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INVARIANT DOMAINS AND GLOBAL
EXISTENCE FOR REACTION-DIFFUSION
SYSTEMS WITH A TRIDIAGONAL MATRIX
OF DIFFUSION COEFFICIENTS



Abstract. The aim of this study is to prove the global existence of
solutions for reaction-diffusion systems with a tridiagonal matrix of diffusion
coefficients and nonhomogeneous boundary conditions. Towards this end,
we make use of the appropriate techniques which are based on the invariant
domains and on Lyapunov functional methods. The nonlinear reaction term
has been supposed to be of polynomial growth. This result is a continuation
of that due to Kouachi and Rebiai [13].
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1. INTRODUCTION

We consider the reaction-diffusion system

% — a1 Au — appAv = f(u,v,w) in RT x €, (1.1)
ov . +
5 a21 AU — ageAv — agsAw = g(u,v,w) in RT x (1.2)
ow . +
5 azaAv — azzAw = h(u,v,w) in RT x Q, (1.3)
with the boundary conditions
ou v ow
on RT x 09,
and the initial data
u(0,2) =up(z), ©v(0,z) =vo(z), w(0,z)=wo(x) in Q, (1.5)

where

(i) 0 < A< 1land ; € R, i = 1,2,3, for nonhomogeneous Robin
boundary conditions.

(ii) A= 6; =0, i =1,2,3, for homogeneous Neumann boundary condi-
tions.

(iii) 1 =X = B; =0, ¢ = 1,2,3, for homogeneous Dirichlet boundary
conditions.

Q is an open bounded domain of class C! in R with boundary 9 and
é% denotes the outward normal derivative on 9€2. The diffusion terms a;;

(4,7 =1,2,3 and (4,4) # (1,3),(3,1)) are supposed to be positive constants
such that

a12a21(022 - CL33) = a23a32(a11 - (122)
and
azs(a12 + a21)2 + ai1(ags + a32)2 < 4ai1a22a33

which reflects the parabolicity of the system and implies at the same time
that the matrix of diffusion

a1 a2 0
A= laa az as
0 a3 as3

is positive definite. The eigenvalues A1, A2 and Az (A1 < A2 = a2 < A3) of
A are positive. If we put

a =min{ai1,a33} and @ = max{ai1,as3},
then the positivity of the a;; implies that

A <a<d<a<Ag.
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The initial data are assumed to be in the domain

{(uo,vo,wo) €R3: pyug + vswe < vg, 1= 1,2,3}
if pwif +vifs < Be, i=1,2,3,

{(uo,v0,wo) € R?: pug + viwo < vo < pyug + viwo, i = 2,3}
if pib +vifs < B2 < +v1fs, 1 =2,3,

{(uo, v, wo) € R?: pug + viwo < vo < pgug + vowp, i = 1,3}
it pibr +vifs < P < p2fr +v2fs, i =1,3,

{(uo,v0,wo) € R?: pgug + vawy < vo < pyug + viwo, i = 1,2}
if psfr +v3Bs <wvo < i +vifls, 1 =1,2,

where p11 = az1 /(a1 —A1) > 0> pp = ag1 /(a1 —A2) > pz = az1/(an —As3),
v, = agg/(a;;g — )\1) > Vy = agg/(agg — )\2) >0>v3 = a23/(a33 — )\3), if we
assume without loss of generality that a7 < ass.

Since we use the same methods to treat all the cases, we will tackle only
with the first one. We suppose that the functions f, g and h are continuously
differentiable, polynomially bounded on ¥,

(f(Tl,7’2,?"3),g(r1,7'2,7"3),h(?"1,7"2,7“3)) is in ¥ for all (T1;r23T3) in 0%
(we say that (f, g, h) points into ¥ on 9%), i.e.,
pif(ri,r2,r3) + vih(ry,re,r3) < g(ry,72,73), (1.6)

for all 71,72 and rs such that p;r + vjrs < ro = pir +virs, 7 = 1,2,3
(j #1), 1 =1,2,3, and for positive constants E and D, we have

(Ef 4+ Dg+ h)(u,v,w) < Ci(u+v+w+1) (1.7)

for all (u,v,w) in ¥, where C} is a positive constant.

