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Abstract. The sharp sufficient conditions of the existence of general-
ized regularly varying solutions (in the sense of Karamata) of differential
equations of the type

(P ) + 3 [a:(to (a(:(1) + (0o (2 (hae) | =0
i=1

are established. Here, p, ¢;,r; : [a,00) — (0,00) are continuous functions,

gishi : [a,+00) — R are continuous and increasing functions such that

gi(t) < t, hi(t) >t for t > a, tlim gi(t) = oo and p(§) = |£]¥sgn&, a > 0.
— 00
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1. INTRODUCTION

The equation to be studied in this paper is
(P09 ©) £ 3 [as)p(e(5:0) + rilp(eha(@))] =0 (Az)

(p(&) = ¢]*sgn€, a>0, £€R),
where p, ¢;,7; : [a,00) — (0,00) are continuous functions, g;, h; are contin-
uous and increasing functions with g¢;(t) < ¢, h;(t) > ¢ and tlim gi(t) = o0
— 00
for i =1,2,...,n. In what follows we always assume that the function p(¢)

satisfies
o0

dt
a/p(t)rlx = o0. (1.1)

It is shown in the monograph [8] that the class of regularly varying func-
tions in the sense of Karamata is a well-suited framework for the asymptotic
analysis of nonoscillatory solutions of the second order linear differential
equation of the form

2" (t) = q(t)z(t), q(t) > 0.

The study of asymptotic analysis of nonoscillatory solutions of functional
differential equations with deviating arguments in the framework of regu-
larly varying functions (called Karamata functions) was first attempted by
Kusano and Marié [5], [6]. They established a sharp condition for the exis-
tence of a slowly varying solution of the second order functional differential
equation with retarded argument of the form

2"(t) = q(t)z(g(t)), (1.2)

and the following functional differential equation of the form

a(t) £ [a(t)x(g(t) + r(t)z(h(t))] = 0, (1.3)
where ¢, 7 : [a,00) — (0,00) are continuous functions, g, h are continuous
and increasing with g(t) < ¢, h(t) >t for t = a, tlim g(t) = oo.

— 00
It is well known that there is the qualitative similarity between linear dif-
ferential equations and half-linear differential equations (see the book Dosly
and Rehdk [2]). Therefore, in our previous papers [4], [7] we proved how
useful the regularly varying functions were for the study of nonoscillation
and asymptotic analysis of the half-linear differential equation involving
nonlinear Sturm-Liouville type differential operator of the form

(p(p(' (1) + f()p(a(t) =0, p(t) >0, (B+)
and the half-linear functional differential equation with both retarded and
advanced arguments of the form

(o (1) + [a(p (a(9(2) + (o (ah@))] =0, (14)
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where f : [a,00) — (0,00) is a continuous function, p, g, h are just as in
the above equations.

Theorem A (J. Jaros, T. Kusano and T. Tanigawa [4]). Suppose
that (1.1) holds. The equations (Byi) have a normalized slowly varying
solution with respect to P(t) and a normalized regularly varying solution of
index 1 with respect to P(t) if and only if

Tim P(t)° / F(s)ds =0, (1.5)

where the function P(t) is defined by

P(t):/ ds (1.6)

Theorem B (J. Manojlovié and T. Tanigawa [7]). Suppose that

lim @ =1 and lim @

t—o0 t—oo

=1

hold. Then the equations (1.4) have a slowly varying solution and a regularly
varying solution of index 1 if and only if
o0 o0
lim ¢* /q(s) ds = lim to‘/r(s) ds = 0.
t—oo t—oo
t t
The objective of this paper is to establish a sharp condition of the ex-
istence of a normalized slowly varying solution with respect to P(t) and a

normalized regularly varying solution of index 1 with respect to P(t) of the
equation (Ay). Our main result is the following

Theorem 1.1. Suppose that
P(g;(t
)

0 =1 fori=1,2,....,n (1.7)
and

. P(hi(t) -

tlirgo?t)—l fori=1,2,....n (1.8)

hold. The equation (A1) possesses a normalized slowly varying solution
with respect to P(t) and a normalized regularly varying solution of index 1
with respect to P(t) if and only if

o0

tlim P(t)a/qi(s) ds:tlim P(t)“/ri(s) ds=0 for i=1,2,...,n. (1.9)
i i
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This paper is organized as follows. In Section 2 we briefly recall the defi-
nitions and properties of the slowly varying and regularly varying functions
of index p with respect to P(t) which are called the generalized regularly
varying functions introduced by Jaro§ and Kusano [3]. Explicit expressions
for the normalized slowly varying solution with respect to P(¢) and the
normalized regularly varying solution of index 1 with respect to P(t) of
the equations (B) obtained in [4] do not meet our need for application
to the functional differential equations (Ay), and thus we present a modi-
fied proof of Theorem A in Section 3. The proof of Theorem 1.1 which is
based on Theorems A and B will be presented in Section 4. Some examples
illustrating our result will also be presented in Section 5.

2. DEFINITIONS AND PROPERTIES OF THE GENERALIZED REGULARLY
VARYING FUNCTIONS

For the reader’s convenience we first state the definitions and some basic
properties of the regularly varying functions and then refer to the general-
ized regularly varying functions. The generalized regularly varying functions
are introduced for the first time by Jaros and Kusano [3] in order to gain
useful information about an asymptotic behavior of nonoscillatory solutions
for the self-adjoint differential equations of the form

(p(t)2' (1)) + f(£)z(t) = 0.

The definitions and properties of regularly varying functions:

Definition 2.1. A measurable function f : [a,00) — (0,00) is said to be
a regularly varying of index p if it satisfies

- fO)
tlgglo 0 = A forany A >0, peR.
Proposition 2.1 (Representation Theorem). A measurable function f :
[a,00) — (0,00) is reqularly varying of index p if and only if it can be written

in the form
¢
ft) =c(t) exp { / (Sis)ds}, t 2 tg,

to

for some ty > a, where c(t) and §(t) are measurable functions such that
tlim c(t) =ce (0,00) and tlim o(t) = p.

The totality of regularly varying functions of index p is denoted by RV (p).
The symbol SV is used to denote RV(0) and a member of SV = RV(0) is
referred to as a slowly varying function. If f(¢) € RV(p), then f(t) = ¢t L(t)
for some L(t) € SV. Therefore, the class of slowly varying functions is of
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fundamental importance in the theory of regular variation. In addition to
the functions tending to positive constants as ¢ — oo, the following functions

ﬂ(logi t)™ (m; € R), exp { ﬁ(bgi t)”'i} (0 <n;i <1), exp{ logt }7

i=1 i=1 logy

where log; t = logt and log, t = loglog,_; t for k =2,3,..., N, also belong
to the set of slowly varying functions.

Proposition 2.2. Let L(t) be any slowly varying function. Then, for
any v >0,
tlim tYL(t) =00 and tlim t~7L(t) = 0.

Proposition 2.3 (Karamata’s integration theorem). Let L(t) € SV.
Then

¢
tr+1
/s”’L(s) ds ~ L(t), as t — oc;
v+1
a
(i) if 7 < -1,
o0
!
/SVL(S) ds ~ — L(t), as t — 0.
vy+1

Here and hereafter the notation ¢(t) ~ () as t — oo is used to mean
the asymptotic equivalence of ¢(t) and v (t): tlim P(t)/e(t) = 1.

For an excellent explanation of the theory of regularly varying functions
the reader is referred to the book [1].

The definitions and properties of generalized regularly varying
functions:

Definition 2.2. A measurable function f : [a,00) — (0, 00) is said to be
slowly varying with respect to P(t) if the function foP(¢)~! is slowly varying
in the sense of Karamata, where the function P(t) is defined by (1.6) and
P(t)~! denotes the inverse function of P(t). The totality of slowly varying
functions with respect to P(t) is denoted by SV p.

Definition 2.3. A measurable function g : [a,00) — (0,00) is said to
be regularly varying function of index p with respect to P(t) if the function
go P(t)~! is regularly varying of index p in the sense of Karamata. The set
of all regularly varying functions of index p with respect to P(t) is denoted
by RV p(p).

