sciences. A lot of important results
have been obtained concerning mathematical problems of three-dimensional
models (see [1] and references cited therein ). As to the corresponding two-
dimensional problems, they are not deeply investigated so far. The present
paper deals with the two-dimensional version of the above theory. Using the
potential method and the theory of integral equations, basic boundary value
problems are studied and uniqueness and existence theorems are proved.
Applying the theoretical results obtained, explicit solutions (in quadratures)
are constructed for some particular domains with concrete geometry.

1. Basic EQUATIONS AND BOUNDARY VALUE PROBLEMS

Let the third component of the partial displacements u' = (u!,u}, u})
and u" = (uf,ul,uy) vanish and u}, uh, u), u) be functions only of the
variables z; and z». Then we have plane deformations of elastic mixture,
and the basic equations read as [1]

arAu' + by grad @' + cAu" +dgrad 0’ = —p F' =,
cAu' + dgrad ' + asAu" + by grad 8’ = —p F"' =",

(1.1)

where A = 97 + 02 is the Laplace operator, p; and py are partial densities,
F' and F" are mass forces, u' = (u},u}) and u" = (uf,u]) are partial
displacements depending on the variables z; and x5, 0 = %;

2 2
0'=> ohup, 0"=) ouy, k=12, (1.2)
k=1 k=1

ar =1 —As, by =1+ A+ X5 —p taspe, as = ps — s,

c=pu3z+ A5, ba=pus+ A2+ A5 +p_1agp1,
. (1.3)
d=p3z+A3— A5 —agp1 = 3+ A — A5 +p azps,

p=p1+p2, ax=A3— A4
where p1, po, p3, A1, A2, Az, A4, A5 are constants which characterise me-
chanical properties of the elastic mixture in question and satisfy certain
conditions (inequalities).
If o' = ¢ = 0, then the system (1.1) becomes homogeneous, and we get

a1 Au' + by grad 6’ + cAu" + dgrad§” =0,

! ! n 1 (1'4)
cAu' + dgradf’ + asAu” + by grad8” = 0.
The equations (1.1) imply
0101y + 020y =y, 0107y + 0203y = ),
. (1.5)

n " n n "
O1011 + 02091 = by, 01015 + 0209y = 1y,
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where
o1y = L1+ 0:Ms, o0y = —Ly — 01 Ms,
01y = Ly — 02 My, 05y = Ly + 01 M,

ol = Ly + My, oy = —Ly — 0, My, (1.6)
oly = Ly — 03 M3, oby = L3+ 01 Ms,
Li=(a1 +0)0 + (c+d)f", Ly =aw +cw",
Ly = (c+d)§ + (a3 + b2)8", Ly=cw' +aw”, 7
My = (30 — 2 )uy, + (503 — 2pu3)uy;, .
Miyz = (563 = 2u3)uy, + (502 — 2p2)ug, k=1,2,
W' = O1uh — dhuy, W' = Ouly — daul. (1.8)

The functions o}, 0%, 014, 0hy, 01y, 0%, 01, 0k, are the components

>
of the generalized stress tensor. The generalized stress vector 7" u is defined
as follows

(T u)1 = oyyn1 + 05 n2, (T u)z = 0jan1 + 05ona, 19)

s

2
" " n n
(T w)z = oy yn1 +091n2, (T u)a = ojan1 + oyona,

where n = (n1,ns) is an arbitrary unit vector, u = (u',u") = (uy, u2, us, uq),
Uy = ulla U2 = ’LL’2, Uz = ullla Uyg = ul2l'

If 500 = 500 = 303 = 0, then we set 12 u = Tu; here Tu is the physical
stress vector with the components

(Tu)y = 11yn1 + Toyna,  (Tu)z = T{yn1 + Toona, (1.10)
(Tu)s = 11in1 + moyna, (Tu)s = T{4n1 + Topna, '

where 711, To1, Tia, Too, Ti1, Ty, Tia, Toe are the components of the physi-

cal stress tensor; their exprssions can be obtained from (1.6) and (1.7) by
substitution s; = 0,7 =1,2,3.

We have introduced the parameters s, 35 and s3 which are not involved
in the basic equations (1.5). In what follows, we will see that the generalized
stress vector (1.9) will be very useful and efficient. We note that similar
generalized stress vector in the classical elasticity theory was introduced in
[2,3]. It can be easily checked that

> ou
where
0
:n162 —ngal, (].].2)
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0 n 0 3

_ |7 0 — M3 0
=170 e 0 sl (1.13)

— 3 0 — 0

Let D* be a bounded two-dimensional domain (surrounded by the curve
S) and let D~ be the complement of DT = D* US. We assume that
SeCHB k=1,2,0<8<1[4].

A vector u = (u',u") = (u1,...uq) is said to be regular in DT [D~]
if up, € C*(DY)NCYD1)[ur € C2(D~) N CY(D~] and the second order
derivatives of uy are summable in DT [D~]; in the case of the domain D™,
we assume, in addition, the following conditions at infinity

u(z) =0(1), p*Ou=0(), k=12, (1.14)

to be fulfilled with p? = 2% + 3.

The basic boundary value problems (BV Ps) are formulated as follows
[1].

Find a regular solution to the equation (1.1) in D¥ [D™] satisfying one
of the following boundary conditions.

1. Problem (I)if:

{u()}* = f(t), teS; (1.15)
2. Problem (I); ,:

{Tu(t)}* = f(t), tes; (1.16)
3. Problem (II); ,:

{uj (1) — w2 (D} = f5(0),

4 tesS, j=12 (1.17)
{[Tu®)]; + [Tu®)]j2} = fir2(t),

4. Problem (IV)y ;: Let S =5, US5, S1 NS, = @, and condition (1.15)
is given on Sy, while either condition (1.16) or conditions (1.17) are given
on Ss.

Here dj = (wl,wll) = (1:[]171/}271/}3711]4) and f = (f17f27f37f4) are known
continuous vectors on D* and S, respectively. Throughout this paper n(z)
denotes the exterior to Dt unit normal vector at the point = € S.

Note that in the above formulations of BVPs, we can replace the physical
stress vector by the generalized stress vector.
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2. THE BASIC FUNDAMENTAL MATRIX

In this section, we will construct the basic fundamental matrix of the
equation (1.4).
Upon taking the divergence operation, from (1.1) we get

(a1 +b1)AO + (c+ d)AF" = div ',
(c+ d)A" + (az + by) A8 = divy".

Whence
Af = “2; b2 dive)’ — C;’ld div ",
(2.1)
A" = —C;lddivw’ + “1; " iy,
where
d1 = ((1,1 + bl)(ag + b2) — (C + d)2 (22)

Later we will prove that d; > 0.

Further, upon taking the operator A and taking into account (2.1), we
have

(C + d) — bl(a2 + bg)
dq
bl(c + d) - d((],1 + bl)
+
di
bQ(C + d) - d(a2 + bg)
di
d(C + d) — b2(a1 + bl)
+ &

a1 AAY + cAAU" = Ay’ + d graddiv )’ +

grad div ",

cAAY + ar AAY'" = Ay + graddiv ¢’ +

grad div ¢,

From the latter equation it follows that

AAU' = e; AY' + ea Ay + eq grad div )’ + es grad div )",
AAU" = es Ay + ez A" + e5 grad div i)’ + eg grad divy)”,



where
a C a
€1 = d_z’ €2 = _d_g’ €3 = d_;’ dy = ajaz _027
(dCLQ — CbQ)(C + d) + (Cd — blag)(a2 + bg)
€4 = )
dyd,
(b1a2 — Cd) (C + d) + (Cb2 — da2)(a1 + bl)
65 = =
dids
_ (albg — Cd)(C + d) + (Cb1 — dal)(a2 + bg)
N dyd, ’
(da1 — Cbl)(C + d) + (Cd — a1b2)((11 + bl)
€ = .
dids
It also will be shown that ds > 0. (2.3) implies
e +e —L+b2 ez +e __c+d es +eg = @+
1 4 — dl ) 2 5 — dl ) 3 6 — dl .

We look for ' and u” in the form
u = e A® + es AD" + e4 graddiv @' + e5 grad div @,
u" = es AP’ + e3A®" + e5 grad div &' + eg grad div @,

where &' and ®" are arbitrary vectors.
Substitution of (2.5) into (1.1) and (1.4) leads to

AND =4/, AAD" ="

65

(2.4)

(2.5)

(2.6)

(2.7)

and
AAD =0, AAP" =0,
respectively.
Let us introduce ® = (&', ®") and ¢ = (¢0',¢""). Then previous equations
yield
AAD =)
and
AAP = 0.
Let
® = FRe ’QZJ(),

where F is the 4 x 4 unit matrix, while

o = % (Ino — 1),

U:Z_Ca EZE—Z) Z:x1+ix2a C:y1+1y2

(2.8)

(2.9)
(2.10)
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Direct calculations give

82¢0_11n0+i %_lln(,_i
or? 2 40’ 022 2 40’
(2.11)
O _ ;0 Ao =Ino
61718:1’,‘2 B 40’ 0= '

Substituting (2.8) into (2.5), we obtain the basic fundamental matrix of
the equation (1.4)

O(z —y) =Rel'(x —y), (2.12)
where
1 o
I'(z—y)=mlnoc+ —-n— (2.13)
4 o
mi 0 mo 0 €4 i€4 €5 ’i65
m— 0 mg 0 mo Con= 1€y —.64 ies —.65 (2.14)
me 0 mg O es 1e; eg leg
0 mao 0 ms i65 —é€;5 7:66 —€g
€4 €5 €6
TR1:61+3, m2262+3, TR3:63+§. (2.15)

It is evident that ®(z — y) is a symmetric matrix. It easily follows from
(2.12) and (2.13) that all elements of ® are single-valued functions on the
whole plane and they have a logarithmic singularity at most. It can be
shown that columns of the matrices I'(z — y) and ®(z — y) are solutions to
the equation (1.4) with respect to z for any z # y.

