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Abstract. The boundary value problem
de(t) = dA(t) - f(t,(t)), xi(t;) =wi(z) (i=1,...,n) (1)

is considered, where A : [a,b] — R™*" is a matrix-function with of compo-
nents bounded variation, f is a vector-function belonging to the Caratheo-
dory class corresponding to A; t1,...,t, € [a,b], x = (z;)l_; and ¢1,...,0p
are the continuous functionals, in general nonlinear, given on the space of
all vector-functions of bounded variation. The sequence of problems

do(t) = dAn(t) - fu(t,z()), Zi(tim) = @im(z) (i=1,...,n) (1)
(m=1,2,...)
is considered along with (1).

Sufficient conditions are given which guarantee both solvability of the
problem (1,,) for any sufficiently large m and convergence of its solutions
as m — +oo to the solution of the problem (1), provided this problem
is solvable. Difference schemes of numerical solutions for the multipoint
differential and difference problems are constructed.
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§ 1. STATEMENT OF THE PROBLEM AND FORMULATION OF MAIN
REsuLTS

Let t1,...,t, € [a,b]; Ao = (aiko)i4=; : [a,b] = R™™ be a matrix-
function with bounded variation components; a;ro(t) = a1k (t) — a2ir(t),
where aj;; is a function nondecreasing on every interval [a,t;[ and |¢;,b]
for j € {1,2} and i,k € {1,...,n}; let AU(t) = (ajik(t))zkzl (j =1,2);
fo = (fio)l=y : [a,b] x R — R™ be a vector-function belonging to the
Caratheodory class corresponding to the matrix-function Ag, and let ; :

BVS([a,b],R”) — R (i = 1,...,n) be continuous functionals, in general
nonlinear.
For the system of generalized ordinary differential equations
dz(t) = dAo(t) - fo(t,z(t)), (1.1)
consider the multipoint boundary value problem
zi(ti) = pi(z) (i=1,...,n). (1.2)
Consider a sequence of matrix-functions of bounded variation A4,, :[a, b] —
R™™ (m = 1,2,...), a sequence of vector-functions fp, = (fim); :
[a,b] x R — R™ (m =1,2,...) belonging to the Caratheodory class corre-
sponding to the matrix-function A4,,, a sequences of points t1,,,...,tnm €
[a,b] (m =1,2,...) and sequence of continuous functionals @1, ..., ©nm :

BVs([a,b],R™) = R (m =1,2,...).
In this paper, sufficient conditions are given guaranteeing both solvability
of the problem

dz(t) = dAn(t) - fm(tax(t))a (1.1)
xz(tzm) = Sozm(x) (7’ =1,.. -7n) (12m)

for any sufficiently large m and the convergence of its solutions as m —
+00 to the solution of the problem (1.1), (1.2), provided this problem is
solvable.Moreover, a method of construction of the solution of the problem
(1.1), (1.2) is considered.

Analogous results can be found in [1] for the Cauchy-Nicolletti’s bound-
ary value problem (p;(z) = ¢;, ¢; = const) and in [2-4, 13-15] for the
multipoint boundary value problems for the systems of ordinary differen-
tial, functional differential and difference equations.

The theory of generalized ordinary differential equations enables one to
investigate ordinary differential and difference equations from the common
standpoint. Moreover, convergence conditions for the difference schemes
corresponding to the boundary value problems for the systems of ordinary
differential equations can be deduced from correctness results of appropriate
boundary value problems for systems of generalized ordinary differential
equations [1, 5-11].

Throughout this paper, the use will be made of the following notation
and definitions.



R =] — 00,+[, Ry = [0,4+]; [a,b] (a,b € R) is a closed segment.
R™™ is the space of all real n x m-matrices X = (;;); 2, with the
norm

n
X = e
By ].:r{{é}?fm; jij1;
Rixm = {(zlf)?jil - Tij Z 0 (’L = 1,...,’!7,; ] = 1,...,m)}.
If X = (z5);72, € R"™, then
_ n,m _ |$U| + ZTij\n,m
X1 = (lzsil) ;o X = ()00
R™ = R"*! is the space of all real column n-vectors z = (z;)"_,; R} =
Rn><1
gl
If X € R™™", then X ! and det(X) are, respectively, the matrix inverse
to X and the determinant of X; I, is the identity n X n-matrix; O, is the

zero n X n-matrix; d;; is the Kroneker symbol, i.e., 6;; = 1 if i = j and
6ij :Olf’L#] (i,j: 1,...,’!7,).

b
V(X) is the total variation of the matrix-function X : [a,b] — R™*™, i.e.,
a

the sum of total variations of the latter’s components z;; (i =1,...,n; j =
1,....,m); V(X)(t) = (U(xij)(t))i,;‘zl’ where v(z;5)(a) = 0 and v(z;;)(t) =
t

V(zgj)fora<t<b(i=1,...,n;j=1,...,m).

X (t—) and X (t+) are the left and the right limits of the matrix-function
X :[a,b] = R™ ™ at the point #;!

i X(t)=X(t) - X(t—), doX(t)=X(t+) - X(t);
1X||s = sup {[|X(®)[| : £ € [a,b]}.

BV ([a,b], R"*™) is the set of all matrix-functions of bounded variation
X ¢ [a,B] — B™™ (ie, such that V(X) < +oo, BV([a,b], B") is the
Banach space (BV ([a, b], R™), || - ||») with the norm

lally = @) + V(e);
BVs([a,b], R") is the normed space (BV ([a,b], R"),]| - I|5);
BVs([a,b], R) = {x € BVs([a,b], R") : z(t) € R} for t€ [a,b]}.
If y € BV ([a,b], R™) and r €]0,+o0[, then
Un(ysr) = {z € BVs([a,b], B") : [le — ylls <r};
D, (y;r) is the set of all z € R™ such that inf {|lz—y(7)|| : 7 € [a,b]} <.

I'We will, if necessary, assume that X (t) = X(a) and X(t) = X(b), respectively, for
t<aandt>b



If D C R is an interval, then C(D, R™) is the set of all continuous vector-
functions = : D — R™;

C(D,R})={z € C(D,R"): z(t) € R} for t¢€ [a,b]}.

If « € BV ([a,b], R) has not more than a finite number of discontinuity
points and m € {1,2}, then Dym = {tamis-->tamnam b (tams < o0 <
tamna., ) is the set of all points t € [a, b] for which d,«a(t) # 0;

Jham = max{dma(t) it e Dam} (m=1,2);
Vam@j = max {djﬂ(taml) +
+ > dB(r) =1, nam }

tam,i+1—-m<T<tam,i4+2—m

for 8 € BV ([a,b],R) (j,m =1,2); here tain,, + 1 =b+1, tasg =a— 1.
If 8 € BV ([a,b], R), then

paji(t) = (=1)'[B(t) = B(t:)] — d;B(t:) for t € [a,b]
(j=1,2; i=1,...,n).

If g : [a,b] = R is a nondecreasing function, z : [a,b] - R and a < s <
t < b, then

t

/ﬂﬂ@ﬁ%=/xﬁMMﬂ+r®mmﬂ+M$@m%

s Is:t]

where [ z(7)dg(7) is the Lebesgue-Stieltjes integral over the open interval
Is,t
|s,t[ with respect to the measure p, corresponding to the function g (if
5= t, then f: z(7)dg(T) = 0);
L?([a,b], R; g) (1 < p < 400) is the space of all ug-measurable functions
x : [a,b] = R such that f |z(t)|Pdg(t) < +oo with the norm

mmﬂz(jmmvww)i

L*‘X’([a,b],R; g) is the space of all pg-measurable essentially bounded
functions z : [a,b] = R with the norm

o0y = esssup { ()] : ¢ € [a, ]}



si : BV ([a,b],R) = BV ([a,b], R) (k = 0,1,2) are the operators defined
by

s1(z)(a) = s2(z)(a) =0,
si(@)(t) = Y dix(r), sa(w)(t) = D dox(r) for t€ (a,b];

50(2)(8) = () — s1(2)(8) — 8(2)(8).

A matrix-function is said to be nondecreasing if every its components are
such.

If G = (gik)?,::l : [a,b] — R'™™ is a nondecreasing matrix-function
and D C R™™™, then L([a, b], D; G) is the set of all matrix-functions X =
(k) ey © [a,0] = D such that z4; € L'([a,b], R;gix) (i = 1,...,1; k =
1,...,n;5=1,...,m);

I,m

/th(T) - X(r) = (;n:/txkj(f)dgik(f)) for a<s<t<b.

SHG)(1) = (s;(9) (D) ry (1=0,1,2).

If D; C R™ and D, C R™*™, then K ([a,b] X D1, D>;G) is the Caratheo-
dory class, i.e., the set of all mappings F' = (fk])zjrll : [a,b] x D1 = D»
such that for each i € {1,...,l}, j € {1,...,m} and k € {1,...,n}: (a)
the function fi;(-,2) : [a,b] = Dy is pg;r-measurable for every x € Dy; (b)
the function fi;(t, ) : D1 — D, is continuous for p,,, -almost everywhere

t € [a,b], and
Sup{|fkj('7x)| HES DO} € L([aab]aR;gik)

for every compact Dy C D;.
If Gj : [a,b] - R™™ (j = 1,2) are nondecreasing matrix-functions,
G =G, — G5 and X : [a,b] = R™ ™, then

t t

/dG(T) - X(7) :/dal(r)-X(T)—/d@(r)-X(T) fora<s<t<b,

Sk(G) = Sk(G1) — Sk(G2) (k=0,1,2),
K ([a,b] x Dy, Da; G) = _élK([a,b] x Dy, Dy; G).

If B € BV ([a,b], R"), then M ([a,b] x Ry, R"; B) is the set of all vector-
functions w € K ([a,b] x Ry, R"; B) such that w(t,-) is nondecreasing and
w(t, ) =0 for t € [a,b].

Inequalities between both vectors and matrices are understood compo-
nentwise.



If By and B» are normed spaces, then the operator ¢ : By — Bs is called
positively homogeneous if

p(Ar) = Ap(x)
for every A € Ry and z € By.
An operator ¢ : BVg ([a, b], R”) — R" is called nondecreasing if for every
T,y € BVS([a, b],R”) such that z(t) < y(t) for ¢ € [a,b], the inequality
p(z)(t) < @(y)(t)

is fulfilled for ¢ € [a, b].
A vector-function z € BV ([a, b], R") is said to be a solution of the system
(1.1) if
¢
x(t) = z(s) +/dA0(T) - fo(myz(r)) for a<s<t<b
s

Under a solution of the system of generalized ordinary differential in-
equalities
dx(t) < d Ao(t) - fo(t, z(t))

we understand a vector-function = € BV ([a, b], R") such that
¢
z(t) < z(s) +/dA0(7') - fo(m,z(r)) for a<s<t<b.

A solution of the system
dx(t) > d Ao(t) - fo(t, z(t))
is defined analogously.

Letl: BVg ([a, b], R”) — R"™ be a linear continuous opera-
tor, and let [y : BVg ([a, b], R”) — R be a positive homogeneous continuous
operator. We will say that a matrix-function P : [a,b]x R™ — R™*" satisfies
the Opial condition with respect to the triplet (I,lo; Ag) if

(a) P € K([a,b] x R",R™™; Ay), and there exists a matrix-function
® € L([a,b], R}*"; Ap) such that

|P(t,z)| < ®(t) on [a,b] X R";
(b) for every B € BV ([a,b], R™"),
det (I, + (=1)d;B(t)) #0 for t€[a,b] (j=1,2)
and the problem
dx(t) = dB(t) - x(t), |I(z)] <lo(x)
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has only trivial solution provided there exists a sequence yj, € BV ([a, ], R")
(k=1,2,...) such that

lim /dAo(T) - P(1,yx(7)) = B(t) uniformly on [a, b).

k—+o0
a

Let 2% be a solution of the problem (1.1), (1.2) and let r be a positive
number.

The solution ¥ is said to be strongly isolated in the ra-

dius r if there exist P € K([a,b] x R",R"*™; Ap), ¢ € K([a,b] x R,
R™; Ap), a linear continuous operator [ : BVs([a,b], R") — R", a positive
homogeneous continuous operator I : BVs([a,b], R") — R™ and a continu-
ous operator I: BVs ([a, b], R”) — R"™ such that

(a) fo(t,x) = P(t,x)x + q(t,z) for t € [a,b], ||z — 2°(t)|| < r and the
equality h(z) = I(z) + [(z) is fulfilled on u,(z°;r);

(b) the vector-functions a(t, p) = max {|q(t, )| : ||z|| < p} and B(p) =

sup {[[I(2)] = lo(@)]+ : llells < p} satisfy

b
lim l/d(A(l)(t) + A® (t)) -a(t,p) =0, lim M =0;

p——+o0 p p——+o0 p

(c) the problem

dx(t) = dAo(t) - [P(t, 2(t)2(t) + q(t, 2(1))],

has no solution differing from z°;

(d) the matrix-function P satisfies the Opial condition with respect to
the triplet (I,lo; Ao)-

Let h(z) = (hi(a:))?zl, hi(x) = z;(t;) —pi(z) (i=1,...,n) and hy,(z) =
(him(a:)):.l:l, him(z) = zi(tim) — pim(x) (¢ = 1,...,n; m = 1,2,...) for
z=(z)], € BV([a,b],R”). By W,.(Ao, fo, h; %) we denote the set of all

1,2

sequences (A, fm, hm) (m =1,2,...) such that
t t
(a) liIE dAn(T) - fm(T,x) = /dAO(T) - fo(r, z) uniformly on [a, b]
m—r—+00

for every x € D, (2%;r);
(b) lim  hpy(x) = h(x) uniformly on Uy, (2°;r);

m—+o00



(c) there exists a sequence wy, € M ([a,b] x Ry, R%; Ay) (m=1,2,...)
such that

sup{H /de(Am)(t) -wm(t,r)H ‘m = 1,2,...} < +o0, (%)

hm sup{H/dV wm(t,s)H :m:1,2,...} =0 (xx)

and
|[fm(t, ) — f (8, 9)| < wm(t, ||x—y||) on [a,b]xD,(z%7r) (m=12,...).