Of fundamental importance is the following representation theorem for
the generalized slowly and regularly varying functions, which is an immedi-
ate consequence of Proposition 2.1.
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Proposition 2.4.
(i) A function f(t) is slowly varying with respect to P(t) if and only if

it can be expressed in the form

(2.1)

d(s)
f(t) = c(t) exp {/1035}, t =ty
] v P)
for some to > a, where c(t) and 6(t) are measurable functions such

that
lim c(t) = c € (0,00) and lim §(t) = 0.
t—oo t—oo
(ii) A function g(t) is regularly varying of index p with respect to P(t)

if and only if it has the representation

g(t)—c(t)exp{/tp(sfi%ds}, t =t

0
for some ty > a, where c(t) and 6(t) are measurable functions such

(2.2)

that
tlim c(t) =ce (0,00) and tlim o(t) = p.

If the function ¢(t) in (2.1) (or (2.2)) is identically a constant on [tg, o)
then the function f(t) (or g(t)) is called normalized slowly varying (or nor-

malized regularly varying of index p) with respect to P(t). The totality of

such functions is denoted by n-SVp (or n-RVp).
It is easy to see that if g(¢t) € RVp(p) (n-RVp(p)), then g(t) = P(t)" f(t)

for some f(t) € SVp (or n-SVp).
Proposition 2.5. Let f(t) € SVp. Then, for any v > 0,
=0. (2.3)

tlim P(#)7f(t) = o0 and tlim P#)77f(t)=0
The Karamata’s integration theorem is generalized in the following man-

ner.
Proposition 2.6 (The generalized Karamata’s integration theorem). Let

f(t) € n-SVp. Then

(i) Ifv> -1,
/tp(s)7 Fsrds ~ PO b as £ — oo (2.4)
PEE S ’ |
(i) If v < =1, [ P()Vf(t)/p(t)%dt < oo and
(2.5)

OOP(S)W N—P(t)AH_l as t — oo
/p(s) f5) ds ~ = (1) a5 = .

Q=
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3. THE EXISTENCE OF GENERALIZED REGULARLY VARYING SOLUTION
OF SELF-ADJOINT DIFFERENTIAL EQUATION WITHOUT DEVIATING

ARGUMENTS
Theorem 3.1. Put F(t f f(s F(t) = sup F(s),
s>t
1+ 1
Fi(t,w) =1+ F(t) — w| a+(1+a)w—l, (3.1)
and
1 Ll
F_(t,w):1+(1+a>w—|1+F(t)fw\ 3 (3.2)
(i) The equation (By) possesses a n-SVp solution z(t) having the ex-
pression
¢
v(s) + F(s)\ =
t) = ——) d t=t 3.3
0 =es{ [ (Spin) e} 120 .
to
for some to > a, in which v(t) satisfies
oo I 141
o(t) = aP(t)° / W)+ P2 >y (3.4)
| pe)E P
and
0= w(t) = F(to) for t 2 to (3-5)

if and only if (1.5) holds.
(ii) The equation (By) possesses a n-RVp(1) solution z(t) having the
expression

o(t) = exp{/ (W) ds}, £>1 (3.6)
for some t1 > a, in which w(t) satisfies
w(t) = % /F+(S,w(s)) ds, t 2t (3.7)

and

<w(t) S\ F(ty) for t =t (3.8)

0
if and only if (1.5) holds.
(iii) The equation (B_) possesses a n-SVp solution x(t) having the ex-

pression
t
(T R
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for some ty > a, in which v(t) satisfies

5) — F(s)|'+4

(s)= P(s)ott

v(t):aP(t)“/ '”p( ds, ¢ o (3.10)

and (3.5) if and only if (1.5) holds. Here, the meaning of the as-
terisk notation is defined by £V = [€|Vsgn&, v >0, £ € R.

(iv) The equation (B_) possesses a n-RV p(1) solution x(t) having the
expression

t

x(t)—exp{/(W)lds}, t2n (311

Q

for some t; > a, in which w(t) satisfies
w(t) = ];E‘t)/F_(s,w(s))ds, t>t (3.12)
t

and (3.8) if and only if (1.5) holds.

Our purpose in this section is to give a proof of the above Theorem 3.1.
The following lemma will be needed for our purpose.
Lemma 3.1.

(i) If z(t), a nonoscillatory solution of (By), is not zero on [a,00),
then the function u(t) = p(t)p(z'(t)/x(t)) satisfies the generalized
Riccati equation

u'(t) + « +f(t)=0, t=a. (Cy)

p
(ii) If u(t) is a solution of

co-eof 27 )

a

(
(

Cy), then the function

is a nonoscillatory solution of (Bx) on [a,00).

Proof of Theorem 3.1. Since the idea of the proof of Theorem 3.1 for the
equation (B_) is similar to the way of proving the equation (B ), we restrict
our attention to the proof for equation (B.).

(The “only if” part): Let x(t) be a positive solution of (B, ) belonging
to n-SVp or n-RV p(1), respectively. Then, by the representation theorem,

z(t):exp{/tp(sféii(s)ds}, t> 1o,

to
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for some ty > a, where tlim 0(t) =0 or 1 according as z(t) € n-SVp or
z(t) € n-RVp(1). Since the function

u(t) = pa)@(‘j((f)) ) =¢( zi((% )

satisfies the generalized Riccati equation (C4) and u(t) — 0 as t — oo, we

obtain
|P(s)u(s) I”’
/ é S a+1 /f
. o [ 1P(s)u(s)[ 1+
P(t)*u(t) = aP I ds
(0 u(t) = aP(1) / e
a/f(S) ds, t = to. (3.13)

Letting t — oo in (3.13), we easily conclude that (1.5) holds in either case
of P(t)*u(t) — 0 or P(t)*u(t) — 1 as t — oc.

(The “if” part) Suppose that (1.5) holds.

(The existence of a n-SVp solution of (B4)): Choose ¢y > max{a, 1} so
large that

¢ = (2F (o)) * max {2, 1+ é} <1, (3.14)

and define the set of continuous functions V' and the integral operators F
by

V= {v € Oylto,00) 1 0 < u(t) < Fty), t2 to} (3.15)
and

o [ (0(s) + F(s)1+E
Fo(t) = aP(t) / L

ds, t > to, (3.16)

where Cy[to, 00) denotes the Banach space consisting of all continuous func-
tions on [tg,00) and tend to 0 as ¢ — oo and equipped with the norm

|lv]o = sup |v(t)]. Tt can be verified that F is a contraction mapping on V.
t=>to

In fact, using (3.14), we see that v € V' implies tlim Fu(t) =0 and

oo

Fult) < a2Fl) P [

ST P = ORI < R,
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and that vy, vy € V implies

[ Jo1(6) + F)I+5 = [oa(t) + F(1)] 7] <

< (14 2) @F(to) * on (1) — va(0)] € Sfunt) ~va(0)], 12 to,

which ensures that F is a contraction mapping. Therefore, there exists a
unique element vy € V' such that vg = Fuvg, that is,

[e%S) 1+é
vo(t) = aP(t)“/ (vo(s) j_ F(s)) , t2to.
| pe)E P
Obviously, v (t) satisfies the integral equation
vo(t)\'  (v(t) + F(t)+= 7 S
(P(t)a> p(t)éP(t)O“H =0, t=to. (3.17)

By virtue of the function vy(t) we define the function

xo(t)zexp{/t(m)ids}, t>to.