Let us rewrite (2.12) as

JACO I A0 i i R —

Bz —y)=Re|l /) [w|ve LO=IL{l2xe, i=T4 (2.16)
LY = e181) A +eadi;, LY = esdu; A +esdnd;, 2.17)

Lg:;) — 626kj YA +658kaja Lgé) = 636kj A +668kaj. .

We also rewrite (1.1) in the matrix form
Cu =1, (2.18)
where
c @) i i R —

¢= HC(3) oWl cl = ||Clgj)||2><2a i=1,4, (2.19)
C,E;) = a16r; A +b103,0;, C’,g.) = cbj A +dOy0;, (2.20)

O = coj A +dopd;, Cf = asdr; & +b2040;.
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We put
1
un(o) = o= [ #lz =)o) dyn dye (221)
D
Then, due to the equation
c) @ |ILO L
Hc<3> ) HL<3> | =ELL,

we get

Cug(z) = % A A/Re¢0¢(y)dy1dy2 =
D
1
=5 /lnm/J dy, dy2 = ¢¥(z), z € D. (2.22)
D

Thus we have proved that ug(z) is a particular solution to equation (1.1).
In (2.21), D denotes either DT or D™, 1 is a continuous vector in D along
with its first order derivatives. When D = D, then the vector ¢ has to
satisfy the following decay condition at infinity

Y(y) =OR ), a>0, R=/y?+3. (2.23)

3. SINGULAR MATRICES OF SOLUTIONS

Using the basic fundamental matrix, we will construct the so-called sin-
gular matrices of solutions and study their properties.

For simplicity, we will introduce the special generalized stress operators.
Let the elements of the matrix (1.11) be defined as follows

) = 2[/,1, My = 2/12, 3 = 2/13 (31)

Denote by L the generalized operator T with s defined by (3.1) (the
corresponding matrix is denoted by s, ). Then by (1.6),

(Lu); = Lyny — Lany, (Lu)y = Lany + Liny,

3.2
(LU)3 = L31’L1 — L11’L2, (L’LL)4 = L41’L1 + L31’L2, ( )
where L1, Lo, L3, Ly are defined by (1.7).
It follows from (1.11) that
J{ 8u
Tu:Lu—l—(%—%L)as—(x). (3.3)

First let us construct L®, i.e., LT (see (2.12)). Denote by T'*) the k-th
column of the matrix I given by (2.13). 6}, 6}, w}, and wj denote expressions



68

given by (1.2) and (1.8) for the vector I'*)| k = T, 4. Simple manipulations
lead to

0 Olno Olno
0, = (e + e4)a—mlna =—(eg +e4)za—$2, 67 = (ex + 65)8—171’
Wy = —iela— Ino, wi = —iega— Ino,
r1 T
0 Olno
05 = —(e1 + 64)3—3321“0: 0y = (e2 +es5) Oxy '
wy = ela—xllna, wy = 626—1211110',
Olno Olno
9I3 = (62 + 65)1—6132 R 9%’ = —(63 + 66)1 s R
o Olno W ie Olno
wh = — = -
3 2 e ’ 3 3 oz, )
l l
9512(624‘65)1'a = 9Z=(€3+€6)6n0,
81:2

Olno " Olno

i
Wy =€ey—(—— Wy = eg———.
4 81‘1 ’ 4 63:1

From these formulas together with (2.4), (1.7) and (3.2), it follows

L,®(x —y) =Im %@:)(E +iEi)Ino, (3.4)
where
0 1.0 O
R o
0 0 0 -1

Applying (3.4) and (3.3), we get

T, 8z —y) = 8.96(3:) Im [(E +iEy)Ino +i(sc— 3,)T(z —y)]. (3.6)

If 56y = 500 = 323 = 0, then 3 =0 (see (1.13)), and (3.6) implies

T,®(z —y) = 8.9(?3:) Im [(E +id)Ino + gg] (3.7)



where
0 1-A;

-1+ A 0
4= 0 —As

As 0
B, By B,
B tBy —Bi iBs
" ||Bs iBs By
tBs —Bs iBy

Ay =2(pama + pzma),
Az = 2(p3m + pams),
By = pieq + pses,
B3 = pses + pseq,

0 —A,
Ay 0
0 1— Aql]”
-1+ Ay 0
1By
—B,
1By ||’
—By

Ay =2(pama + pgms),
Ay =2(pugma + pams),
Bs = pses + useg.
By = pes + pses.
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(3.9)

(3.10)

It is obvious that T, ®(z —y) is a singular kernel (in the sense of Cauchy)

on Liapunov (C17%) curves since the matrix A is not identical zero.
Replacing x by y and vice versa in matrix (3.6), we arrive to

9s(y)

where ()" denotes transposition.

—o)] = - I [iTy — 2)(, — ) + (E — i) Ino]. (3.11)

It is easy to check that the columns of the matrix (3.11) are solutions

of the equation (1.4) with respect to the variable z for any z # y. It
is also evident that the elements of the matrix (3.11) are singular kernels
in the sense of Cauchy since m(s, — ») — E; # 0. Let us note that if

m(»x, — ») = Ej, then [%y ®(y — x)]7 is a weakly singular kernel. The
previous equation yields

x=1x, —m ‘E, (3.12)
where
ms 0 —my 0
1 0 m 0 -m
-1 _ 3 2 _ 2
T A leme 0 m o |- Bo=mams—ms. (3.13)
0 —Mmy 0 my

From (3.12) and (3.13) it follows

ma

2o = 2ip — 2L 5 =2t . (314)
0

Ag

ms
=20 — ——,

Ag

Denote by N the stress operator T with s given by (3.12). Then we have

Ema—fz)

N8y = 2)) = 5= T (Elno = 57

(3.15)
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where

€1 iEl €3 i€3
i1 —e1 ies —e3 (3.16)
Eo (230 Eq 1€4

iEQ —E9 ’i84 —&4

2A061 = es;Ma2 — e4Mmgs, 2A063 = e4ma2 — ezmq,

3.17
2A052 = €gMy — €5Mg3, 2A054 = eésMy — €egny, ( )

Ay is defined by (3.13).
Taking into account expressions for m; (j = 1,
(2.15) and (2.3)), we have for the coefficients €; (j

o1 = by (2&2 + b2) — d(QC + d), 0p€3 = 2(da2 — Cbg),
(5062 = 2(da1 — Cbl), (5064 = b2(20,1 + bl) — d(QC + d), (318)
(50 = (2@1 + bl)(2a2 + b2) — (20 + d)2 = 4A0d1d2.

Later on, we will show that Ag > 0, i.e., 5o > 0.
It follows from (3.15)

3) and e; (j = 4,6) (see
=149

=
Im (Elna—%z) m! 9 ImT'(z —y). (3.19)
o

Na®(z —y) s ()

0
~ 0s(2)
Quite similarly we have
0B —y)
Os(x)
Due to the equation ®(z —y) = Rel(z — y), we get from (3.19) and
(3.20)

Ny ImTD(x —y) = (3.20)

. 4,00 (z—y)
— = — 1Z-\ 97 .
N, T(z —y) im 95@) (3.21)
Now (3.19) implies
_ . ol(z —y)
_y) = U joey) X2~ Y) 22
T, ®(x —y) =Im(m i%N) B5@) (3.22)
where sy is defined by (1.13) with s, 52 and 3¢5 given by (3.14).
In turn, (3.22) yields
8I‘(y - 35) -1, .
!
_ = 7 . 2
[Ty®(z —y)] =Im 25(@) (m™" +ixn) (3.23)
Analogously we have
s oy —x) . _ .

In what follows, we will see that the operator N plays an essential role
in the study of the first boundary value problem (it enables us to reduce
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the BVP to a Fredholm equation of the second kind with a weakly singular
kernel).

4. MATRIX M (z — y)

In this section, we will construct the special fundamental matrix which
reduces the second BVP to a Fredholm integral equation of the second kind.
We denote the matrix by M (z — y) and look for it as

M(y —z) =Re(l' — EglnoX)Y, (4.1)
where T is given by (2.13),
Ey = iE + B, (4.2)

E is again the unit matrix and E; is given by (3.5); the real matrices X
and Y will be defined later on.