Remark 1.1. If for every natural k there exists a positive number py, such
that

wm (t, kp) < prwm(t,p) for p>0,t €la,b] (m=1,2,...),

then the condition (*) follows from the condition (**). In particular, this is
the case for the sequence of vector-functions

win(t, p) = max {|fm(t,2) = fm(t, )] : [l < [|a%lls + 7,
Iyl < lla®lls + 7, llz =yl <p} (m=1,2,...).

The problem (1.1), (1.2) is said to be (z°;r)- correct if for
every ¢ €]0,7[ and ((Am,fm,hm)):;o1 € W,(Ag, fo, h; z°) there exists a
natural mg such that the problem (1.1,,), (1.2,,) has at least one solution
contained in U,,(z%r), and every such solution belongs to the ball U,,(z°%; ¢)
for any m > my.

The problem (1.1), (1.2) is said to be correct if it has a
unique solution 2°, and it is (2°;r)-correct for every » > 0.

We say that the pair ((ci)}j—1; (¢oi)j=q) consisting of a

matrix-function (¢i)?,_, € BV ([a,b], R**™) and a positively homogeneous

nondecreasing operator (po;)", : BVs([a b] R7) — R") belongs to the
set U(ty,...,t,) if the functions ¢y (i #1; 4,0 = 1,...,n) are nondecreasing
on [a,b] and continuous at the point #;,

djcii(t) >0 for t€la,b] (j=1,2;i=1,...,n) (1.3)
and the problem

[dai(t) — sign(t — t;) > xi(t)deq (t)] sign(t — ;) <0 (i=1,...,n),
=1

(=1 dji(ts) < wi(ti)djeu(ts) (G=1,2; i=1,...,n);
2i(ti) < @oi (J21],- -5 |zal) ((=1,...,n) (1.5)
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has no nontrivial non-negative solution.

Consider one method of construction of the solution of the problem (1.1),
(1.2). We take an arbitrary vector-function ()7, € BV ([a,b], R") as the
zero approximation of the solution of the problem (1.1), (1.2). If the (m—1)-
th approximation has been constructed, then as the m-th approximation we
take a vector-function ()=, € BV ([a,b], R™) whose i-th component is
the solution of the Cauchy problem

da:im (t) = Z flo (ta xlmfl(t)a oy Ti—1m—1 (t)a Tim (t)a
=1

Titim-1(t),- s Tum—1(t))daio(t) (i=1,...,n), (1.6)

Tim(ti) = 0i(Tim—1,y-+ s Tum—1) (E=1,...,n). 1.7

Let the conditions

n
(—].)O'-i-lfko(t, Tiy... ,a:n) sign [(t — tl)a:l] < Zpoikl (t)|£l’,‘l| + qk (t, ||a:||)
=1
for .. -almost everywhere t€ [a,b]\{t;} (i,k=1,...,n) (1.8)
and

n
{(—1)J+Hlfk0(tu$1, -, @) signa; — Z ikt |Ti| —
=1

o, ||a:||)]djam<ti> <0 GG=12ik=1,..,n)  (19)

be fulfilled on R™ for every o € {1,2}, and let the inequalities

n
i@, wn)| < poi (], znl) + 7 (D llll,)
=1

(i=1,...,n) : (1.10)

be fulfilled on BV([a,b],R”), where agipj € R (j,0 =1,2;4,k,1=1,...,n);
(pcrikl)ZJ:l € L([aab];Rnxn; A(J)) (U = 1727. i = 17' . ‘7n)? q= (qk);clzl €
K([a,b] x Ry,RY; A(")) (0 = 1,2) is a vector-function nondecreasing in
the second variable, v € C(Ry,Ry) and

b
.1 : (p)
= (1) (2) . = NP _
phr+n p /d(A (t)+ A (t)) q(t,p) =0, phr+n b 0. (1.11)
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Moreover, let there exist a matriz-function (ci)j—, € BV ([a,b], R™*")
such that

((Cil)zl:ﬁ(sooi)?:l) € U(tla---atn)a (1'12)
33 [ v daga(r) < calt) = Ca(s)
o=1k=1 s

for a<s<t<t; and t; <s<t<b (i,l=1,...,n) (1.13)

and
2 n
Z Z Qoikjidjacir (ti) < dudjcyi(t;)
o=1 k=1
G=1,2il=1,...,n). (1.14)

If the problem (1.1), (1.2) has no more than one solution, then it is correct.

Let the conditions (1.3), (1.11), (1.13), (1.14) and

t
|ci(t) — cur(s)] S/hil(T)dOél(T) for a<s<t<b
s@l:L”wm (1.15)

hold, and let the conditions (1.8), (1.9) be fulfilled on R"™ for every o €
{1,2}, where agiry € R (j,0 = 1,25 ikl = 1,...,n), (Poir)f = €
L([a,b],R”X”; A(”)) (c=12;i=1,...,n), ¢ = (qr)j_, € K([a,b] X
R, ,RY; A) is the wvector-function mondecreasing in the second variable,
ve€C(Ry,Ry), ¢yt (i #£1;i,0l=1,...,n) are the functions, nondecreasing
on [a,b] and continuous at the point t;, c;; € BV([a,b],R) (t=1,...,n);
ar (I =1,...,n) are the functions nondecreasing on [a,b] and having not
more than a finite number of discontinuity points, h; € L“([a,b],R+; oq)
(i,l=1,...,n), 1 < u < +o0o0. Moreover, let the inequalities

2 n n
|<,0i(ﬂ71,---,33n)| < Z ZlnkakHy,sU(ak) +7(Z ||l“k||s)
k=1

0=0k=1
(i=1,...,n) (1.16)

be fulfilled on BV([a, b], R”) and the module of every characteristic value of
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the 3n x 3n-matriz H = (7—[]41,0“)2

. be less than 1, where
J,o0=0

loin € Ry (0=0,1,2;i,k=1,...,n), %+% =1,
Hitt,o41 = (&ijloin + /\lmj||hik||u,s,(ai))zk:1 (j,0=0,1,2),
& = [si(a)(®) - 5;(@)@]” (G=0,1,2i=1,..,n),
Aeoko = (2n NP2, (k=1,...,n),
Meoij = Ekolij for o> + 32+ (i —k)> >0, 0j=0
(j,0=0,1,2; i,k=1,...,n),

1
v

1 - m . .
/\ka'ij = (Zﬂakayakaaijsul 2m> (.7702 1,2 Zak: 17"'7”)'
If the problem (1.1), (1.2) has no more than one solution, then it is correct.

Let the inequalities (1.14) hold for i #1 (i,l = 1,...,n),
let there exist o, o1 € {1,2} such that o + o1 = 3, let the conditions (1.8),
(1.9),

n
(_1)01+1fk0(t7$15 s ,.’En) Sign [(t - tl)wl] < anl|$l| + qk (t7 ||$||)
=1

for pa,, . -almost everywhere t € [a,b]\{t;} (i,k=1,...,n),

n
|:(_1)Ul+j+1fk0(ti7$1a ) Sign @ — Y agyikgi || —
=1

—%@MM”%%m@DSOUZLZkZanm

be fulfilled on R™ and let the inequalities

|<pi(a:1, ... ,a:n)| < cl|a:l(7'l)| + 'y( Z ||a:k||s) (t=1,...,n) (1.17)
k=1
be fulfilled on BV([a, b], R"), where agirji € R and oz € R (§ =
1,2;i,k = 1,...,n), (pﬂikl)z,lzl € L([a,b],RiX"; A(”)) (i =1,...,n),
nu € Ry (Z ;él,‘i,l = 1,...,n), Ni <0 (Z = ].,...,TL), Qg ik (i,k: 1,...,n)
are the functions nondecreasing and continuous on every interval [a,t;[ and
Jti,b] and satisfying the condition

n
> djag,k(t) <0 (j=1,23i=1,...,n), (1.18)
k=1

7= (q)f—; € K([a,b] x Ry,R%; Ao) is the vector-function nondecreasing
the second variable, v € C(R4,Ry) and the conditions (1.11) hold in ¢; €
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R, and 7; € [a,b], ; #t; (i =1,...,n) are such that

civijGj <1 if (1) (i —t;)>0 (j=1,2%i=1,...,n), (L19)

n
Yij = 1+ nudjai(ts) + X peiri(ti)djaci(ts), G = exp (Niifta;ji(Ti))
k=1

(G =124i=1,...,n), aj(t) = > asix(t) (i = 1,...,n). Moreover,
k=1
giij <1 if (-1)/(ri—t;)>0 (j=1,2i=1,...,n)  (1.20)

and the real part of every characteristic value of the matrix (fil)?,zﬂ be
negative, where

& = ma [6u + (1 — 6a)hij) — miigi

fOT‘ (_I)J(Ti - tz) > 0 (.7 = 172a Zal - 17' . '7n)7
git; = civij (L = c%ijCij) ™ maaji(rs) + max { g, 1i(a), pa,2:(b) },

n t
Bu(t) = Z/paikl(T)daaik (1), hij=1 for c;vij <1 and
k=1

hij = 1+ (covig — D(1 = eiyijGiy) ™" for eivig > 1.
If the problem (1.1), (1.2) has no more than one solution, then it is correct.

Let the conditions

(_1)U+1 [fko(ta T1y... 7xn) - fk() (ta Yiye- ey yn)] Sign [(t - tz)(xl - yz)] S

n
< me'kz(tﬂl“l -y

=1

for pa,ik-almost everywhere t € [a,b]\{t;} (i,k=1,...,n),(1.21)

{(—1)‘”].+1 [fro(tis @1, xn) = fro(ti, yr,s- .., yn)] sign(z; — y) —

n
—Zaaikjl|$l - yl|}djacrik(ti) <0 (j=1,2;0,k=1,...,n) (1.22)
1=

be fulfilled on R™ for every o € {1,2}, and let the inequalities
|90i($17 N ,.’En) - @i(yla .. 7yn)| S
S‘poi“xl_y1|7---7|xn_yn|) (i=1,...,n) (1.23)

be fulfilled on BV ([a,b], R"™), where agirji € R (j,0 =1,2;4,k,l=1,...,n),
(Poikt)f =1 € L ([a,b],R"X"; A(")) (c =1,2;i=1,...,n). Moreover, let
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there exist a matriz-function (cy)}—, € BV ([a,b], R™™) such that the con-
ditions (1.12)—(1.14) hold. Then the problem (1.1), (1.2) is correct.

Let the conditions (1.3), (1.13)—~(1.15) hold and let the con-
ditions (1.21) and (1.22) be fulfilled on R™ for every o € {1,2}, where
aaikjl S R (jaa = 1727. iakal = 17"'7”)’ (paikl)z7l:1 € L([aab]aRnxn;
A(")) (c=12;i=1,....n),cy (1t #1; i,l =1,...,n) are the functions,
nondecreasing on [a,b] and continuous at the point t;,c;; € BV([a,b],R)
(t=1,...,n) aq (I =1,...,n) are the functions, nondecreasing on [a,b]
and having not more than a finite number of discontinuity points, h; €
L”([a,b],R+; oq) (i,0=1,...,n), 1 < pu < +oo. Moreover, let the inequal-
ities

|50i(x17"'7xn) - Soi(yl,---,yn” <

2 n
< Zzlo’ik“wk _katl,sa(ak) (Zak: 17“'7”) (124)

o=0 k=1
be fulfilled on BV ([a,b], R"), where lpy, € Ry (0 =0,1,2; i,k =1,...,n),
—+% = 1 and the module of every characteristic value of the 3n X 3n-matriz

H = (’Hj+17(,+1)?7010 appearing in Corollary 1.1 be less than 1. Then the
problem (1.1), (1.2) is correct.

Let the inequalities (1.14) hold for i #1 (i,l = 1,...,n),
let there exist 0,01 € {1,2} such that o + o1 = 3, and let the conditions
(1.21), (1.22) and

(—l)ghLl [ka(t: L1y ,:En) — fk()(t, Yty - - ,yn)] sign [(t — tl)(CIZZ — yz)] S

n
< Znil|$l =y
=1
for o, . -almost everywhere t € [a,b]\{t;} (i,k=1,...,n),
{07 fro(tis 1, 2) = fro(tisyn, - yn)] sign(e; — yi) —

n
=Y agile — il djac,u(t) < (G=1,23i,k=1,...,n)
=1

be fulfilled on R", where asikji € R and o € R (7 = 1,2; ik, 1 =
1,...,n), (Poir)f =1 € L(la,b], R*"; ALY (i=1,...,n), mq € Ry (i #
il =1,...,n), i <0 (@ =1,...,n), asi(i,k = 1,...,n) are the
functions, nondecreasing and continuous on every interval [a,t;[ and |t;,b]
and satisfying the condition (1.18). Moreover, let ¢; € Ry and ; € [a, ],
7 £t (1 = 1,...,n) be such that the conditions (1.19), (1.20) hold and
the real part of every characteristic value of the matriz (fil)lel is negative,
where Y5, Gij, &, 9uj (3=1,2;4,0=1,...,n) and a;(t) (i =1,...,n) are
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respectively the numbers and the functions appearing in Corollary 1.2. Then
the problem (1.1),

zi(t;) = Nxi(m) +v (i=1,...,n) (1.25)
is correct for every \; € [—ci,¢;] and v; € R (i=1,...,n).
Let the conditions of Theorem 1.2 be fulfilled and
dicii(t) <1 for (=1)(t—t)<0 (j=1,2;i=1,...,n). (1.26)

Then for every (zio)l., € BV([a,b],R”), there exists a unique sequence
(zim)?y € BV ([a,b],R") (m = 1,2,...) such that the vector-function
(®im)y is the solution of the problem (1.6), (1.7) for every natural m,
and

n

Z |zi(t) — zim ()] < 106™  for t€[a,b] (m=1,2,...), (1.27)

i=1

where (z;)?_, is the solution of the problem (1.1), (1.2), and ro > 0 and
d €]0, 1[ are numbers independent of m.