Since the function u(t) = vo(t)+ F(t)/P(t)“ satisfies the generalized Riccati
equation (C) associated with (B, ) which is easily seen to be equivalent to
(3.17), xo(t) is a solution of the differential equation (B.).
(The existence of a n-RVp(1) solution of (By)): We will construct a
n-RV p(1) solution of (B4 ). Let us consider the function
¢
1+ F(s) —w(s)\a*
x(t) —exp{/( (5 P)" ) ds}, t=1t (3.18)
1
for some t; > a to be determined later. According to (ii) of Lemma 3.1, the
function z(t) is a solution of (By) on [t1,00) if w(t) is chosen in such way
that u(t) = 1+ F(t) —w(t)/P(t)* satisfies the generalized Riccati equation
(C4) on [t1,00). Then the differential equation for w(t) is derived:

! — 7@ w 70[ —_ —w 1 é = U. .
W) = e W)+ s (L[ PO — w0 ] = 0. (319)
We rewrite (3.19) as
(PO — 5 Fi(t,w(t) =0, (3.20)
p(t)=
where F (¢, w(t)) is defined with (3.1). It is convenient to express Fy (¢, w) as
Fy(t,w) = G(t,w) + H(t,w) + k(t), (3.21)

with G(t,w), H(t,w) and k(¢t) defined, respectively, by

G(t,w) = |1+ F(t)—w|"* = + (1+$>(1+F(t))éw—(1+F(t))1+é, (3.22)
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H(tw) = (1+ é) [1-a+ Py, (3.23)
and
k(t) = (14 F(t)"Fs —1. (3.24)

Since F(t) — 0 as t — oo by hypothesis, we can choose t; > max{a, 1} such
that

1 =
(1+ a)[K+L+a] Ft) <1, (3.25)
where K and L are positive constants such that

4\1-%
K:(g> and L=1 if a> 1:

3\t 5ya—!
K=(5)" adL=(3)" ifasl
Noting that since 14+ 1/a > 1 and K+ L+« = 2, we have in view of (3.25)

that \/F(t1) < 1/2 and F(t) < 1/4 for all t = t;. It is easily shown that,
using the mean value theorem and L’Hospital rule, the following inequalities
hold for (3.22), (3.23) and (3.24):

(3.26)

0G(t, w) 1 1
< = —
’ ‘ <> (1 n a)K|w|, (3.27)
8H t w) 1 1
< = —
) ‘ < (1 + a)LF(t), (3.28)
1 1
< - 2
\G(t,w)| <~ (1 + a)Lw : (3.29)
1 1
< = —
H(tw)| £ = (14 LF(@)w), (3.30)
and
1
k(1] < (1 + a)F(zs) (3.31)
for t 2 t; and for |w| £ 1/4.
Consider the set W C Cylt1, 00) defined by
W= {w € Cylt1,00) : |w(t)| £ \/F(t), t= tl} (3.32)
and define the integral operator G : W — Cylt1, 00) by
¢
o [Fsu) o
Guw(t) = P / () E ds, t2t, (3.33)

t1

where F (t,w) is given by (3.1). Then, it can be shown that G is a con-
traction mapping on W. In fact, if w € W, then, by means of (3.29)—(3.31)
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and (3.25), we can see that

t

'g“““'§53>/?x;; (165, w)] + (s, w)] + (5] s <
= (”é) %/ BE [Lw(s)2+LF(s)|w(s)\ +aF(s)} ds <
< (1+ )[L (t1) +LF(t1)2+aF(t1)} _
)

Q= Q|+

(
(1+ Pty [L+L F\(tl)—i-a}é

<\/F( ( )K—f—L—i—a\/ (t1) S\ E(t), t=t.

Since F (t,w(t)) — 0 as t — oo, we obtain tlim Gw(t) = 0. Thus, it follows

that Gw € W, and hence G maps W into itself. Moreover, if wy,ws € W,
then, using (3.27) and (3.28), we obtain
|Gun (t) — Gus ()| £ — x
1 2(t)] = PO
/ 1
></ 5 (1G5, (5) = Gls, wa(s)) |+ [ H s, wi ()~ H (s, wa(s)| | ds
p(s
ty

A

Q=

< (1 + é) [K F(ty) + Lﬁ(tl)} l[wr — wallo <

A

1 ~
(1 2) 1K + LIy F(ta) on = wall,
which implies that
1 =
|Gws = Gusally < (1+ 2 ) 1K + LIy F(t) wn = wall.

In view of (3.25) this shows that G is a contraction mapping on W. There-
fore, the contraction mapping principle ensures the existence of a unique
fixed element w; € W such that w; = Gw;, which is equivalent to the
integral equation

¢
F
wi(t) = 2 / w5 wnls) §oy sy (3.34)
P(t) p(s)=
ty
Differentiation of (3.34) shows that wy (¢) satisfies the differential equation
(3.20), and substitution of this wy(¢) into (3.6) gives rise to a solution z(t)
of the half-linear differential equation (B, ) defined on [t1,00). Further-
more, since tlim w1 (t) = 0, it follows from the representation theorem that
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x(t) € n-RVp(1). This completes the proof of Theorem 3.1 for the equa-
tion (B ). O

Remark 3.1. Consider another half-linear differential equation
o~
(p()p(a' (1)) + f(t)p(z(t) = O, (B)
where f(t) is a positive continuous function such that

FO) = ft), t=a

lim Pt /f

We take ¢y > max{a, 1} so large that

and

~ 1 7
(2F(to)) max{Q, 1+ f} <1 where F(t /f
!
i
Then, by means of Theorem 3.1, both x¢(t) and Zo(t) are given, respectively,

by (3.3) and
Zo(t) = exp { / (m)a ds}, t 2= to,

to
where 7y (t) is a solution of the integral equation

T (Go(s) + F(s))+&
%(t):aP(t)a/( 29((8));15(2)?“ ds, = to.

We here compare z((t) with Zo(t). From the proof of Theorem 3.1, vo(¥)
and Up(t) are the fixed points of the contraction mapping F and F given,
respectively, by (3.16) and

_ by F(s)*+a
)=aP(t / v(s)t ds, t2ty.
/T Ealee

Noting that vg(t) and vo(t) are the limit points of uniform convergence on
[to, 00) of the sequences defined by

'Un-‘rl(t):fvn(t)a tgt(); n:172a"'7 vl(t):()
and
5n—‘rl(t):’/AI_:"ler(tL)v tito, n:172a"'7 :Jl(t):O

We conclude that vg(t) 2 vo(t), t = to, which implies that Zo(t) = zo(t) for
t>to.
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4. THE EXISTENCE OF GENERALIZED REGULARLY VARYING SOLUTION
OF SELF-ADJOINT FUNCTIONAL DIFFERENTIAL EQUATION WITH
DEVIATING ARGUMENTS

In this section we first present the proof of Theorem 1.1 for equation
(A4) and then give the proof for the equation (A_).

4.1. The proof of Theorem 1.1 for the equation (A;). (The “only
if” part) Suppose that there exists a positive solution z1(t) € n-SVp or
x2(t) € n-RVp(1) of (A4). The equation (A) can be written as the half-
linear differential equation without retarded and advanced arguments

(p()ela' (1)) + Z (4.9, (8) + 70,n, (1) Jo((t)) = 0, (4.1)

where
) = a0 ("Z) and o) =r0p (NS 42
1=1,2,...,n

Here, applying Theorem 3.1, we see that

tlirglo P(t)~ / I:Q$,gi (8) + 7o, (S)] ds =0
t

n
=1

K2

or

n

tlggo P(t)” / 2%,9@ (s)ds = tlggo P(t)o‘/ Ts.h; (8) ds = 0.
t = t

i=1
By the representation theorem, z;(t), j = 1,2 can be expressed as
t

xj(t)zexp{/]ﬁ%ds}, i=1,2

to

for some tg > a, where §,(t) satisfies
0 (y=1
lim 6, (t) = (=1
The solutions z;(t), j = 1,2 satisfy
t
(gi(t 5.
mol) oo f [ B0 _4) i,
;(t) /) p(s)= P(s)
gi

and
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respectively, where ¢; is such that g;(t1) = to, i = 1,2,...,n. Then, using
the properties of 0;(t), (1.7) and (1.8), we see that

16;(s)| P(t)
S ds < sup |0;(s)]-log =——+— —0 as t — 0
/ 9ip(s) = S s log gy
gi(t)
and
h7(t)
, P(h
|6J1(S)| ds < supd;(s)] -1 (hi(t)) —0 as t —
p(s)=aP(s s>t P(t)