Each column of M (z — y) is a solution to equation (1.4) with respect to
the variable x provided x # y.

Upon acting the operation T, on the matrix M (z — y) and applying the
equation (3.7), we get

o
T, M(z —y) = Im [(E +id)lno + 5% +is, Eyln UX] Y. (4.3)

0
9s(x)

We will try now to determine matrices X and Y in such a way that,
on one hand, the coefficients of singular terms in (4.3) would vanish (i.e.,
the expression (4.3) would involve only weakly singular terms) and, on the
other hand, the coefficient of the term %&) would be converted into the
unit matrix. These requirements lead to the equations

A+, E1X =0, (E— 5, - X)YV = E. (4.4)

Taking into account expressions for s, and E;, we get from the first
equation
pr 0 pz 0
0w 0 ps)f 0,

o
|

ps 0 p2 0
0 M3 0 U2
whence
N P
M2 —H3
X= 2A; ||—ps 0 H1 0 4,
0 — M3 0 1258
where

Ay = paps — 3 (4.5)
Later on, it will be shown that A; > 0.
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Further, (3.8) along with the equations

po(l— Ay) + psAs = po — 2A1my,
p2As + ps(l — Ag) = ps + 2A1ma,
ps(l— Ay) + piAs = ps + 2A1mo,
psAz + p1(1 — Ag) = 1 — 2A1ms,

yields
0 u2—2A1m1 0 — M3 —2A1m2
Y= 1 —//,2+2A1m1 0 ,u3+2A1m2 0 ‘ (46)
20 0 —u3—2A1m2 0 1 —2A1m3
u3+2A1m2 0 — U1 +2A1ms 0
Let us note that
1-4 0 —As 0
B 0 1-4, 0  —A
A=l 4 0 14, 0
0 —As 0 1-— Ay

Then the second equation of (4.4) implies

2— Ay 0 —As 0
0 2 — A1 0 _A2 _
4, 0 2-4, o |V7F
0 —As 0 2— A,
whence finally we have
2 — Ay 0 A, 0
1 0 2— Ay 0 A,y
Y= A || As 0 2 — A 0o |’ (4.7)
0 Az 0 2— A
where
Ay =(2—A1)(2— Ay) — Az As. (4.8)

Thus we have determined matrices X and Y uniquely. Substituting them
into (4.3), we get
g

) Ho
T, M(z —y) = Im (Elna+ EE)’ (4.9)

where

H, H, H> iH,
tHy —H; iHy —H>
H; Hs Hy iHy|’
tHy —Hs iHy —H,

(4.10)
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Hy = Bi(2—- A4) + B2A3, Hy; =BijAs + B>(2 - 4y),

4.11
H3:B3(2—A4)+B4A3, H4:B3A2+B4(2—A1); ( )

constants A; and B; (j = 1,4) are given by (3.9) and (3.10).

Throughout the paper, X and Y denote matrices determined by (4.6)
and (4.7), respectively. The matrix M (z —y) (see (4.1)) is a multifunction,
since matrices X and Y are not zero-matrices. In what follows, we will show
how to get rid of the multivalence of the matrix M (z — y).

5. GENERALIZED GREEN FORMULAS

Let u and v be four-dimensional vectors in DT. The equations (1.1) can
be written as follows

(Cu)1 = 810'11 + 820'12, (CU)Q = 810'12 + 820'52,

5.1
(Cu)3 = 810'111 + 820';[1, (CU)4 = 810'1’2 + 820'52, ( )

where the o}, , ... 0%, are the components of the generalized stress tensor
given by (1.6), (1.7) and (1.8). We note that the derivatives in (5.1) are
taken with respect to the coordinates of the point y = (y1,y2) (u and v are
functions of y and 0 = 8/dyx, k =1,2).

From (5.1) and (1.1) it follows that

(Cu)r =Pr(y), (Cwriz =1i(y), k=1,2, (5.2)

Multiplicating the k-th equation of (5.1) by vy, integrating over D¥ and
summing the results, we arrive to

/vCudyldyg = /v jjfudS— / ]’g (u,v)dy, dys, (5.3)
D+ s D+
where
> ’ ’ ’ ’ ’ ’ ’ ’
T (’LL,U) = 0’1161’01 + 0’2162’01 + 0’1261’02 + 0’2262’02 +
+ 01010 + 04, 02v] + 075010 + 0l, 090 . (5.4)
Here we have used notation
v =], ve =y, wv3=v], vy=0y. (5.5)
To give a more symmetric form to the expression (5.4), we set

0' =26, 0" =28, O1uy — Oy =263,
Oruy — Oauy = 2&y, Oruy + Oauy = 265, (5.6)
61U'2' + Bgu'l' = 256, w' = 257, w" = 258,
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1V} + Ohvy =21y, Oy + Dovy = 2,
v} — Ohvy = 2n3, O1v] — Dovy = 2y,

5.7
Blvé + 821)1 = 2775, 811)5 + 821)1' = 2776’ ( )
O1vh — Oavy = 2nm7, O1vy — Osvy = 2ns.
Now (5.6) and (5.7) yield

Oy =& +&, Ooup =6 — &,

alu’ll = 62 + 547 a2ul2/ = 62 - 547 (5 8)

61“’2 = 65 + 577 a2ull = 55 - 677 ’

Ovuy = &6 + &, Oruf =& — &s,

ovy =m +n3, Ovy =M — 13,

0oy =ma 4+ ns, Oovy =1 — 1, (5.9)

Q1vy =15 + 17, Oovy =15 — 17,
Dy =ne +1ns, Oa0) =15 — 1s.

Substitution of (5.8) and (5.9) into (5.4) leads to

T (u,v) = 2[2(hy +oa)6m + 2[2(d + As) + 23] (6172 + Eomr) +

2[ As)

[2(52 = A5) + 302)&mp + 2(2um1 — 30)(&m3 + &55) +

+ 2(2p3 — 223)(§ama + Eamz + Esme + Eoms) +

+ 222 — s22) (Eama + E6m6) + 2(—2X5 + 221)Ermr +

+2( ) (&g + Esmr) + 2(=2Xs5 + 52)Es7s- (5.10)

Note that 1}“‘ (u,v) is a symmetric function with respect to &, and ny
(k=1,8), ie

T (u,v) =T (v,u) (5.11)

Clearly we have (cf. (5.3))

/uC’vdyldyg = /uil}:vds - / T (v, w)dyr dys (5.12)

D+ S D+

Now (5.3) and (5.12) along with (5.11) imply

/(UCU —vCu)dy,dys = /(u Tv—vT u)ds. (5.13)

D+ S
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Let v and v be complex vectors and, in addition, v = w. Then :7“{ (u,m) =
T (@, u) and
/(uCﬂ—ﬂCu)dyldgn = /(u fﬂ—ﬂj}:u)ds. (5.14)
D+ S
Let now u be a solution to (1.4) and v = u. Then from (5.3) it follows
that

/ 1}: (u,u)dy1dys = /u fuds, (5.15)
D+ S
where
T (u,u) = 2[2(by — As) + 3016} +4[2(d + Xs) + #l6162 +
+2[2(ba — Xs) + 302165 + 2(2p1 — 20)(3 + &5) +
+4(2u3 — 33)(§360 + &586) +
+2(2u2 — 20) (6] + &) + 2(—2Xs5 + 501)EF +
+4(2X5 + 253)Er6s + (—2X5 + 0) 65 (5.16)
It is evident that i;“{ (u,u) is a quadratic form in variables &, ..., &s. The

necessary and sufficient conditions for T (u,u) to be positive definite read
2(by — As) + 221 > 0,
[2(b1 = Xs) + 5a][2(b2 — As) + 300] — [2(d + X5) + 53] > 0,
2 — 3 >0, (21 — 501) (22 — 502) — (2u3 — 53)° > 0,
—2X5 + 30 >0, (=2X5 + 501)(—2X5 + 52) — (25 + 563)> > 0.

(5.17)

If 56 =0 (i.e., 31 = 50 = sc3 = 0), then (5.16) represents the doubled
specific potential energy of elastic mixture at the point y

T(u,u) = 4(bi = Xs)&F +8(d + X5)&1&a + 4(b2 — X5)E5 +
+ 41 (€5 + &) + 8pa(E3€a + &) +
+dpa (€7 + €5) — 4Ns (& — &) (5.18)
Conditions (5.17) in that case read
bi—Xs >0, (b1 —Xs)(b2 — Xs) — (d+ X5)* >0, (5.19)
w1 >0, pgpe —,u§ >0, —A5>0.

In what follows, these conditions are supposed to be fulfilled since from
the physical considerations it is obvious that the potential energy is a posi-
tive function.
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Let us consider one more particular case where s is given by (3.12) and
(3.14). Then T= N, and we have

N(u,w) = 2[2(ar +b1) = 0 |& +4[2(e+d) + 50|66 +
2 4
220 +b0) = |8 + TG~ F (b + Eobo) +
2m1

+-———(§44—56)4-2(2a1--——)g7

+ 4(20 + A—O)f7fs +2(2a2 — A—O)fs (5.20)

due to (5.16).
Inequalities (5.17) now read as

(a1+b1)—A—0>0
m m1?
[ (a1+b1)—A—0] [ (a2+b2)—A—0] - [2(c+d)+A—0] >0,
ms3 1
A_0>0 A—0>0, 2@1—A—0>0 (521)

(M—ENM—E)@+E)W.

