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Abstract. For the first-order nonlinear ordinary differential equation

F (t, y, y′) =
n∑

k=1

pk(t)yαk(y′)βk = 0,

unresolved for the derivative, asymptotic behavior of solutions of monotone
type is established for t → +∞.
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îâäæñéâ. àŽéëçãèâñèæŽ ûŽîéëâĲñèæï éæéŽîå Žéëñýïêâèæ ìæîãâèæ
îæàæï ŽîŽûîòæãæ øãâñèâĲîæãæ áæòâîâêùæŽèñîæ àŽêðëèâĲâĲæï éëêë-
ðëêñîæ ðæìæï ŽéëêŽýïêâĲæï Žïæéìðëðñîæ åãæïâĲâĲæ.
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This article describes a first-order real ordinary differential equation:

F (t, y, y′) =
n∑

k=1

pk(t)yαk(y′)βk = 0, (1)

(t, y, y′) ∈ D, D = ∆(a) × R1 × R2, ∆(a) = [a; +∞[ , a > 0, R1 = R+,
R2 = R− ∨ R+; pk(t) ∈ C∆(a) (k = 1, n, n ≥ 2); αk, βk ≥ 0 (k = 1, n),

n∑
k=1

βk 6= 0.

Further, we assume that all the expressions, appearing in the equation,
make sense; and all functions we consider in the present paper are real.

We investigate the question on the existence and on the asymptotic be-
havior (as t → +∞) of unboundedly continuable to the right solutions
(R-solutions) y(t) of equation (1) and derivatives y′(t) of these solutions
which possess the following properties:

A) 0 < y(t) ∈ C1
∆(t1)

, ∆(t1) ⊂ ∆(a), where t1 is defined in the course
of proving each theorem;

B) among the summands pk(t)(y(t))αk(y′(t))βk (k = 1, n), the terms
with numbers i = 1, s (2 ≤ s ≤ n) are asymptotically principal for
the given R-solution y(t), i.e., there exist:

lim
t→+∞

pi(t)(y(t))αi(y′(t))βi

p1(t)(y(t))α1(y′(t))β1
6= 0, ±∞ (i = 1, s),

lim
t→+∞

pj(t)(y(t))αj (y′(t))βj

p1(t)(y(t))α1(y′(t))β1
= 0 (j = s + 1, n).

It is obvious that pi(t) 6= 0 (i = 1, s).

Lemma 1. Let the equation

F̃ (t, ξ, η) = 0, (2)

(t, ξ, η) ∈ D1, D1 = ∆(a)× [−h1; h1]× [−h2; h2], hk ∈ R+ (k = 1, 2), satisfy
the conditions:

1) F̃ (t, ξ, η)∈Cs1s2s3
t ξ η (D1), s1, s2, s3∈{0, 1, 2, . . .}, s2≥1, s3≥2;

2) ∃ F̃ (+∞, 0, 0) = 0;

3) ∃ F̃ ′
η(+∞, 0, 0) = A1 ∈ R \ {0};

4) sup
D1

|F̃ ′′
ηη(t, ξ, η)| = A2 ∈ R+.

Then in some domain D2 = ∆(t0)× [−h̃1; h̃1]× [−h̃2; h̃2], where t0 ≥ a,

0 < h̃1 ≤ h1, 0 < h̃2 < min
{
h2;

|A1|
4A2

}
, the equation (2) defines a unique

function η = η̃(t, ξ), such that η̃(t, ξ) ∈ Cs1s2
t ξ (D3), D3 = ∆(t0)× [−h̃1; h̃1],

∃ η̃(+∞, 0) = 0, F̃ (t, ξ, η̃(t, ξ)) ≡ 0. Moreover, for ξ = 0, the function η̃(t, ξ)
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has the property

η̃(t, 0) ∼ − F̃ (t, 0, 0)

F̃ ′
η(t, 0, 0)

. (3)

Proof. Let us expand the function F̃ (t, ξ, η) with respect to the variable η
for t ∈ ∆(a), ξ ∈ [−h1; h1] by using the Maclaurin’s formula. Then the
equation (2) can be written as:

F̃ (t, ξ, η) = F̃ (t, ξ, 0) + F̃ ′
η(t, ξ, 0)η + R(t, ξ, η) = 0. (4)

Obviously,
R(t, ξ, 0) ≡ 0.

The equation (4) is equivalent to the implicit equation

η(t, ξ) =
−F̃ (t, ξ, 0)−R(t, ξ, η(t, ξ))

F̃ ′
η(t, ξ, 0)

, (5)

where
R(t, ξ, η) = F̃ (t, ξ, η)− F̃ (t, ξ, 0)− F̃ ′

η(t, ξ, 0)η,

and, therefore,

R′η(t, ξ, η) = F̃ ′
η(t, ξ, η)− F̃ ′

η(t, ξ, 0).

Applying the Lagrange’s theorem with respect to the variable η to the
right-hand side of the above equation, we get:

F̃ ′
η(t, ξ, η2)− F̃ ′

η(t, ξ, η1) = F̃ ′′
ηη(t, ξ, η∗)(η2 − η1), η∗ ∈ ]η1; η2[ ,

sup
D1

∣∣F̃ ′
η(t, ξ, η2)− F̃ ′

η(t, ξ, η1)
∣∣ ≤

≤ sup
D1

∣∣F̃ ′′
ηη(t, ξ, η)

∣∣ |η2 − η1| = A2|η2 − η1|.

Assuming η1 = 0, η2 = η, we obtain:

sup
D1

∣∣R′η(t, ξ, η)
∣∣ ≤ A2|η|.

