Memoirs on Differential Equations and Mathematical Physics
VOLUME 57, 2012, 109-122

Yuki Naito

REMARKS ON SINGULAR
STURM COMPARISON THEOREMS

Cordially dedicated to Professor Taka$i Kusano on his 80th birthday



Abstract. In a finite or infinite open interval, the linear differential
equations of second order with singularities at endpoints are considered.
By making use of principal solutions at endpoints of the interval, we obtain
sharper forms of the Strum comparison theorem.
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1. INTRODUCTION

We consider two differential equations
()Y + gty =0, (1.1)
(Pt +Q(t)v =0 (1.2)
on the intervals (a,w) with —co < @ < w < 00 and [a,w) with a € (« w)

Throughout the paper we assume, in (1.1) and (1.2), that p(t), ¢(t), P(t),
and Q(t) are continuous functions on (@, w), and satisfy

p(t) > P(t) >0 and Q(t) > ¢(t) on (a,w). (1.3)

We consider the Sturm comparison theorems in the case where the con-
tinuity of the coeflicients of equations is assumed only on («,w). The possi-
bility that the interval is unbounded is not excluded. Concerning the Sturm
comparison theorems for such singular equations, several results are sum-
marized in Reid [13] and Swanson [14]. In this paper, motivated by the
recent works by Chuaqui et. al. [2] and Aharonov and Elias [1], we will
show sharper forms of the Strum’s comparison theorem by making use of
the principal solutions at endpoints of the interval.

Let us recall the definitions of principal and nonprincipal solutions to
(1.1). Assume that (1.1) is nonoscillatory at ¢ = w. It is well known [5,
Ch. XI, Theorem 6.4] that (1.1) has a unique (neglecting a constant factor)
solution ug(t) satisfying

w

ds
/ Pl > (14

and any solution uy(¢), linearly independent of wug(t), satisfies

w

/ p(s)if<s>2 =00 (15)

and wuo(t)/ui(t) — 0 as ¢ — w. A solution wug(t) satisfying (1.4) is called
a principal solution at ¢t = w, and a solution wu;(t) satisfying (1.5) is called
a nonprincipal solution at t = w. The principal and nonprincipal solutions
of (1.1) at t = « are defined similarly. For further information about the
properties of principal and nonprincipal solutions, we refer to Hartman [5,
Ch. XI] and Elbert and Kusano [3].

First we consider (1.1) and (1.2) on a half-open interval [a,w) with a €
(a,w). The Sturm’s comparison theorem can be stated usually as follows:
(See, e.g., [5, Ch. XI, Theorem 3.1].)

Theorem A. Let u(t) #Z 0 be a solution of (1.1) on [a,w), and let v(t)
be a solution of (1.2) on [a,w). Assume that, for somen € N ={1,2,...},
the solution u(t) has exactly n zeros t = t1 < tg < -+ < t, in (a,w). If
either u(a) =0 or

u(a) #0, v(a) #0, and b
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then v(t) has one of the following properties:
(i) v(t) has at least n zeros in (a,ty);
(ii) v(t) is a constant multiple of u(t) on la,t,] and
p(t) = PO), () = Q1) on [at,].

In the case where u(t) # 0 on (¢,,w) in Theorem A, it seems interesting
to put a question whether a solution v(t) of (1.2) has at least one zero in
(tn,w). Our results are the following.

Theorem 1. Assume that (1.1) is nonoscillatory at t = w. Let ug(t) be
a principal solution of (1.1) at t = w, and let v(t) be a solution of (1.2) on
[a,w). Assume that ug(t) > 0 on (a,w). If either ug(a) =0 or

up(a) # 0, v(a) #0, and p(a)ug(a) > Pa)v'(a)
7 , ug(a) —  w(a)

then v(t) has one of the following properties:

(1.6)

(i) v(t) has at least one zero in (a,w);
(i1) v(t) is a constant multiple of ug(t) on [a,w), and
p(t) = P(t), q(t) =Q(t) on [a,w).
Combining Theorems A and 1, we obtain the following

Theorem 2. Assume that (1.1) is nonoscillatory at t = w. Let ug(t) be
a principal solution of (1.1) at t = w, and let v(t) be a solution of (1.2) on
[a,w). Assume that u(t) has exactly n zeros in (a,w) for some n € N. If
either ug(a) = 0 or (1.6) holds, then v(t) has one of the following properties:

(i) v(t) has at least n+ 1 zeros in (a,w);
(ii) v(t) is a constant multiple of uo(t) on [a,w) and p(t) = P(t), ¢(t)
Q(t) on [a,w).