Let the conditions of Corollary 1.3 and the condition (1.26)
hold. Then the conclusion of Theorem 1.3 is true.

Let the conditions of Corollary 1.4 hold and
|’Ih‘i|djai(t) + d]ﬁl(t) <1 f07" (—l)j(t — ti) <0 (] =1,2;7=1,.. .,n);

moreover, let \; € [—c¢;,¢] (1 = 1,...,n), vi € R (i = 1,...,n), where
Nii,ci and o;, B; are respectively the numbers and the functions appearing
in Corollary 1.2. Then for every (z4)?, € BV ([a,b] R"), there exists a
unique sequence (Tim)P, € BV([a,b], R") (m = 1,2,...) such that the
vector-function (xim)?_, is a solution of the system (1.6) satisfying the con-
dition
Z‘Zm(t,) = )\ia:im,l(n) + i (Z = ]., - ,n)

for every natural m, and the estimates (1.27) hold, where (x;)"_, is the so-
lution of the problem (1.1), (1.25), and ro > 0 and é €]0, 1] are the numbers
independent of m.

Remark 1.2. The 3n x 3n-matrix H appearing in Corollaries 1.1, 1.3 and
1.5 may be replaced by the n x n-matrix

n

2
<maX {1 Ejloir + Meoislhikll s, (@) 10 =0, 1,2}>

j=0 i,k=1

Remark 1.3. The above-described process of construction of the solution
of the problem (1.1), (1.2) is stable in a definite sense (see Section 3 below).
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§ 2. AUXILIARY PROPOSITIONS

If the problem (1.1), (1.2) has a solution x° which is strongly

isolated in the radius r > 0, then it is (z°;r)-correct.

Proof of this lemma is given in [10, Theorem 1.1].

Let the condition (1.12) hold. Then there exists a number
d €]0, 1] such that

(5i7l)zl:1; (&01:)?:1) e U(t17 st tn)’ (21)
where )
cu(t) = seat) for i#1l, Ci(t) = cu(t),
- 1
©0i(Y1,---,Yn) = SSOOi(:Ul,---aZ/n)- (2.2)

Proof. According to Lemma 2.5 from [11], there exists a positive number
ps« such that every solution of the problem

[d|a¢,(t)| — sign(t — t;)( Z |z (t)|deq (t) +
=1

+dui(t))] sign(t —t;) <0 (i=1,...,n), (2.3)

(=17 djlai(ts)] < |aits)|djcii(ts) + djui(ts) (G =1,2;i=1,...,n);

|z (t:)] < (poi(|$1|, . |a:n|) +v (=1,...,n) (2.4)
admits the estimate
- 1
> llzills < ooy + () = u(a)lls], (2.5)
i=1

where v € Ry and u = (w;); € BV ([a,b], R7) are an arbitrary number
and a vector-function, respectively.

Let
n
uOl(t) = Z (czl(t) _cll(tl)) (Z: 17"'7”)7 Yo :Zwok(la"'al)a
I#i,l=1 k=1
let § €]0,1[ be a number satisfying the inequality
1-6 1< 1
——p {% + - ; (103 (b) — u0i(a))] <3 (2.6)
and let ¢; and @o; (4,1 = 1,...,n) be respectively the functions and the

functionals given by (2.2).
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Consider an arbitrary nonnegative solution (z;)? , of the problem

da;(t) — sign(t — t;) > xi(t)dey (t)} sign(t — t;) < 0
=1

(i;l,...,n),
(1) djz;(t;) < mi(ti)djcii(t;) (G=1,25i=1,...,n); (2.7)
£i(t) < Bos(er, . o2n) (= 1,...0m). 23)

It is not difficult to verify that (z;)}_; will be the solution of the problem
(2.3), (2.4), where

1-0

n ) 1 —6 n
ui(t) = 5 uoi(t) Y llaills (i =1,...,n), v = T%Z llz1]]s-
=1 =1

By our choice of p., the estimate (2.5) holds which, in view of (2.6), implies

n 1 n
Z llzills < > Z || -
i=1 i1

Consequently, z;(t) =0 (i = 1,...,n). The lemma is proved. W

Let the conditions (1.12) and (1.26) hold. Then there ex-
ist numbers p €]0, +oo[ and & €]0,1[ such that for an arbitrary (yi)i—, €
BV([a,b],R_’}_) and any sequences of numbers v, € Ry (m = 1,2,...),
the vector-functions (yim)l_, € BV([a,b],RQﬁ) (m =1,2,...) and nonde-
creasing vector-functions um, = (uim)i—y € BV ([a,b],R") (m = 1,2,...),
satisfying the inequalities

{dyim(t) — sign(t — t;) [yim (£)desi (t) + Z Yim—1(t)dey (t) +
I1#i,1=1
+duim(t)] } sign(t —¢;) <0 (i=1,...,n),
(=19 djyim(ti) < yim(ti)djcii(ti) + djuim(t;) (G=1,2i=1,...,n);
yzm(tz) S SOOi(ylmfla e 7ynm71) + Ym (71 = ]-7 R n) (210)

(2.9)

for every natural m, the estimates

S yimlls < p{zam—km 2 ua(6) ~ us (@) +
i=1 k

=1
+6" Y ||yio||5:| (m=1,2...) (2.11)
i=1

hold.
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Proof. By Lemma 2.2, there exists a number ¢ €]0, 1] such that the functions
and the functionals ¢; and @y; respectively, (i, = 1,...,n), given by (2.2)
satisfy the condition (2.1).

On BV([a, b], Ri) we introduce the operator

hi(z1, .-y 20) () = qi(z1, .. -, 20)(E) + €;(2) [cﬁgi(zl, A

_ / g ,zn)(T)deil(T)]

t;

for every i € {1,...,n}, where
N ¢
Gilet, () = 3 /zl(r)dal(f) ,
1#£il=17,

bi(t) = [cii(t) — cii(t;)] sign(t — ;)
and e;(t) is a solution of the problem
de;(t) = e;(t)db;(t), ei(t;) =1.

By (1.3) and (1.26), the latter problem has the unique solution differing
from zero on whole [a,b] (see [8]). Owing to the variation of constants
formula (see [7, p. 120]), we have

hi(z1, ..., 20)(t) = @oi(21, - -5 2n) + qi(21, ..., 20)(E) +
¢

+/hi(z1, oy 2n)(T)dbi(T)

for t€[a,b], (2x)j—1 € BV([a,b],R}) (i=1,...,n). (2.12)

Let

1 (i=1,...,n), n=> lleills(t+nlle;"lls)

i=1

Zi0 (t)

and (zim)"; (m =1,2,...) be a sequence of vector-functions defined by

Zim(t) = hi(zZim—1, -, Znm—1)({t) +1 (i=1,...,n). (2.13)



19

It is easy to show that

hi(z1, -2, 20)(t) = ei(t) {cﬁol»(zl, ey Zn)

n e; ' (T=)z(T)diCu(T) +

+ ) eil(r+)zl(r)d25ﬂ(r)>] (i=1,...,n)

TE€[ri(8), 7 ()

on [a,b] x BV ([a,b], RT), where 7.;(t) = min{t;, t}. 77 (t) = max{t;, t} (i =
1,...,n). Clearly, the operator h;(-)(t) : BV ([a,b], R?) — BV ([a,b], R})
is nondecreasing for ¢ € {1,...,n} and ¢ € [a,b]. Therefore

1< zim—1(t) < zip(t) for t€a,b] (i=1,...,n;m=12,...).
Consequently, .
pm =Y |zimlls (m=1,2,...)
is a nondecreasing sequenc;_olf positive numbers. Let us show that
p= rr}gnoo Pm < +oo. (2.14)

Assuming on the contrary that p,, — +00 as m — 400, put
1

xzm(t) = _Zim(t)a fzm(t) = hi(xlm—la e 7$nm—1)(t);
n
m=— (m=1,2
= - ( )
Then
Y lzimlls =1 (m=1,2,...). (2.16)
i=1

Taking into account Helly’s choice theorem and Lemma 3 from [9], it is not
difficult to verify that

lim supZim(t) = T;(t) uniformly on [a,b] (1,...,n), (2.17)

m—+00

where (Z;)I, is a vector-function from BV ([a,b], RT). On the other hand,
from (2.13) we have

Tim(t) <Tim(t) +n for t€(a,b] (i=1,....n;m=1,2,...)
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and

Zim(t) < hi(Tim—1 4+ Dm=1,-- -, Tnm—1 + Pm—1)(t)
for t€fa,b] (i=1,...,n;m=1,2,...).

By (2.15)—(2.17), from the latter inequalities it follows that

n
Z |Zil|s > 1
i—1

and
7i(t) < xi(t) for telab] (i=1,...,n),
where
2i(t) = hi(T1,...,Ta)(t) (i=1,...,n).

Therefore, using (2.12), we obtain

n ¢

z;(t) — (s Z/zl

t
1 n
=5 / ) — @i(7))deu(r) <0 for t; <s<t (i=1,...,n),

z;i(t) — zi(s +;/ (1) =

(—l)jdja:i(ti) = a:l(t,)dJEn(tl) (] = 1,2; 1= ]., e ,n)
and
a?,(tl) = (,Zgi(fl, ce ,Tn) < (,Zgi(al‘l, ce ,:L‘n) (Z =1,... ,n).

Hence (z;), is a nontrivial solution of the problem (2.7), (2.8). But this
contradicts the condition (2.1). The obtained contradiction proves the in-
equality (2.14).

Let

(yzo)z 1 € BV([G b] Rn ZHyzo“S >0
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and Ym € R+7 (ylm)yzl € BV([avb]vRi)a Um = (uim)znzl € BV([aab]aRn)
(m =1,2,...) be arbitrary sequences satisfying (2.9), (2.10) for every nat-
ural m. Put

G = 5 G+ ) — s @) + 5™ 3 ol
k=1 i=1
To®) = 1T = 220 =1,

With regard to the inequalities

1
Cm > 6Cm—1a Cm > Ym, Cm > E |Um(b) - Um(a)” (m =1,2,. )
from (2.9) and (2.10), we discover that
{dyimos) ~ sign(t — ) T (e () + 3" T (dE0(E) +
I£i,1=1
il (0] signlt = 1) 0 (1= 1,00.0m),

(=1 diG i (t:) < i (ti)djcis(ts) + djTim (t;) (2.18)
(G=12i=1,...,n);
yzm(tl) S aoi(ylmfla e 7ynm71) + 1 (Z = ]-7 o ,TL) (219)

for every natural m, where @;,,(t) = %uim(t). Let now

Gim () = GWim—15 - Unm—1) () + [Gim (£) — Wim (£)]
for t€a,b] (i=1,...,n;m=1,2,...)

and
Ui () =Ty () — @i, (t) for t€fa,b] ((=1,...,n;m=1,2,...)
Then by (2.18), (2.19) and the equalities

dibi(t;) = (=1) djeii(ti),  diqhy, (t:) = (1) djTim (t;)
(j=1,2i=1,....n

we have
[dy:mu) () + q:ma))dbi(t)] Sign(t—t) <0 (i=1,....n),
(1) [djy:mm) (i) + q;‘mm))djbi(ti)] <0 (G=L2Zi=1...,n)

and
y;‘m(ti) < Cio (Z =1,... ,n)
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for every natural m, where

Cio = P0i Uim—1>+- TInm_1) +1 (i=1,...,m;m=1,2,...).
Therefore, according to Lemma 2.4 (see below),

Yim (@) < i, (t) for t€a,b] (i=1,...,n;m=1,2,...), (2.20)
where z7,, (t) is the solution of the problem

A}, (1) = (250 (8) + i (1)) dbs (1),

*

Tim (tl) = Cjo-

Owing to the condition (1.26), the latter problem has the unique solution
and it is given by the formula

i (1) = /tQE‘m(T)dbi(T) + ei(t){ci[) -

_ / ( / q;‘m<s>dbi<s>)de;1<7>} for € [a,0]

i i

(see [7, Theorem II1.2.22]). Using the variation of constants formula, the
latter equality implies

ﬂffm(t)zei(t){cio +/qi*m(7)€i_1(7)dbi(7) =Y giu(m)dibi(r)die; ! (1) +
i TE(ts,t]

+T§m) Qi (T)d2bi(T)doe; 1(T)} = ei(t){cio + / q;‘m(T)d[eil(T)bi(T) -

T

—/bi(s)de;1(5)+ > dibi(s)die; M (s) = > d2bi(s)d2ei1(s)] -

t; sE€(ti,7] s€[ti,T)

C Y g @dbDdet (m+ Y qzmmdgbi(f)dgeﬁ(f)}:

TE(ts,t] TE[t;,t)

= ei(t)ein + /t q;m(T)d{bi(T)e;l(T) /t bi(s)dei_l(s)] for t> t;.

t; t;

Consequently, by the equality

6;1(7') =1- e;l(r)bi(r) +/bi(s)de;1(s) for 7 € [a,b]
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(see [7, Proposition I11.2.15]) we have

o+

t=1,...,n; m=1,2,...) (2.21)

for t > t;.

The inequality (2.21) for ¢ < t; can be verified analogously.