We consider and evaluate also the difference R(t, ξ, η2) − R(t, ξ, η1),
(t, ξ, ηi) ∈ D1 (i = 1, 2), applying the Lagrange’s theorem with respect
to the variable η:

R(t, ξ, η2)−R(t, ξ, η1) = R′η(t, ξ, η∗∗)(η2 − η1), η∗∗ ∈ ]η1; η2[ ,

sup
D1

∣∣R(t, ξ, η2)−R(t, ξ, η1)
∣∣≤sup

D1

∣∣R′η(t, ξ, η)
∣∣ |η2−η1|≤A2|η2−η1|2.

Assuming η1 = 0, η2 = η, we get

sup
D1

|R(t, ξ, η)| ≤ A2|η|2.

Consider the domain D2 ⊂ D1 in which

1) sup
D2

|F̃ (t, ξ, 0)| ≤ h̃2|A1|
4 ;
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2) inf
D2
|F̃ ′

η(t, ξ, 0)| > |A1|
2 ;

3) sup
D2

|R(t, ξ, η)| ≤ A2|η|2 ≤ A2h̃
2
2 .

The fulfilment of conditions 1), 2) can be achieved by increasing t0 and
reducing h̃1 (by virtue of the conditions of the Lemma). The fulfilment of
condition 3) is obvious.

To the equation (5) we put into the correspondence the operator

η(t, ξ) = T (t, ξ, η̃(t, ξ)) ≡ −F̃ (t, ξ, 0)−R(t, ξ, η̃(t, ξ))

F̃ ′
η(t, ξ, 0)

,

where η̃(t, ξ) ∈ B1 ⊂ B, B =
{
η̃(t, ξ) : η̃(t, ξ) ∈ Cs1s2

t ξ (D3), η̃(+∞,0) = 0,
‖η̃(t, ξ)‖ = sup

D3

|η̃(t, ξ)|} is the Banach space, B1 =
{
η̃(t, ξ) : η̃(t, ξ) ∈ B,

‖η̃(t, ξ)‖ ≤ h̃2

}
is a closed subset of the Banach space B.

We apply here the principle of contractive mappings.
1) Let us prove that if η̃(t, ξ) ∈ B1, then η(t, ξ) = T (t, ξ, η̃(t, ξ)) ∈ B1:

η̃(t, ξ) ∈ Cs1s2
t ξ (D3) and η̃(+∞, 0) = 0, then by virtue of the structure of the

operator, we get

η(t, ξ) ∈ Cs1s2
t ξ (D3), η(+∞, 0) = 0;

‖η̃(t, ξ)‖ ≤ h̃2 =⇒ ‖η(t, ξ)‖ =
∥∥T (t, ξ, η̃(t, ξ))

∥∥ =

=
∥∥∥−F̃ (t, ξ, 0)−R(t, ξ, η̃(t, ξ))

F̃ ′
η(t, ξ, 0)

∥∥∥ ≤

≤ 1

inf
D2
|F̃ ′

η(t, ξ, η)|
(

sup
D2

|F̃ (t, ξ, 0)|+ sup
D2

|R(t, ξ, η̃(t, ξ))|
)
≤

≤ 2
|A1t|

(
sup
D2

|F̃ (t, ξ, 0)|+ A2h̃
2
2

)
≤ h̃2

2
+

h̃2

2
≤ h̃2.

2) Let us check the condition of contraction:

η̃1(t, ξ), η̃2(t, ξ) ∈ B1 =⇒ ∥∥η2(t, ξ)− η1(t, ξ)
∥∥ =

=
∥∥∥R(t, ξ, η̃2(t, ξ))−R(t, ξ, η̃1(t, ξ))

F̃ ′
η(t, ξ, 0)

∥∥∥ ≤

≤ A2

inf
D2
|F̃ ′

η(t, ξ, η)|
∥∥η̃2(t, ξ)− η̃1(t, ξ)

∥∥2 ≤

≤ 2A2

|A1|
(
‖η̃2(t, ξ)‖+ ‖η̃1(t, ξ)‖

)∥∥η̃2(t, ξ)− η̃1(t, ξ)
∥∥ ≤

≤ 4A2h̃2

|A1|
∥∥η̃2(t, ξ)− η̃1(t, ξ)

∥∥ = γ
∥∥η̃2(t, ξ)− η̃1(t, ξ)

∥∥,

where γ = 4A2h̃2
|A1| < 1.
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As a result, we have found that by the contractive mapping principle the
equation (5) admits a unique solution η = η̃(t, ξ) ∈ B1.

Since F̃ (t, ξ, η) ∈ Cs1s2s3
t ξ η (D1), then by a local theorem on the differen-

tiability of an implicit function, it can be stated that η̃(t, ξ) ∈ Cs1s2
t ξ (D3).

Let us prove that η̃(t, ξ) has the property (3) for ξ = 0.
The function η̃(t, ξ) ∈ D3 satisfies the equation (4), which can be writ-

ten as
F̃ (t, 0, 0) + F̃ ′

η(t, 0, 0)η̃(t, 0) + O(η̃ 2) ≡ 0, (6)

assuming ξ = 0.
As O(η̃ 2) = O(1)η̃ 2 = o(1)η̃, then the equation (6) is equivalent to the

equation
F̃ (t, 0, 0) + F̃ ′

η(t, 0, 0)η̃(t, 0) + o(1)η̃(t, 0) ≡ 0.

Hence, taking into account that F̃ ′
η(+∞, 0, 0) = A1 ∈ R \ {0}, we can

write

η̃(t, 0)
(
1 +

o(1)

F̃ ′
η(t, 0, 0)

)
= − F̃ (t, 0, 0)

F̃ ′
η(t, 0, 0)

. (7)

The property (3) follows from the equality (7). ¤

Lemma 2 ([2]). Let the differential equation

ξ′ = α(t)f(t, ξ), (8)

(t, ξ) ∈ D3, D3 = ∆(t0)× [−h̃1; h̃1] (h̃1 ∈ R+), satisfy the conditions:

1) 0 6= α(t) ∈ C(∆(t0)),
+∞∫
t0

α(t) dt = ±∞;

2) f(t, ξ) ∈ C01
tξ (D3), ∃ f(+∞, 0) = 0, ∃ f ′ξ(+∞, 0) 6= 0;

3) f ′ξ(t, ξ) ⇒ f ′ξ(t, 0) under ξ → 0 uniformly with respect to t ∈ ∆(t0).