Next, motivated by [1,2,11,12], we consider (1.1) and (1.2) on the interval
(o, w) with —co < o < w < 0.

Theorem 3. Assume that there exists a solution ug(t) of (1.1) such that
uo(t) has exactly n — 1 zeros in (o,w) for some n € N and is principal at
both points t = o and t = w, that 1is,

w

1 1
/Wdt—oo and /p(t)uo(t)th_oo (1.7)

If v(t) is a solution of (1.2) on (a,w), then v(t) has one of the following
properties:
(i) v(t) has at least n zeros in (a,w);
(ii) v(t) s a constant multiple of ug(t) on (a,w), and p(t) = P(t),
q(t) = Q(t) on (a,w).
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Let us consider some corollaries of Theorem 3. For the case where p(t) =
P(t) and q(t) = Q(t) on (o, w) in Theorem 3, we will obtain the uniqueness
of solution of (1.1) with prescribed numbers of zeros in (o, w).

Corollary 1. Assume that there exists a solution ug(t) of (1.1) such that
uo(t) has exactly n — 1 zeros in (o,w) for some n € N and satisfies (1.7).
Then any solution, linearly independent of ug, has exactly n zeros in (o, w),
that is, the solution of (1.1) with n — 1 zeros in (a,w) is unique up to a
constant factor.

In the case where

p(t) # P(t) or q(t) # Q(t) on (a,w), (1.8)
as a corollary of Theorem 3, we obtain the following

Corollary 2. Assume that (1.8) holds. If there exists a solution ugy(t) of
(1.1) such that ug(t) has exactly n — 1 zeros in (a,w) for some n € N and
satisfies (1.7), then every solution v of (1.2) has at least n zeros in (o, w).

Remark 1.

(i) In the case where ug(t) > 0 and p(t) = P(t) = 1 on (a,w), the
result in Corollary 2 was shown in [1, Theorem 1 (i)] by a different
argument.

(ii) Let us consider the equation with a parameter A > 0:
(p(t)u’) + Ag(t)u =0 (1.9)

on the interval (a,w). In (1.9) we assume that ¢ > 0, ¢ # 0 on
(a,w). For each n € N, let us denote by A, the parameter A such
that (1.9) has a solution uy which has exactly n — 1 zeros in (o, w)
and satisfies (1.7). Corollary 2 implies that A, is unique for each
n € N if it exists. The existence of a sequence {\,,}22; was shown
by Kusano and M. Naito [7,8] for the equation (1.9) on (a, c0) under
suitable conditions on p and ¢. (See also [10].) The extension of the
results to the half-linear differential equations was done by [4,9].

We will show that the condition (1.7) is likewise necessary for the unique-
ness of a solution with prescribed numbers of zeros.

Theorem 4. Assume that (1.1) has a solution u(t) which has exactly
n — 1 zeros in (o,w) with some n € N, and that any solution, linearly
independent of w, has n zeros in (a,w). Then u(t) is principal at both
points t = o and t = w, that is, (1.7) holds with ug = u.

Finally, we consider comparison results on the existence of positive so-
lutions of (1.1) and (1.2). Note that, by Corollary 2, if (1.8) holds, and if
(1.1) has a positive solution ug satisfying (1.7), then (1.2) has no positive
solution.
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Theorem 5.

(i) Assume that (1.8) holds. If (1.2) has a positive solution on (a,w),
then (1.1) has positive solutions u(t), ug(t), wo(t) on (a,w) satisfy-

ing
1 YA
[t pmapte 0w
1 7 1
/Wdt@o, /p(m()(t)zdfooa (1.11)
and
1 y 1
[ s = st 0
respectively.

(ii) Assume that (1.1) has a positive solution u(t) on (a,w) satisfying

1 1
/Wdt<oo or /Wdt<oo. (1.13)

[0}

Then there exist continuous functions P(t) and Q(t) satisfying (1.3)
with (1.8) such that (1.2) has a positive solution on (o, w).

Remark 2. Some concrete examples of Theorem 5 (ii) were constructed
by [1].