Thus, it follows that
i(gs(t i(hi(t
o 0 0) ()

Consequently, from (4.3) we find that (1.9) holds.
(The “if” part)
(The existence of a n-SVp solution of (A)): Suppose that (1.9) is sat-
isfied. Choose ty > a so large that t, = min { igf 9;(t)} > max{a, 1},
i= t>to

L i=1,2...,n, j=12  (43)

{QZ [Qi(to) +2° Ri(to)] }a max {2, 1+ é} <1 (4.4)
and )
(22 [Qi(to) + 2aRi(tO)]); log P(]gl()t)) <log?2, t=tg, (4.5)
i=1

where Q;(t), Ri(t), @Z(t) and ﬁi(t) for i =1,2...,n are defined by

Q) = PO [ a(s)ds. Qut) = supQu(s) (4.6)
and -
Ri(t) = P(1)° / r(s)ds, Bilt) = sup Ris). (@7)

Let = denote the set of all positive continuous nondecreasing functions
&(t) on [t., 00) satisfying

) =1 for t,. <t <t (4.8)
%o uo(s) + 301Qu(s) + 22 Ri(s)]. 1
£(t) < exp { / ( Z:p(s)P(s)a ) ds} for t = tg; (4.9)
§(hi(t))
W <2 for t 2t (4.10)
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for i =1,2,...,n, where vo(t) satisfies the following integral equation:
o0 (vo(s) + 2_[Qi(s) + 2°R;(s)])! =
vo(t) = aP(t)® =1 ds, t=>to. (4.11
o) =ap(e)” [ TR >ty (411)

‘We note that the function

vo(s) + 30 [Qils) + 29 Ri(s)]

Xo(t) = exp { /t ( z;l PTZOR )i ds}, t2t (4.12)

to

is a solution of the half-linear differential equation

(p(t (2' (1)) —|—Z qi(t) + 2%;( )](p(z(t)) =0, (4.13)
since the function

vo(t) + 30 [Qilt) + 2 R(1)]

u(t) = =1 Z0G (4.14)

satisfies the generalized Riccati equation

|1+1 -

W (t) + o +Z ai(t) + 297(t)] = 0. (4.15)

Since vy (t)+ Z[ i(t)+2%R;(t)] — 0 as t — 0o, Xo(t) is a normalized slowly

varying functlon with respect to P(t) by the representation theorem. It is

obvious that = is a nonvoid closed and convex subset of the locally convex

space Cltg,00) of all continuous functions on [tg,00) equipped with the

metric topology of uniform convergence on compact subintervals of [¢g, 00).
For any & € 2, we define g¢ g, (t) and 7¢ 5, (t) by

i6 0 = s0p (L2 and v = r0p((EE) @)

respectively. Taking into account (4.10), we have

Z Ge,g: ( Z qi(t Z Ten, (1) = 2¢ Z ri(t), (4.17)

=1

and accordingly,

Z Qe,g: (1) = Z Qi(1), Z Rep, () = 2¢ Z Ri(t) (4.18)

where Q¢ 4, (t) and Re p, (t) are defined by

o0

Qe (t) = PO)" [ a6 (5)ds. Renlt) = PO)" [ ren(s)ds.  (419)

t
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Consequently, it follows from (4.4) that

{2 En: [@E,gi (to) + 2°Ren, (to)} }

=1

Q=

1
max{271+—} <1, (4.20)
(0%

where Qg.g,(t) = sup Qe (t) and Rep,(t) = sup Rep,(s). Thus, Theo-
s>t s>t
rem 3.1 implies that for any £ € E the half-linear differential equation
, , n
(D@ (1)) + D [4r0.(8) + 70, (1)) ((1)) = 0 (4.21)
i=1
has a n-SV p solution

%@+§@m@+&m@5

thwm{/( OEOE

to

1
@

ds}, t>to, (4.22)

where v¢(t) is a solution of the integral equation

o (06(s) + 3 [Qq,(5) + Ren ()7
Uﬁ(t) = aP(t)O‘/ l_lp(s)ép(s)cwrl

t

ds, t>tg, (4.23)

and satisfies
n

0=Zve(t) £ [Qeg, (to) + Ren, (t0)] £ [Qito) +2° Ri(to)] for t2to.
i=1 =1
Let us now define the mapping ® which assigns to each { € = the function
given by
DE(t) =1 for t. St S ty, PE(E) = Xe(t) for t 2 ty. (4.24)

To apply the Schauder—Tychonoff fixed point theorem to ¢ we will show
that ® is a continuous mapping which sends Z into a relatively compact
subset of =.

(i) ® maps E into itself. Let £ € E. Then

£ ve(s) + 3. Q) + R (5)] 2
PE(t) = Xe(t) = exp { / ( 1_1]7(5)]3(8)”‘ ) ds} =

ve(s) + 33[Q(s) + 2°Ri(s)]

ée"p{/( FOLCE );“}§

to

C ug()+ 30 [Qil5)+ 27 Ri(s)]

“p{/( OO )é“}”zm’

to

A
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where we make use of the fact that ve(t) < vo(t), t 2 o for all £ € = (cf.
Remark 3.1). Furthermore, since ve(t) < Z[@ (to)+2“R;(to)], using (4.5),

we see that

BE() hi(t) < )+ Z [Qe.g: (s )+Rf,hi(s)]>é e
' OIZOR =

This shows that &£ € =, that is, ® is a self-map on Z.

(ii) ®(2) is relatively compact in Clt., 00). Since ® maps Z into itself,
that is, ®(E) C E, ®(E) is locally uniformly bounded on [t., c0), and since
¢ € = implies

d
0 ) = 5 Xelt) =

_eXp{/t( ) + Z Qg}g;((s));r Re (s )]>;d8}x

)+ Z [Qe,g:(t) + Rep, ()] 2
(A

< exp { <

2 30 (to) + 2 Rilto)] | +
=1

x( p(B) () )’

A

Q=

[@ (to) + 2a§¢(to)]) log ;)((t))

X

M:

Il
-

®(Z) is locally equi-continuous on [t,,00). From the Arzela—Ascoli lemma
it then follows that ®(Z) is relatively compact in C[t, 00).

(iii) @ is a continuous mapping. Let {&,, ()} be a sequence of functions
in E converging to d(¢) uniformly on the compact subintervals of [¢,, 00).
To prove the continuity of ®, we have to prove that {®&,,(t)} converges
to ®4(t) uniformly on compact subintervals in [t,, 00). Applying the mean
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value theorem, for ¢ 2 ¢, we obtain
|(I)§m(t) - ‘I)d(t)| = |X§m (t) - Xé(t)| =
e, (s)+ Zl[Qfm,gi(S) + Re,,.,n: (5)] ) 1 }
= s\

“P{J( PG
t us(s)+ i [Qs.6,(5) + Rsp, ()] 1
_exp{/( Z_p(s)P(s)O‘ ) ds}‘

vo(s) + 20 [Qi(s) + 27 Ri(s)]

<”p{/( SO )i“}x

NE!

le ﬁmwgmwﬁ+%Mwy_
/ p(s)= P(s)>
vs(5) + 32 [Qau(5) + R, ()] +
o i=1 ds.
( P(s) )

By means of the inequality [2* —y*| < |z —y|* for z,y € RT and 0 < A < 1,
we find that the integrand of the last integral in the previous inequality is

bounded from above by the function

1@Aw+§yQ%&u>+R%ﬁxm>;

K P(t)
ww+§@mw+mmmi
‘( 208 ) =
w%u»wxm+§y%mwmemxm+§U@MAwmexm s
( Py )
if a>1.
Similarity, using the mean value theorem, we find that
%@+§MMM+&MM}§
( o )'-
ww+§@mw+mmmi
‘( 0% ) =
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Ve (8) =V ()| +22 [ Qe g1 (8) = Qg () 22 [ R s (1) = B ()]
<G = =

- P(t)>
if <1,

where C] is a constant depending only on «, @Z (to) and ﬁi(to). Accordingly,
the continuity of ® is guaranteed if we prove that the two sequences

e (O —us(t) 2@ D= Qo (O Ry ()~ R, 1)
Pl Pl

(4.25)

converge to 0 on any compact subinterval of [t,, c0). In fact, it can be shown
more strongly that they converge to 0 uniformly on [t.,c0). The uniform
convergence of the second sequence in (4.25) follows from the Lebesgue
dominated convergence theorem applied to the inequality

; Qe o0 (1) = Qsgr (D) + ; Rep o (8) — Rop ()
P(t)e

</ [iqxs) .
+ 3o S) - go(“f;;g)))ﬂ s

for t = t9. To examine the first sequence in (4.25) we proceed as follows.
Using (4.23) and the mean value theorem, we obtain

A

(gm(gi(s))) B @(5(9i(5))>‘+

CEm(s) 5(s)

e, &) —vs(®)] _ [ 1
ulCh gat/ p(s)% P(s)r+1

(vgm (s)+ i[@gm,gi (s) + Rém,hi(s)]> e

i=1

X

— (v3(6) + Y1Qun() + R (o)) |ds.