In the two-component case, where a1 = 0, Kouachi and Youkana [14]
generalized the method of Haraux and Youkana [4] with the reaction terms
fu,v) = =AF(u,v) and g(u,v) = +uF (u,v) with F(u,v) > 0, requiring
the condition

lim In(1+ F(r,s))

s——+00 S

}<a* for any r >0,

with

n(a11 — az2)?|[uolleo ’
where the positive diffusion coefficients a1, asg satisfy a11 > age and asq, A,
1 are positive constants. This condition reflects a weak exponential growth
of the function F. Kanel and Kirane [6] proved the global existence in
the case where g(u,v) = —f(u,v) = wv™ and n is an odd integer, under
the embarrassing condition |ai2 — as1| < Cp, where C), contains a constant
from Solonnikov’s estimate [19]. Later, in [7] they improved their results to
obtain the global existence under the restrictions

. 2a11a22 . (A a1l — a2
min —_ =
azi

Hi. aze < ayy + azi,
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ai1a22(ar1 + as — as)
ai1622 + az1 (a1 + a2 — aze)

Hy. a12 < gp = if ay; < age < apy +ag,

.r1 .
Hs. a0 < mln{i ((111 + &21),60} if age < a1,

and |F(v)| < Cp(1+ |v]'7¢), vF(v) > 0 for all v € R, where ¢ and C are
positive constants with e<1 and g(u,v)=—f(u, v)=uF(v).

Kouachi [12] has proved the global existence for solutions of two-compo-
nent reaction-diffusion systems with a general full matrix of diffusion co-
efficients and nonhomogeneous boundary conditions. Recently, we proved
the global existence for solutions of three-component reaction-diffusion sys-
tems with a tridiagonal matrix of diffusion coefficients and nonhomogeneous
boundary conditions where the positive diffusion coefficients a11, ass are
equal (see Kouachi and Rebiai [13]).

The present investigation is a continuation work of that obtained in [13].
In this study we will treat the case where a1 # ass.

We note that the case of strongly coupled systems which are not trian-
gular in the diffusion part is quite more difficult. As a consequence of the
blow-up of the solutions found in [17], we can indeed prove that there is
the blow-up of the solutions in finite time for such nontriangular systems
even though the initial data are regular, the solutions are positive and the
nonlinear terms are negative, a structure that ensured the global existence
in the diagonal case. For this purpose, we construct the invariant domains
in which we can demonstrate that for any initial data in those domains,
problem (1.1)—(1.5) is equivalent to the problem for which the global exis-
tence follows from the usual techniques based on Lyapunov functionals (see
Kirane and Kouachi [8], Kouachi and Youkana [14] and Kouachi [12]).

Many chemical and biological operations are described by means of re-
action diffusion systems with a tridiagonal matrix of diffusion coefficients.
The components u(t,z), v(t,z) and w(t,z) can be represented either by
chemical concentrations or biological population densities (see, e.g., Cussler
[1] and [2]). For example, in chemistry, an n-species reaction-diffusion sys-
tem with cross-diffusion can be described by the following system of partial
differential equations

adc; . . .
tl - le(VD”CZ) - Zle(VDijcj) = Ri(Cl, ey Cn), 1,] = ]., 2, e,y
J#i
where R;(c1,. .., c,) are the reactive terms, D;; are the main-diffusion coeffi-

cients and the cross-diffusion term div(VD;;c;) links the gradient of species
¢;j to the flux of species ¢;. If D;; > 0, then the ith species diffuses from
larger to smaller concentrations of the jth species, analogous to the case
of ordinary self-diffusion. If D;; < 0, then the ith species diffuses in the
opposite direction, against the gradient Ve;.