Theorem 1 is proved by employing Piconne’s identity [6] together with
some properties of principal solutions. We prove Theorem 3 by combining
comparison results for the half-open intervals (o, a| and [a,w). Making use
of two principal solutions at ¢ = o and ¢t = w, we obtain Theorems 4 and 5.

2. PROOFS OF THEOREMS

To prove Theorem 1, we need the following lemmas.

Lemma 1. Assume that q(t) < 0 on [a,w) in (1.1). Then (1.1) is
nonoscillatory at t = w and a principal solution ug(t) of (1.1) satisfies
up(t) > 0 and uy(t) <0 on [a,w).

Lemma 2. Assume that (1.1) is nonoscillatory at t = w. Let ug(t) be
a principal solution of (1.1), and let v(t) be a solution of (1.2) satisfying
v(t) > 0 on [T,w) with some T > a. Then uy(t) >0 on [T,w) and
p()up(t) _ P)v'(1)
uo(t) —  wu(t)
Lemmas 1 and 2 are shown in [5, Ch. XI, Corollaries 6.4 and 6.5]. How-
ever, for reader’s convenience, we give slightly simpler proofs of them.

on [T,w).
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Proof of Lemma 1. Let wu;(t), i = 1,2, be solutions of (1.1) determined by
u;(a) = 1 and uf(a) = i. It is easy to see that (p(t)u;(t))’ > 0 and u;(¢t) > 0
on [a,w), i = 1,2. Since u1(t) and us(t) are linearly independent, either
u1(t) or us(t) is a nonprincipal solution. Without loss of generality, we may
assume that u;(t) is a nonprincipal solution. By [5, Ch. XI, Corollary 6.3],

wo(t) = wilt) [ o

——— for a <t<w,
e

is well defined and a principal solution of (1.1). Then we have ug(t) > 0 on
[a,w). We obtain

p(t)ug(t) = p(t)u)(t) / p(s)ij(s)z — ull(t) for a <t <w.

Since p(t)uf (t) is nondecreasing, we have

o0

p(t)ug(t) < / 111/1((58))2 ds — ull(t) for a <t < w. (2.1)

t
Note here that

- TILH&’ <t/ ﬁ((;; ds U11(t)) N Thigo ( - U11(T)) =0

Thus, from (2.1), we obtain uj(t) < 0 on [a,w). O

Proof of Lemma 2. Let

<>(/g;(<>>)

Then w(t) > 0 on [T,w) and satisfies

p(t)w'(t) = "0 for T <t<w. (2.2)
It follows that
/
() = (P~ + P ()
From (2.2) we note that
S I e U
v v v v p(t)  P(t) v2
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Thus, w satisfies
(p)w") + Qo(t)w =0 for T <t < w,

where

Qo(t) =Q(t) + (L — L) (M)2 for T <t<w.

P(t)  p(t) v(t)
Let .
z(t) = ﬁ((t)) on [T,w)

Since z(t) satisfies
p(t)w ()2 (t) = p(t)up (t)w(t) — p(t)uo()w' (1),
we see that
(p(Hw(t)*2") +w(t)*(q(t) — Qo(1))z =0 for T <t < w. (2.3)
Since ug(t) is a principal solution, by [5, Ch. XI, Lemma 2.1], we have

oo oo

/ ds _/ ds s
ps)w(s)?z(s)? p(s)uo(s)? '
Thus z(t) is a principal solution of (2.3). Note here that Qo (t) > Q(t) > q(?)
on [T,w). Then, by Lemma 1, we have z(¢t) > 0 and 2/(t) < 0 on [T, w),
which implies ug(t) > 0 on [T,w). Then it follows that
up(t) _ w't) | () _w'(t)
w(t) ~ w) T = wl)
From (2.2) we conclude that
p(H)un(t) _ p)w'(t) _ P()v'(t)
up(t)  —  w(t) u(t)
Proof of Theorem 1. Assume that v(t) > 0 on (a,w). By Picone’s identity
[6], we have

for T<t<w.