Let us first show that (5.19) implies (5.21). We begin with the proof of
the inequalities di > 0 and d» > 0 (see (2.2) and (2.3)).
We have
dy = aray — @ = (u1 — As)(p2 — As) — (w3 + Xs5)” =
= e — i — As (Vi — Vi2)® + 2(Viipz + ps)).-

Since pu1 2 —p3 > 0, we get — /i1 iz < p3 < \/papiz and /a1 iz + pg > 0.
Note that the inequality —A5 > 0 implies d> > 0. Quite similarly we have

= (b1 = Xs + 1) (b2 = Xs + o) — (d+ X5 + 3)* =

= (b1 = As) (b2 — Xs) — (d+ Xs)” + pip2 — p3 +
(x/uz bi =) = Vi (b2 = X5))” +

+2[V/pa(br = Xs) (b2 — As) — pa(d + Xs)],

whence, applying again (5.19), we get the inequality d; > 0. Due to (2.15),
we find

m =), e )

dq
ms3 _%(d_2+a1;;b1)-
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It is obvious that d; > 0 and ds > 0 yield a; > 0, a2 > 0, a; + by > 0,
as + bz > 0 and, consequently, my > 0 and m3 > 0.
Bearing in mind the equation m;ms — m% = Ay, we have

4Aodidy = 09 = (2&1 + bl)(2a2 + b2) — 20(0 + d)2 =
=dsy +dy + al(a2 + bg) + a2(a1 + bl) — 20(0+ d)

We can easily prove that
al(a2 + b2) + 02(01 + bl) — QC(C+ d) >0

from which Ay > 0 follows immediately.
By direct evaluation, we can verify that

ms m1 mo\2 _ do

(2= 5,) (o= 5) — (24 5) =35, >0
ms mi ma? _

[2(a1 +by) — A_O] [2(a2 +by) — A—O] - [2(c+ d) + A—O] _

— dl

T daAg

ms 1 2

20, — — = bs)d d
a“ Ao 2A¢(az + ba)dids {ar(a: +bo)d + ¢y +

+ a1 (az + b2) — c(c+ d)]’} >0,

1

2a1 +b) — 2 = ————{as(ar +by)dy + (c+d)’ds +

AO - 2A0a2d1d2
+ [az(a1 4 b1) — c(c+ d)]*} > 0.

Thus all inequalities in (5.21) hold.
Formulas (5.13) and (5.15) can be generalized to unbounded domains of
the type D~ if the conditions

lim wTvdS =0, Lm v T udS =0,
R—o0 R— oo
50, S0,
(0,R) ) (0,R) (5.22)
lim uT udS =0
R—o0
5(0,R)

are fulfilled, where S(0, R) is the circle centered at the origin and with the
radius R; we assume that (0,0) € DT and S(0, R) envelopes the domain
DT. Clearly, the conditions (5.22) hold if u and v meet conditions (1.14).
As a result, we have the following formulas for the unbounded domain D~

2 2

/(UCU —vCu)dy,dys = /(v Tu—uTwv)dS, (5.23)

D—- S
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/ T (u, u)dy1dys = — /u T uds. (5.24)
D- 5
We note that (5.13) and (5.15) remain also valid for such Dt which is a
bounded, multiconnected domain surrounded by contours Si, ..., Sp, Sm+1

1
(we assume that S,,11 envelopes all other contours); S = :'Zul Sk, is the

boundary of D*. The positive direction on S} is the one which leaves the
domain D¥ left-hand side.

6. GENERAL REPRESENTATION OF SOLUTION

We will start with the following assertion.

Let S € C'*P, 0 < B < 1, and let u be a regular solution
of the equation (1.1) in D¥. Then

u(e) = 5= [ (LT 8- ) )" - 2 - )T w)*}ds +
S
45 [ ¥ -0 dy dys, w € D, (6.1
D+

!

where ®(x — y) is the basic fundamental matriz and [fy O(y — )]
by (3.24).

1§ given

Proof. Let S(z,¢) be a circle centered at the point # € DT and with the

radius € > 0, and let the corresponding closed disk K (z,e) C D*. Denote

D. = D\ K (z,e). Obviously v(y) = ®9) (y—z) (j-th column of the matrix

®(y — x)) is a regular solution to (1.4) in D.. Now the equations
Cy@W(y—a) =0, Cu=1d(y)

together with (5.13) give

- / D (y — 2)i(y) dy: dy> =

D.
= [ [w* £, 89 - 2) - 80y — a)(F u)*]ds +
S
+ / [u(y) T,89(y—z)—3W(y—2)T uldS. (6.2)
S(z;e)

We need to calculate the following integrals

Olno

S



Applying the equation

9%u d%u ou
" [ (69132& B 32/232/1) dyr dy: = /% as,
D

S

we get
Olno 8andS:0.

ds +
9s(y) 9s(y)
S S(z;e)

Clearly, if y € S(z,¢), we have
Y1 — T =ECOSY, Yo — Xy =esing, dS =edp,
ni(y) = —cosp, ny(y) = —sine.

Therefore
Olno
dS = —idop,
ds(y) 7
0 7
7 dS = —2i exp(—2i¢p) dp.
5() o ds iexp(—2ip) dp
From the above results, it follows
Olno 0 T
dS = —2mi, / —dS =0. 6.5
95(1) 55() 7 63
S(z;e) S
Thus
Ji(z) =2mi, Jo(xz)=0, ze€D.. (6.6)

By (6.5), it can be easily proved that

‘ 7. &) (y — = —27ru;
;1_% u(y) Ty ®Y (y — 2)dS = —2mu;(x),
S(z,e)

lim [ @0 T udS =0.
S(z;e)
Now from (6.2) we get
- / V) (y — z)p(y) dys dy =
D+
= [lw* £, 89 - ) - 80y - 2)(F u)*]as -

s
—27u;(z), =€ DT,
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which completes the proof. H
If ¢ = 0, then (6.1) reads as

u(a:):% / { [Tytb(y - a:)]l(u)+ — oy — :I:)( 1}“( u)+}dS, reDt. (6.7)
s

Quite similarly we establish that for any z € D,

0= % /{[qu>(y — )] () —(y—2)(Tu) dS, zeD. (6.8)
S

The representations (6.7) and (6.8) hold for an arbitrary sc. Let s = sy
We apply the identity

Ov
Nu=m"'tZ— Nv=-— —. 6.9
u=m" o v m= 5 (6.9)
These relations have been obtained for an arbitrary matrix. In this con-
nection, if u = ReW, then v =Im W, i.e., W = u + iv.
Taking into account (6.9) and single-valuedness of ® and u, we get from
(6.7) by integration by parts

uw) = o [ {2 * + 2w ) s =
s
1 mi@F(y—x)mA u)t +i(v)"
= 27r5 I 25) [(u)™ +i(v)*]dS. (6.10)
Similarly we can write
v(z) = ;—;/Re af—(ry) m~ [(u)* +i(v)t]dS. (6.11)
Further, (6.10) and (6.11) yield
W(z) = 2_—731 %@_fs) m~ Y (W)*tdS, =€ DT, (6.12)
5
_ i ar(y — CIZ) m—l + z _
= 3 | o) ™ (W)tdS, weD". (6.13)

By quite the same way we can derive similar formulas for D~

W (z) =W(oo)—% %(y_)w)m—l(wrds, zeD™, (6.14)
S

W(z) = W(c0), =€ D*. (6.15)
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Equations (6.12), (6.13) and (6.14), (6.15) represent the generalized Cauchy
integral formulas in the theory of elastic mixtures.
Let 51 = 5¢0 = 53 = 0 and ¢ = 0. Then (6.1) reads
1
U(z) = Py / [T,®(y — a:)]’(u)+ - ®(y —2)(Tu)*dS, » € DT. (6.16)
5

Let, in addition,

51]' —Y2
. 5o o
(=P = |2 +os | 2L G=T5 (617)
04; Y1

where d;; is Kronecker’s symbol. Due to the equation Tycp(j) (y) =0, we
obtain

() = o / [T,8(y — o)) (y)dS, € D*.  (6.18)

s
Finally, let us note that the formula (6.12) has been derived for a regular
vector W, but nevertheless, it remains to hold true for a continuous vector
W in DT.
7. UNIQUENESS THEOREMS

Before going over to uniqueness theorems, let us prove

Let u be a regular vector in D and let

T(u,u) =0 (7.1)
with T (u,u) given by (5.18).
Then
u= (u/,u//), W =a +b <_372> , W' =a" + b <_$2> : (72)
T T
where o' = (a},a}), a" = (af,ay) and o, a}, af, af, b are arbitrary
constants.
Proof. We have from (5.18)
Bku} + Bjujc =0, Bku;’ + Bjujc’ =0, kj=12, (7.3)
wl — wll

due to (5.19). In turn, (7.3) yields [5]

W =a +b <—:L‘2> : o' =a" + b <—:L‘2> ’
1 T
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where af, a}, af, a4, b' and b" are arbitrary constants. Now the condition
(7.4) completes the proof. W

Now we can prove the following uniqueness results.

