
Mem. Di�erential Equations Math. Phys. 6(1995), 109{112

I. Kiguradze

ON SOLVABILITY OF FUNCTIONAL EQUATIONS IN THE SPACE OF

CONTINUOUS VECTOR FUNCTIONS

(Reported on September 18, 1995)

In the present note, we establish su�cient conditions for solvability of the functional

equation

x(t) = p(x)(t) + q(x)(t); (1)

where p : C([a; b];R

n

) ! C([a; b];R

n

) and q : C([a; b];R

n

) ! C([x; b];R

n

) are, respec-

tively, linear and nonlinear operators.

Before passing to the statement of the basic result, we will give some notation and

de�nitions necessary in the sequel.

R is the set of real numbers, R

+

= [0;+1[;

R

n

is the space of n-dimensional column vectors x = (x

i

)

n

i=1

with elements x

i

2 R

(i = 1; : : : ; n) and the norm kxk =

P

n

i=1

jx

i

j;

R

n�n

is the space of n � n-matrices X = (x

ik

)

n

i;k=1

with elements x

ik

2 R (i; k =

1; : : : ; n);

if x = (x

i

)

n

i=1

2 R

n

and X = (x

ik

)

n

i;k=1

2 R

n�n

, then jxj = (jx

i

j)

n

i=1

and jXj =

(jx

ik

j)

n

i;k=1

;

R

n

+

= f(x

i

)

n

i=1

: x

i

� 0 (i = 1; : : : ; n)g, R

n�n

+

= f(x

ik

)

n

i;k=1

: x

ik

� 0 (i; k =

1; : : : ; n)g;

if x = (x

i

)

n

i=1

and y = (y

i

)

n

i=1

2 R

n

, then x � y , x

i

� y

i

(i = 1; : : : ; n);

r(X) is spectral radius of the matrix X 2 R

n�n

;

C([a; b];R

n

) is the space of continuous vector functions x : I ! R

n

with the norm

kxk

C

= max

�

kx(t)k : t 2 [a; b]

	

;

C([a; b];R

n

+

) =

�

x 2 C([a; b];R

n

) : x(t) 2 R

n

+

for t 2 [a; b]

	

;

An operator g : C([a; b];R

n

) ! C([a; b];R

n

) is said to be uniformly compact if it

is continuous and

n

1

1 + kxk

C

g(x) : x 2 C([a; b];R

n

)

o

is a relatively compact subset of C([a; b];R

n

).

An operator g : C([a; b];R

n

)! C([a; b];R

n

) is said to be positively homogeneous

if for every x 2 C([a; b];R

n

) and � 2 R

+

we have g(�x)(t) = �g(x)(t) for a � t � b.

Along with (1), we have to consider the functional inequality

jx(t)� p(x)(t)j � g(x)(t): (2)

Under solution of the functional equation (1) (functional inequality (2)) is meant a

vector function x 2 C([a; b];R

n

) which for every t 2 [a; b] satis�es (1) (satis�es (2)).
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Theorem. Let p and q : C([a; b];R

n

) ! C([a; b];R

n

) be, respectively, a linear com-

pact and a uniformly compact operators. Moreover, let there exist a positively homoge-

neous, continuous operator g : C([a; b];R

n

) ! C([a; b];R

n

+

) and a vector h 2 R

n

+

such

that the functional inequality (2) has only trivial solution, and for every x 2 C([a; b];R

n

)

the inequality

jq(x)(t)j � g(x)(t) + h: (3)

is ful�lled on [a; b]. Then the functional equation (1) has at least one solution.

To prove this theorem, we will need the following

Lemma. Let a linear continuous operator p : C([a; b];R

n

) ! C([a; b];R

n

) and a

positively homogeneous continuous operator g : C([a; b];R

n

)! C([a; b];R

n

+

) be such that

the functional inequality (2) has only trivial solution. Let, moreover, h 2 R

n

+

, C

0

be a

non-empty subset of the space C([a; b];R

n

) such that the set

n

1

1 + kxk

C

x : x 2 C

0

o

(4)

is relatively compact. Then there exists a positive number � such that every vector

function x 2 C

0

satisfying on [a; b] the functional inequality

jx(t) � p(x)(t)j � g(jxj)(t) + h (5)

admits the estimate

kxk

C

� �: (6)

Proof. Suppose that the lemma is not true. Then for every natural k there exists x

k

2 C

0

such that kx

k

k

C

� k, and the inequality

jx

k

(t) � p(x

k

)(t)j � g(x

k

)(t) + h

is ful�lled on [a; b]. Assume x

k

(t) = (1 + kx

k

k

C

)

�1

x

k

(t). Then

lim

k!1

kx

k

k

C

= 1 (7)

and

�

�

x

k

(t) � p(x

k

(t))

�

�

� g(x

k

)(t) +

1

k + 1

h: (8)

Because (4) is relatively compact, without loss of generality we may regard the sequence

(x

k

)

1

k=1

to be uniformly convergent on [a; b]. Suppose x(t) = lim

k!1

x

k

(t). By (7) and

(8), the vector function x is a solution of the functional inequality (2) satisfying kxk

C

= 1.

But this is impossible for (2) has only trivial solution. The obtained contradiction proves

the lemma.