for T<t<w. O

d /u P(ulv — ugv')?
at (*0 (P%U—PUO‘U')) = (Q—Q)U3+(P—P)Uf12+%~ (2.4)

v
Note that if ug(a) = v(a) = 0, we obtain }im uo(t)?/v(t) = 0 by I'Hospital’s

rule. Then we have, if ug(a) = 0,

lim ljiff)) (up(t)u(t) — PEuo(t)' (1) = 0.
If (1.6) holds, then
lim ‘:}O(ff)) (PO (t)u(t) — P(uo(t)o(t)) =
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Therefore, integrating (2.4) over [r,t] and letting 7 — a, we have

pt)ug(t)  P()V'(1)
uo(t)2< u(t) () ) 2
> / (Q@=ayui+ - Py’ +

a

P(ubv — ugv')?
(0 5 0 >)d5
v
for a <t < w. From Lemma 2, we have
t

[ (@-aut+ - P+

a

P(ufv — ugv')?

5 )dsg()fora<t<w,

v

which implies that
q(t) = Q(t), p(t)=P(t), and ug(t)v'(t) = uj(t)v(t) on [a,w).

Hence, v(t) is a constant multiple of ug(t) on [a,w). This completes the
proof of Theorem 1. O

Proof of Theorem 2. Let t = t1 < to < --- < t,, be zeros of uy(t) in (a,w).
We note that v(t) satisfies either (i) or (ii) in Theorem A on [a, t,].

By applying Theorem 1 on [t,,w), we find that either v(¢) has at least
one zero in (t,,w) or v(t) is a multiple constant of ug(t) on [t,,w) and
p(t) = P(t) and ¢(t) = Q(t) on [t,,w). In the former case, v(t) has at
least n + 1 zeros in (a,w). In the latter case, since v(t,) = 0, we have
either v(t) has at least n + 1 zeros in (a,w) or v(t) is a multiple constant
of ug(t), p(t) = P(t) and ¢(t) = Q(t) on [a,w). This completes the proof of
Theorem 2. ]

In order to prove Theorem 3, we consider (1.1) and (1.2) on the half-open
interval of the form (a,a] with a > —oc0.

Lemma 3. Assume that (1.1) is nonoscillatory at t = «. Let ug(t) be
a principal solution of (1.1) at t = «, and let v(t) be a solution of (1.2) on
(v, a]. Assume that ug(t) > 0 on (a,a). If either ug(a) =0 or

pl@)uy(a) _ Pla)v'(a)
wo(a) #0, v(a) £ 0, and =2 TH= < 0

then v(t) has one of the following properties:

(i) v(t) has at least one zero in (a,a);
(i1) v(t) is a constant multiple of ug(t) on (e, al, and p(t) = P(t), q(t)
Q(t) on (a,al.
Proof. Put

Uo(t) = up(a —t) and v(t) = v(a — t).

Then ug and v satisfy, respectively,

(F)ao") +d(t)iap =0 and (P(t)T") + Q1) =0 on [0,&),
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where
p(t) =pla—1t), G(t)=qla—1t), P(t)=Pla—1t),
C5(75) =Q(a—t), and W =a— a.

Furthermore, we have

———= ~ = — , and
p(t)uo(t)? 0(0) uo(a)
PO)'(0) _ P(a)v'(a)
o0 w(a)
By applying Theorem 1 to @y and ¥ on [0,w), we obtain Lemma 3. (]

Proof of Theorem 3. First we consider the case n = 1. We may assume that
up(t) > 0 on (a,w). We show that v(t) is a constant multiple of ug(¢) on
(o,w), if v(t) > 0 on (e,w). Assume that v(t) > 0 on (a,w). Take any
to € (o, w). First we will verify that

p(to)up(to) _ P(to)v'(to)

= . 2.5
wlto) (@) 29)
Assume to the contrary that (2.5) does not hold. If
to)up (¢ P(to)v' (¢
p(to)up(to) (to)v' (to) (2.6)

uo(to) v(to)

then v(t) has at least one zero in (tg,w) by applying Theorem 1 with a = ¢.
This is a contradiction. On the other hand, if the opposite inequality holds
in (2.6), then v(t) has at least one zero in («,tg) by Lemma 3. This is a
contradiction. Thus we obtain (2.5).

By applying Theorem 1 and Lemma 3 with a = ¢( again, we conclude that
v(t) is a constant multiple of ug(t) on (a,w), and p(t) = P(t), q(t) = Q(t)
on (o, w).