By the definition of y%,,, ¢}, h: and n, from (2.20) and (2.21) it follows
that

Tim(t) < gim(8) + e4(t) { -/ q:m<r>dei1(r>] -
=hi (ylmfla s 7ynm71) (t) + ei(t) + |ﬂzm(t) - ﬂzm(tz)| -

—ei(t) / @i (T) = Wirn (t3)|de; ™ (T) = hi (Grm1s- - > Tnm1) (£) + €i(t) +

+ Z 6;1(T—)d1ﬂim(7') +

TE(Ti ()7 (8]

+ei(t) { ‘ /t e; td so(Tim) (T)

+ Z ei_l (T+)d2ﬂlm (T)} < hl (ylm—la .- 7ynm—1) (t) +
T€[i(t),7/ (1))

b
Hledlls + ||ei||s||e;1||s[ / dso(Tim)(T) + 3 drim (7) +

T€(a,b]

£ 3 ()] < i1 T )0+
T€[a,b)

Fllealls (1+ e, 1sln(8) — Tom(@)]) for ¢ € [a,bl.
Therefore
Uim () < hi(Timts- -+ Tnme1) () + 1 for t € [a,b]
t=1,...,n;m=1,2,...).
This, according to (2.13), implies
Tim () < zim(t) for t€a,b] (i=1,...,nym=12...)

and

n n
Y imlls <Y lzimlls = pm <p (m=1,2,...).
i=1 i=1
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Consequently, the estimates (2.11) are valid. Since p does not depend
on (yio)™, these estimates will be valid in the case where y;0(t) =0 (i =
1 n), too. The lemma is proved. W

Let o € BV([a,b],R), p € K([a,b] x R, R; a), to € [a,b],
co € R and every solution of the problem

dz(t) = p(t, z(t))da(t), (2.22)
CE(t()) = Cp (223)

yeeey

is continuable on [a,b]. Moreover, let the function z € BV ([a,b], R) be such
that

[dz(t) — p(t, 2(t))da(t)] sign(t —to) <0 for t€[a,b], (2.24)
(t) + (=17 djz(t) <z + (=1) p(t, x)d;a(t)
for (=1)I(t—to) >0, z>z2(t) (j=1,2), (2.25)
(—1)[dj2(to) — p(to, co)dja(to)] <O (j =1,2) (2.26)
and
z(to) < co. (2.27)

Then the problem (2.22), (2.23) has a solution x satisfying the inequality
z(t) < z(t) for t€]a,b). (2.28)
Proof. Put

)z for x> 2(t),
x(t2) = {z(t) for z < z(t);

ot ) = p(t,x(t,2)).
Consider the equation
dz(t) = ¢(t,z(t))da(t). (2.29)

The problem (2.29), (2.23) has a solution z defined on some interval
Iy C [a,b], to € Io.
Assume

2(te) > x(ts) (2.30)

for some t. € [a,tp] N Ip and put
t* = sup {t cz(s) > x(s) for t, <s<t< to}.

If z(t*) > x(t*), then by (2.27) we have t* < tp and z(t*+) < z(t*+).
Hence

dyz(t*) < doz(tY). (2.31)
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On the other hand, it follows from (2.24) and the definition of ¢ that
daz(t7) 2 @(t", 2(87))daar(t7) = O(t", 2(t"))d2(t") = daz(t").
But this contradicts (2.31). Therefore
z(t*) < x(t). (2.32)
From the definition of the point ¢* there follows the inequality
z(t*=) > x(t"—).

Moreover, by (2.25) and (2.32) for t* < t, and by (2.26) and (2.27) for
t* = tog, we have

Z(t'=) < 2(t) — o(t*, z(t"))dra(t*) = z(t"—).
Consequently,
2(t"=) = z(t"—). (2.33)

Let now ¢ be an arbitrarily small positive number. Then in view of (2.24)
and the definition of ¢ and x, we have

s(t) =t ~9)+ [ pls29)dals) >

>a(t" —e)+ z2(t) — 2(t" —e).
Passing in the latter inequality to limit as ¢ — 0, by (2.33) we get
z(ty) > z(ts).
The contradiction obtained by (2.30) shows that
z(t) < z(t) for t€a,t]NIp.

Analogously we can show the latter inequality for ¢ € [a,b]. Therefore,
according to the definition of ¢, the function z : Iy — R will be the solution
of the problem (2.22), (2.23) satisfying the condition (2.28) and, moreover,
Iy = [a,b]. The lemma is proved. W

(Wirtinger’s inequalities). Let o and [ be nondecreasing
functions from [a,b] into R, and let the function « have not more than
a finite number of discontinuity points. Then the estimates

b t

/(/U(T)dSO(a)(T)> 2d50(a)(t) SVO/bv2(t)d50(a)(t) (2.34)

a to a



26

and

bt 5 b
([ endsn@n)) s < [ F0sn@io
S (J,m=1,2) ' (2.35)
hold for every v € BV([a, b],R) and to € [a,b], where

1 s

Yo = E(So(a)(b) - So(a)(a))] ) mj = yHamp; sin” Angm + 2

(ja m =1, 2)
In addition, these estimates are unimprovable.

Proof. Obviously, it suffices to verify the conditions (2.34) and (2.35) for
to = a and to = b. Assume ¢y = b. Let us show (2.34). Without loss of
generality we may assume that

so(a)(t) < so(a)(b) for a <t <b.
Put

— / ~ — 1
u(t) = b/U(T)d so(a)(r) and aft) = ﬁ [s0(a)(t) — so(a)(b)].

Let € be a small positive number. It is easily seen that

to—e to—e

/ (u(t) ctga(t) — 70v(t))2dso(a)(t) = - / u?(t)d so(a)(t) +

a a
to—e

+70 / v (t)d s0(a)(t) — /Fou’(to — €) ctg @(to — €).

Consequently,
/ u?(t)d so(a)(t) < o / v? (t)d so(a)(t) — /You’(to — €) ctgalty — €).

Passing in the latter inequality to the limit as e — oo, we obtain (2.34).
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Let us show (2.35). We have

b

/ ( b/ U<T>dsm(a)<T>> dsB0 = Y ( ,,/ U(T)dsm@)(f)) 4,8(1) =

o a<t<b

Nam Nam 2
= < Z v(tamk)dma(tamk)> <djﬂ(tam,l+m—2) +
=1 k=l
Nam+1

Py dgﬂ(t)> <vamss S @A) Gom=1,2), (2.36)
=1

tam,1—1<t<tamil

where

Nam

wm(l) = Z V(tamk ) dma(tamr) ((=1,...,nam),
k=1
Wn(am +1) =0 (m = 1,2).

Moreover, according to the discrete analogue of Wirtinger’s inequality [12,13],
we obtain

Nam+1 1 . Nam+1 5
2 .2
Z W, (1) < e — Z (Wm(l) —wm(l—=1))" <
=1 1=2
1 T et 2
< ZSinﬁm ; (v(tam,i—1)dma(tami—1))" <
b
<Ll sm2 T / V(B dsm(@)t) (m=1,2)
> 4,Ufam Ao +2 m =1,2).

a

Using this, from (2.36) we deduce (2.35). The proof of (2.34) and (2.35) is
similar for t5 = a.

Finally, it should be noted that the inequality (2.34) transforms into
the equality for to = a and v(t) = 75" cos (o [s0(a)(t) — so(@)(a)]). As
for the inequality (2.35), it transforms into the equality if a = ¢, = 0,
b=m, at) =8t)=k—1fork—1<t<k((k=1,...,m), a(m) =
B(m) = m, v(k) = sin 272’_“‘_1 — sin 7;(:;11) (k=1,...,m) and v(t) = 0 for
t € [0,m]\{1,...,m}. The lemma is proved. N

Let the conditions (1.3) and (1.15) hold, where ¢y (i #1; 4,1 =
1,...,n) are functions nondecreasing on [a,b] and continuous at the point
t;, cii € BV([a,b],R) (t=1,....,n), ay (I=1,...,n) are functions nonde-
creasing on [a,b] and having not more than a finite number of discontinuity
points, hy € L* ([a,b],R+; al) (,l=1,...,n), 1 < pu < +oo. Moreover,
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let

2 n
©0i(T1,-..,Tn) = Z Zlaik||a?k||u7s,(ak),laik € Ry

0=0k=1
(0=0,1,2;4,k=1,...,n),

1 2
— + — =1 and let the module of every characteristic value of the 3n x 3n-

matric H = (M1 JH)?J:O appearing on Corollary 1.1 be less than 1. Then

the condition (1.12) holds.

Proof. Let (z;)1_, be an arbitrary nonnegative solution of the problem (1.4),

(1.5). By (1.15)7and Holder’s inequality, we have
2 2
<Y (1ol o)+ i |/|zk dsa(an)(r)] )
o=0

k=1
(2.37)

for t € [a,b] (i:l,...,n).

This, in view of Minkowski’s inequality, implies

1Zillu,s; (i) < ZZ (k s(ci) (0) = 55(i)(@)]” |2kl (ar) +

0=0k=1

T )m/u )% dsy () (7)

(j=0,1,2i=1,...,n).

sy (e ()] )

(2.38)

On the other hand, by virtue of Hélder’s inequality in the case o2 + j2 +
(i —k)*> >0, j =0 and by (2.34) and (2.35) in the other cases, we have

Ub‘/tmk(f)lgdso(ak)(ﬂ 2

b 1
< Akoij |:/ |$k(T)|VdSa(Oék)(7-):| (j,o=1,2;4,k=1,...,n).

v

dsyat)]” <

This and (2.38) yield

2 n

||xi||u,s]-(ozi) < Z Z (fijlﬁik + /\kUiJ'HhikHu,Sa(ak))kaHV,Sa(ak)

=0 k=1

(j=01,2i=1,...,n). (2.39)
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Therefore
(I3n — H)r <0, (2.40)
where r € R3" is the vector with the components

Titnj = ||a:,>||l,7s].(ai) (] = 0, 1,2; 1= ]., e ,n).

From (2.40), we obtain that r = 0 since the module of characteristic val-
ues of the matrix # is less than 1. Using (2.37), we see that z;(t) = 0
(¢ = 1,...,n). Consequently, the problem (1.4), (1.5) has no nontrivial
nonnegative solution. The lemma is proved. W

Let the conditions (1.3), (1.19),

0oi(T1,. - ) =cixi(ry) (E=1,...,n),

ca(t) — cals) < malas(t) — ai(s ]+ﬁ — Bals)
for a<s<t<t; and t; <s<t<b (z,l—l,...,n) (2.41)

and
djai(ti) S 0 (] = 1,2; 1=1.. .,n) (242)

hold, where ny € Ry (i #1;i,l=1,...,n), 0; <0 (i =1,...,n), ¢; €
BV([a,b],R) (i=1,...,n), By (i #1) and a; (i,l =1,...,n) are functions
from [a,b] into R respectively nondecreasing and nondecreasing continuous;
on every interval [a,t;[ and |t;,b], ey (¢ # 1) and By (i,1 = 1,...,n) are
functions from [a,b] into R respectively nondecreasing continuous at the
point t; and nondecreasing, respectively; ¢; € Ry and 7; € [a,b], T # t;
(i =1,...,n), vij = 1+ nudja;(t;) + d;Bii(ti), CGj = exp(Niifta,ji(Ti))
(j=1,2;i=1,...,n). Moreover, let the condition (1.20) hold and let the
real part of every characteristic value of the matriz (£}})ii1=1 be negative,
where

& = ma [0 + (1 = ) hij) — misga
for (—1)7 (Tz—t) >0 (j=1,2;4,0=1,...,n),
gitj = civij(1 = eivijGi) ™ paji(Ti) + max {pg,1i(a), pg,2i(b) },

-1
hij =1 fOT Ci%ij S 1 and hij =1 + (Ci’yij — 1) (1 — ci'YijCij) fOT Ci%ij > 1.
Then the condition (1.12) holds.

Proof. Let (z;)7, be an arbitrary nonnegative solution of the problem (1.4),
(1.5). Let i € {1,...,n} be fixed. By (2.41),

dzi(t) — (2:(t) + gi(t))da;(t)| sign(t —t;) <0 for t € [a,b], (2.43)
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where
zi(t) = @i(t) — gi(t), ai(t) = ni[ou(t) — a;(ty)] sign(t — t;),
gi(t) = |:/a?l(’l')dﬂn(7') + Z ] (Cil(t) — Cil(ti)) sign(t — ti),
b 1#£i,1=1

r =sup {[|z(t)|| : t € [a,t;[U]t1, 0]} (I=1,...,n).