Let S € C'*tP .0 < B < 1. Then the homogeneous problems
(I)(jfo, have no nontrivial reqular solutions.

The general solution of the problem (II)S:O is represented by the formula
(7.2), while the general solution of the problem (III)E{O is

—X
u':u":a'+b' 2 .
T

The general solution of the problem (I)g, [(II)y,] reads u' = d,
ull — all (ul — ull — al)

Proof. Tt follows from (5.15), (5.24) (with » = 0) and Lemma 7.1 since
(uTw)* = 0 under the conditions of the Theorem. M

8. GENERALIZED POTENTIALS AND THEIR PROPERTIES

Let us introduce the following definitions.

The vector

u(w) =+ [ @ gt ds. (81)

where ®(xz — y) is given by (2.12) and g is a continuous vector, is called a
single layer potential.

The vector

u(z) =

N |~

/ [N,®(y — )] g(y) dS, (8.2)
S

where [V, ®(y — )]’ is given by (3.15) and g is a continuous vector, is called
a double layer potential.

The vector

uw) =+ [ 11,80 - 0] 9(0) dS. (83)
S

where [T, ®(y — z)]’ is given by (3.23) and g is a Holder continuous vector,
is called a double layer potential of the second kind.
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The vector

u(w) = 2 [ M@ - y)gty) ds. (5.4
S

where M (z — y) is given by (4.1) and g is a continuous vector, is called a
single layer potential of the second kind.

It is evident that all potentials introduced above are solutions to the
equation (1.4) in R?\S. These potentials have certain continuity and jump
properties when the point z either crosses the surface S or approaches some
point t = (t1,t5) € S from Q*. Those properties can be obtained very easily
since the kernel-functions of the above potentials are quite similar to those
of classical potentials of isotropic elastostatics [3].

Therefore we will only formulate final results.

A single layer potential defined by (8.1) is continuous on
the whole plane and

(L] = F9(0) + - [ Tidt - y)oy)ds. (55)
S

where the symbols []* denote limits on S from QF.

Let u be a single layer potential (8.1). Then
+ 1
[Nau(®]* = Fg(t) + - [ Nib(t - )g(w) dS (5.6)
5

hold for an arbitrary t € S.

Let u be a double layer potential given by (8.2). Then for
anyt € S,

[u(®]* = £0(t) + 5 [ [N,2( - 0] 9(w) dS. (8.7)
S

Let u be a double layer potential of the second kind given
by (8.3). Then for anyt € S,

[u(t)]i =+g(t) + %/ [T,®(y — t)]lg(y) ds. (8.8)
S
Let
u(e) = = [ M- y) - M)]g() a3
S
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and let

/ g9(y)dS = 0. (8.9)
S

Then u is continuous in Q7.

L

et
u(e) = = [ (M- 9) - M@)]g()as
S

and let (8.9) be fulfilled. Then u is continuous in Q.

Let u be a single layer potential of the second kind. Then
foranyt e S,

[Ta®)]* = F9(0) + - [ TiM (@ - y)g(y) dS. (8.10)
S

Let u be a single layer potential (8.1) with the density g
satisfying (8.9) and let u be a constant vector in Q. Then u is the same
constant in the whole plane.

Proof. Let u(z) = a in QF, where a = (a’,a") is a constant vector. Clearly
T,u(z) = 0,z € QF. From Theorem 8.5, it follows that (u)* = (u)” = a
and (Tu)™ — (Tu)™ = 2g. Now (Tu)™ = 0 implies

/(u)—(Tu)—ds - 2a/gds ~0,

s s
which together with (5.24) completes the proof. W

Let a single layer potential of the second kind be a constant
in DY, In addition, if (8.9) is fulfilled, then this potential is equal to the
same constant in the whole plane.

Proof. Let u(z) = a,x € D", where a = (a’,a") is a constant vector. Then
Nu =0 and v(z) = b due to (6.9), where b = (b',0") is a constant vector.

Taking into account the equation (Tv)* — (Tv)~ =0 we get (Tv)~ = 0.
Further, the condition (8.9) implies that v(z) is bounded at infinity and
therefore v(z) = b,z € D™, due to (5.24) with s = 0. Now from (6.9) it
follows that u(z) =a,z € D-. W

Let u be a single layer potential. If u is a constant vector
in DV and, in addition,

(W' +w")g=0 =0, (8.11)

then the potential is constant on the whole plane.
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Proof. We assume, as above, that 0 € Dt and ' and w” are calculated
by formula (1.8) and correspond to the single layer potential (8.1). Since
u(z) =a, z € D™, we have (Tu)~ = 0. Now (8.5) yields

/gdSzO.

s
Further, note that
/(u)+(Tu)+dS = —2a/gd5 = 0.
s s
Applying formula (5.15) with s = 0, we deduce u = (u',u"), where
w=a+b <_$2> , u'=d" +0 <_$2> , T€DT,
T Z1

whence
W+ w' =20
Finally, bearing in mind (8.11), we get b’ = 0 and

which completes the proof. H

If the single layer potential of the second kind u is constant
in D™ and the equation

(W' +w")y=0=0 (8.12)
holds, then u is constant on the whole plane.

Proof. Let u(x) = a,z € D~. Then (Tw)~ =0 and, due to (8.10),

/gdS:().

S

On the other hand, we have Nu = m™'2% =0 in Q~, whence

v(iz)=¢, xz€D”
follows.

We also have (Tv)™ — (Tv)" =0, ie.,, (Tv)" = 0. By making use of
(5.15) (with » = 0) we arrive to

o' =a + b <—:L‘2> , o =a" + <—:L‘2> ,
T T

which together with (8.14) gives b = 0. Now v' = &' and v" = da" yield
u=c,u"=c"inDT. R
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9. EXISTENCE THEOREMS OF PrOBLEMS ()7, AND (IT)g

g, f o.r We look for solutions to the problems

@D s and (II), - in the form of a second kind double layer potential and a
single layer potential, respectively. Then we arrive to the singular integral
equations

9)+ 3 [ (1,20~ 0)'gw)as = 1), (91)
S

h(t) + % / T,0(t — y)h(y) dS = F(2), 9.2)
S

where g and h are unknown Holder continuous vectors — densities of the
potentials

u(o) = uleig) = 1 [ 11,80 - ] 9(o) dS, 93
S
V(z)=V(z;h) = %/(P(a: —y)h(y) dS. (9.4)
S

The kernels of the singular integral equations (9.1) and (9.2) are given
by (3.23) and (3.7), rexpectively. They are mutually adjoint kernels and
therefore (9.1) and (9.2) are mutually adjoint singular integral equations.
Now we show that they are of normal type, i.e., their indices are equal to
zero.

We begin with the equation (9.2). Due to the general theory [6], the
index is calculated by the formula

1 det(E +iA)

=g argm . (9.5)
By the direct evaluation, we get
det(E +iA) = det(E —iA) =
= 400A1[(2 — A1)(2 — Ay) = Ax A3]; (9.6)

here Al, AQ, A3, A4, Ao, Al are given by (39), (313), (45)

The positive definiteness of the potential energy implies that Ag > 0,
Ay >0and (2—A41)(2— A4) — Ay A3 > 0. Therefore the index (9.5) is equal
to zero. Thus the left-hand side of the equation (9.2) (and consequently
of (9.1)) is a singular integral operator of normal type and we can apply
Fredholm theorems to them.

Let us prove that the homogeneous version of the equation (9.2) has only
the trivial solution. Indeed, let hg be some solution to it. Then for the
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single layer potential V(z, ho) we have: [T;V (¢, ho)]” = 0. We can also
easily establish

/ho ds =0, (9.7)
S

which implies that the corresponding single layer potential vanishes at in-
finity. Further, from (5.24) with s¢ = 0 and the condition [T}V (¢, ho)]” =0
it follows that V(z,ho) =0, z € D, whence [V (¢, ho)]™ = [V (t, ho)]T = 0.
Now (5.15) with » = 0 yields V(z,ho) =0, z € D*.

Thus V(z, ho) vanishes on the whole plane and therefore hy = 0. Due to
the Fredholm alternative we conclude that the nonhomogeneous equation
(9.2) is solvable for an arbitrary Holder continuous vector F(t). Clearly, the
same is valid for the equation (9.1).

From the solvability of the equations (9.1) and (9.2) it follows that the
solutions of problems (I)E{ s and (II)g  are representable as second kind
double layer and single layer potentials, respectively (see (9.3) and (9.4)).
From the general theory we conclude that if S € 0275 and f € C'1%(5),0 <
a < B < 1,then g € C'T(S), where g solwes the equation (9.1). Therefore
the double layer potential of the second kind with density ¢ is a regular
vector.

o0.f (T, r We look for solutions to the problems
(D)g.; and (IN)§  in the form of the second kind double layer potential
(9.3) and the single layer potential (9.4), respectively. We obtain then the
following equations

~ o)+ > [ (120 - 0] o) dS = 100 98)
S

_h(t) + % /Tt<I>(t — )h(y)dS = F(t), 9.9)
S

where g and h are Holder continuous unknown vectors.