Next, we consider the case n > 2. Let t = t1 <ty < --- < t,_1 be zeros
of up(t) in (a,w). By applying Theorem 2 with a = t1, we have either v(t)
has at least n — 1 zeros in (¢1,w) or v(¢) is a multiple constant of ug(t) on
[t1,w). Thus, v(t) has at least n — 1 zeros in (a,w). Therefore, it suffices to
show that if v(t) has exactly n — 1 zeros, then v(t) is a multiple constant of
uo(t) on (o,w). Assume that v(t) has exactly n — 1 zeros. First we verify
that v(t;) = 0. (Recall that ¢ = ¢; is the first zero of wy(t).) Assume to
the contrary that v(t1) # 0. By applying Theorem 2 and Lemma 3 with
a = t1, we see that v(t) has at least n — 1 zeros in (¢;,w) and at least one
zero in (a,t1), respectively. Thus, v(t) has at least n zeros in («,w). This
is a contradiction. Thus we obtain v(t1) = 0.

By applying Theorem 2 and Lemma 3 with a = ¢; again, we conclude that
v(t) is a constant multiple of ug(t) on (a,w), and p(t) = P(t), q(t) = Q(t)
on (a,w). O
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For the proof of Theorem 4, we need the following

Lemma 4. Assume that (1.1) has a solution u(t) which has exactly n—1
zeros in (a,w). Let ug(t) and Uo(t) be principal solutions of (1.1) at t = w
and t = «a, respectively. Then ug(t) and up(t) have at most n — 1 zeros
in (a,w).

Proof. First we consider the case where n = 1, that is, u(¢) has no zero in
(o, w). Assume to the contrary that ug(¢) has at least one zero in (o, w). Let
to € (a,w) be the largest zero of ug(t). We may assume that ug(t) > 0 on
(to,w). By applying Theorem 1 with a = to, p(t) = P(¢), and q(t) = Q(1),
we see that u(t) has at least one zero in [tg,w). This is a contradiction.
Thus ug has no zero on (a,w). By the similar argument as above, we see
that @ has no zero on (o,w). Next, we consider the case where n > 2
that is u(t) has exactly n — 1 zeros in (a,w). Assume to the contrary that
uo(t) has at least n zeros in (o, w). Let ¢,_1 be the (n — 1)-th zero of u(t).
Note here that zeros of u(t) and ug(t) do not coincide, since u(t) and ug(¢)
are linearly independent. By the Sturm separation theorem, wug(t) has a
zero tg € (tp—1,w). By applying Theorem 1 with a = to, p(t) = P(t), and
q(t) = Q(t), we see that u(t) has at least one zero in (¢,—1,w). This is a
contradiction. Thus ug has at most n — 1 zeros in (a,w). By the similar
argument as above, we see that @y has at most n — 1 zeros in (o, w). ]

Proof of Theorem 4. Let ug and @y be principal solutions of (1.1) at t = w
and t = a, respectively. We show that the solution w is a multiple constant
of ug on (a,w), and also of %y on (o,w). Assume to the contrary that
u(t) and ug(t) are linearly independent. Then ug(t) has n zeros in (a,w).
This contradicts Lemma 4. Thus w is a multiple constant of ug on (o, w).
Similarly, we see that u is a multiple constant of @ on («,w). Thus, the
solution w is principal at both points t = @ and ¢t = w, and hence (1.7) holds
with ug = u. O

To prove Theorem 5, we have the following

Lemma 5. Assume that there exists a positive solution v(t) of (1.2) on
(a,w), (Then (1.1) is nonoscillatory at t = o and t = w.) Let ug(t) and

uo(t) be principal solutions of (1.1) at t = w and t = «, respectively. Then
uo( ) and ug(t) have no zero on (ayw). Furthermore, if p(t) £ P(t) or

q(t) Z Q(t) on (a,w), then ug(t) and Ug(t) are linearly independent on
(a,w).