Hence the function z; satisfies the condition (2.24), where ¢(t, z) = z+g;(t),
a(t) = ai(t), to = t;. On the other hand, by (1.4), (1.5), (2.41)—(2.43) it
is not difficult to verify that z; satisfies the conditions (2.25)—(2.27), where
co = c;x;(7;), since a; is continuous on [a,t;[U]t;,b] and ¢y (i # ;1 =
1,...,n) are continuous at the point ¢;. Moreover, the Cauchy problem

dy(t) = (y(t) + gi(t))dai(t), y(t:) = ciwi(r)
has the unique solution

t

) = [ asas(s) + Xi0) i) -

t T

- [ ([ stdasts))ax: ) (2.44)

t; t;
(see [7, p. 120]), where the function
Xi(t) = (1 + (=1 dja;(t:)) exp (ai(t) — (1) d;a;(t:))
for (=1)(t—t;)>0 (j=1,2)
is the solution of the problem
dA(t) = AM(t)da;(t), A(t;) =1

Therefore, according to Lemma 2.4 and the formula of integration by
parts (see [7, p. 48]), we have

z;i(t) < gi(t) + ciXi(t)x; () + 0i(t)pi(t) for ¢ #t;, t € [a,b], (2.45)

where

o~

@i(t) = lim / 57" (s)gi(s)dai(s)
e—0+
ti+esign(t—t;)

and

6i(t) = exp (a;(t) — (-1)7dja;(t;)) for (-1)/(t—t;) >0 (j=1,2).
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By the definition of g; and the condition (1.19), it follows from (2.45)
that

CEZ(t) S C; (/\z (t) + (Sz(t)d]ﬂ“(t))mz(ﬂ) + 6i(t)<pi (t)
for (=1)i(t—t;)>0 (j=1,2), (2.46)

since §;; is a nondecreasing function. With regard to (1.19), this implies

zi(15) < eijdi(r)pi(m) (1 — eiigi(m))
for (=1 (r;i—t;)>0 (j=1,2). (2.47)

On the other hand, taking into account (2.41), we have

n n t
il (o . _
)< Y ndh @ -n+ tm el [ 5@
I#i,1=1 i =1 ti+e sign(t—t;)
for t#t;,t€a,bl. (2.48)

On the basis of (2.46)—(2.48),

h.
r; < —

| Z nar: + Zgiljrl for (—l)j(‘l'i — ti) >0 (] = 1,2).
=1

i 1#i,1=1

Hence, in view of (1.20),

n

n< Y hn,
I#i,1=1 il
i.e., the vector r = (r;)jL, satisfies the inequality (2.40), where H = (h})7;,
hi =0 (G =1,...,n), hiy = é%q (i # ;4,0 =1,...,n). From the condi-
tions imposed upon the matrix (£;)7,_, it follows that the module of every
characteristic value of the matrix # is less than 1. Therefore, by (2.43), we

haver =0, i.e., z(t) =0fort #¢; (i =1,...,n). Moreover, the inequalities

zi(t;) < eiwi(m), m#ti (i=1,...,n)

imply that z;(¢;) =0 (i=1,...,n). The lemma is proved. W

§ 3. PROOF OF MAIN RESULTS

Proof of Theorem 1.1. Let the conditions of Theorem 1.1 be fulfilled and let
the problem (1.1), (1.2) have the unique solution z° = (2?)" ;. Consider
the auxiliary problem

dz(t) = d A*(t) - f*(t, 2(t)), (3.1)
h*(z) =0, (3:2)



32

where
-5 )

f*(tazlv EERE Z2n) = (fz);)(tv Rlye-- 7Z27L))1221 on [(L, b] X RQn’
h*(z) = (hf(z))fﬁl for z € BV ([a,b], R*"™),
B(t) is a diagonal matrix-function with the diagonal elements
bi(t) = [so(cii)(t) — solcii)(t:)] sign(t —t;) for t€[a,b] (i=1,...,n);
fi);)(tazla LR Z2n) = fi()(t; 21+ Zn+4ly-05%n + Z2n)7
frviot,z1,...,220) =0 on [a,b] x R*™ (i=1,...,n),
hf(zl, RN ZQn) = Zl(tz) + Zn—i—i(ti) — (Pi(Zl + Zn+1,---,2n + Zgn),
hyyi(21,. .0 220) = 2n4i(t;) on BV([a,b], R*™™).

It is clear that the problem (3.1), (3.2) has the unique solution 20 = (29)27, |
where

0_ .0
zZ; =x;,

: 20.,=0 (i=1,...,n).

Let us show that 20 is strongly isolated in the arbitrary radius r > 0.
By Lemma 2.5 from [11], there exists p. €]0,+oo[ such that

> lzills < puly + %IIU(-) — u(a)l[s] (3-3)

i=1

for every solution (x;)?_, of the problem

[dj|a:i(t)| — sign(t — t;) (Z |z (t)|deq (t) + dui(t)>] sign(t —¢;) <0
=1

(i=1,...,n),
(—l)jdj|a:i(ti)| S |a?,(t,)|d]0”(tl) + djui(ti) (Z = ]., e ,n); (34)
|z:(t:)| < woi(|z1]y-- ) lzn]) +n (E=1,...,n), (3.5)

where n € Ry and v = (u;)?; € BV ([a,b], R™) are the arbitrary number
and the vector-function, respectively. On the other hand, in view of (1.11)
there exists a number

n
po>nr+Y |lz)ls
i=1

such that

o)+ 5 / AAD 0 + 42 0) -0t | <5 for 2 pn. (3
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Let
1 for |[s] < po,

x(s) =<¢2— |pi| for po < |s| < 2po,
0
0 for |s| > 2po;

n
Bi(r, .. yzn) = XD lzklls) @iz, ... 2n) (i=1,...,n)
k=1

and let [*,1* and I3 be the operators from BV ([a,b], R*") into R>" defined
by
. (zi(t:) + Zn+i(ti))”1>
l yreey”2n) = ¢ )
i AN

I*(21,- ., 220) = — ((%(21 T Znt1 0 »Zn T+ Z2n))z1> ,

18(217"‘72271) =0.

It is not difficult to see that

fo(t,2) = P*(t)z + ¢*(t,2) for t€[a,b],[|z—2"@) <,
h*(z) = I*(2) + 1*(z) for z e BV([a,b], R*"),
a”(t,p) < 400 and pB*(p) < +o0o for t € [a,b],p € Ry,

where

* On On * -
P(t):<ln In>, Q(taz):X<Z|2k+2n+k|>X

k=1
fO(tazl+zn+17"'azn+22n) _ \2n 2n .
x ( I for ¢€la,b], z=(2)" € R°™;
o*(t,p) = max {|g*(t, 2)| : ||2]| < p} for t€[a,b],p€ Ry
and
8*() = sup {[ ()| — ()]s : Izlls < p} for pe Ry
Consequently, the conditions (a) and (b) of Definition 1.2 are fulfilled for
f* P g b5 1%, 0715, 0", and B*. Moreover, the matrix-function P* sat-
isfies the Opial condition with respect to the triplet (I*,1}; A) as B* is a

continuous matrix-function.
Let now z = (2;)2", be an arbitrary solution of the problem

dz(t) = d A" (t) - [P (t)2"(t) + ¢" (¢, 2(1))], (3.7)
I*(2) + 1*(z) = 0. (3.8)
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Then the function w(t) = (u;(t))’, ui(t) = zi(t) + zni(t) (i = 1,...,n)
will be the solution of the problem

du(t) = d B(t) - u(t) {1 = X(i |uk(t)|>] +

#aa0) (3 (o)) 1,00,
k=1

ui(ti) = @l(u) (7, = 1,. . .,n).

But every solution of the latter problem is also a solution of the problem
(1.1), (1.2), and the estimate

S letmlls < po (3.9)
m=1

is valid (see the proof of Theorem 1.1 from [11]). Consequently,
u(t) = 2°(¢), (3.10)

since the problem (1.1), (1.2) has the unique solution z°. On the other
hand, by (3.9), (3.10) and the definition of the function y, from (3.7), (3.8)
we have

z(t) = 20(1),
i.e., the problem (3.7), (3.8) has no solution differing from 2°. Hence z
strongly isolated in the radius r > 0.
According to Lemma 2.1, the problem (3.1), (3.2) is (2°;r)-correct.
Let us show that the problem (1.1), (1.2) is (z°;r)-correct.
Let € €]0,r[ and

0is

((Ama fma hm))+oo €W, (A(), an h; xO)_

m=1

For every natural m, we put
« i [Am(t), Oy
G0 = ("0 ).

fotyz1y .oy z0n) = (fin(Ey 21,0 -y z2n))?21 on [a,b] x R,
hr(z1,...,20n) = (b, (21, .-+, 22n))?21 for z= (21)321 € BV ([a,b], RQ"),

and
wh(t,p) = (Wha (£,0)7% on [a,b] x Ry,

2A vector-function from BV([a,b],R”) is said to be a solution of this system if it
satisfies the corresponding integral equality.
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where
Jim( 21,2 220) = fim(t, 21 + Zngty - - 2n + 22n),
f;+im(t,Z1,---,Z2n) =0 (l = 1,...,’!7,),
h:m(zla ‘e -72271) = hlm(zl + Znt1,---5 20 +Z2n)7
Prim (215 -+ o5 220) = 2Zngi(ti) (i =1,...,n),

Wi (t,p) = wim(t,p)s whiim(t,p) =0 (i=1,...,n)

and wy, = (Wim)y € M ([a,b] x Ry, R?; Ay,) is the vector-function ap-
pearing in the definition of the set W, (4q, fo, h; z°).
We can easily conclude that

(A%, o hi)) T2 € Wi (A%, f*, 0% 20).

Consequently, by (2°;r)-correctness of the problem (3.1), (3.2) there exists
a natural number mg such that the problem

d=(t) = d AL, (1) - £, (6, 2(0)), (3.1m)
ho(z) = 0 (3.2m)

has at least one solution in Us,(2%r) and every such solution belongs to
the ball Us,(2°;¢) for any m > mg. On the other hand, if z = (2;)?", is a
solution of the problem(3.1,,), (3.2,,), then = = (2;)?_; will be the solution
of the problem (1.1,,), (1.2,,) and conversely, if © = (z;)?_, is a solution
of the problem (1.1,,), (1.2,,,), then the vector-function z = (z;)?",, where
2i = i, Zn+i = 0 (i = 1,...,n) will be a solution of the problem (3.1,,),
(3.2,,). Moreover,
Iz = 2%lls = llz — 2°lls.

Therefore the problem (1.1), (1.2) is (z%;r)-correct for every r > 0, too. In
view of the arbitrariness of r and Definition 1.4, the problem (1.1), (1.2) is
correct. Thus the theorem is proved. W
Proof of Theorem 1.2. This theorem immediately follows from Theorem
1.1 and from Theorem 1.2 in [11].
Proof of Theorem 1.3. According to Theorem 1.2, the problem (1.1), (1.2)
has the unique solution (z;)l;.

Let us show that the Cauchy problem

du(t) =Y fro(t,21(8),- ., zig—1 (1), u(t),
k=1

Zig+1 (t), cey Zn(t))daioko(t), (311)
u(tiy) = co (3.12)
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has the unique solution defined on the whole [a, b] for every ig € {1,...,n},

co € R and z, € BV ([a,b],R) (k # io;k = 1,...,n). In fact, the latter
problem may be written in the form

du(t) = dAo(t) - fo(t,u(t)), (3.13)

(k) = 7@ (i =1,...,n), (3.14)

where

u(t) = (wit),_,, W(t)=0diu(t) (i=1,...,n),
Ao(t) = (@aro ()} peys Tiro(t) = digaairo(t) (i k =1,...,n);
folt,oy, ... 2,) = (?ko(t,xl, e ,xn))zzl,
?ko(t,xl, ces Tn) = fro (t,zl(t), ey Zig—1 (), Tig s Zig+1 (L), - - - ,zn(t))
(k=1,...,n),
©;(@) =digico (1 =1,...,n).

It is easily seen that Ay, f, and @; (i = 1,...,n) satisfy conditions of
Theorem 1.2. Therefore, by this theorem the problem (3.13), (3.14) has
the unique solution. This in its turn implies that the Cauchy problem
(3.11), (3.12) has the unique solution defined on [a,b]. Consequently, for
every (z;0)", € BV ([a,b], R") there exists the unique sequence (z;m); €
BV ([a,b], R™) (m = 1,2,...) such that @y, is the solution of the problem
(1.6), (1.7) for every natural m and ¢ € {1,...,n}. By virtue of Lemma 2.2
from [11] and (1.13), (1.14), (1.21)—(1.23), the functions

yim(t) = |.’17l(t) — CEim(t)| (7, = 1,. . .,n)

satisfy inequalities (2.9) and (2.10), where u;, (t) = 0 and v, = 0 for every
m. Therefore, according to Lemma 2.3, the estimates (1.27) are valid, where
ro €]0, +00[ and 4 €]0, 1[ are numbers independent of m. Thus the theorem
is proved. W

The Corollaries 1.1-1.6 follow immediately from Theorems 1.1-1.3 with
regard to Lemmas 2.6 and 2.7. It should only be noted that we take the
following functions as ¢; (i, =1,...,n):

cu(t:) =0 (i,l=1,...,n),
cir(t) = il (@i(t) — ci(ti) — (=1) djeu(t:)) + Bu(t) —
—Ba(t:) — (—1)7d; Bu(t;) +

2 n

+8i Z Z |aaikjldjacrik (ti)|

o=1 k=1
for (=1)7(t—t)>0 (j=1,2;4,1=1,...,n)

in Corollaries 1.2, 1.4 and 1.6.
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Let us consider Remark 1.3. Let the conditions of Theorem 1.3 be ful-
filled. Then for every (i), € BV([a,b],R"), (Wim)y € BV([a,b],R")
(m = 1,2,...) and (7;,)=; € R™ (m = 1,2,...) there exists a unique
sequence of vector-functions (%)%, € BV ([a,b], R™) (m =1,2,...) such
that the vector-function (Z;n, ), is a solution of the following Cauchy prob-
lem

dZTim(t) = Z feo (6, Tim1(t), - Ticim—1 (), Tim (1), Tit1m—1(t),
k=1

- ,Enm_l(t))daiko(t) + dﬂim(t) (’L =1,.. .,n),
Eim(ti) = (Pi(flm—la- . -afnm—l) +Yim (7, =1,... ,TL)

for every natural m. On the other hand, by Lemma 2.2 from [11] and (1.13),
(1.14), (1.21)—(1.23) the functions

yim(t) = |.’17im(t) — Eim(t)| (7, = 1, . ,n)
satisfy the inequalities (2.9) and (2.10), where

o<+

i=1

for every m. Therefore, according to Lemma 2.3,

n n
D wim = Timlls <pY_md™F (m=1,2,...), (3.15)
i=1 k=0

where (;m)?, (m =1,2,...) is the sequence appearing in Theorem 1.3,

n

- _ _ 1bv
=3l ~Tls, = 3 (Fond + Y @)} (m=1.2,..)
i=1

i=1
and p €]0,4o00[ and § €]0, 1] are numbers independent of m, U;y, and 7,,,.
Presuppose now that

lim #n, =0.

m—+400

Then for every positive number e there exists a natural number m. such
that

0 <e and 1, <e for m>m..