Throughout this work, we denote by ||-||,, p € [1, +00[ the norm in LP(2)
and || - ||oo the norm in C(Q2) or L>°(€).
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2. THE LoCAL EXISTENCE AND INVARIANT DOMAINS

The study of local existence and uniqueness of solutions (u, v, w) of (1.1)—
(1.5) follows from the basic existence theory for parabolic semilinear equa-
tions (see, e.g., [3], [5] and [16]). As a consequence, for any initial data in
C () or L>°(Q) there exists T* €]0, +oo] such that (1.1)—(1.5) has a unique
classical solution on [0, 7*[ x 2. Furthermore, if T* < +o00, then

Iim (Jle@®)lloo + lo(®)lloo + llw(t)llc) = +oo.
Therefore, if there exists a positive constant C' such that
[u(® oo + l[0(B)]loo + [[w(t)]|loo < C for all e [0, T,

then T = +o00.

Since the initial conditions are in X, then under the assumptions (1.6), the
next proposition says that the classical solution of (1.1)—(1.5) on [0, T*[ x 2
remains in ¥ for all ¢ in [0,77].

Proposition 1. Suppose that (f, g, h) points into ¥ on 0X. Then for any
(ug,vo,wo) in 3 the solution (u,v,w) of the problem (1.1)—(1.5) remains in
Y for allt in [0,T*[.

Proof. Let (wi1, 2, 23)", i = 1,2,3, be the eigenvectors of the matrix A
associate with its eigenvalues \;, i = 1,2,3 (A1 < A2 < Az). Multiplying
equations (1.1), (1.2) and (1.3) of the given reaction-diffusion system by z;1,
x;o and x;3, respectively, and summing the resulting equations, we get

%Zl 7>\1A21 = Fl(Zl,ZQ,Zg) in ]O,T*[XQ, (21)
%ZQ — )\QAZQ = FQ(Zl, Z2, Zg) in ]O,T*[ X Q, (22)
0
az:g — >\3A23 = Fg(Zl, Z2, Zg) in ]O,T*[ X Q, (23)
with the boundary conditions
0zi
Azi + (1= \) a; = pi, i=1,2,3, on ]0,T*[ %89, (2.4)
and the initial data
2(0,2) = 22(x), i=1,2,3, in Q, (2.5)
where
Zi = T+ Tiov + 23w, ¢ =1,2,3, in ]0,T*[x Q, (2.6)
pi = i1 + wi2fa + wizfB3, 1=1,2,3,
and

Fi(Zl,ZQ,Zg) :$i1f+$igg+$i3h, Z: 1,273, (27)

for all (u,v,w) in X.
We note that the condition of the parabolicity of the system (1.1)—(1.3)
implies one of (2.1)—(2.3). Since A1, A2 and A3 are the eigenvalues of the
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matrix A, the problem (1.1)—(1.5) is equivalent to the problem (2.1)—(2.5),
and to prove that ¥ is an invariant domain for the system (1.1)-(1.3) it
suffices to prove that the domain

{(z?,zg,zg) cR3: ZZQ >0,1= 1,2,3} = (R")3 (2.8)

is invariant for the system (2.1)—(2.3) and there exist some constants z;;,
i,7 = 1,2, 3, such that

Y= {(UO,Uo,wo) eR?: Z? = T;1Ug +Ti2V9 +Ti3wo > 0, 7 = 1,2,3}. (29)

Since (z;1, T2, 743)t is an eigenvector of the matrix A! associated to the
eigenvalue \;, i = 1,2, 3, we have

{(all — Xi)Zi1 + a1 = 0,

1=1,2,3.
as3xiz + (asz — Aj)xiz =0,

If we assume, without loss of generality, that a1; < asz and choose x12 =
Too = x3o = 1, then we have x;1ug + T0v9 + Ti3we > 0, i = 1,2,3 <—
wivg+v;wy < v, ¢ = 1,2,3. Thus (2.9) is proved and (2.6) can be written as

zi = —pu+v—yw, i=1,23. (2.6a)