Therefore, we have

Jve,. (6) = vs(0)] _
Pty =

<an [t/oop(i); Ve, () — s(5) ds+t/oo ! S”“l(s)ds}, (4.26)

P(s)*H
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where 71 is a positive constant defined by

( ){QZ”: i(to) +2° R(to)}} (4.27)

i=1

Q=

and Sy, (t) is defined by

Sman(t) Z[!ng,gq = Qs (8)] + [Repns(t) = R, (0)] ].

i=1
Note that 7 < 1 by (4.27). Letting
Ivsm - U«s ) s (4.28)
/IYL a+1 ) *
we derive from (4.26) the followmg differential inequality for z,(t):
P(t)em 1 n
(P(t)*™ Zm(t))/ = —an : / Sl n(8) ds. (4.29)
p(t)= p(s)= P(s)o+!

Noting that P(t)*™ Z,,(t) — oo and that the right-hand side of (4.29) is
integrated over [t, o), we obtain

1 oo

Znlt) < [P —as vz
P(t)an / p(s)gp(s)1+oz7an

Combining (4.26) with (4.30), we have

Ve, (t) = vs(t)]
P(t)~

Saﬁ[ 1 / ISmyn(s) ds—i—/ism’n(s) ds| <
- P(t)em / p(s)= P(s)t+omen p(s -

A

A

an / IS’”’”(S) ds, t= 1.
P(t)an / p(s)ap(s)l+a—a‘rl

This shows that |ue,, (t) —vs(t)|/P(t)* converges to 0 uniformly on [t,,c0).
We therefore conclude that the mapping ® defined by (4.24) is continuous
in the topology of Clt.,00). Thus, all the hypotheses of the Schauder—
Tychonoff fixed point theorem are fulfilled, and hence there exists & (t) € =
satisfying the half-linear functional differential equation

( ( g0 + Z qﬁo,gL + Téo,h ( )](p(fo(t» =0, t=to,
which is rewritten as

(Pl +Z[q1 ?(€0(5:(0) + ra®e(oha(8) | =0, ¢ 2 to.
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This implies that the equation (Ay) has a n-SV p solution &y(¢) existing on
[to, OO)

(The existence of a n-RV p(1) solution of (A1)): Next, we will be con-
cerned with the construction of a n-RV p(1) solution of equation (A+) under

the condition (1.9). Choose t; > a so large that t, = %nQin { mf gi(t } >
i=1,2,...,n

max{a, 1},

(1 + é)[K + L+ a]\l Zn: [@i(tl) + Zaﬁi(tl)] SLotzh (4.31)

and
1

< Z J(t) + 2°R ()]> logp(lil((;))élogl £ 1. (4.32)

Let H denote the set of all continuous nondecreasing functions n(t) on [t., co)
satisfying

n(t) =1 for t. <t <ty (4.33)

t2 4 Y [Qils) + 2°Ri(s)]. 1
< Sex =1 sp for t2t; (4.
1< n() = p{/( 25 P () > d } for t = ty; (4.34)

ahi(t)) _ |
<2 for t=2ty, 1=1,2,...,n. 4.35
nt) = - .

For any n € H we consider the differential equation

(p(t) (' (1)) + Z Gngi () + 1y, O)p(x(t) =0, t =1,  (4.36)
where

n(gi(t)) n(hi(t)\ .
qn,gi(t):q(t)w( W(t) ) and Tn,hi(t):n(t)go( ), 1=1,2,...,n.
Since n(g;(t))/n(t) = 1 and n(h;(t))/n(t) < 2, we have

dn,g; (t) < qi(t) and Tk (t) £2%4(t), t=ty for i=1,2,...,n

so that

8

Qun(0) 1= PO)" [41,(5) ds S PO)° [0(9) ds=Qu(0). 1201, (43)
t

77,hi(s)ds§2°“P(t)o‘/ri(s)ds:2aRi(t), t=t;. (4.38)

t

Ry ni(t) = P(t)

R
~—3
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Accordingly, from (4.31) we have

n

(1+ é) K+ L+ a]y | D [Qugi(t2) + Ry, (0)] £ 1, (4.39)

i=1

where @mgi (t) = sup @y q,(s) and }A%mhi (t) = sup Ry »,(s). Moreover, we
s>t s2t

notice that from K + L +a > 2 and 1+ é > 1 follows

n

S (@ (t1) + Ry, (01)] <

=1

. (4.40)

DN =

This enables us to apply Theorem 3.1 and thus we conclude that half-linear
differential equation (4.36) has a n-RV p(1) solution of the form

Xn(t)exp{/t<1+Z§[Qn,gi(s)+Rn,hi(s>]—wn(8)>;ds}, .

t PEIPE)
1
(4.41)
where w,,(t) is a solution of the integral equation
o [ Fy(s.wy(s)
wy(t) = / M T ds, t 2>t (4.42)
! P(t) p(s)a

n o~ ~
satisfying |w,(t)] < ([ D [@n.g:(t1) + Ry, (t1)] for £ 2 t1. Furthermore, it
i=1

follows from (4.40) that |w,(t)| £ 1/2 for ¢ 2 t1. Here F,(t,w,(t)) is

142 1
+(1+E)w"_1’ t=>1.

n

Fy(t,wy) = ‘ 1+Z [Qn.g: (8)+ Ry, (1) =y

=1

Denote by ¥ the mapping which assigns to each n € H the function Un(t)
defined by

Un(t) =1 for t, St<ty, Unt) = X,(t) for t =t (4.43)

(i) U is a self-map on H. For any n € H from (4.37) and (4.38), for ¢t = t;
we find that

‘1 + Z [Qe.0:(t) + R, ()] — wn(t)’ <

n

<14 [Qi() + 2°Ri(®)] + Jwy ()] £

i=1

= g + Z [Qi(t) +2°R;(t)],

=1
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or accordingly,

L34 S [Quls) + 29 Ri(s)] 1
=1
Xn(t)§exp{/< PG PG) ) ds}, t 2t

Moreover, we have

i (t) wo(s)) =
i) _ h/ (4 5 0na(e) + Byl —unl@l®
Wn(t) J p(s)® P(s) =
n (3 4+ 32 [Quls) + 2°Ri(s)))
< exp =1 . ds y <
{ / p(s)=P(s) }

< exp { (3% @uo+2Rite)] ) o Tt } <2, 124,

(ii) U(H) is relatively compact in C[t.,o0). This is a consequence of the
inclusion U(H) C H and the following inequality holding for any n € H:

0= %\Ifn( t) = %Xn(t) =
1+ il[Qn,gi () + Ryp, (1)) — wy (1) 2
— <
( (O P(t)° ) Xn(t) =

5+ [Qi(t1) + 2% Ri(t1)]

s (= ore ) |
xexp{( +§ Qi(ty) +2¢ R(tl)]>a10g§((ttl))}.