Proof. Assume to the contrary that wug(t) has at least one zero in (a,w).
Let to € (a,w) be the largest zero of ug(t). We may assume that ug(t) > 0
on (tp,w). By applying Theorem 1 with a = ¢(, we find that any solution
of (1.2) has at least one zero in [tp,w). This is a contradiction. Thus ug
has no zero on (a,w). By the similar argument, we see that @y has no zero
on (a,w).
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Assume that p(t) Z P(t) or q(t) Z Q(t) on (a,w). In this case, we will
show that ug(t) and up(t) are linearly independent on (o, w). Assume to the
contrary that uo(t) is a constant multiple of g (¢) on (o, w). Then ug(t) is
also principal at ¢ = «, and hence (1.7) holds. Theorem 3 implies that v(t) is
a constant multiple of ug(t) on (a, w), and p(t) = P(t), q(t) = Q(t) on (o, w).
This is a contradiction. Thus ug(t) and ug(t) are linearly independent on
(o, w). O

Proof of Theorem 5. (i) Let ug and @ be principal solutions of (1.1) at
t = w and t = «, respectively. Lemma 5 implies that ug(¢) > 0 and @g(t) > 0
on (o,w), and that ug(t) and g (t) are linear independent on («,w). Since
a principal solution at t = « (¢ = w) is unique up to a constant factor, ug(t)
and U (t) are nonprincipal at t = « and ¢ = w, respectively. Thus we obtain
(1.11) and (1.12). Put u(t) = uo(t) + uo(t). Then u is a positive solution
of (1.1) on (a,w), and nonprincipal at both points t = a and ¢ = w. Thus
(1.10) holds.

(ii) Let up and @y be principal solutions of (1.1) at t = w and t = a,
respectively. Applying Lemma 5 with P(t) = p(t) and Q(t) = ¢(t) on
(o, w), we have ug(t) > 0 and up(t) > 0 on (a,w). We show that wug(t)
and ug(t) are linearly independent on (a,w). Assume to the contrary that
uo(t) is a constant multiple of %o (¢) on (o, w). Then ug(t) is also principal
at t = «, and hence (1.7) holds. Corollary 1 with n = 1 implies that any
positive solution of (1.1) is a constant multiple of ug(t) on (o, w). Since (1.1)
has a positive solution u satisfying (1.13), this is a contradiction. Thus ug(?)
and Ug(t) are linearly independent on (o, w).

We note here that for any ¢ € (o, w),

p(t)ug(t)  pt)uo’(t)
ug(t) o (t)

In fact, if (2.7) does not hold for some t =ty € (a,w), then Uy has at least
one zero in (tp,w) by Theorem 1. This is a contradiction. Thus (2.7) holds
for any ¢ € (a,w).

For A > 0, define Py(t) and Qx(t) by

(2.7)

P\(t) = 1_']_3(/3(75) and Qx(t) = q(t) + Ar(t) on (o, w),

where r(t) is a continuous function on («, w) satisfying r(¢) > 0, r(t) Z 0 on
(o,w), and 7(t) = 0 on (o, t1] U [t2,w) with some t; < t2. Let us consider
the differential equation

(PA(t)v") + Qx(t)v =0 on (a,w). (2.8)
Note that

Py (t) =p(t) and Qx(t) =¢q(t) on (a,t1] U [t2,w) for all A > 0.
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Then the solutions ug(t) and %g(t) solve (2.8) on each interval («,t;] and
[t2,w). For A > 0, define uo(¢; A) and ug(¢; A) by solutions of (2.8) satisfying

uo(t;A) = up(t) on [te,w) and ug(t; A) = up(t) on («,t1],

respectively. Then wug(¢; A) and u(¢; A) depend continuously on A > 0 uni-
formly on any compact subinterval of (o,w). In, particularly, ug(¢;\) —
uo(t) and ug(t; A) — Up(t) as A — 0 uniformly on [¢1,¢2]. Since (2.7) holds
with ¢t = t1, for A > 0 sufficiently small, we have

p(t)ug(t;; A)  p(t)uo ' (t1; M)
UO(tl; )\) ao(tl; )\)

and ug(t;A) >0 on [t1,w). (2.9)

For A > 0 satisfying (2.9), we will show that ug(t; \) > 0 on (¢1,w). Assume
to the contrary that @g(¢; \) has at least one zero ¢y € (t1,w). Applying
Theorem A with a = tg, u(t) = wp(t; \) and v(t) = ug(t; A), we see that
uo(t; ) has at least one zero in (¢1,w). This is a contradiction. Thus
Uo(t;A) > 0 on (t1,w), and hence up(¢;A) > 0 on (a,w). Then (1.2) with
P(t) = P\(t) and Q(¢t) = Qx(t) has a positive solution on («,w). O
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