Now, to prove that the domain (R*)? is invariant for the system (2.1)—(2.3),
it suffices to show that F;(z1, 22, 23) > 0 for all (21, 22, z3) such that z; =0
and z; > 0,7 =1,2,3 (j # i), ¢ = 1,2,3, thanks to the invariant domain
method (see Smoller [18]). Using the expressions (2.7), we get

Fi=—wf+g—vh, i=1,23, (2.7a)

for all (u,v,w) in X. Since from (1.6) we have F;(z1,z29,23) > 0 for all
(21, 22,23) such that z; =0 and z; > 0, j =1,2,3 (j #1),7=1,2,3, we
obtain z;(t,x) > 0,4 =1,2,3, for all (¢, z) € [0,T*] x . As a consequence,
¥ is an invariant domain for the system (1.1)—(1.3). O

In addition, the system (1.1)—(1.3) with the boundary conditions (1.4)
and initial data in ¥ is equivalent to the system (2.1)—(2.3) with the boun-
dary conditions (2.4) and positive initial data (2.5).

Once the invariant domains are constructed and since p;, ¢ = 1,2,3,
given by p; = —p; 01 + P2 — vifs, i = 1,2,3, are positive, we can apply the
Lyapunov technique and establish the global existence of unique solutions
for (1.1)—(1.5).

3. GLOBAL EXISTENCE

As the determinant of the linear algebraic system (2.6), with respect to
variables u, v and w, is different from zero, to prove the global existence of
solutions of the problem (1.1)—(1.5) one needs to prove it for the problem
(2.1)—(2.5). To this end, it is well known that (see Henry [5]) it suffices to
derive a uniform estimate of || F;(z1, 22, 23)|lp, ¢ = 1,2,3, on [0,T], T < T*,
for some p > N/2.
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Let 0 and o be two positive constants such that

0 > Ao,
(602 — ALy) (0% — A33) > (A1z — A1pAas)?, (3.2)
where A;; = 2’\"'J;A/< , 4,0 =1,2,3 (i < j), and let
iNj

b4 =07 and Op =" for g=0,1,...,p and p=0,1,...,n, (3.3
with n as a positive integer. The main result of this section is

Theorem 1. Let (21, 22,23) be any positive solution of (2.1)—(2.5) on
[0, T*[xQ; let the functional

t— L(t) = / H, (21(t, @), 22(t, ), 23(t, 2)) da, (3.4)
Q
where
n p
Hy(21,22,23) = » > CPC0,0,2828 12577, (3.5)
p=0 q=0

with n being a positive integer and C¥ = (717”7}71)!]0! .

Then, the functional L is uniformly bounded on [0,T), T < T*.

For the proof of Theorem 1 we need some preparatory Lemmas.

Lemma 1. Let H, be the homogeneous polynomial defined by (3.5).
Then

n—1 p
afﬂl — n—1)—
5 =" Z ZCﬁ_ngQqHUszfzg 4 n=p, (3.6)
1 p=0 q=0
OH, "o g (n—1)—
azn =n Z Z Cr_1C040p112{ 25 qz?(, ) Y, (3.7)
2 p=0 ¢g=0
OH, v (n—1)
n _ n—1)—
9o =" Z Z Ch_1Cl0,0p2125 23 P, (3.8)
p=0 ¢q=0

Proof. Differentiating H,, with respect to z; and using the fact that
gC? = pCi~} and pCP =nCh_ ] (3.9)
forq=1,2,...,p,p=1,2,...,n, we get

n p
o0H,

_ p—1 ~q—1 q—1_p—q _n—p
92, —nE E Cn_lcp_19qopz 25 zg T

p=1qg=1

Replacing in the sums the indices ¢ — 1 by ¢ and p — 1 by p, we deduce
(3.6). For the formula (3.7), differentiating H,, with respect to zo, taking
into account