This implies
m Mme m me
o™ E =D e Y ™ < pe Y R+
k=0 k=0 k=m<+1 k=0

+e Z am—k < Sploj for m > 2m.,
k=m<+1
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where pg is a number such that
e <po (B=1,2,...).
Consequently, by (3.15)

mlirilm |Zim — Timlls =0 (i=1,...,n).

§ 4. ON THE NUMERICAL SOLUTION OF THE MULTIPOINT BOUNDARY
VALUE PROBLEM FOR A SYSTEM OF ORDINARY DIFFERENTIAL
EQUATIONS

Let E(Np,R") and E(ﬁm,R”) be the spaces of all vector-functions
y: Ny, > R"and y : Nm — R™ with the norms

1yllm = max {{ly(k)l| : k € N }

and -
lyll~ = max {{ly(k)|| : k¥ € Nin},

respectively, where N,,, = {1,...,m}, Ny, = {0,...,m} (m=1,2,...).
E(Nu,R?) = {y € E(Ny,R") :y(k) € R? for k€ Ny}
Let A; and As be the first order difference operator defined by the
equalities
Avy(k) = y(k) —y(k —1) for y € E(Ny,R") (k=1,...,m)
and
Noy(k)=yk+1)—y(k) for ye E(ﬁm,R”) (k=0,...,m—1),

respectively.

By M (N, x Ry, R%) we denote the set of all vector-functions w : Ny, x
Ry — R such that w(k,-) is a continuous nondecreasing vector-function,
and w(k,0) =0 for k € Ny,.

Let 6([a, b], R™*™) be the set of all matrix-functions X : [a,b] — R"*™
with absolutely continuous components.

For system of ordinary differential equations

dzd;t(t) = fi(t,z1(t),...,zp(t)) (i=1,...,n) (4.1)
consider the multipoint boundary value problem
zi(t;) = pi(z1,...,z) (=1,...,n), (4.2)
where t1,...,t, € [a,b], f = (fi)i=, € K([a,b]xR", R™) and ¢; : BVs([a,b],
R”) — R (i =1,...,n) are continuous functionals, in general, nonlinear.

The system (4.1) is a special case of the system (1.1), when A®) () =0
and A (¢) is the diagonal matrix-function whose every diagonal element
equals tgt.
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It is clear that a vector-function z° € BV ([a,b], R") is a solution of
the system (4.1) in the sense described in Section 1 if and only if z° €
C ([a,b], R™) and satisfies the system (4.1) for almost every ¢ € [a, b].

Along with the problem (4.1), (4.2) consider the difference scheme

1
(k+j—1€Nm,i€ij;j:1,2), (4.1,,)
Yi(kim) = Yim W1, ... yn) (@E=1,...,n) (4.2,,)

(m = 2,3,...), where ki, € Np, (i = 1,...,n), Nim U Napy = Ny,
Nip O Nopy = @, gjim(k,") : R" = R (k € Ny, i € Njm; j = 1,2) and
Vim : E(]vm, R”) — R (i =1,...,n) are continuous functionals, in general,
nonlinear.

Let A, = (ailm)zlzl t[a,b] = R™™ (m = 2,3,...), fm = (fim)y ¢
[a,b] x R™ — R™ (m = 2,3,...), tim € [a,b] i =1,...,n;m = 2,3,...)
and @i, @ BVs([a,b],R") = R (i =1,...,n; m = 2,3,...) be the matrix-
functions, the vector-functions, the points and the functionals, respectively,
defined by the equalities

aim(t) =0 for te€[a,b] (i#1i,l=1,...,n),
aiim(t):k for tEIjkmﬂ[a,b]
(k:O,...,m;i:1,...,n;j:1,2), (43)

0 for t€ LiomNla,b],z € R" (i € Nim),
fim(t,x) =0 for t € Iy N[a,b], z € R (i € Nom), (4.4)

Egjim(k,a:) for t € Ijgm NJa,b], x € R"

(k+j—1€Ny;i€ Njp; j=1,2),

tim:’l'kimm (7::17"'7”)7 (45)
Gim(Z1,. .y &n) = Vim (1, .., yn) for (z;)je, € BV([a,b],R")
(i=1,...,n), (4.6)
where I1jm = [Tom — %na Tiem + %n[ (k=0,...,m), Ltm = |Tkm _%",
h—
Tkm_{_T?m] (k:O,...,m),Tkm:a+kTm (k‘:O,...,m),Tm: ma’ and

yi(k) = zi(tkm) for (z1)i~; € BV ([a,b], R")
(k=0,...,m;i=1,...,n). (4.7)

The following lemma is evident.
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Letm € {2,3,...} be fized and let a vector-function (y;)?, €
E(Nm,R™) be a solution of the problem (4.1,,), (4.2,,). Then the vector-
function © = (z;)_, : [a,b] = R"™ defined by the equalities

z;(t) = yi(k) for t € LipmNa,b] (k+j—1€ Np;i € Njps; j=1,2),

will be a solution of the problem (1.1,,), (1.2,,), where the matriz-function
A, = (ailm)?,zﬂ : [a,b] = R™ ™, the vector-function fm = (fim)P, :
[a,b] x R™ — R™, the points tyy (i = 1,...,n) and the functionals @ip, :
BVs([a,b], R™) = R (i = 1,...,n) are defined by the equalities (4.3)~(4.6),
respectively. On the contrary, if a vector-function & = (z;), is a solution
of the problem (1.1,,), (1.2,,), then the vector-function (y;)?_, defined by
(4.7) will be a solution of the problem (4.1), (4.2), where

giim(k, ) = mfim(Tkm,x) for k+j—1€ Ny, z € R"
(i € Njm3 j = 1,2).
Will give the following definition from [2].
We will say that the pair ((Qil)?,z:ﬁ (¢oi)f_y) consisting

of a matrix-function (¢i)?,_, € L ([a,b], R"*") and of a positively ho-
mogeneous operator (¢o;)7; : BVs([a,b], R?) — R7 belongs to the set

Ut,...,ty) if
giu(t) >0 for tela,b] (i#£l4,l=1,...,n)
and the problem
n
=1
|,,|a:n|) (t=1,...,n)

has no nontrivial nonnegative absolutely continuous solution.
It is evident that if (cqu)}—, € C([a, ], R™*™), then the condition (1.12)
is fulfilled if and only if

(g 115 (poi)ier) € Ultr, - tn), (4.8)

zi(t:) < woi (o1

where
Qil(t)zcél(t) (ial:]-a---an)'

Let 2° € C([a,b], R") and r €]0, 400 be arbitrary. By y,(z%7) we
denote the set of all solutions y = (y;)"; of the problem (4.1,,), (4.2,)
such that

max {||y(k) — 2°(7sm)|| : k € Nu} <1
for every m € {2,3,...}.
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The difference scheme (4.1,,), (4.2p,) (m = 2,3,...) is

said to be converging to the vector-function z° € C'([a, b], R") in the radius
r if for every e €]0, r[ there exists a natural number mg such that

Vi (2°57) # @

and
Y (2% 7) C V(2% ¢)

for every m > my.

The difference scheme (4.1,,), (4.2;,) (m = 2,3,...) is
said to be converging to the solution of the problem (4.1), (4.2) if the latter
problem has the unique solution xz° and this difference scheme converges to
20 in every radius r > 0.

Let h(z) = (hi(z))?zl, hi(x) = z;(t;)) —pi(z) (i=1,...,n) and hp(z) =
(him(.’lf))?zl, hzm(.’lf) = zi(Tkimm) — '(,bim(yl, .. .,yn) (’L = 1, e,y m =
2,3,...) forz =(a)p, € BV([a,b],R”), where y; : Nm — R (l=1,...,n)
are defined by (4.7). Let g = (gim )1y : Ny, X R® = R™ (m =2,3,...) be
a vector-function such that

gim (k,z) = gjim(k,z) for k€ Npn,z€R" (i€ Nim;j=1,2).
By W (f,h) we denote the set of all sequences (gm, hm )% such that
a)
Tkm

k
lim max{‘% Z gjim(l,x)—/fi(T,a:)dT

m—+o00
[=0c+1

ro < k;

Tom

a+j—1,k+j—1€Nm}:0 for every x € R" (i € Njp; j = 1,2);

b) lim hy,(z) = hi(x) uniformly on U, (0;r) (i = 1,...,n) for every

m—+00
r > 0;
¢) there exist sequences (wjim )%y € M (N X Ry, RY) (m =2,3,...;j =
1,2) such that

m—j+1
sup{ﬁ Z wjim(k,r):m:2,3,...}<+oo for >0 (j=1,2),

k=2—j
1 m—j+1
sl_l}r(r)1+sup{ak d .wjim(k,s):m:2,3,...}: j=12)
=2—j

and

|gjim(k7$) _gjim(kay)| < Wiim (k/'7||:lj _yH) for k+.7 —1€ Np
and z,ye R" (j=1,2;i=1,...,n;m=2,3,...).
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Theorems 4.1, 4.2 and 4.2' and Corollaries 4.1-4.4, 4.1 and 4.3’ below
follow immediately from Theorems 1.1, 1.2 and from Corollaries 1.1-1.4 if
we use Lemma 4.1.

Let the inequalities

n
filt, e, ..., zn) sign [(t — t;)a;] < Zpil(t)|wl| + g (t,]|z|l),
=1
(it=1,...,n) (4.9)
and (1.10) be fulfilled on [a,b] x R™ and BV([a, b], R”), respectively and let,

t

/pil(T)dT <cy(t) —culs) for a<s<t<b (i,l=1,...,n),
(4.10)

S

where py € L ([a,b],R) (G, =1,...,n), ¢; € K([a,b] X R+,R+) (=
1,...,n) are functions nondecreasing in the second variable, v € C(Ry,Ry),

b

1

lim —/qi(t,p)dtzo (i=1,...,n), lim M:0 (4.11)
p——+o0 p p——+o0 p

and the matriz-function (cu)}—, € BV ([a,b], R™") is such that the con-

dition (1.12) holds. Moreover,let

(gmahm);O:% € W(fv h) (4-12)

If the problem (4.1), (4.2) has no more than one solution, then the differ-
ence scheme (4.1,,), (4.2,,) (m = 2,3,...) converges to the solution of the
problem (4.1), (4.2).

4.1'. Let the inequalities (4.9) and (1.10) be fulfilled on [a,b] x R™
and BV([a,b],R”), respectively, and let the conditions (4.11), (4.12) and

pu(t) < gqu(t) for tela,b] (4,1=1,...,n) (4.13)

hold, where p; € L([a,b],R) (i, = 1,...,n), q; € K([a,b] X R+,R+)
(1t = 1,...,n) are functions nondecreasing in the second variable, v €
C(Ry,Ry), qu and @o; (i,1 = 1,...,n) satisfy the condition (4.8). If
the problem (4.1), (4.2) has no more than one solution, then the differ-
ence scheme (4.1,,) (4.2,,) (m = 2,3,...) converges to the solution of the
problem (4.1), (4.2).

Let the inequalities (4.9) and (1.16) be fulfilled on [a, b] x R™
and BV([a, b], R"), respectively, and let the conditions (1.3), (1.15), (4.10)—
(4.12) hold, where py € L([a,b],R) (i,l=1,...,n), q; € K([a,b] ><R+,R+)
(¢t = 1,...,n) are functions nondecreasing in the second variable, i €
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Ry (6=0,1,2;4,k=1,...,n), v € C(R+,Ry), cy(i #1;i,l =1,...,n)
are functions nondecreasing on [a,b] and continuous at the point t;, c¢;; €
BV([a,b],R) (t=1,...,n); aq(l = 1,...,n) are functions nondecreasing
on [a,b] and having not more than a finite number of discontinuity points;
hi € L“([a,b],R+; oq) (i,i=1,...,n),1 < pu < +4oo, %+% = 1. Moreover,
let the module of every characteristic value of the 3n x 3n- matriz H =
(’Hj+17(,+1)? s—o appearing in Corollary 1.1 or of the n X n-matriz appearing
in Remark 1.2 be less than 1. Then the conclusion of Theorem 4.1 is true.

If q(t) =t (I=1,...,n), then Corollary 4.1 has the following form.

4.1'. Let the inequalities (4.9) and

n n
lpi(1,-..,an)| < ZlikHl”kHL" +7(Z llzells)
k=1 k=1
(i=1,...,n)

be fulfilled on [a,b] x R™ and BV([a,b],R”), respectively, and let the con-
ditions (4.11) and (4.12) hold, where py € L ([a,b]; Ry) (i,l = 1,...,n),
lit € Ry (i,k=1,...,n), 1 <pu< +oo, i+% =1, ¢ € K([a,b] x R, Ry)
(1t = 1,...,n) are the functions nondecreasing with respect to the second
variable, v € C(R4,Ry). Moreover, let the module of every characteristic
value of the matrix

((b )+ [2“’; “)] %npmup)n (4.14)

i,k=1

be less than 1. Then the conclusion of Theorem 4.1 is true.

Let the inequalities

filt,z1,. .., 2y,) sign [(t - tz)xz] < Zmz|ﬂ3z| +qi (t, ||l°||)a
=1
(i=1,...,n) (4.15)

and (1.17) be fulfilled on [a,b] x R™ and BV([a, b],R”), respectively, and let
the conditions (4.11), (4.12) and

ciexp (=17 (ri —ti)nu) <1 if (=1)7(r; —t;) >0
G=1,2i=1,...,n), (4.16)
hold, where ny € Ry (i # l;i,l = 1,...,n), 9y < 0 (i = 1,...,n),

g € K([a,b] X R+,R+) are functions nondecreasing in the second vari-
able, v € C(Ry,Ry), ¢i € Ry (1 = 1,...,n), ; € [a,b] and 7; # t;

N

b
3Here ||og|Lv = (fa |:vk(t)|”dt) k=1,...,n).
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(1t = 1,...,n). Moreover, let the real part of every characteristic value of
the matriz (§;1)}—, be negative, where

Ea =ma[0a + (1 = 0a)hij]  for (=1)/(r; —t;) >0
(=124,l=1,...,n),

1 for ¢; <1,

hi;i = -1
/ 14 (¢;—1) <1 — ¢; exp ((—1)j(Ti - tz)n“)> for ¢; >1

G=1,2%i=1,...,n).