Then there exists t1 ≥ t0, such that the equation (8) has a non-empty set
of o-solutions

Ω =
{
ξ(t) ∈ C1

∆(t1)
: ξ(+∞) = 0

}
,

where

a) if sign(αf ′ξ(+∞, 0)) = −1, then Ω is a one-parametric family of
o-solutions of the equation (8);

b) if sign(αf ′ξ(+∞, 0)) = 1, then Ω contains a unique element.

The Existence and Asymptotics of R-Solutions of the
Equation (1) with the Condition y(+∞) = 0 ∨+∞

The supposed asymptotics (to within a constant factor) of R-solution
y(t) with the condition y(+∞) = 0 ∨ +∞ can be found from the ratio of
the first two summands (we consider all possible cases with respect to the
values of parameters α1, α2, β1, β2). Taking into account that p1(t), p2(t) 6=0
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(t ∈ ∆(a)), we find that y(t) ∼̇ v(t) > 0∗ (v ∈ {vi}, i = 1, 4) under the
condition that v(+∞) = 0 ∨+∞:

1) v1 =
∣∣p1(t)
p2(t)

∣∣ 1
α2−α1 (α1 6= α2, β1 = β2), moreover, p1(t), p2(t) ∈

C1
∆(a).

In all the rest asymptotics is used the function

I(A, t) =

t∫

A

∣∣∣p1(t)
p2(t)

∣∣∣
1

β2−β1
dt, A =

{
a (I(a,+∞) = +∞),
+∞ (I(a,+∞) ∈ R+ ∪ {0}).

2) v2 = |I(A, t)| (α1 = α2, β1 6= β2).

3) v3 = |I(A, t)|(
α2−α1
β2−β1

+1)−1

(α1 6=α2, β1 6=β2, α1+β1 6=α2+β2).

4) v4 = e`0|I(a,t)| (`0 ∈ R \ {0} and satisfies the conditions (13), (14),
(16); α1 6= α2, β1 6= β2, α1 + β1 = α2 + β2 6= 0; I(a,+∞) = +∞).

A solution is sought in the form

y(t) = v(t)(` + ξ(t)), (9)

where ` ∈ R+; ξ(t) ∈ C1
∆(a), ξ(+∞) = 0; v(t) = vk(t) ∈ C1

∆(a) (k is fixed,
k = 1, 4).

Differentiating the equation (9), we obtain:

y′(t) = v′(t)(` + ξ(t)) + v(t)ξ′(t) = v′(t)
(
` + ξ(t) +

v(t)
v′(t)

ξ′(t)
)
.

Having denoted

ξ(t) +
v(t)
v′(t)

ξ′(t) = η(t), (10)

η(t) ∈ C∆(a), we get

y′(t) = v′(t)(` + η(t)). (11)

The condition y′(t) ∼ `v′(t) requires the assumption that η(+∞) = 0.
Substituting (9) and (11) into the equation (1), we obtain the equality

F (t, v(` + ξ), v′(` + η)) =

=
n∑

k=1

pk(t)(v)αk(` + ξ)αk(v′)βk(` + η)βk = 0, (12)

which is satisfied by the functions ξ(t), η(t) and (v′(t))βk : ∆(a) → R2

(k = 1, n).

∗fi ∼̇ fj (i 6= j) means that ∃ lim
t→+∞

fi
fj
6= 0,±∞.
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According to the condition B), indicated in the statement of the problem,
we assume that

pi(t)(v(t))αi(v′(t))βi

p1(t)(v(t))α1(v′(t))β1
=

= c∗i + εi(t), c∗i ∈ R \ {0}, εi(+∞) = 0 (i = 1, s); (13)

pj(t)(v(t))αj (v′(t))βj

p1(t)(v(t))α1(v′(t))β1
= εj(t), εj(+∞) = 0 (j = s + 1, n). (14)

Then, after the division by p1(t)(v(t))α1(v′(t))β1 , the equation (12) takes
the form

F̃ (t, ξ, η) =
s∑

i=1

(c∗i + εi(t))(` + ξ)αi(` + η)βi+

+
n∑

j=s+1

εj(t)(` + ξ)αj (` + η)βj = 0. (15)

Obviously, the condition F̃ (+∞, 0, 0) = 0 is necessary for the existence
of a solution and of its derivative of the form (9), (11), respectively.

Thus, for v = vk(t) (k = 1, 4) it takes the form
s∑

i=1

c∗i `
αi+βi = 0. (16)

For v = v4(t) : sign(v′) = sign(`0), c∗i = c∗i (`0), `0, `βi

0 ∈ R\{0} (i = 1, s).
By virtue of its structure, the functions F̃ (t, ξ, η) ∈ C0∞∞

t ξ η (D1), ∂nF̃
∂ξn ,

∂mF̃
∂ηm , ∂n+mF̃

∂ξn∂ηm (n = 1,∞, m = 1,∞) are bounded in D1, where D1 =
∆(a)× [−h1; h1]× [−h2; h2], 0 < hk < ` (k = 1, 2).