Cl=Cy1 q=0,1,...,p—1 and p=1,2,...,n, (3.10)
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using (3.9) and replacing the index p — 1 by p, we get (3.7).
Finally, we have

n—1 p
n— 1
82’ Z Z n —p)ChCI0,0,2125 257~
3 p=0 ¢=0
Since (n — p)CP = (n — p)C* P =nCP~" = nCP_|, we get (3.8). O

Lemma 2. The second partial derivatives of H, are given by

82Hn n—2 p - o
022 n(n—1) Z Z Cr—2C0q120p422{ 25 TR, (3.11)
A p=0 q=0
82Hn n—2 p - .
9m0z ") pz:% ;)Cg—zcg@qﬂ%wzfzg LTV (3.12)
32H n—2 p - o
905 "1 pz:% ;Cg—2cgeq+1%+1z?zg LUTHTR(3.13)
82Hn n—2 p - .
G =nn—1) D> L ,Chbyopazizh 2" 7, (3.14)
€ p=0 q=0
82Hn n—2 p - .
022023 n(n—1) pz:;) ;}Cﬁﬁcgeqapﬂz?zg qz§ -, (3.15)
82H n—2 p .
6232) (n—1) ZZ —2CP040p2{ 2512 ( A, (3.16)
p=0 ¢q=0

Proof. Differentiating % 8H" given by (3.6) with respect to z1, we obtain

n—1 p

P q—1_p—q _(n—1)—p
ZZqC’ 10301101121 7y Tz

p=1q=1

Using (3.9), we get (3.11).

n—1p—1

q,p—q—1_(n—1)—p
ZZ q)Cy_ 10 Og+10p+12125 23 .

p=1 q=0
Applying (3.10) and then (3.9), we get (3.12).

0°H v (n-2)-
n n—
Sra = "2 2 (0= 1) = PO oyt

821822

Applying successively (3.10), (3.9) and (3.10) for the second time, we de-
duce (3.13).
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azH n—1p—1 ( 1
n —g—1 (n—1)—
= HZZ(p*Q)CﬂlCZ@q%HZi’Zg Tt .

2
075 ==
The application of (3.10) and then (3.9) yields (3.14).
n—2 p
n—2
322823 Z Z n—1) —p)Cr_Cl0,0p2]25 9 n2p,
p=0 ¢q=0

Applying (3.10) and then (3.9), we get (3.15). Finally, we get (3.16) by
differentiating BH with respect to z3 and applying successively (3.10), (3.9)
and (3.10) for the second time. O

Proof of Theorem 1. Differentiating L with respect to ¢, we find that

3Hn (921 aHn 82’2 8Hn 823
! = B — JR— =
L(t)*/ ((‘321 ot " 0m Ot 0% 6t)d

H,
/ ()\1 9 Az1 + Ao OH AZQ + A3 OH AZ:},) dz+

821 82 33
0H,, 0H,, 0H,,
+/(8Z1 Bt Gt Bt g 3)dx—.I+J,

Using Green’s formula in I, we get I = I1 + I, where

8H 621 8Hn 622 8H 623
L = A Ao —— —— + A3 d
! /BQ( Y0z on A Ozy On + 0z3 877> %

where ds denotes the (n — 1)-dimensional surface element, and

0%H, 8% H,,
I, = _/ [Al " Vz]? 4+ (A + X2) Vz1Vzo+
Q

021029
0%*H, 0%°H,
+()\1+>\3)8183V21V23+)\2 82 |V 2|2
2 2

0°H,
+ A2+ A3) 22023

We prove that there exists a positive constant Cy independent of ¢ € [0, T*]
such that

0°H,
VZQV,Zg +>\3 22 ‘VZ:;‘Q dx
3

I <Cy forall te[0,T"], (3.17)
and that
I, <0. (3.18)

To see this, we follow the same reasoning as in [11].