In quite the same way as in the previous subsection, it can be proved
that (9.8) and (9.9) are mutually adjoint singular integral equations with
index equal to zero (note that the corresponding determinants are the same
as for equations (9.1) and (9.2)).

From (6.18) it follows

o0+~ [ e -0]'sDwds =0, j=T5 ©.0)
S

where o) are given by (6.17).

It can be easily proved that the homogeneous version of the equation
(9.8) has a 5-dimensional null-space. Clearly the same is valid for the ho-
mogeneous version of the equation (9.9). Therefore the nonhomogeneous
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equations (9.8) and (9.9) are not solvable for arbitrary right-hand side f
and F.
Let us consider the equation

—h(t) + % /Tttb(t — y)h(y) dS+
S
1

+—Tt<I>(t)-/h(y) ds + 1

o T, (t) - M =F(t), (9.11)
S

where

Bt grad 6

v = <—“§Z’;3 grad 6

0 gradlnp
T () = — | 750 8™ . p=/t] +13,
t () (%(t) gradlnp 4 1 2
M= (3V2'($;h) _ OV (z;h) + oVy'(w;h) 3V1"($;h)) _
- or, 0xo or, 0xy =0

:%/ [(61 +€2)(—%h1+%h2) +
S

+(62+63)(—%h3+%h4)]d5’, R=\/y?+12. (9.13)

The constants ey, es, e3 are defined by (2.3), while Ay = pyps — p2 > 0.
From (9.11) by integration it follows

/ h(y) dS = / F(y) dS, (9.14)
S S

t
> , 0 =arctg t—2,
1
(9.12)

M = / [y1 F(y) — y2 F1 (y) + y1 Fu(y) — y2F3(y)]dS. (9.15)
5

Therefore if the right-hand side of (9.11) is orthogonal to all solutions of
the adjoint homogeneous equation, then

/FdS ~0, (9.16)
S

/ [y1(Fs + Fy) — y2(F1 + F3)]dS = 0. (9.17)
S

In turn, if the conditions (9.16) and (9.17) hold, then (9.14) and (9.15)
imply

/ h(y)dS =0, 9.18)

S
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M =0. (9.19)

Thus if (9.16) and (9.17) are fulfilled, then an arbitrary solution h(y) of
(9.11) solves at the same time the original equation (9.9).

Now we will prove that the equation (9.11) is always solvable.

To this end, let us consider the corresponding homogeneous equation
(i.e., F = 0) and show that it has no non-trivial solutions.

Let hg be an arbitrary solution of the homogeneous equation under con-
sideration. Since F' = 0, conditions (9.18) and (9.19) are fulfilled and the
above homogeneous equation corresponds to the boundary condition

[Tve(®] " =0, (9.20)

where Vy(z) = V (x, hg) is defined by (9.4).
Further, (9.20) and the uniqueness theorem for the problem (II)}, yield

Vo(z) = (V5. Vo)),

where
W@ =4t (), W =den (7). @2

and af), af are arbitrary constant vectors while b}, is an arbitrary scalar
constant.
Taking into account the equation My = 0 and (9.21), we get

!

Volz) = <Z,0,> , zeDt. (9.22)

0

Thus we have obtained that the single layer potential is constant in D+
and (9.18) holds, in addition. Applying Theorem 8.12, we conclude

Vo(z) = (Zg,) , zE€D". (9.23)
Since
[TVo ()] = [TiVo(t)] " = 2ho(2),

we easily obtain that ho(t) = 0.

Thus the homogeneous version of the equation (9.11) has only the trivial
solution. Consequently the nonhomogeneous equation (9.11) has only one
solution h(t) for an arbitrary right-hand side F. If conditions (9.16) and
(9.17) are fulfilled, the same h(t) is a solution to (9.4) as well. Finally we
note that the problem (II)[{ 7 is solvable if the conditions (9.16) and (9.17)
are satisfied. In this connection, the partial the displacements are defined
to within the summands

a' + b} <—a:2> and a" + b} (—a:2> ,
T T
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where a’ and a” are constant vectors while b} is a constant scalar. The
stress vector is defined uniquely.
The adjoint equation to (9.11) reads

~o)+; [ 180 - 0] gl ds+

S
s [ MA@ s+ - X0 - L=f0. 20
S
where
X(t) = <Ez; izzg giggg) , 0 =arctg z—f, (9.25)

Oub, Ouf Oui Oulf 1 /
L= - = — =— 7,7 dS 9.26
(8271 Ozs + o1 83:2)95:0 T /[ Y (y)] 9(y)ds, ( )
5
here u = (u',u") is given by (9.3). The equation (9.24) corresponds to the
exterior limit on S of the potential

u() =+ [ 18- 0] o) dS +

S
+ %/ [T,®(y)] g(y) dS + iX(a:) . L. (9.27)
S

It is evident that the homogeneous version of the equation (9.24) has
only the trivial solution since its adjoint possesses the same property. This
results that (9.24) is solvable for an arbitrary right-hand side f € C'**(S)
and g € C'*%(S), povided S € C?**P, 0 < a < # < 1. Therefore the vector
u defined by (9.27) is a regular solution of the problem (I); .

Thus we have studied the solvability of the problems (I)O% s and (II)O% = by
reduction the original boundary value problems to corresponding singular
equations.

10. AN ALTERNATIVE APPROACH TO THE PROBLEM (I)(jff

In this section, we will reduce the problems (I)(jf s to second kind Fredholm
equations (with weakly singular kernels).

First we consider the problem (I)E{ s and look for its solution in the form
of the double layer potential

u(w) =+ [ [N~ o)]'9(0) d5, (10.1)
S

where [N,®(y — z)]' is given by (3.15) and the continuous vector g is an
unknown density.
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Due to Theorem 8.7, we get the equation on S

o0+ [ New-0]st)ds =0, tes, (102

S

where f(t) is a given vector.
Let us prove that (10.2) is solvable for an arbitrary continuous vector f.
The corresponding adjoint equation reads

/Nt<I> t —y)h(y)dS = 0. (10.3)

In what follows, we prove that the latter equation has only the zero
solution. As usual, we denote by ho(t) an arbitrary solution of (10.3) and
construct the single layer potential

Vo) =+ [ @~ p)ho(y) dS.

S

It is obvious that

[NVo(8)] ™ =0, /ho(t) ds = 0.

S
Applying formula (5.25) with sc = sex (in D7), we get
Vo(z) =0, z€D™.

Thus the potential Vy(z) vanishes in D~ and in addition [ ho(t)dS = 0.
s
Since [N:Vo ()]t = [NeVo(t)]™ = 2ho(t), we conclude

S

Now by (5.15) with 3 = sy, we easily get Vo(z) = 0, x € DT, whence
ho(t) = 0 follows directly.

From the above results it follows that the equation (10.2) is solvable for
an arbitrary continuous right-hand side f.

It can be easily proved that, if S € C'*# and f € C'**, 0 <a < B <1,
then g € C17(S), and the corresponding potential (10.1) is a regular vector
(note that the tangent derivative of the kernel of the equation (10.2) is a
Holder continuous function on S).

Let us now consider the problem (I); ;. We look for its solution as

u@ =2 [ N8 - o]'s)ds+ 5 [ [N,80) gw)ds, (10.9

S S
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which reduces the boundary value problem to the second kind Fredholm
equation on S with respect to g

~o0)++ [ N30 - 0]'9lw) ds+
S

+% [N, ®(y)]'g(y) dS =£(t) (10.5)
S

with f given on S.
We will show that (10.5) is uniquely solvable for an arbitrary f. To this
end, we consider the corresponding adjoint homogeneous equation

/Nt (t—y )ds+iNt /h )AS = 0. (10.6)

Let hg be some solution to (10.6). From (10.6), by integration we obtain

/ho(y) ds = 0. (10.7)

S

But the equation (10.6) then corresponds to the boundary condition

[N V()] =0, (10.8)
where
Vo (x) = % / B(z — y)ho(y) dS. (10.9)
S

Now (5.15) with s¢ = s¢x implies
Vo(z) =¢, x€ DT,

where c is a constant 4-dimensional vector.

The latter equation together with (10.7) and Theorem 8.12 yields Vp(z) =
a,x € D™, where a is a constant vector.

Now again applying the equations [NV ()]~ — [N¢Vo(t)]T = 2ho(t) and
[N:Vo(#)]T = 0, we conclude ho(t) = 0.

Thus (10.6) has no nontrivial solutions and therefore (10.5) is solvable
for an arbitrary continuous right-hand side vector.