(iii) ¥ is continuous in the topology of Clt.,00). Let {n,} be a sequence
in H converging to 8 € H, which amounts to supposing that the sequence
{nn(t)} converges to 0(t) uniformly on the compact subintervals of [t,, 00).
We will show that {Un,,(¢)} converges to ¥H(t) uniformly on the compact
subintervals [t,, 00). In order to simplify notation, for arbitrary n € H we
denote

s
%

32 Qg (B) + R, (5] — wy (8)

Vn(t) _ i=1 P(t)a , t 2 t1. (444)
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In view of (4.41), we have

Wi (£) — RO(1)] = | X, (£) — Xo(t)] =

exp{/ %M}e@{](w}

s

ds.

As in the previous part of the proof, we can verify that the integrand of the
last integral is bounded from the above by

( ; Qs ()= Qo0 ()] + ; Ry (£) = Ro o (8) + |0y, ()~ 0 <t>|> 3

P(t)>
if a>1,
; Qi 9: (1) = Qo.g, (1) + ; | R, hi () = Ro p, (1) wn,, (1) —wa()]
02 (i)
if <1,

where C5 is a constant depending only on «, @Z (t1) and Ei(tl). Accordingly,
it suffices to prove the uniform convergence to 0 on the compact subintervals
of the two sequences

[wy,, () — we(t)] Tm,n (1)
P M P
where
7Tm n Z ‘anu‘h QG,QL ‘ + Z |R’U7n, h; R9 h; ( )‘

The uniform convergence of the sequence m,, ,,(t)/P(t)* is an immediate
consequence of the Lebesgue dominated convergence theorem. Therefore,
let us examine the sequence |wy,, (t) — wy(t)|/P(t)*. Applying the mean
value theorem to F;,  (t,wy,, (t)) and Fy(t,we(t)) in |wy,, (t) —we(t)|/P(t)*,
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we obtain for ¢t = t;

[y (10 (1)) = Folt w0 ()] < (14 2 ), (1) — wo(0)|+

1+1

@

’1 + Z anugz + an,h (t>] — Wy, (t)

1+

A

‘1+Z Q0. (1) + R (8)] — wo()

< (1 + a) (1 + 7)|wy,, (t) — wo(t)| + (1 + é)mn,m(t)a

where 75 is a positive constant depending only on «, @i(tl) and ﬁi(tl).
Consequently, the sequence |wy,, (t) — wq(t)|/P(t)* implies

|wn,,, () —we(t)| (@ +1)(1 +72) ] |wn,, () = wo(s)|

< d
P = Py P T
ty
@+ )72 [ Tma(s)
a—+ 1)m Tm,n(S
’ ds, t2ty. 4.45
+P(t)a+1/ps; 5 =l (4.45)
ty
Putting for simplicity
¢
|wy,, () — we(s)|
t) = s d 4.46
)= [ as (4.46)
t1
we transform (4.45) into
(a+1)7'2

(P(t)f(oﬁrl)(lJrTg)Wm(t))/ é

¢
/ﬂm’n(S) ds, t=t,

p(O)F PO
ty

which, after integration over [t1, ], yields

t

P(t)letD+m) / Pﬂﬂd& t>t.  (4.47)

<
Win(t) = (5) (@t D7)

1+TQ
t1

Combining (4.45) with (4.47), we have

‘wnm (t) — W (t)| + 1 7'2 Tm, n
P(t)a = (a+1)72 P (a+1)(1+7'2)

(a+ 1)1 mon
INZOEE / p(s)

ty

/\

ds+

dS, t z ty.

—~
Q= o
~—
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This ensures the desired convergence of the sequence |w,,,, (t)—we(t)|/P(t)%,
whence the continuity of the mapping ¥ has been assured. Thus, all the
hypotheses of the Schauder—Tychonoff fixed point theorem are fulfilled, and
so there exists 79 € H such that 1y = Wny. Since no(t) = X, (t) for t = ¢4,
1o (t) satisfies the differential equation
/ ! - o >
(PO@61)) + Y [ano.: () + oo (D] (mo(£) =0, t 2 11
i=1
or

(p(O01h(1)) + Z [0 (m0(5:(1)) + ri®p (mo(Ri(1))) | =0, t2 11,
Therefore, 1o(t) is a desired n-RV p(1) solution of the functional differential
equation (A4) on [t1,00).

The proof of Theorem 1.1 for the equation (A_).
(The existence of a n-SV p solution of (A_)): Suppose that (1.9) holds.
Choose ty > a so large that t, = min { 1£1f gi(t } > max{a, 1} and such
1= t2to

1,2,....n
that
= o 1
« —
(2; [2° Qi (to) +R(t0)]) max{2,1+a} <1, (4.48)
= ~ ~ x P(t)
23" [290;(to) + Rilt log ——_ < log2, 4.49
( > Qi) (t0)]) " o8 5 7y < o (4.49)
are satisfied for all ¢ = tg, where Q\l(t) and ﬁz(t) are defined by (4.6)
and (4.7).

Let M denote the set of all positive continuous nonincreasing functions
w(t) on [t., 00) with the properties

w(t) =1 for t, <t = to; (4.50)
L2202 + R
= expl — =1 sp for t = to; .
u(t) = p{ / TR d } for t 24y, (4.51)

1(gi(t)) <2 for t>ty, i=1,2,.
p(t)

We here consider the following differential equation:

SN (4.52)

n

(@)@ ()" =D [dug: (1) + s (8)] (2 (1)) (4.53)

i=1
where, for arbitrary p € M, the functions g, g, (t) and r, ,(t) are defined
by (4.2). In view of Theorem 3.1, for each p € M, the equation (4.53) has
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a n-SVp solution X, (t) having the representation

toru(s)— [ngz( )+ Ry n, ()] L1y
Xﬂ(t)exp{t/< p(s)P(s)“ > ds}, t=>ty, (4.54)

0

M:

where r,, () is a solution of the integral equation

2 [1u(5) = 32 [Quuge (5) + Ry ()]
Tu(t) _ ap(t)a/ 1:1p(8)ép(8)a+1 ds, t2ty, (455)

t
satisfying the inequality

n
0= ru(t) = Z ngl to) + Ru h (tO)] =

Z [Q(Xéji(to) + éi(to)], t > 1. (456)

Here Q. 4,(t) and Ry, 5, (t) are defined by (4.19) and @u,gi (t) =supQp.q, ()
s>t

A

and Eu,hi (t) = sup R, n,(s). Furthermore, using the decreasing nature of
s>t

u(t), we have
Qu,g: (1) = 2% (t) and 7,4,(t) S1(t), t 21y, 1=1,2,...,n,

accordingly,

D [Qua () + Ry (D] =D [2°Qu() + Ro(b)] =
i=1

i=1

< Zn: i(to) + Rilto)], t=to. (4.57)

i=1
Let us now define H to be the mapping which assigns to each yu € M the
function Hy given by

Hp(t) =1 for t, St < to, Hu(t) = X, (t) for ¢ 2 t. (4.58)

Proceeding as in the proof of the existence of n-SV p solution of (A4 ), it can
be proved that H maps M into a relatively compact subset of M with the
help of the Schauder—Tychonoff fixed point theorem, so that there exists a
o € M such that

.UO( ) X#o(t) =

L T0(8) = 20 [Quo,gi (8) + R ni ()] 2+
:exp{/( : 1p(s)P(S)O‘ > ds}, t 2 to.

to

Ms
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This means that uo(t) is a solution satisfying the functional differential
equation

n

(PO@(H0(1))) =D [dhuo.g: (1) + Thao s ()] 0 (10(2)), 2 to

i=1
or consequently,

n

() e(uh(®) = [qi(t)w(uo(gz-(t))) + ri(t)so(uo(hi(t)))]7 t > to.

i=1
Therefore, we conclude that the equation (A_) has a n-SVp solution.