(i) If 0 < A < 1, using the boundary conditions (2.4), we get

oH, O0H, oH,
11:/69()\1 07, (M1 —a@z1)+A2 02 (2—az)+As 5 — 923 (73*0‘23))&5’

where a = f and v; =
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aHn 8Hn
H(z1,22,23) =\ 971 (71— az1) + Ao 92 (v2 — az)+
0H,,

+ A3 Don (73 — azg) = Pa_1(21, 22, 23) — Qn(21, 22, 23),
3

where P,_; and @,, are polynomials with positive coefficients and
respective degrees n — 1 and n, and since the solution is positive,
we obtain

lim sup H(zy, 22, 23) = —00, (3.19)
(Iz1]+]22]+]23]) =400

which proves that H is uniformly bounded on (R*)3, and conse-
quently (3.17).
(ii) If A =0, then I; =0 on [0, T*[.

(iii) The case of homogeneous Dirichlet conditions is trivial, since in this
case the positivity of the solution on [0, T*[ x Q implies 9z1/9n < 0,
0z2/0n < 0 and Jz3/0n < 0 on [0,T*[ x9N. Consequently, one
again gets (3.17) with Cy = 0.

We now prove (3.18). Applying Lemma 2, we obtain

n—2 p

I, =—n(n— 1)/ Z Z CP_,C[(Bpgz) - 2] da,
Q p=0 ¢g=0
where
AL+ A AL+ A

)‘19(14-20;04—2 % 0q+10'p+2 % 9q+10'p+1

A+ A Az + A
Bpg = % Og+10p+2 A20q0p42 % 040p+1

A+ A3 A2 + Az

2 Og+10p+1 g 0q0p+1 Aslq0p

forq=0,1,...,p,p=0,1,....,n—2 and z = (Vz1, Vzg, Vz3)".

The quadratic forms (with respect to Vz1, Vzo and Vz3) associated with
the matrices Bpq, ¢ = 0,1,...,p, p = 0,1,...,n — 2, are positive, since
their main determinants Ay, Ay and Ag are positive too, according to the
Sylvester criterion. To see this, we have

1) Ay =Mbgq20p42 >0for¢=0,1,...,pp=0,1,...,n—2.

AMOg120,10 7>\1+)\2 Og+10p42

q+2Yp+ q+1Y%p+

2) Ag= Y 2 :)\1)\293+10}2}+2(92_‘4§2)’
1+ A2

0q+10'p+2 >‘20q0'p+2

forg=0,1,...,pand p=0,1,...,n — 2.
Using (3.1), we get Ag > 0.
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A1t+A A1 +A
AM0g120p 42 % Og+10p+2 - 9 : Og+10p11
AL tHA A2+
3) AB = 1729q+10'p+2 )\29q0'p+2 22 3 9q0'p+1
A1+ A3 0 /\2+>\39 W
T g Var1i%pt1 T UgOp 3Yq0p

= M AoA30710q0p4205, 1 [(607 — A3y) (0% — A3s) — (A1z — A1aAs3)?],
forg=0,1,...,pand p=0,1,...,n — 2.
Using (3.2), we get Az > 0. Consequently we have (3.18).

Substitution of the expressions of the partial derivatives given by Lemma 1
in the second integral yields

n—

P
J:/ [nzZCﬁ_ngzfzg_qzénfl)fp]x
ol =

1

0 ¢g=0
X (9q+10'p+1F1 + eq(J‘erng + HqO'ng) dx.

Using the expressions (2.7a), we obtain

0q+10'p+1F1 —|—0q0'p+1F2—|—0q0'pF3=—(H19q+10'p+1—|—ﬂ20q0'p+1 +[L39q0'p)f+
+ (0q+10p+1 + 0q0'p+1 -+ gq(fp)g — (V10q+10p+1 —+ V29q0p+1 + VgaqO'p)h =