Then the conclusion of Theorem 4.1. is true.

Let the inequalities
[fi(t, @1, ..., @n) — filt,yr, .., yn)] sign [(t — &) (z; — ys)] <

Szpil(t)|$l_yl| (t=1,...,n) (4.17)
=1

and (1.23) be fulfilled on [a,b] x R™ and BV([a,b],R”), respectively, and
let the conditions (1.12), (4.10) and (4.12) hold, where py € L([a,b], R)
(i,l =1,...,n). Then the difference scheme (4.1,), (4.2,,) (m =2,3,...)
converges to the solution of the problem (4.1), (4.2).

4.2'. Let the inequalities (4.17) and (1.23) be fulfilled on [a, b] x
R"™ and BV([a, b], R"), respectively, and let the conditions (4.12) and (4.13)
hold, where p; € L([a,b],R) (,,l=1,...,n), qq and po; (i, =1,...,n
satisfy the condition (4.8). Then the difference scheme (4.1,), (4.2,,) (m =
2,3,...) converges to the solution of the problem (4.1), (4.2).

Let the inequalities (4.17) and (1.24) be fulfilled on [a, b] x
R"™ and BV([a,b],R"), respectively, and let the conditions (1.3), (1.15),
(4.10) and (4.12) hold, where p; € L([a,b],R) (i,0 =1,...,n), los € Ry
(6 =0,1,2;0,k=1,....n), cg (i #1;i,l =1,...,n) are functions non-
decreasing on [a,b] and continuous at the point t;,c;; € BV([a,b],R) (1=
1,...,n), aq (I =1,...,n) are functions nondecreasing on [a,b] and having
not more than a finite number of discontinuity points, hy € L ([a, bl, Ry; oq)
(G,l=1,...,n), 1 < pu < +oo, %-{—% = 1. Moreover, let the module of every
characteristic value of the 3n x 3n -matric H = (Hj1,041); 5o appearing
in Corollary 1.1 or of the n X n-matriz appearing in Remark 1.2 be less than
1. Then the conclusion of Theorem 4.2 is true.
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4.3" Let the inequalities (4.17) and
n
i@,y mn) = @iy yn)| <D likllze —yelle (=1,...,m)

be fulfilled on [a,b] x R™ and BV([a b], R”), respectively, and let the con-
dition (4.12) hold, where p; € L“([a b] R+) (i, = 1,...,n), iy, € Ry
(Gbk=1,...,n), 1 < p < 4oo, ﬁ —I— 2 = 1. Moreover, let the module
of every characteristic value of the matmm (4.14) be less than 1. Then the
conclusion of Theorem 4.2 is true.

Let the inequalities

[fi(t,arl, ces ) — filtyy, .. ,yn)] sign [(t —ti)(z; — y,)] <
Z nalze —yl (i=1,...,n)
be fulfilled on [a,b] x R™, and let the conditions (4.12) and (4.16) hold,
whereny € Ry (i #Li,l=1,....n),n; <0(=1,...,n), ¢ € Ry (i =
1,...,n), 7 € [a,b] and 7; #t; (i = 1,...,n). Moreover, let the real part
of every characteristic value of the matriz (fil)?,zﬂ appearmg in Corollary

4.2 be negative. Then the difference scheme (4.1,,), (4.2,,) (m =2,3,...)
converges to the solution of the problem (4.1), (1.25) for every \; € [—ci, ci]
and v, €ER (i=1,...,n).

We give the following notation from [16].

Let I be a set obtained by rejection of not more than a finite number
of points from [a,b]. Then by C*(I, R) we denote the set of all functions
u € C(I, R) such that

|u(t)| < v, (t) for tel,

where v, : I — R, is a continuous, Riemann integrable in improper sense,
function monotone in sufficiently small left and right neighborhood of every
point of the set [a,b]\I. Let C*(I x R", R™) be the set of all f = (f;), € C
(I x R™, R™) such that

max{|fi<-,x>| el < } ECHILR) (i=1,...,n)

for every r > 0.

Remark 4.1. Analogously, as in the proof of Lemma 1.1 from [16], we can
show that if (f;)7, € K ([a,b] X R", R") and

k
gjim(k,z) =m / fi(r,z)dr for k+j—1€ Np, z € R"
Tek—1m

(i€ Njm; j=1,2,m=2,3,...)



46

or (f;)y € C*(I x R", R"™) and

(k. 2) 0 for 7gm € Ty, ¢ € R™,
im (k7)) =
Jyim filtem,z) for tpm € I\T), z € R"

(k+j—1€Ny, i€Nj,j=1,2 m=2,3,...),
where I is a set, obtained by rejection of not more than a finite number of
points from [a, ],

Tn= U Jt—Tm,t+ 7wl
t€la,b]\T

then the sequences (gjim) "% (i € Njm, j = 1,2) satisfy the conditions (a)
and (c) given in the definition of the set W (f, h). In particular, it is evident
that the Euler and the Runge—Kutta schemes [17] satisfy these conditions.

§ 5. ON THE STABILITY OF SOLUTIONS OF THE MULTIPOINT BOUNDARY
VALUE PROBLEM FOR A SYSTEM OF DIFFERENCE EQUATIONS

In this section we intend to consider the results connected with the mul-
tipoint boundary value problem for system of difference equations which
have been given in Section 1.

Let mg > 2 be a fixed natural number. For system of difference equations

yi(k) —yi(k — 1) = gi(k,y1(k), ... yn(k),y1(k — 1),...,yn(k — 1))

for k€ Np, (=1,...,n) (5.1)

consider the multipoint boundary value problem
yi(ki) = Yi(yr,- .., yn) (E=1,...,n), (5.2)
where ki € Ny, (i =1,...,n), gi(k,") : R™ - R(k=1,...,mp;i =
1,...,n) and ¢; : E(Ny,,R") = R (i = 1,...,n) are continuous function-

als, in general nonlinear.
Cons1der along with the problem (5.1), (5.2) a sequence of problems

yi(k) = yi(k = 1) = gim (K, y1 (k) ..., yn(k),y1(k — 1), ., yn(k — 1))
for ke Np, ( 1,...,n), (5.1,)
Yi(kim) = Yim (Y1, -, Yn) (l =1,...,n) (5:21m)
(m = 1,2,...), where ki, € Ny (i = 1,...,0), gim(k,-) : B> — R
(k=1,...,mgp;i=1,...,n) andwim:E(ﬁmO,R”)—)R( =1,...,n) are

continuous functionals, in general nonlinear.

We will rewrite every of the problems (5.1), (5.2) and (5.
(m =1,2,...) in the form of the problems (1.1), (1.2) and (1.1,
(m=1,2,...), respectively.

Consider the problem (5.1), (5.2). Let y = (y;)I, € E(Np,, R™) be a
solution of this problem. Assume
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and N

Ynti(k) =yi(k—1) for k€ Ny, (i=1,...,n).
Then the problem (5.1), (5.2) is equivalent to the following 2n x 2n difference
problem

yi(k) —yi(k = 1) = gi(k,y1(k), ..., y2n(k)) for k€ N,
(i=1,...,n),
i(k—1) —ynti(k—1) for k€ Ny,
(t=1,...,n),
yi(ki) = iy, ... yn) (i=1,...,n),
Ynti(knti) = Yi(ys,...,yn) (E=1,...,n),

Ynti(k) = Yngi(k — 1) =

—~

where
kn_H:k'i-i—l (i:l,...,n).
Therefore the vector-function z = (z;); € BV([O, mo, R”),

Cﬂl(t) = yl(k) for te Ijkmo N [O,Tno]

(k+j—1€ Npy; i € Njmg; 7 =1,2), (5.3)
Tm Tm ~
where Ilkmo = [Tkmo — TO,TkmO + 20 [ (k S Nmo), I2km0 :]Tkmo —
r T - b—a
_%77-]67)10 + 750] (k e Nmo)a Tkmo = k”rmoa Tmo = m 1) Nlmo =

{1,...,n}, Nap, = {n+1,...,2n}, is a solution of the 2n ><02n problem
(1.1), (1.2), with a = 0, b = mo, Ao(t) = (au(t))},_,,
ag(t)=0 (@i #Li,l=1,...,2n),
a;i(t) =k for t€ Ijjm, Nla,b] (5.4)
(k € Ning; i € Njmos; 7 = 1,2),
fo(t,z) = (fio(tal"))?:l,

0 for t€ Liom, N[a,b], © € R?",
gi(k,z) for t € Ligm, N[a,b], © € R®™, k € Np,

fiU(tax) = {

(t=1,...,n),
frviot, 21, T2n) = ¥ — 2py; for t€[a,b], (z;)}", € R*" (5.5)
(it=1,...,n),
ti=k (i=1,...,2n), (5.6)
Gi(T1y. .. Z2n) = Onpi(T1, .oy T2n) = Vi(Y1, .-+, Yn)
for (z)}" € BV ([a,b],R*") (i=1,...,n), (5.7)

where

yi(k) = zi(Tkme) (B=0,...,mg; i=1,...,n). (5.8)
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Analogously we can see that if y = (y;)?, € E(ﬁmO,R”) is a solu-
tion of the problem (5.1,,), (5.2,), then the vector-function = = (z;)?, €
BV ([0,mg], R™) defined by (5.3) is a solution of the problem (1.1,,), (1.2,,),
where a = 0, b = my,

Ap(t) = Ao(t), (5.9)

Ap(t) is defined by (5.4);

2n

fm(t7 a:) = (fzm(t7 x))i:p

fim(t ) = 0 for t€ Lom, N[a,b], € R*",
A gim(k,z) for t € Ligm, N[a,b], © € R?™, k€ Ny,
(i=1,...,n),
frrim(t, @1, ..., Topn) = @; — Tpyy for t € [a,b], (wl)?ﬁl € R> (5.10)
(i=1,...,n)

tim = kim (Z =1,.. .,2n), kn+im =kim +1 (Z =1,.. .,n); (511)
(Pim(xla s a$2n) = Son—i-im(wl: S ,277,) = ¢im(y1: .- -ayn)
for (z)72, € BV ([a,b],R*") (i=1,...,n), (5.12)

where y; : Ny, — R (I =1,...,n) are defined by (5.8) for every natural m.
Therefore we have proved the following

Let m be a fized natural number. Let (y;)7_, € E(Np,, R")
be a solution of the problem (5.1), (5.2) (of the problem (5.1,,), (5.2,,)).
Then the vector-function (z;)7_, € BV ([a,b],R") defined by (5.3) will be
a solution of the 2n x 2n problem (1.1), (1.2) (of the 2n x 2n problem
(l.lm), (I.Qm)), where a = 0, b = My, A() = (ailo)i’f:l, f() = (fio)%gl,
t1,.-.,tap and P1y---5,P2n (Am = (ailm)%fll:l’ fm = (fim)?:17 tim,--->tanm
and Qim, ..., P2nm) are defined by (5.4)~(5.7) (by (5.4), (5.9)~(5.12)), re-
spectively. On the contrary, if the vector-function (x;)?", € BV([a, b],R2”)
is a solution of the 2n x 2n problem (1.1), (1.2) (of the 2n x 2n prob-
lem (1.1,,), (1.2),)) circumscribed above, then the vector-function (y;)?_, €
E(Ny,,, R™) defined by (5.8) will be a solution of the problem (5.1), (5.2)
( of the problem (5.1,,), (5.2,,)), where

9i(k, ) = fio(Tkmo> @) (gim (K, @) = fim (Thmo , ))
for k€ Np,, z€R™ (i=1,...,n).

Basing on the above facts, we can give the following

We will say that the pair ((gu)7/—,; (t0:)72,) consisting
of a matrix-function (¢i);7—; : Nm, — R****" and a positive homogeneous
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operator (¢o;) 2%, : E(Npy, R2") — R belongs to the set Upg (1, - - -, kan)
if the problem

(yi(k) — yi(k — 1)) sign (k ki — —> Z (qu(k
=1

+qm+l(k)yn+l(k)) (k=1,...,mg;i=1,...,n),

(5.13)
1
(yn+i(k + 1) = ypti(k)) sign (k ki — —> an—i-zl (k+ 1)y (k)
1=1
(k=0,...,mp—1;i=1,...,n);
yi(ki) < 1/J0i(|y1|, e |y2n|) (i=1,...,2n) (5.14)

has no nontriv1al nonnegative solution.