Next, we will need expressions for the first and second order derivatives
of the function F̃ (t, ξ, η) with respect to the variables ξ and η:

F̃ ′
ξ(t, ξ, η) =

s∑

i=1

αic
∗
i (` + ξ)αi−1(` + η)βi+

+
n∑

k=1

αkεk(t)(` + ξ)αk−1(` + η)βk ,

F̃ ′
η(t, ξ, η) =

s∑

i=1

βic
∗
i (` + ξ)αi(` + η)βi−1+

+
n∑

k=1

βkεk(t)(` + ξ)αk(` + η)βk−1,

F̃ ′′
ξξ(t, ξ, η) =

s∑

i=1

αi(αi − 1)c∗i (` + ξ)αi−2(` + η)βi+
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+
n∑

k=1

αk(αk − 1)εk(t)(` + ξ)αk−2(` + η)βk ,

F̃ ′′
ξη(t, ξ, η) = F̃ ′′

ηξ(t, ξ, η) =
s∑

i=1

αiβic
∗
i (` + ξ)αi−1(` + η)βi−1+

+
n∑

k=1

αkβkεk(t)(` + ξ)αk−1(` + η)βk−1,

F̃ ′′
ηη(t, ξ, η) =

s∑

i=1

βi(βi − 1)c∗i (` + ξ)αi(` + η)βi−2+

+
n∑

k=1

βk(βk − 1)εk(t)(` + ξ)αk(` + η)βk−2,

as well as the following notation:

ψ00(t) =
n∑

k=1

`αk+βkεk(t),

ψl0(t) =
n∑

k=1

αk(αk − 1) · · · (αk − l + 1)εk(t)`αk+βk ,

ψ0m(t) =
n∑

k=1

βk(βk − 1) · · · (βk −m + 1)εk(t)`αk+βk ,

ψlm(t) =
n∑

k=1

αk(αk − 1) · · · (αk − l + 1)×

× βk(βk − 1) · · · (βk −m + 1)εk(t)`αk+βk ,

Sl0 =
s∑

i=1

αi(αi − 1) · · · (αi − l + 1)c∗i `
αi+βi ,

S0m =
s∑

i=1

βi(βi − 1) · · · (βi −m + 1)c∗i `
αi+βi ,

Slm =
s∑

i=1

αi(αi − 1) · · · (αi − l + 1)×

× βi(βi − 1) · · · (βi −m + 1)c∗i `
αi+βi ,

Sl0, S0m, Slm∈R (l,m ∈ N), S =S2
10S02−2S10S01S11+S2

01S20,

λ1 =
2S3

01

S
∈ R, λ2 = −2S2

01`
2

S
∈ R.

Theorem 1. Let a function v(t) = vk(t) (k = 1, 4) be a possible asymp-
totics of an R-solution of the equation (1), which satisfies the conditions
v(+∞) = 0 ∨+∞, (13), and (14). Let, moreover, there exist ` ∈ R+, satis-
fying the condition (16).
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Then in order for the R-solution y(t) ∈ C1
∆(t1)

of the differential equation
(1) with the asymptotic properties

y(t) ∼ `v(t), y′(t) ∼ `v′(t), (17)

to exist, it is sufficient that the two following conditions

S01 6= 0, (18)

S10 + S01 6= 0. (19)

be fulfilled. Moreover, if sign
( v′(S10+S01)

S01

)
= 1, then there exists a one-

parameter set of R-solutions with the asymptotic properties (17); if
sign

( v′(S10+S01)
S01

)
= −1, then R-solution with the asymptotic (17) is unique.

Proof. For the proof we will need the following properties of the function
F̃ (t, ξ, η) :

F̃ ′
ξ(+∞, 0, 0) =

S10

`
;

F̃ ′
η(+∞, 0, 0) =

S01

`
6= 0

by virtue of the condition (18).
Owing to the conditions (16), (18) and to the properties of the function

F̃ (t, ξ, η), in some domain D2 ⊂ D1, D2 = ∆(t0) × [−h̃1; h̃1] × [−h̃2; h̃2],
t0 ≥ a, 0 < h̃1 ≤ h1, 0 < h̃2 < min

{
h2;

|S01|
4` sup

D1
|F̃ ′′

ηη(t,ξ,η)|

}
, for the equation

(15) the conditions of Lemma 1 are satisfied. Consequently, there exists a
unique function η = η̃(t, ξ) ∈ C0∞

t ξ (D3), D3 = ∆(t0)× [−h̃1; h̃1], sup
D3

∣∣∂nη̃
∂ξn

∣∣ <

+∞ (n = 1,∞), such that F̃ (t, ξ, η̃(t, ξ)) ≡ 0, η̃(+∞, 0) = 0, ‖η̃(t, ξ)‖ ≤ h̃2.
Moreover, we can write

∂η̃(t, ξ)
∂ξ

= − F̃ ′
ξ(t, ξ, η̃)

F̃ ′
η(t, ξ, η̃)

.

Thus, in view of the replacement (10), we obtain the differential equation
with respect to ξ:

ξ′ =
v′

v

(− ξ + η̃(t, ξ)
)
. (20)

The question on the existence of solutions of the form (9) reduces to the
study of the differential equation (20).

Let us show that the conditions 1)–3) of Lemma 2 are satisfied for the
equation (20). In this case we have: α(t) = v′(t)

v(t) , f(t, ξ) = −ξ + η̃(t, ξ).
Obviously, the conditions 1) and 2) are satisfied.
1) Since 0 < v(t) ∈ C1(∆(a)), therefore

0 6= α(t) ∈ C(∆(t0)),

+∞∫

t0

α(t) dt =

+∞∫

t0

v′(t)
v(t)

dt = ±∞.