Note that, if S € C?>*7 and f € C't%(S),0 < @ < B < 1, then g €
C1*2(S) and, clearly, the vector u defined by (10.4) is regular.
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11. AN ALTERNATIVE APPROACH TO THE PROBLEM (IT)Z

As in the previous section, here we will study the problems (II)& r by
reduction to the second kind Fredholm integral equations.
First we consider the problem (II)& - We look for the solution as

u(z) = 1 / [M(a: —y) — M(—y)]g(y) dS, zeDT, (11.1)

™
S

where M (z — y) is given by (4.1) and g is a continuous unknown vector.
By Theorem 8.11, we get

~g()+ - [ TiM(t - y)gly) as = F(o). (11.2)
S

The adjoint (homogeneous) equation reads

—h(t) + % / [T, M (y — )]'h(y) dS = 0. (11.3)
S

It can be easily proved that the equation (11.3) has only 5 linearly inde-
pendent solutions

dij —t2
W@y = | %2 | 455, | B =1 11.4
(t) - 63]‘ + 57 —ty y J = 75' ( . )
(543' 3]

Therefore the equation (11.2) is not solvable for an arbitrary F'.
Let us consider the following equation

1
~g0)++ [ Tt y)gly) ds+
5
1 1
+%TtM(t) /gdS+ ETt\IJ(t)M =F(t), (11.5)
S
where T3¥(t) is defined by (9.12), while

8.271 81:2 8.271 81:2 v=0 =

1 Y2 Y1
:W—AQ/[_ﬁ(thl + Boh3)+ﬁ(A0h2+Boh4)]dS, (11.6)
5

(6u2 6u1 a’LL4 6“3

Ay = (2 — A4)(€1 +€2) + A3(62 +€3),

By = As(er +e2) + (2 — A1) (e2 + e3). (11.7)

Note that in (11.6) v = (u1,...,uq) is given by (11.1).
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From (11.5) it follows that

/gdS = /FdS, (11.8)

M = / y1(Fs + Fy) — yo(Fy + F3)]dS. (11.9)
s
The conditions
/FdS =0, (11.10)
/ [yl(F2 + Fy) —ya(F1 + F3)]dS =0 (11.11)

S

are necessary for orthogonality of the right-hand side vector F' and vector-
functions ¢, j = T1,86.
If equations (11.10) and (11.11) hold, then (11.8) and (11.9) imply

/gdS =0, (11.12)
S
M =0, (11.13)

whence it follows that each solution g of the equation (11.5) with conditions
(11.10) and (11.11) at the same time solves the equation (11.2).

Now we will show that (11.5) is solvable for an arbitrary right-hand side,
i.e., we have to show that the corresponding homogeneous equation has no
nontrivial solution. In fact, let go be some solution to that homogeneous
equation. It is evident that the conditions (11.12) and (11.13) are fulfilled,
since F = 0. But then the equation (11.5) coincides with (11.2) (with
F =0); therefore we have

[Tyuo(t)] " =0, (11.14)
where ug(z) is given by (11.1) with go instead of g.
Applying (5.15) with 3 = sy and (11.14), we get
uo(w) = (up(x), ug (x)),
where

) =aiy + o (7).

T

—x
Ug(l") = ao blllo < 2) )

T

(11.15)

af, ay are arbitrary constant vectors, while b, is an arbitrary scalar con-
stant.
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Due to (11.15) and (11.13), we arrive to

whence by the use of uo(0) = 0, we get
up(r) =0, x€DT.

Thus we have obtained that the single layer potential of the second kind
vanishes in D" and the condition My = 0 holds, in addition (cf. (11.13)).
Now by Theorem 8.13 ug(z) = ¢, € D™, where cis a constant vector. From
the above results along with the equation [Tyug ()]~ — [Tiuo(t)]T = 2g0(t),
we have go(t) = 0. Thus the homogeneous equation corresponding to (11.5)
has only the trivial solution. As a result, we have that (11.10) and (11.11)
are necessary and sufficient conditions for the nonhomogeneous equation
(11.2) to be solvable.

Now we go over to the problem (II), . We look for the solution in the
form

/M (¢~ )g(y) dS + <1>( Je, (11.16)

where

K2 — MB
gradln p SN
\I’(QZ') = (Nl 3 gradlnp> pP = Z’% +£L'%, Al > 0, (1117)

61)2 6’[)1 61)4 8’[)3
=55 +t5- 5" 11.1
(821‘1 Oxs + o0x, 0z / z=0 ( 8)

while the vector V is defined as follows: if M(z —y) = ReT'(z — y),

u(z) = %/Re f(a: —14)g(y)dS, (11.19)
then

v(z) = 1 /Imf(x —y)g(y)dS. (11.20)

™
5

From the last equation and (4.1) we have
T(z—y) = [(z —y) — EglnoX]Y.

where the matrices X and Y are given by (4.6) and (4.7). Obviously, v(z)
and u(z) solve the homogeneous equation (1.4) for z ¢ S.
Let us calculate TW (x):

TW (z) = % /TmM(a: —y)g(y)dS + % T.®(x)e, (11.21)

S
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where the matrix T, M (z — y) is given by (4.9), while

o 0 grad0 _ T3
T,®(z) = F5(2) (grad0> , 0 =arctg o (11.22)

Applying properties of the single layer potential of the second kind, we
get from (11.21)

1 1
g(t) + - /TtM(t —y)g(y)dS + yp T, ®(t)e = F(t), (11.23)
s
where F' is a given vector.
Now we will prove that the homogeneous version of (11.23) has only the
trivial solution. Indeed, let go be some of its solution. Then we easily get

/go ds = 0. (11.24)
S

In turn, (11.24) along with the uniqueness theorem for the problem
(I1)g g, implies

1
Wo(z) = uo(x) + i ®(z)eg =0, ze€D™, (11.25)
whence by (6.9) and (11.25) it follows
1
vo(z) + e U(x)eg =0, ze€D, (11.26)
where
H2—p3
_ (BFF gradl
) = <—“§;E‘3 grad 0) ’

6 is given by (11.22).
The equation (11.26) yields

1 (%I) gradln p

TUO (z) T dr m grad In P

> eo=0, z€D". (11.27)
4

Using the equations [T'vo(t)]T = [Tvo(t)]” = Two(t) and passing to limit
in (11.27), we arrive to

1 %(t)gradlnp B R
Tvo(t)—ﬂ <8sa(t) gradln p =0, teSs, p =/t] + 5.

The last equation and

/ {tl [(TU0)2 + (TU0)4] —t2 [(TU0)1 + (TU[))3] }dS =0
S
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result
g0 = 0. (11.28)
Then from (11.25)

uo(x) =0, z€D™, (11.29)

whence
0 = Nug(z) =m™* 61}(;21:)‘

Consequently

vo(z) =C, =z € D7, (11.30)

where ¢ is a 4-dimensional constant vector.
Due to the above mentioned properties of the potential vy (), we get

(Two) = (Two)" =0. (11.31)
Now applying (5.15) with s = 0, we obtain
2y
a' T
Uo(a?) = (a,,> + v _:11:2 , T € DT,
T
Taking into account (11.18) and (11.28), we conclude
Ep = 4y’ = 0,
!
vo(z) = <all> , T € D*.
a
Therefore
!/
up(x) = (5,,) , ze€DT.
We recall
[Tuo(t)] ™ = [Tuo()]" = 2g0(t),
which together with [Tuo(t)]™ = 0 leads to go(t) = 0.
Thus the homogeneous equation corresponding to (11.23) has no non-

trivial solution and therefore the nonhomogeneous equation is solvable for
an arbitrary right-hand side. Note that if the condition

/FdSzO
s

does not hold, then the single layer potential of the second kind with density
g will not be bounded at infinity.
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12. SOLUTION OF THE THIRD BOUNDARY VALUE PROBLEM

In this section we will investigate the third boundary value problem for-
mulated in Section 1. We reformulate the problem in question as follows:

[ (1) = wjea (D] = f5(0),

9 ) (12.1)
{[Tu®)], + [Tu(t)],,,}"dS = fisa(t) +¢;, tES,

8§

—~

o

where ¢;, j = 1,2 are constants.

We will consider only the interior problem. The exterior one can be
treated quite similarly.