Proof of Theorem. First it should be noted that the linear homogeneous equation (I �

p)(x)(t) = 0, where I : C([a; b];R

n

) ! C([a; b];R

n

) is an identical operator, has only

trivial solution. From this, by virtue of the Fredholm theorem ([1], Theorem 7.3.7) and

the compactness of the operator p it follows that the operator I � p has the bounded

inverse (I � p)

�1

.

Denote by C

0

the set of those x 2 C([a; b];R

n

) for which there exists �(x) 2 [0; 1]

such that

x(t) = p(x)(t) + �(x)q(x)(t):

C

0

is non-empty, since 0 2 C

0

. On the other hand, because p is compact and q is

uniformly compact, the set (4) is relatively compact.
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Let � be the number appearing in the above proven lemma,

�(s) =

8

<

:

1 for 0 � s � �

2�

s

�

for � < s < 2�

0 for s � 2�

; (9)

eq(x) =

�

kxk

C

�

(I � p)

�1

(q(x)); (10)

�

0

= sup

�

keq(x)k

C

: x 2 C([a; b];R

n

)

	

;

K =

�

x 2 C([a; b];R

n

) : kxk

C

� �

0

	

:

(11)

Because the operator q is uniformly compact, it follows from the equalities (9){(11)

that eq is a continuous compact operator transforming the ballK into itself. By Schauder's

theorem, there exists a vector function x 2 K such that x(t) = eq(x)(t) for a � t � b. By

the de�nition of the set C

0

and owing to the equalities (9){(11), it is clear that x 2 C

0

and

x(t) = p(x)(t) + �

�

kxk

C

�

q(x)(t): (12)

From (3) and (12) we obtain the inequality (5). Therefore because of our choice of �, the

vector function x admits the estimate (6). However, (6), (9) and (12) imply that x is the

solution of the functional equation (1).

As an application, let us consider the functional di�erential equation

dx(t)

dt

= f(t; x(�(t)); (13)

with the boundary conditions

x(t) = 0 for t 62 [a; b] and x(a) =

m

X

k=1

A

k

(x(b

k

) � x(a)) + c; (14)

where f : [a; b] � R

n

! R

n

is a vector function satisfying the local Caratheodory con-

ditions, � : [a; b] ! R is a measurable function, b

k

2 [a; b], A

k

2 R

n�n

(k = 1; : : : ;m),

c 2 R

n

.

By � we denote a characteristic function of the interval [a; b].

Corollary. Let the inequality

�

�

f(t; �(�(t))y)

�

�

� G

0

(t)jyj + h

0

(t); (15)

be ful�lled on [a; b]�R

n

, where G

0

: [a; b]! R

n�n

+

and h

0

: [a; b]! R

n

+

are, respectively,

a matrix and a vector functions with summable components, and

r

�

m

X

k=1

jA

k

j

b

k

Z

a

G

0

(s)ds +

b

Z

a

G

0

(s)ds

�

< 1: (16)

Then the boundary value problem (13), (14) has at least one solution.

Proof. The problem (13), (14) is equivalent to the functional equation (1), where p(x)(t)

= 0,

q(x)(t) = c+

m

X

k=1

A

k

b

k

Z

a

f(s; �(�(s))x(�

0

(s))ds+

t

Z

a

f

�

s; �(�(s))x(�

0

(s)

�

ds; (17)

�

0

(t) = �(a) for �(t) 62 [a; b], �

0

(t) = �(t) for �(t) 2 [a; b].
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For every x = (x

i

)

n

i=1

2 C([a; b];R

n

), suppose jxj

C

= (kx

i

k

C

)

n

i=1

. It is obvious

from (16) and (17) that q : C([a; b];R

n

)! C([a; b];R

n

) is a uniformly compact operator

satisfying the inequality (3), where g(x)(t) � Gjxj

C

,

G =

n

X

k=1

jA

k

j

b

k

Z

a

G

0

(s)ds+

b

Z

a

G

0

(s)ds; h = jcj+

m

X

k=1

jA

k

j

b

k

Z

a

h

0

(s)ds +

b

Z

a

h(s)ds:

To prove the above Corollary, it su�ces to determine by using the above proven

theorem that the functional inequality

jx(t)j � Gjxj

C

(18)

has only trivial solution. Indeed, from (18) we have

(E �G)jxj

C

� 0; (19)

where E is the identity n� n matrix. However, owing to (16), there exists (E �G)

�1

2

R

n�n

+

. Multiplying both parts of (19) by (E�G)

�1

, we obtain jxj

C

� 0, i.e., x(t) � 0.

Example. Consider the problem

dx(t)

dt

= G

0

(t)jx(b)j; (20)

x(a) =

m

X

k=1

A

k

(x(b

k

)� x(a)) + c; (21)

where G

0

: [a; b]! R

n�n

+

is a matrix function with summable components, A

k

2 R

n�n

+

,

b

k

2 [a; b] (k = 1; : : : ;m), c = (c

i

)

n

i=1

, c

i

= 1 (i = 1; : : : ;m). After direct checking we

can easily see that the problem (20), (21) is solvable if and only if

r

�

m

X

k=1

A

k

b

k

Z

a

G

0

(s)ds+

b

Z

a

G

0

(s)ds

�

< 1:

Consequently, the condition (16) in the above proven corollary is optimal and it cannot

be weakened.
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