The Asymptotic Behavior of Solutions of Monotone Type . . . 61

2) Since η̃(t, ξ) ∈ C0∞
t ξ (D3), then

f(t, ξ) ∈ C0∞
t ξ (D3), ∃ f(+∞, 0) = η̃(+∞, 0) = 0,

f ′ξ(t, ξ) = −1 + η̃ ′ξ(t, ξ) = −1− F̃ ′
ξ(t, ξ, η̃)

F̃ ′
η(t, ξ, η̃)

,

f ′ξ(+∞, 0) = −1− F̃ ′
ξ(+∞, 0, η̃(+∞, 0))

F̃ ′
η(+∞, 0, η̃(+∞, 0))

= −S10 + S01

S01
6= 0

by virtue of the condition (19).
Let us check that the condition 3) is satisfied, that is,

∥∥f ′ξ(t, ξ)− f ′ξ(t, 0)
∥∥ =

∥∥∥∥
F̃ ′

ξ(t, ξ, η̃(t, ξ))

F̃ ′
η(t, ξ, η̃(t, ξ))

− F̃ ′
ξ(t, 0, η̃(t, 0))

F̃ ′
η(t, 0, η̃(t, 0))

∥∥∥∥−→−→ 0

as ξ → 0 uniformly with respect to t ∈ ∆(t0).
Towards this end, it suffices to verify that the following properties are

satisfied:
31) η̃(t, ξ) ⇒ η̃(t, 0) if ξ → 0 uniformly with respect to t ∈ ∆(t0),
32) F̃ ′

ξ(t, ξ, η̃(t, ξ)) ⇒ F̃ ′
ξ(t, 0, η̃(t, 0)) as ξ → 0 uniformly with respect to

t ∈ ∆(t0),
33) F̃ ′

η(t, ξ, η̃(t, ξ)) ⇒ F̃ ′
η(t, 0, η̃(t, 0)), as ξ → 0 uniformly with respect

to t ∈ ∆(t0) with regard for the fact that F ′η(+∞, 0, η(+∞, 0)) = S01 6= 0.

Let us estimate the differences η̃(t, ξ) − η̃(t, 0), F̃ ′
ξ(t, ξ, η̃(t, ξ)) −

F̃ ′
ξ(t, 0, η̃(t, 0)), F̃ ′

η(t, ξ, η̃(t, ξ)) − F̃ ′
η(t, 0, η̃(t, 0)), applying the Lagrange’s

theorem to the first difference with respect to the variable ξ:

η̃(t, ξ)− η̃(t, 0) = η̃ ′ξ(t, ξ
∗)ξ, ξ∗ ∈ ]0; ξ[ .

As the functions εk(t) (k = 1, n) are bounded in ∆(a) and ‖η̃(t, ξ)‖ ≤ h̃2

in D3, then we get the estimates in the form:

31)
∣∣η̃(t, ξ)− η̃(t, 0)

∣∣ =
∣∣η̃ ′ξ(t, ξ∗)

∣∣ |ξ| =

=
∣∣∣−

F̃ ′
ξ(t, ξ

∗, η̃(t, ξ∗))

F̃ ′
η(t, ξ∗, η̃(t, ξ∗))

∣∣∣ |ξ| ≤ O(1)|ξ| = O(ξ) −→ 0

as ξ → 0 uniformly with respect to t ∈ ∆(t0);
32) taking into account that (`+ξ)αi−1 → `αi−1 as ξ → 0, (`+η̃(t, ξ))βi →

(`+ η̃(t, 0))βi as ξ → 0 uniformly with respect to t ∈ ∆(t0) (i = 1, s), we get
∣∣F̃ ′

ξ(t, ξ, η̃(t, ξ))− F̃ ′
ξ(t, 0, η̃(t, 0))

∣∣ =

=
∣∣∣∣

s∑

i=1

αic
∗
i

[
(` + ξ)αi−1(` + η̃(t, ξ))βi − `αi−1(` + η̃(t, 0))βi

]
+

+
n∑

k=1

αkεk(t)
[
(` + ξ)αk−1(` + η̃(t, ξ))βk − `αk−1(` + η̃(t, 0))βk

]∣∣∣∣ −→ 0
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as ξ → 0 uniformly with respect to t ∈ ∆(t0);
33) analogously to 32), we get:
∣∣∣F̃ ′

η(t, ξ, η̃(t, ξ))− F̃ ′
η(t, 0, η̃(t, 0))

∣∣∣ =

=
∣∣∣∣

s∑

i=1

βic
∗
i

[
(` + ξ)αi(` + η̃(t, ξ))βi−1 − `αi(` + η̃(t, 0))βi−1

]
+

+
n∑

k=1

βkεk(t)
[
(` + ξ)αk(` + η̃(t, ξ))βk−1 − `αk(` + η̃(t, 0))βk−1

]∣∣∣∣ −→ 0

as ξ → 0 uniformly with respect to t ∈ ∆(t0).
Since η̃(+∞, 0) = 0, therefore F ′η(+∞, 0, η̃(+∞, 0)) = S01 6= 0 by virtue

of the condition (18).
Consequently, condition 3) is satisfied.
Then if sign

( v′(S10+S01)
S01

)
= 1, then there exists a one-parameter set of

o-solutions of the equation (20) in ∆(t1) ⊆ ∆(t0).
If sign

( v′(S10+S01)
S01

)
= −1, then a set of o-solutions of the equation (20)

in ∆(t1) contains the unique element.
Finally, having the dimension of a set of o-solutions of the equation (20),

we have obtained the dimension of a set of R-solutions of the equation (1)
with the asymptotic properties (17) in ∆(t1). ¤

Theorem 2. Let the conditions of Theorem 1, except for (19), be satis-
fied, and

S 6= 0, (21)

ψ00(t) ln2 v(t) = o(1), (22)

(ψ10(t) + ψ01(t)) ln v(t) = o(1). (23)

Then there exists a one-parameter set of R-solutions y(t) ∈ C1
∆(t1)

of the
differential equation (1) with the asymptotic properties

y(t) = v(t)(` + ξ(t)), y′(t) ∼ `v′(t), (24)

where ξ(t) ∼ λ1`
ln v(t) .