Let 40 = (°)", € E(Nm,, R") and r €]0, +00[. By Zp,,(y°;7) we denote
the set of all solutions y = (y;)7, of the problem (5.1,,), (5.2,,) such that

0
ly =9l <r
for every natural m. D,,,n(y°; R) is the set of all z € R™ satisfying the
inequality
min {||z — y°(k)|| : k € Ny } < 7.
Unon(¥°;7) = {y € E(Npng, B") : [lw = 4°||= <7}
Let
9="(9)ic; gm = (gim)iza (m=1,2,...)

and let h, hmy, (m = 1,2,...) be the operator from E(N,,,, R*") into R>"
defined by the equalities

B, yon) = (hi(yr, o yon)) oy for ()i € B(Npmg, B2),
hi(yrs - -5 yan) = yilki) = i i1y (Y1, - - Y2n)
(i € ijo; .7 = 172);
hin (Y1, - -5 Y2n) = (him(yla---ay%))?:l
for (y))?*, € E(Npmy, R?") (m=1,2,...),
Pim (Y15 - - -5 Y2n) = yi(ki) = Vi (G-1ynm Y1, -, Y2n)
(7’ € N]moa .7 — 172)'

By W.,.(g, h; ¥°) we denote the set of all sequences (g, hm);->°; such that
a) lim gn(k,2,y) = g(k,2,y) for k€ Nmg; 2,y € Dimon(y"57);
b) lim hp(z,y) = h(z,y) uniformly for =,y € Upon(y’;r);

m—+
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¢) there exists a sequence wyp, € M (N, x Ry, R?) (m =1,2,...) * such
that

sup { [lwm (k, )| :m =1,2,...} <400 (k € Nyp,),
sgrgl+sup {llwm(k,s)|l :m =1,2,...} =0 (k € Np,),
|gm(k7x) - gm(kay)| < wm(ka ||£I’,‘ - y”) on Nmo X Dmon(yo;r)
(m=1,2,...).
Let now y° be a solution of the problem (5.1), (5.2).

The problem (5.1) (5.2) is said to be (y%;r) -correct if for
every € €]0,7[ and (gm,hm) 2, € Wy(g, h;y°) there exists a natural mg
such that

Zm(y’ir) # @
and
Zm(y"s1) C Zm(y%;€)
for every m > my.

The problem (5.1), (5.2) is said to be correct if it has a
unique solution y°, and it is (y°;r)-correct for every r > 0.

Theorems and Corollaries below follow immediately from those given in
Section 1 if we use Lemma 5.1.

Let the conditions

gi(k,z1,...,T2y,)sign Kk —k; — %)xl] <
2n
< Zpil(k)|zl| +q; (k, ||a:||) (k=1,...,mo; i=1,...,n), (5.15)
=1

. 1
(i — Tpyi)sign [(k — ki — §)$n+i:| < pn+ii(k)|37i| +

+pn+in+i(k)|xn+i| + qn+i (ka ||£L‘||)
(k:(),...,mo—l;izl,...,n) (516)

be fulfilled on R*", and let the inequalities

o) < sl ) (3 M,
k=1
G=1,...,n), (5.17)

be fulfilled on E(ﬁmo,R”), where Py € E(]\NImO,R) it =1,....m1 =
17"'72n)7 Pn+il € E(NmoaR) (’L = 1,,TL,l = 'L,TL+'L), ql(ka) (Z =

4We take here the n-vector-function, since the (n + 4)-th (i = 1,...,n) components
of wm(k,s) (k € Nmy;m =1,2,...) are assumed to be equal to s.
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1,....2n;k=1,...,mg) and v € C(R4+,Ry) are nondecreasing functions
satisfying the conditions
7 ka .
lim alhp) _ (k=1,...,mo;i=1,...,2n),
— 400
’ P ) (5.18)
lim 12—,
p——+00 p

Yo; E(ﬁmo,Ri) — Ry (i =1,...,n) are positively homogeneous nonde-

creasing functionals. Moreover, let there exist a matriz-function (qil)?,7:1 :
Ny = R such that

((qi)iT=1, (W0i)i1) € Unmg (k1 - - kon), (5.19)
and
pa(k) <qu(k) (k=1,....mo;i=1,....m;1=1,...,2n),
Pnrit(k — 1) < qnya(k) (k=1,...,mo;i=1,...,n; 1 =1i,n+1), (5.20)

where

Yoi(W1, -+ Y2n) = Yonti(1,-- -, ¥2n) = Yoi(y1,---,yn) ((=1,...,n)

for (yi)i*, € E(]\meo,Rf_"), knvi = ki +1 (1 = 1,...,n). If the problem
(5.1), (5.2) has no more than one solution, then it is correct.

Let the conditions (5.18), (5.20) hold, and let the inequal-
ities (5.15), (5.16) and

i1 < S Ll o +7<Z Illz,) =10y
k=1 k=1

be fulfilled on R*™ and E(ﬁmo,R") respectwely, where py;, i1 € E( s R)
t=1,....n;1 =1,....2n), Ppnril,qn+ii € E(NmO,R) t=1,....,n;1 =
i,n+i),qk-) i =1,...,2n; k = 1,...,mp) and v € C(R+,R+) are
nondecreasing functions, l;, € Ry (i,k=1,...,n),1 < p < o0, i-l-; =1.
Moreover, let the module of every characteristic value of the 2n x 2n-matriz
H = (hik)i’,z:l be less than 1, where

2

1 1. 4 ™ v
hik:mglik+<551n m) ikl emeo
(i=1,...,n;k=1,...,2n),

2

1 1. ™
hntir =mg Lig + 3 sin m ||qik||ﬂ,mozl

1
SHere we assume that ||yllu,me = (E [ly(l ||")V and ||yl ~ =

v,mq

1
(7 ly01")¥ i 1< v < 400 and [yll+scmn = Wllmos 81l ~ = vl -

+oom
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(t=1,....,n; k=1i,n+1),
hovie=0 (i=1,....n;k#£i,k#n+i;k=1,...,2n).
Then the conclusion of Theorem 5.1 is true.

Let the inequalities

2n
. 1
gi(k,x1, ..., T2,) sign [(k —k; — 5)%] < ;mzhﬂ + qi(k, ||a:||)

(k=1,...,mo;i=1,...,n),
1
(z; — Tpyi)sign Kk —k; — §>a:n+l

+nn+in+i|$n+i| + qn+ti (k, ||$||)
(k=0,...,mo—1;i=1,...,n)

< Nngail x| +

be fulfilled on R*", and let the inequalities

i) < luma] 47 (Sl ) 6= 1)

k=1
be fulfilled on E(N;;LO,R”), where 0y € Ry Ny € Ry (1 #£Li=1,...

I=1,...,2n),n; <0 (i=1,...,2n), gi(k,-) i=1,...,2n; k=1,...,myp)
and v € C(R+,R+) are nondecreasing functions satisfying the conditions

(5.18), ¢; € Ry and m; € N, are such that

G <1 if (-1)’(my—ki)>0 (j=1,2;i=1,...,n), (5.21)

Gj =exp ((=1)(m; — ki)ni) (j =1,2;4=1,...,n). Moreover, let the real
part of every characteristic value of the matriz (fil)lel be negative, where

€ = na[6u + (1= da)hy] for (=1) (m; —k;) >0
(G=1,2141=1,...,n),°

b 1 for ¢; <1,
Y 1+ (Ci — 1)(1 — Cicij)_l f07" c >1
(j=1,2;i=1,...,n).
Then the conclusion of Theorem 5.1 is true.

Let the conditions

[gi(k,wl, . ,.’EQn) — gi(k',yl, . ,an)] sign |:(k —

—ki — %)(ﬂfz - yi)] <

SHere §;; is the Kroneker symbol.
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2n
<> palk)z —yl (k=1,...,mg;i=1,...,n), (5.22)
1=1
. 1
(Ti = Yi — Tpti + Ynta) sign | [k — ki — 5 (Tnti — Ynti) | <
< Potii(B)|%i — Yil + Prtin+ilToti — Yntil
(k=0,...,mog—1;i=1,...,n) (5.23)
be fulfilled on R*" and let the inequalities
i1, wn) = iyrs -5 yn)| < Goi(lzr = w1l -, 20 — ynl)

(i=1,...,n)

be fulfilled on E(Ny,, R"), where py € E(Npmg,R) (i = 1,...,n; | =
1,...,2n),pnri € E(NmO,R) (i=1,...,n; l=i,n+1), ;i : E(Np,y,R") =
Ry (i = 1,...,n) are positively homogeneous nondecreasing functionals.

Moreover, let there exist a matriz-function (qil)i’le t Ny — Ri” such that
the conditions (5.19) and (5.20) hold, where

Yoi(Y1, -+ Y2n) = Yonti(Y1,- -, Y2n) = Yoi(y1,-- -, Yn)

for (y)", € E(Kfmo,Ri”), knyi = ki (i = 1,...,n). Then the problem
(5.1), (5.2) is correct.

Let the condition (5.20) hold, and let the inequalities (5.22),
(5.23) and

n
i1, oo mn) = iy yn)| < Zliknyk“mg,u
k=1

be fulfilled on R>® and E(ﬁmo, R"), respectively, where p;, gy € E(]\meo, R)
(’L = 1,...,TL; I = 17"'72n)7 Pn+il, n+il € E(NmoaR) (’L = 17"'777’; I =
i,n+1i), lig € Ry (i,k=1,...,n), 1 <p < +oo, % + %:1. Moreover, let
the module of every characteristic value of the 2n x2n-matric H = (hik)?,’ézl

appearing in Corollary 5.1 be less than 1. Then the problem (5.1), (5.2) is
correct.

Let the inequalities

1

(i, 21,y 30) — g3 (ks Yt -y yon) ] sigm Kk— i — 5)@ —yi)] <

2n
<Y malw -yl (k=1,...,mo;i=1,...,n),
=1

<

. 1
(Ti — Yi — Tnyi + Ynts) Sign Kk — ki — 5) (Tnti — Ynti)

< M| Ti — Yil + Mnvintil Tati — Yntil
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(k=0,...,mo;i=1,...,n)

be fulfilled on R®™, where ny € Ry, Nnrsi € Ry (i # 10 =1,...,n;1 =
1,...,2n), n;; <0 (i =1,...,2n). Moreover, let ¢c; € Ry and m; € Kfmo,
m; # ki (i =1,...,n) be such that the condition (5.21) holds and the real
part of every characteristic value of the matriz (fil)lel is megative, where
Gj and & (i,7,1 = 1,...,n) are the numbers appearing in Corollary 5.2.
Then the problem (5.1),

yilk:) = Niys(my) +v (i=1,...,n)

is correct for every \; € [ci,c;] and v; € R (i=1,...,n).

Finally, let us consider a method of construction of the solution of the
problem (5.1), (5.2). We take an arbitrary vector-function (y;0)*, €
E(N,,,, R™) as the zero approximation of the solution of the problem (5.1),
(5.2). If the (m — 1)-th approximation is constructed, then as the m-th
approximation we take a vector-function (y;m)i, € E(N,,,, R) whose i-th
component is the solution of the Cauchy problem

Yim (k) = yim(k = 1) = gi (k, y1m—1(k), -, yi1m—1(K), yim (K),
Yitrim-1(k)s o Unm—1(B)sy1im—1(k = 1),.. .,y 1m—1(k — 1),
Yim(kE = 1), Yit1m—1(k = 1), ..., ynm—1(k — 1))
for k€ Np, (i=1,...,n), (5.24)
Yim (ki) = Yio(Wim—1,-- - Ynm-1) (=1,...,n). (5.25)

Let the conditions of Theorem 5.2 be fulfilled and

qi(k) <1 for k=k;+1,....mg (1=1,...,n),

Gnsinsi(k) <1 for k=1,...k (i=1,...,n). (5.26)

Then for every (yio)l, € E(Np,, R") there ezists a unique sequence
(Yim)1—q € E(Npy, R™) (m = 1,2,...) such that the vector-function (yim)?_,
is a solution of the problem (5.24), (5.25) for every natural m and

> |yi(k) = yim (k)| < mod™ for k€ Np, (m=1,2,...), (5.27)
i=1

where (y;)1_, is the solution of the problem (5.1), (5.2), and ro > 0 and
d €]0, 1[ are numbers independent of m.

Let the conditions of Corollary 5.3 and the conditions (5.26)
hold. Then the conclusion of Theorem 5.3 is true.
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Let the conditions of Corollary 5.4 hold and
“1<n; <0 (i=1,...,n).
Moreover, let ¢; € Ry and natural m;(i = 1,...,n) be the numbers ap-
pearing in Corollary 5.4, \; € [—c¢i,¢i] and v; € R (i = 1,...,n). Then
for every (yio)i-y € E(Np,, R") there exists a unique sequence (Yim)i—y €

E(Nmq,R™) (m = 1,2,...) such that the vector-function (yim)?, is a so-
lution of the system (5.24), satisfying the condition

ylm(kz) = /\iyim_l(mi) + v (’L =1,.. .,n)

for every natural m, and the estimates (5.27) hold, where (y;)?_, is the
solution of the problem (5.1), (5.2), and ro > 0 and 6 €]0,1[ are numbers
independent of m.

Remark 5.1. The process of construction of the solution of the problem
(5.1), (5.2) under consideration is stable in the following sense: let the
conditions of Theorem 5.3 (of Corollaries 5.5 and 5.6) be fulfilled. Then

for every (¥;0)i, € E(Kfmo,R”), (Wim )1y € E(NmO,R”) (m=12,...)
and (Vim)?zl € R™ (m = 1,2,...) there exists a unique sequence of vector-
?:1 € E(J\meo,R”) (m = 1,2,...) such that the vector-
function (yim); is a solution of the Cauchy problem

Gim(E) = Gim (k= 1) = i (kG 1 (B, -+ Tim 11 (B), Ui (),
Virim—1E)s - Vpme1 (B), Yrm—1 (k= 1)s o Yy (K — 1),
Yim k= 1), Girimet (B =1)s 0 Py (k= 1)) +
FTUim (k) —Uim(k —1) for k€ Np, (i=1,...,n),

Yim (ki) = Yio@rm—1s- - Tpm—1) (E=1,...,n)

functions (¥;,,)

for every natural m. Let
n 1o
M =) <|7im| + > [tim (k) = i (k — 1)|>
i=1 k=1
for every natural m. Then the condition

lim 7, =0

m——+o00

guarantees the condition

ml_ig_lOo |yim — yim||7710 =0 (i=1,...,n).

In conclusion it should be noted that using the results given above, we can
obtain sufficient conditions guaranteeing stability of the difference schemes,
provided we define their stability properly.
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