We look for the solution in the form

u(w):%S/ImaSL(y)(Elna—gg) X

g+ aog + E1Boh + i(E1v,9 + doh)
. dS 12.2
< aog + E1foh 4+ i(Ei1v0g + doh) ’ (12.2)

where g and h are two-dimensional unknown (Holder continuous) vectors,

0, 1

Ey = H_L oll (12.3)
ao, Bo, Yo, do are constants:
bo= 2= ms | (mtps)26-0) 50 26-a
D 2a-BA T 2B—p) T 4BB-a)
vy = T2 = s ) '
"T20a-p)A  28(a—B)" " 4B(B—a)
with
_ my +m3 — 2may _
“= Ao » B=mt it 2, (12.5)

_ 2,
Ao =mymz — mg;

all parameters involved in (12.2) are defined in Sections 1 and 2.
From (12.2) we get

+ _ (9+aog + E1Boh l/ 9 _¢to
() —< cog s Buoh ) 7 ) Mgy (Blno = 57)
S

<g + aog + E1fBoh + i(E1yog + 50h)> ds (12.6)

aog + E1Boh + i(Ey1v0g + doh)
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(B + doh + aog + E1foh
+70 1 179 T dolvy g 0g 150
/ (Tu)"dS =m (Eﬁog + 50h> N < apg + E1Boh > +

a

1 0 1, €T
+—/Reas—(y)(—m +'L%N)(E1HO'—§—) X
S

g+ apg + E1foh + i(Eivog + doh)
. ds. 12.7
< aog + E1fBoh + i(Ei1v0g + doh) (12.7)

Further, (12.6) and (12.7) along with (12.1) and (12.4) yield

S S

where K;; are known 2 x 2 matrices with weakly singular elements, while

fi E
f <f2 ) f4
It can be proved that the system of Fredholm equations (12.8) is solvable

in C'*+2(S) for arbitrary right-hand sides f; € C'T(S), j =1,4, S € C?*F,
0<a<p<l

13. EXPLICIT SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR
CONCRETE DOMAINS

In this section, we will explicitly (in quadratures) construct solutions to
the above boundary value problems for a half-plane, circle and exterior to
circle. We will essentially use the results obtained in the previous sections.

Let us consider the first boundary value problem for a half-plane.

Let D denote the upper half-plane (z2 > 0). Clearly the boundary of D
is 21 axis. Let us choose the exterior unit normal n = (0, —1) and the unit
tangent vector 7 = (1,0).

Let us look for the solution to the first boundary value problem in the
form of a double layer potential

/ [Ny ®(y — 35)];,2:09(211) dy1, (13.1)
where the matrix [V, ®(y — z)]' is defined by (3.15).

Taking into account the properties of the double layer potential, we arrive
to the integral equation

3=

u(z) =

oo

san)+ [ N =2y 9l dn = Fla).

— 00
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It is easy to check that [N, ®(y—z)];,—o = 0, which results g(z1) = f(z1).
xQZO
Therefore we have the following formula for the solution of the original

problem

1 T d £z — Y1
e [El ) - < ] dyr, (132
u@) =7 [ 2otm B - - 5= g dn. (132)
—00
where z = 1 + ix>.
Now let us consider the second boundary value problem. We look for the
solution as a single layer potential of the second kind, which leads to the

integral equation

o0

—g(z1) + % / Ty M(z — y)|y2=%,g(y1) dyr = F(z1),

ro=
— 00

where F(z1) = (Tu)*. Here also we have T, M (z —y)|+=0, = 0, and, clearly,

y=0
g(x1) = —F(z1).
Finally, for the solution to the second boundary value problem, we have

u(z) = —% / Re [[ — Eoln(z — y1)] f(y1) dy1.

The stress vector in this case has the form

1 [ d H 7-
Tu(z):—;/d—xl[Eln(z—yl)-i—EZ_Zi]f(yl)dyl. (13.3)

In quite the same way, we can construct the solution to the third bound-
ary value problem in D. The solution reads

o]

1 d EZ—W1
= — —Im |Fln(z — - =
u(®) m / dyy m[ n(z =) 2z —yl] %

— 00

f+aof+ EiBoF +i(Eivof + 6o F)
* < aof + E1BoF +i(Eiyof + 0o F) )dyh (13.4)

wyt -t =r= (1) r= (%),

and f1,..., fs are given by (12.1).
Thus for the first, the second and the third boundary value problems we
have obtained the Poisson type formulas.

where
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We note that in the above formulas, we assume the following conditions
to be fulfilled at infinity

a b
MR

where a, b, c and d are constant vectors and a > 0.

Let us now consider the first BVP for a circle centered at the origin and
radius R.

First let us note that

f=c+ (13.5)

Im(lna— %mg) —0, =0 (13.6)

B
9s(y)

if both points belong to the circle.
Indeed, we have:

t; = Rcosvy, ty = Rsiny, y; = Rcosy, ys = Rsingp,

(§+<p+¢) _Tte+y
2 2 N 2 ’

0 = arctg Y2712 arctgtg
Y1 — 21

0 1 1 d/m+4
— (- =) = = — =
8sy)( 2"0) Rdcp( 2 ) 0,
A % = oilntot) 4 milotv) = (g=iT 4 )emilet¥) —
o
Further we look for the solution to the first BVP as
1 0 1 e/ Z
= [m-"—|E(lho—=In¢)— (2 +2 13.
u(z) 7r/ mas(y)[ (na 5 nC) 2(0 + C)]g(y)ds, (13.7)
s

where g is an unknown vector, ( = y; +iys = Re®, 2 = pe'¥, p = \/2? + 22
(see also (3.16) and (3.17)).

It is obvious that the additional summands to the double layer potential
(see (13.7)) do not cause difficulties, since they are solutions to the differen-
tial equation under consideration and represent vector-functions continuous
up to the boundary of the disk. Passing to limit as  — ¢, from (13.7) we
get

1 1 Tz
9t)+ = /Im%(y) (o - SIn¢) - %(; + Z)]g(y) ds = f(t).
s

The last equation together with (13.6) implies g(¢) = f(¢). Now (13.7)
yields (the Poisson type formula)

A
de (¢ —2)

u(z) flp)de, (13.8)

Il
| —
O\j
&=
Iav)
no
|
bl\?
+
™
el
|
)
N
S
—
=
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where
r? = p? —2pRcos(p — ) + R?, (= Re, z=pe'.

Next we consider the second BVP for the same circle as above. We look
for the solution as

u(z) = %/Re(f — EylnoX)Yg(y)dS, (13.9)
S

where ¢ is an unknown vector,

~ n/oc z
I‘:mlna+z(;+z), (13.10)

other parameters involved in (13.9) and (13.10) are defined by (2.14),(2.15),
(4.2), (4.6) and (4.7). The representation (13.9) and the boundary condition
of the second BVP lead to the integral equation with respect to g:

o Z

—g(t) + %/%(t)lm [Elna-l— %(; + E)]g(y) ds = F(t).
S
By (13.6), we get
~90) + o= [ ae)do = F(w),
0

whence

g(W) =—-F{) +c (13.11)

follows with an arbitrary constant vector c. Clearly the solution to the
integral equation exists if the following conditions hold

[Faema=o, =15,
S

where ¢/)(t) are determined by (6.17).
Substituting (13.11) into (13.9) yields

u(z) = % / Re(EplnoX — )Y F(y)dS.
S

The corresponding stress vector reads

27

1 d H
Tu(x) = —;/@Im [Elna-{—E(
0

| Qf

~+ %)]F(gp) dp. (13.12)



103
The solution (Poisson type formula) to the third BVP can be obtained
in the same way. It reads as
1 E(0 Z

u(z) = ;S/Im asa(y) [E1n0_5(5+6)] X

f+aof + EBoF +i(Evyof + 6o F)
¢ < aof + E1BoF +i(Eiyof + 0o F) ) ds, (13.13)

where
=y -y, = (1),
fi

Finally we treat the BVPs for the exterior domain to the above circle.
Let us first consider the first BVP. As above, we have

5} 1 7
——Im(lno— =1 = —+=2= 13.14
as(y)m(na 2n<) 0, Z+>=0 (13.14)
if the points are on the circle.

We look for the solution of the first BVP in the following form

u(z) = %/Im 836(;1/) [E(lna - %ln() - %(g + g)]g(y) ds, (13.15)

where g is the unknown continuous vector. Here the additional terms again
facilitate the procedure of solution. Indeed, the above representation leads
to the integral equation

_g(t)—{—%s/lmasi(y)[l?(lna— %lng) —%(g—l—g)]g(y)dS:f(t),

whence ¢(t) = —f(t) follows. Finaly we get the following Poisson type
formula for the first BVP in the exterior to disk

L TR e, o, d 1
u@) = — / [P+ 50 = B L] 1) do. (1310

The solution of the second BVP is respesented as

u(z) = %/Re(f — EylnoX)Yg(y)ds, (13.17)
S

with the unknown density g and

f:mlna-{—g(g—kg).
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The boundary condition and the representation formula (13.17) imply
the following integral equation

g(t) + % / %(t)lm [Elna + %(g + g)g(y) dS = F(t).
S
Now according to (13.14), we have
27
96) + 5= [ ato)do = Fw),
0
whence
27
90) = F) - 5 [ Fo)dy.
0
If the displacements are bounded at infinity, then we have
2
/chp =0.
0
and, finally,
g9(¥) = F(¢).

These results lead to the following formulas (see (13.17))

u(z) = %/Re(f — EylnoX)Y - F(y)dS,

5
27 -
Tu(z):%/%lm [Elna-{—%(%—l—g)]F(g@)d@

0

Quite samillary we can solve the third BVP for the exterior of disk. The
final expression for the solution reads

1 0 e (
u(z)—;/lmas—(y)[—Elna+§(;+;)] X
s
" <f+a0f+E1,60F+i(E1’Yof+6OF)> "
aof + E1foF +i(Eryof + doF) ’
where
f= @) - "y Fz(ﬁ)

Other applications of the Fredholm integral equations, obtained in the
present paper, will be treated in the forthcomming publications of the au-
thor.
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