Proof. To prove the theorem, we will need the following properties and
expressions of the function F̃ (t, ξ, η) :

F̃ (t, 0, 0) = ψ00(t),

F̃ ′
ξ(t, 0, 0) =

1
`

s∑

i=1

αic
∗
i `

αi+βi +
1
`

n∑

k=1

αk`αk+βkεk(t),

F̃ ′
ξ(+∞, 0, 0) =

S10

`
;

F̃ ′
η(t, 0, 0) =

1
`

s∑

i=1

βic
∗
i `

αi+βi +
1
`

n∑

k=1

βk`αk+βkεk(t),



The Asymptotic Behavior of Solutions of Monotone Type . . . 63

F̃ ′
η(+∞, 0, 0) =

S01

`
6= 0 by virtue of condition (18);

F̃ ′′
ξξ(t, 0, 0) =

1
`2

s∑

i=1

αi(αi − 1)c∗i `
αi+βi+

+
1
`2

n∑

k=1

αk(αk − 1)`αk+βkεk(t),

F̃ ′′
ξξ(+∞, 0, 0) =

S20

`2
;

F̃ ′′
ξη(t, 0, 0) = F̃ ′′

ηξ(t, 0, 0) =

=
1
`2

s∑

i=1

αiβic
∗
i `

αi+βi +
1
`2

n∑

k=1

αkβk`αk+βkεk(t),

F̃ ′′
ξη(+∞, 0, 0) = F̃ ′′

ηξ(+∞, 0, 0) =
S11

`2
;

F̃ ′′
ηη(t, 0, 0) =

1
`2

s∑

i=1

βi(βi − 1)c∗i `
αi+βi+

+
1
`2

n∑

k=1

βk(βk − 1)`αk+βkεk(t),

F̃ ′′
ηη(+∞, 0, 0) =

S02

`2
.

By virtue of the condition (18) and owing to the properties of the function
F̃ (t, ξ, η), in some domain D2 ⊂ D1, D2 = ∆(t0) × [−h̃1; h̃1] × [−h̃2; h̃2],
t0 ≥ a, 0 < h̃1 ≤ h1, 0 < h̃2 < min

{
h2;

|S01|
4` sup

D1
|F̃ ′′

ηη(t,ξ,η)|

}
, for the equation

(15) the conditions of Lemma 1 are fulfilled. Consequently, there exists a
unique function η = η̃(t, ξ), η̃(t, ξ) ∈ C0∞

t ξ (D3), D3 = ∆(t0) × [−h̃1; h̃1],
sup
D3

∣∣∂nη̃
∂ξn

∣∣ < +∞ (n = 1,∞), such that F̃ (t, ξ, η̃(t, ξ)) ≡ 0, η̃(+∞, 0) = 0,

‖η̃(t, ξ)‖ ≤ h̃2. Moreover, we can write:

η̃(t, 0) ∼ − F̃ (t, 0, 0)

F̃ ′
η(t, 0, 0)

,

η̃ ′ξ(t, ξ) = − F̃ ′
ξ(t, ξ, η̃)

F̃ ′
η(t, ξ, η̃)

,

∂2η̃(t, ξ)
∂ξ2

= − (F̃ ′
ξ)

2F̃ ′′
ηη − 2F̃ ′

ξF̃
′
ηF̃ ′′

ξη + (F̃ ′
η)2F̃ ′′

ξξ

(F̃ ′
η)3

.
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Thus, taking into account the replacement (10), we obtain the differential
equation with respect to ξ:

ξ′ =
v′

v
(−ξ + η̃(t, ξ)). (20)

The question of the existence of solutions of the type (9) reduces to the
study of the differential equation (20).

Let us show that the conditions 1)–3) of Lemma 2 are satisfied for the
equation (20). In this case we have: α(t) = v′(t)

v(t) , f(t, ξ) = −ξ + η̃(t, ξ).
1) Since 0 < v(t) ∈ C1(∆(a)), therefore

0 6= α(t) ∈ C(∆(t0)),

+∞∫

t0

α(t) dt =

+∞∫

t0

v′(t)
v(t)

dt = ±∞.

2) Since η̃(t, ξ) ∈ C0∞
t ξ (D3), therefore

f(t, ξ) ∈ C0∞
t ξ (D3), ∃ f(+∞, 0) = η̃(+∞, 0) = 0,

f ′ξ(t, ξ) = −1 + η̃ ′ξ(t, ξ) = −1− F̃ ′
ξ(t, ξ, η̃)

F̃ ′
η(t, ξ, η̃)

.

Taking into account the properties of the functions εk(t) (k = 1, n) and
also the conditions of the theorem, we obtain:

f ′ξ(+∞, 0) = −1− F̃ ′
ξ(+∞, 0, η̃(+∞, 0))

F̃ ′
η(+∞, 0, η̃(+∞, 0))

= −S10 + S01

S01
= 0.

Thus, condition 2) is not satisfied, and we cannot apply Lemma 2 to the
equation (20).

Since f ′′ξξ(t, ξ) = η̃ ′′ξξ(t, ξ), therefore

f ′′ξξ(+∞, 0) = η̃ ′′ξξ(+∞, 0) = − S

`S3
01

= − 2
λ1`

.

Consider the auxiliary differential equation with respect to ξ1:

ξ′1 = − v′(t)
λ1`v(t)

ξ2
1 .

and find one of its non-trivial solutions:

ξ1 =
λ1`

ln v(t)
, 0 6= ξ(t)1 ∈ C1

∆(t1)
(t1 ≥ t0), ξ1(+∞) = 0.