(The existence of a n-RVp(1) solution of (A_)): Suppose that (1.9) is
satisfied. Choose t; > a so large that ¢, = {nzin { iilf gi(t)} > max{a,1}
1=1,4,.. t2ty

.n

n

(1 * é) K+ L+ O‘w Y [Qilt) + 20 Ri(t)] £1 (4.59)

and

{1 + J S (0it) + 2aRi<t1>]} log ]W <log2,  (460)

=1

where the functions Q;(t), R;(t), @Z(t) and ﬁz(t) are defined by (4.6) and
(4.7), while

SARRC aE
- (3>1_1 R T £ ) I T B
(g)” if o<1 1 if a<1

Let K define the set of all positive continuous nondecreasing functions v(t)
on [t.,00) satisfying

v(t)=1 for t, St <ty (4.62)
t
1 &
1< u(t) §exp{/<p(;;;)((;)a) ds} for t>¢;;  (4.63)
ty
V@) <o o 124y i=1.2.....m) (4.64)

v(t)
where p(t) is a solution of the integral equation

0= (14 1) Y- (@) + 2 Rufe)] 5 [ 2

=1

+
)

+] s (4.69)

o
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In order to verify that p(t) is a solution of (4.65), we now consider the
integral operator R defined by

Rp(t) = (1 + é) i [@z(tl) + 2a§i(t1)] X
1 - -

1
o

1

on the set

]P’z{pECo[tl,oo): 0< p(t) < Zn:[@i(tl)—i—%ﬁi(tl)], t>t1}.

i=1

It is easy to see that R sends P into itself and satisfies

n
N . 1N~
HRM —Rp2| < Z [Qi(t1) + 2% R;(t1)] (1 + a)L”Pl —pz2llo, p1,p2 €R.

i=1
Therefore, there exists a unique fixed point of R which solves the integral
equation (4.65).

Consider a family of half-linear differential equations

(p(e(@' (1)) =Y [av.g: (&) + ron, O] (@), € 2 1, (4.67)

i=1
where, for any v € K, the functions ¢, 4, (t) and 7, 1, (t) are defined by
v(gi(t)) V(hi(t)))
v(t) v(t)

Then, we define Q. 4, (t), Ry n,(t) for every v € K by (4.19) and Q\V’gi (t) =
sup Qu.q, (t), Rup,(t) = sup Ry p,(t). It follows from Theorem 3.1 that for
s>t s>t

G (1) = ai(D)p (20 ) and 1, (8) = it

cach v € K, the equation_(4.67) has a n-RV p(1) solution X, (t) expressed
in the form

n

1= 3 [Qug,(5) + Run,(5)] + wy(s)

X,,(t)zexp{/( STy )éds}, (4.68)

ty

tzth

where w, (t) is a solution of the integral equation

o« / ﬁ'y(s,wl,(s)) .
w,(t) = P(t)! () ds, t=t (4.69)
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and

1

+2
. (4.70)

Fy(tw,) =1+ (1+ l)wy ‘1 [Qy,ql( )t Ryp (0] 10, |

We notice that for some fixed v € K, w,,(t) is a fixed point of the contraction
mapping F,, defined by

Fowy(t) = — /F”(S’w”l(s)) ds, t2>1t, (4.71)
P(t) ; p(s)E
which satisfies
w, (O] £ (| Y [Qug, (t1) + Ro, (t1)] ¢ 2 1. (4.72)
=1

Furthermore, using the increasing nature of v(¢), we obtain
Qu,gi (1) = qi(t), 1Tun,(t) S2%(t) for t 21, veK,

or consequently,

Zngl +Ruh()}§

i=1

§Z Qi(t) +2°R §Z Qi(ty) +2° R(tl)] t=t;. (4.73)
i=1 i=1
We will show that for every v € K,
lwy (8)] = p(t), t 2t (4.74)
To this end, it is convenient to express F), (¢, w,) as
ﬁl/(t7 wl/) = éu(ty wu) + ﬁu(ty wu) + %V(t>7

where G, (t,w,), H,(t,w,) and k,(t) are defined, respectively, by

Gt = (1= 3 [Qua )+ R )+

- (1 + é) (1 - Z [Qu.g. () + Rup, (t)])l o, —
=1

1+1

’1 - [QV e+ Rup, ()] +w,| °

=1

)

n

Aot = (14 ) {1 (1 2 1@ + R 0)])

i=1

Q=
—
g

N
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and
~ n 1+%
R =1 (1= [Qua, () + Run, (0]
i=1
Using the mean value theorem, we find that for some 6 € (0,1) the inequal-
ities hold:
11

Lo DS s

|H,(t,w, ()] < . x
XY [Qug (1) + Run (0)] wn (2)]
=1
< é (1+ é)iz [Qi(t1) + 2% Ri(t1)]|w, (¢)] (4.75)

and
|k ()] <

n

< (14 1) [1-0-0) 3 [Quan 0+ R )

=1

Z Qu,g: () + Ry, (t)] <
1=1

n

< (1 + é) Z [@i(tl) + 2a§i(tl)]a t 2>t (4.76)

i=1
Moreover, by means of the mean value theorem and L’Hospital rule, it
follows that

|G (t, wy (1)) < é (1 + é)iwf(t), £t (4.77)

Let v € K be fixed. Recalling that p and w, are the fixed point of the
contraction mappings R and F,, defined by (4.66) and (4.71), we see that p
and w,, are constructed, respectively, as the limits as n — oo of the sequences
{pn = Rpn-1, n = 1,2,..., with pg = 0} and {w, = Fw,_1, n =
1,2,...,n, with wy = 0}. First we note that for ¢t = ¢;,

w1 (t)| = Frwo(t) =

O(t)/tp( )& [1‘1+Z Qu,g: (s JrRyh()]’H_;} ds <

t
)
p(s

n

§ L Z Qu,ql +Ryh ( )} ds §
« =1
< (a+1)) ] [Qit)() +2°Ri(ty)] <

=1

< [Qi(t)(t) + 2°Ri(tr)] (1 n é) [L4+a]l=pi(t), t=t.

~.
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Then, assuming that |w,(t)] £ pn(t), t = t1, for some n € N and using
(4.75), (4.76) and (4.77), we have

|why1(t)] = Fown(t) =

a 1 _ _ N
- %/ (s)% “GV(van(sm + ’Hu(s,wn(s))’ + ‘ky(s)” ds <

=B

n t

= (H—é) Z [Qi(t1)+2°R;(t1))] Ptt) / L+ il()z)(s) *ol ds = pn+1(2).

1
a

Therefore, inductive arguments ensure the validity of (4.74).
We define by M the mapping which assigns to each v € K the function
Huv(t) defined by

Mu(t) =1 for t. St <t1, Mv(t)=X,(t) for t = t;.
M is a self-map on K, since it readily follows from (4.60) and 0 < p(t) <

(i)
\/ [@7(15) + 2a§i(t1)] ,t 2 t; that
i=1

7

M=

t

1§Xl,(t)§exp{/(pt;;_;((s))&)Clx}7 t=t; forany v e K

and
Mu(hi(t))
Mu(t)
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(ii) M(K) is relatively compact in Clt,,00). The inclusion M(K) C K
shows that M(K) is locally uniformly bounded on [t.,00). Since

X exp { <1 + Z[@z(tl) + 2“@@1”) : log ;(ttl)) },

i=1

we conclude that M(K) is locally equi-continuous on [t., c0).