0 0 o
= —9q+1Up+1 (Vl + vy ! + 3 4 P )X

Og+1 Og+1 op+1
b4 b4 Ip b4 b4 9p
% (,u1 T2 Oq+1 T Og+1 p+1 fo 1+ Og+1 0441 opi1 g+h
O 0q_ _op g g _9p )
Vit v Oq+1 TV Og+1 opt1 Vit vy Og+1 e Oa+1 Tp+1

b4 9p
1
g1 & d Tpt1

large, by using the condition (1.7) and the relation (2.6a) successively, for
an appropriate constant Cs, we get

Since are sufficiently large if we choose 6 and o sufficiently

n—1 p

T<Ca [ [ 30Dt 0k s+ 1CL, Ot 0
Q

p=0¢=0

To prove that the functional L is uniformly bounded on the interval [0, T,
we first write

n—1 p
Z Z(m + 22 + 23+ 1)0:;_1032&5—(125’7171)717 =
p=0 ¢g=0
- Rn(zh 22, ZS) + Sn—l(zla 22, Z3)a

where R, (21,29, 23) and S,,—1(21, 22, 23) are two homogeneous polynomi-
als of degrees n and n — 1, respectively. First, since the polynomials H,
and R, are of degree mn, there exists a positive constant C4 such that
J Rn(z1,22,23)dx < Cy [ Hy(21,22,23)dz.  Applying Holder’s inequality
Q Q



Reaction-Diffusion Systems 91

to the integral [ S,,_1(21, 22, 23) dz, one gets
Q

n—1
n

/ Snfl(zlv 22, Z3) dx S (meas Q)% (/
Q

(5n71(21722,23))ﬁ df)
Q

Since for all z; > 0 and 29,23 > 0,
(Sn-1(21,22,23)) ™7 (Su-1(61, &2, 1)) 77

Hn(zlaZQ;ZB) Hn(£17£271) ’

where & = 21/29, £ = 29/23 and

n

. (Sn71(£17£2a1))"71
flli’r‘ri’loo Hn(€17£271)

§a2—+00

< +00,

one asserts that there exists a positive constant Cj5 such that

(Sn—l(zlaz%zfi))ﬁ
Hy (21,29, 23)
Due to (3.19), there exist n;, ¢ = 1,2,3, such that for all z; > »; the
functional L satisfies the differential inequality L'(t) < CeL(t)+Cr L™ (t),
which for Z = L= can be written as nZ’ < C4Z + Cr. A simple integration
gives a uniform bound of the functional L on the interval [0, T].

On the other hand, if z; is in the compact interval [0, 7;], then the con-
tinuous function (z1, 22, 23) — H, (21, 22, 23) is bounded. Thus, the func-
tional L is uniformly bounded on [0,T]. This completes the proof of Theo-
rem 1. O

S 05 for all 21,224, %23 Z 0.

Corollary 1. Suppose that the functions f, g and h are continuously
differentiable on X, point into ¥ on 0¥ and satisfy the condition (1.7).
Then all uniformly bounded solutions on  of (1.1)—~(1.5) with initial data
in ¥ are in L>=(0,T; L?(Q2)) for allp > 1.

Proof. The proof of this Corollary is an immediate consequence of Theo-
rem 1, the trivial inequality [(21422+23)P de < L(t) on [0, 7*[, and (2.6a). O
Q

Proposition 2. Under the hypothesis of Corollary 1, if the functions f,
g and h are polynomially bounded on X3, then all uniformly bounded solutions
on Q of (1.1)~(1.4) with the initial data in ¥ are global in time.

Proof. As it has been mentioned above, it suffices to derive a uniform es-
timate of ||F1(z1, 22, 23)|lp, || F2(21, 22, 23)||p, and ||F5(z1, 22, 23)]|, on [0,T],
T < T* for some p > % Since the reaction terms f(u,v,w), g(u,v,w) and
h(u,v,w) are polynomially bounded on ¥, by using the relations (2.6a) and
(2.7a) we get that such are Fy(z1, 22,23), Fa(z1,22,23) and F3(z1, 29, 23),
and the proof becomes an immediate consequence of Corollary 1. O
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