We consider the question on the existence in the equation (20) of solutions
of the form ξ = ξ1(1+ ξ̃), where ξ̃(t) ∈ C1

∆(t1)
, ξ̃(+∞) = 0. For the unknown

function ξ̃ we obtain the following differential equation:

ξ̃ ′ =
v′ξ1

v

(
− 1

ξ1
− vξ′1

v′ξ2
1

+
(
− 1

ξ1
− vξ′1

v′ξ2
1

)
ξ̃ +

η̃(t, ξ1(1 + ξ̃))
ξ2
1

)
, (25)

(t, ξ̃) ∈ D4, D4 = ∆(t1)× [−h4; h4] (0 < h4 ≤ h̃1),
v(t)ξ′1(t)
v′(t)ξ2

1(t)
≡ − 1

λ1` .
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Let us show that the conditions 1)–3) of Lemma 2 are satisfied for the
equation (25). In this case we have:

α(t) =
v′(t)ξ1

v(t)
=

λ1`v
′(t)

v(t) ln v(t)
,

f(t, ξ̃) = − 1
ξ1

+
1

λ1`
+

(
− 1

ξ1
+

1
λ1`

)
ξ̃ +

η̃(t, ξ1(1 + ξ̃))
ξ2
1

.

Using the properties of functions v(t), η̃(t, ξ), ξ1(t), we obtain:

1) 0 6= α(t) ∈ C(∆(t1)),
+∞∫
t1

α(t) dt = λ1`
+∞∫
t1

v′(t)
v(t) ln v(t) dt = ∞;

2) f(t, ξ̃) ∈ C0∞
t ξ̃

(D4);

f(t, 0) = − 1
ξ1

+
1

λ1`
+

η̃(t, ξ1)
ξ2
1

,

f ′
ξ̃
(t, ξ̃) = − 1

ξ1
+

1
λ1`

+
η̃ ′ξ(t, ξ1(1 + ξ̃))

ξ1
,

f ′
ξ̃
(t, 0) = − 1

ξ1
+

1
λ1`

+
η̃ ′ξ(t, ξ1)

ξ1
.

Let us expand the functions η̃(t, ξ1) and η̃ ′ξ(t, ξ1) with respect to the
variable ξ1 in D4 using the Maclaurin’s formula:

η̃(t, ξ1) = η̃(t, 0) + η̃ ′ξ1
(t, 0)ξ1 +

1
2

η̃ ′′ξ2
1
(t, 0)ξ2

1 + O(ξ3
1),

η̃ ′ξ(t, ξ1) = η̃ ′ξ(t, 0) + η̃ ′′ξξ1
(t, 0)ξ1 + O(ξ2

1).

Using Lemma 1, we obtain:

η̃(t, 0) ∼ − `ψ00(t)
S01 + o(1)

,

η̃ ′ξ1
(t, 0) = η̃ ′ξ(t, 0) =

= −

s∑
i=1

αic
∗
i `

αi−1(` + η̃(t, 0))βi +
n∑

k=1

αkεk(t)`αk−1(` + η̃(t, 0))βk

s∑
i=1

βic∗i `αi(` + η̃(t, 0))βi−1 +
n∑

k=1

βkεk(t)`αk(` + η̃(t, 0))βk−1

,

η̃ ′ξ1
(+∞, 0) = η̃ ′ξ(+∞, 0) = −S10

S01
,

η̃ ′′ξ2
1
(+∞, 0) = η̃ ′′ξξ1

(+∞, 0) = η̃ ′′ξ2(+∞, 0) = − 2
λ1`

.

Then

f(t, 0) =
η̃(t, 0)

ξ2
1

+
η̃ ′ξ1

(t, 0)− 1
ξ1

+
1
2

η̃ ′′ξ2
1
(t, 0) +

1
λ1`

+ O(ξ1),

f ′
ξ̃
(t, 0) =

η̃ ′ξ(t, 0)− 1
ξ1

+ η̃ ′′ξξ1
(t, 0) +

1
λ1`

+ O(ξ1).
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From the conditions (22), (23) and S10 + S01 = 0 it follows that

lim
t→+∞

η̃(t, 0)
ξ2
1

= − lim
t→+∞

ψ00(t) ln2 v(t)
`S01λ2

1

= 0,

lim
t→+∞

η̃ ′ξ1
(t, 0)− 1

ξ1
= lim

t→+∞
η̃ ′ξ(t, 0)− 1

ξ1
=

= − lim
t→+∞

ln v(t)
λ1S01

( ∞∑

k=0

S1k + S0k+1

k!`k+1
η̃ k(t, 0)+

+
∞∑

k=0

ψ1k + ψ0k+1

k!`k+1
η̃ k(t, 0)

)
= 0,

lim
t→+∞

(1
2

η̃ ′′ξ2
1
(t, 0) +

1
λ1`

)
= 0,

lim
t→+∞

(1
2

η̃ ′′ξξ1
(t, 0) +

1
λ1`

)
= − 1

λ1`
.

As a result, we have found that f(+∞, 0) = 0, f ′
ξ̃
(+∞, 0) = − 1

λ1` 6= 0.

3) Since

f ′′
ξ̃2(t, ξ̃) = η̃ ′′ξ2(t, ξ1(1 + ξ̃)), f ′′

ξ̃2(t, 0) = η̃ ′′ξ2(t, ξ1) = η̃ ′′ξ2(t, 0) + O(ξ1),

f ′′
ξ̃2(+∞, 0) = η̃ ′′ξ2(+∞, 0) = − 2

λ1`
6= 0,

the condition 3) of Lemma 2 is automatically satisfied.
Then the differential equation (25) satisfies the conditions of Lemma 2,

where since sign
(

v′ξ1
λ1`v

)
= 1, there exists for the fixed ` a one-parameter set

of o-solutions of the equation (25) in ∆(t1).
Finally, having the dimension of the set of o-solutions of the equation

(25), we have likewise obtained the dimension of a set of R-solutions of the
equation (1) with the asymptotic properties (24) in ∆(t1). ¤

Consider now separately the exponential asymptotics v4 = e`0|I(a,t)| (the
values of the constants and functions we used, have been identified pre-
viously). We proceed from the assumption that of principal importance
remain the first s terms, and also the fact that

1) αk + βk = α1 + β1 6= 0 (k = 2, s);

2) αk + βk = α1 + β1 6= 0 (k = s + 1, s1);

3) αk + βk 6= α1 + β1 (k = s1 + 1, n).