(iil) M is continuous in the topology of C[t,o0). Let {v,,(t)} be a sequence
in K converging to §(¢) uniformly on compact subintervals of [t.,00). We
have to prove that {Muv,,(t)} converges to MJ(t) uniformly on any compact
subintervals of [t., 00). In order to simplify the notation, for arbitrary v € K
we define

n

1= [90,0:(8) + Rupn, (8)] + wi (1)

Z,(t) = —= 0k Lt >t (4.78)

Then, using (4.68) and the mean value theorem, we get

| M (t) = Mo(t)| = [ X,,, (t) — Xs5(t)| =

ool [ () ) o ] (390

1

fexp{ / (M>; ds} / |<zm<s>>pi&s;i<z5(s))a| N

t1

As in the proof of the existence of a n-RV p(1) solution of the equation (AL ),
we can show that the integrand of the last integral is bounded from above
by the functions

; Q0 (D)~ Q.00 (D] + ; Ry ()= R ()] |10, (8) =05 (1)

( 0E )i

if a>1,
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_:ilIQVV,,L,gi(t>—Qa,gi(t)|+:21IRum,m — R, ()] + oy, (£) —ws(t))|
“ P

if <1,

where Cj is a positive constant depending only on v and p(t1). Therefore, it
suffices to prove the uniform convergence to 0 on the compact subintervals
of the two sequences

|wy,, (£) = ws(t)]

P and
'2:21 1Qupng: (B) — Qs,g, (1) + ZZ:l IRy, 1. (t) — Rsp, (t)] §nAm(t) (4.79)
P(t)a - P(t)a :

The second sequence in (4.79) can be dealt with exactly as in the case of
n-RVp(1) solution of the equation (Ai). In order to prove the uniform

convergence of the first sequence in (4.79), we consider F‘Vm (t,w,,,) and
F5(t,ws) defined by (4.70). Applying the mean value theorem, for ¢ = ¢;
we get

| B (b, (1) = Fs(tws(0)] < (14 1) [, (£) — ws(8)|+

+ “1 —i (Qugs () + Rup s ()] +wym(t)‘1+%—

i=1

A

’14‘%

p— (@1 (8) + o (1)) + ws ()

< (1—|—é> |wy,, (t)—wa(t)|+ (1+$)7’3 {ger,n(t)_F’wuwl (t)—wé(t)|} =
= (1+ é) (14 73) |, (8) = ws(®)] + (1 + é)rzﬁm,n(t),

where 73 is a positive constant depending only on «, @i(tl) and }Afi(tl).
Consequently, the first sequence in (4.79) implies that

|wy,, () —ws(t)] (@ +1)(1 +73) j |wy,, (8) = ws(s)|

< ds+
P PO ) pe)t
1
t o
(a+1 Tg/Smn(s)
: ds, t=1;. 4.80
+ P(t)o+1 o(s)% s t=th (4.80)
ty

Putting for brevity
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we derive the following differential inequality for Wm(t):

/

(P(t)—(a-ﬁ-l)(l-i-rg)wm(t))

t -

1

PR /S’”’"(S) ds, t=1. (4.81)
p(t)gP(t)(a+1)(73+l)+l ;

1

=

Integrating (4.81) from ¢; to ¢, we obtain

[IA

t ~
—~ T3 1 Smn(S) >
MR —; P(t)(a“)(““)/ p(s) = P(s)(e+ D (s +D) ds, 2t (482)

t1

Using (4.80) and (4.82), we conclude that

t
[, () —ws(®)] (ot Dy - () s
P(t)> P(t (a+1)(n+2) p(s)a P (a+1)(73+1)
1 §m n
(a +a3~7;3 / : (18) dS, t2 = tla
P(t) p(s)=

1

whence it follows that the sequence |w,, (t) — ws(t)|/P(t)® converges to
0 uniformly on [t1,00). Therefore, we have proved that the mapping M
is continuous in the topology of C[t.,c0). Thus, applying the Schauder—
Tychonoff fixed point theorem, M has a fixed point vy in K. Since vy =
Xy, (t) for t 2 t1, vp(t) satisfies the functional differential equation

or Z[ o (volgi () FraDe(o(ha(®) | 1201 (4.83)

It is obvious that 1 (t) is a n-RV p(1) solution of the equation (A_). This
completes the proof of Theorem 1.1.

5. EXAMPLES

We here present four examples illustrating application of Theorem 1.1 to
the functional differential equations of the type (A ) and (A_), respectively.
We begin with two examples of the existence of n-SVp and n-RV p(1) solu-
tions of the type (A) with the case i = 1.

Example 5.1. Consider the following functional differential equation
with both retarded and advanced arguments

(e*ahp(x/(t)))’ + q(t)cp(x(t - @)) + r(t)cp( ( + @)) =0, (5.1)

t e,
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where the functions ¢(t) and r(t) are given by

o a (1 )\)al[l A AN—1) )\}

= eata logt ~tlogt | t(logt)? ' logt

—a log(l — 72) )~
« (1 . 1 ) 1+ g( tlogt)
tlogt logt

a (1+ A )«1—117 AL AA-D A
2ectta logt tlogt  t(logt)? ' logt

1 —a log(1 + " —oA
% (1+ ) 1+ g( tlogt)
tlogt logt

for A being a positive constant. The function p(t) = e~ satisfies (1.1) and

the function P(t) given by (1.6) is P(t) ~ e'. Moreover, the functions
1 1
t)=t——— and h(t)=t+  — 5.2
gl6) =t~ o and A =1+ (5.2

satisfy the conditions (1.7) and (1.8). The condition (1.9) is satisfied for
this equation, since

and

r(t) =

oo oo

/q(s)dSNﬁ and /h(S)dSNﬁ as t — oo.
e e

t t

Therefore, equation (5.1) has a n-SV.+ solution z(t) by Theorem 1.1. One
such solution is z(t) = t(logt)*.

Example 5.2. Consider the following functional differential equation:

(t (' (1) + a®)p(a(te ) + r(t)p(a(tet)) =0, t=ef,  (5.3)

where the functions ¢(t) and r(t) are given by

ap po\el p+1
t) = 1— -
att) 2t(log t)*t+1log, t ( log, t) ( log, t) X

1
x (1— : )70‘ l—l—;log(li@) o
tlogt logy t

and

ap poo\ol p+1
t) = 1— -
r(t) 2t(logt)*t+1log, t ( log, t) ( log, t) X

1 \—« log(1 4 =)y o
% (1+ ) 1+ g( tlogt) 7
tlogt logy t
respectively, and p is a positive constant. The function p(t) = t* satisfies
(1.1) and the function P(t) reduces to P(t) ~ logt, while the functions
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g(t) = te~+ and h(t) = tet satisfy the conditions (1.7) and (1.8). Moreover,
since

oo

QL ap
/q(s) ds 2t(logt)>t1log, t and /h(s) ds 2t(logt)>t1logyt
t

t

as t — oo,

the condition (1.9) is satisfied and thus, the equation (5.3) possesses a n-
RVog ¢ solution by Theorem 1.1. One such solution is logt/(log, t)*.

Next, two examples illustrating application of Theorem 1.1 to the func-
tional differential equation of the type (A_) with the case ¢ = 1 will be
presented below.

Example 5.3. We consider the functional differential equation with both
retarded and advanced arguments

(et (1)) = q(t)gp(:z:(tf@))+r(t)cp(x(t+ @)) t=e, (5.4)

where the functions ¢(t) and r(t) are given by

alt) = =1 A)O‘_lx

T 2toet U logt
- {(1 * %) (1 N lo/;t> * tl(j\gt <1 N lo/;t) " t(loi;t)Q} ”
% (1_ tljgt)a{leW}aA’
)= g (1= ig7)
. {(1 * %) (1- 10;) M tljgt (1- lo:;t) i t(logt)z} "

1 o log(1 4+ —+-)y —a*
><(1+—) {1+g( tlogt)}

tlogt logt

for A being a positive constant. As in Example 5.1, it could be shown
without difficulty that all conditions of Theorem 1.1 are satisfied, so that
the equation (5.4) has a n-SV.t solution x(t) by Theorem 1.1. One such
solution is (logt)*/t.

Example 5.4. Consider the following functional differential equation:

(to(a' (1)) = at)p(x(te™0)) + r(t)p(a(tet)), t= e, (5.5)

where the functions ¢(¢) and r(¢) are given by

q(t) = an (1+ K )a71(1+“_1)><

~ 2t(logt)>t1log, t log, t log, t
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1 —a log(1 — o
« (1 _ ) 1+ g( tlogt)
tlogt logy t

and
= st ot ioest) 0+ fogot)
t) = 1 1
r(t) 2t(logt)>t1log, t + log, + log, t %
1 —a log(1 + % s
X (1 4 7) 14+ M ,
tlogt logy t

respectively, and g is a positive constant. As in Example 5.2, it can be
verified that all conditions of Theorem 1.1 are satisfied. Therefore, the
equation (5.5) possesses a n-RVig; solution x(t). One such solution is
z(t) = log t(log, t)*.
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