The possibility that the summands with powers of type 2) or 3) are absent
is not excluded.
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The assumptions 1)–3) and the condition (18) imply that the condition
(19) is not satisfied, as

S10 + S01 =
s∑

i=1

αic
∗
i `

αi+βi +
s∑

i=1

βic
∗
i `

αi+βi =

=
s∑

i=1

(αi + βi)c∗i `
αi+βi = (α1 + β1)

s∑

i=1

c∗i `
αi+βi = 0.

Therefore, Theorem 1 cannot be applied to the given asymptotics. If Theo-
rem 2 is likewise not satisfied, then under certain conditions we can achieve
fulfilment of the conditions of Theorem 2 by defining the asymptotics v4(t)
more exactly.

Consider the more precise asymptotics

v41(t) = e
`0

t∫
a

I′t(a,t)(1+z(t)) dt
, (26)

where

I ′t(a, t) =
∣∣p1(t)
p2(t)

∣∣ 1
β2−β1 ,

z(t) ∈ C∆(a), z(+∞) = 0 =⇒ v41(+∞) = v4(+∞) = 0 ∨+∞.

A solution will be sought in the form

y(t) = v41(t)(` + ξ(t)), (27)

where ξ(t) ∈ C1
∆(a), ξ(+∞) = 0.

Differentiating the equation (27), we obtain:

y′(t) = v′41(t)(` + η(t)), (28)

η(t) = ξ(t) +
v41(t)
v′41(t)

ξ′(t), η(t) ∈ C∆(a).

The condition y′(t) ∼ `v′41(t) requires the assumption that η(+∞) = 0.
Substituting (27) and (28) into the equation (1), we obtain the equality:

n∑

k=1

pk(t)(v41(t))αk(v′41(t))
βk(` + ξ)αk(` + η)βk = 0. (29)

In the equation (29) we put ξ = 0, η = 0 and get
n∑

k=1

`αk+βkpk(t)(v41(t))αk(v′41(t))
βk = 0. (30)

In accordance with the condition B), indicated in the statement of the
problem, we consider the relations of the functions:

pi(t)(v41(t))αi(v′41(t))
βi

p1(t)(v41(t))α1(v′41(t))β1
= (c∗i + εi(t))(1 + z(t))βi−β1 = c∗i + εi1(t), (31)

εi1(+∞) = 0 (i = 1, s);
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pj(t)(v41(t))αj (v′41(t))
βj

p1(t)(v41(t))α1(v′41(t))β1
= εj(t)(1 + z(t))βj−β1 = εj1(t), (32)

εj1(+∞) = 0 (j = s + 1, s1);

pk(t)(v41(t))αk(v′41(t))
βk

p1(t)(v41(t))α1(v′41(t))β1
=

e
`0(αk+βk)

t∫
a

I′t(a,t)(1+z(t)) dt

e
`0(α1+β1)

t∫
a

I′t(a,t)(1+z(t)) dt

×

×(1 + z(t))βk−β1 = εk1(t) (k = s1 + 1, n), (33)

where

lim
t→+∞

e
`0(αk+βk)

t∫
a

I′t(a,t) dt

e
`0(α1+β1)

t∫
a

I′t(a,t) dt

= 0 =⇒ εk1(+∞) = 0 (k = s1 + 1, n).

Then, after the division by p1(t)(v41(t))α1(v′41(t))
β1 , the equation (30)

takes the form:

`α1+β1

( s∑

i=1

c∗i (1 + z(t))βi−β1 +
s1∑

j=1

εj(t)(1 + z(t))βj−β1

)
+

+
n∑

k=s1+1

e
`0(αk+βk)

t∫
a

I′t(a,t)(1+z(t)) dt

e
`0(α1+β1)

t∫
a

I′t(a,t)(1+z(t)) dt

(1 + z(t))βk−β1`αk+βk = 0

or

F (t, z) = `α1+β1

( s∑

i=1

c∗i (1 + z)βi +
s1∑

j=1

εj(t)(1 + z)βj

)
+

+
n∑

k=s1+1

e
`0(αk+βk)

t∫
a

I′t(a,t)(1+z(t)) dt

e
`0(α1+β1)

t∫
a

I′t(a,t)(1+z(t)) dt

(1 + z)βk`αk+βk = 0. (34)

We introduce into consideration the domain D̃ = ∆(a)× [−h; h]. The func-
tion F (t, z) ∈ C0∞

tz (D̃).
We consider in D̃ a part of the function F (t, z):

F̃ (t, z) = `α1+β1

( s∑

i=1

c∗i (1 + z)βi +
s1∑

j=1

εj(t)(1 + z)βj

)
. (35)

Taking into account the conditions (16), (18), we get:

F̃ (+∞, 0) = 0;

F̃ ′
z(+∞, 0) = S01 6= 0;

F̃ ′′
z2(+∞, 0) = S02.
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Then, by Lemma 1, the equation (35) determines a unique function z =
z̃(t, ξ), such that z̃(t) ∈ C(∆(a1)) (a1 ≥ a), z̃(+∞) = 0.

As z̃(t) we take an approximate solution of the equation (35):

z̃(t) = −
`α1+β1

s1∑
j=1

εj(t)

S01 + `α1+β1

s1∑
j=1

βjεj(t)
. (36)

Next, we will need the following functions:

ψ̃00(t) =
n∑

k=1

`αk+βkεk1(t),

ψ̃10(t) =
n∑

k=1

αkεk1(t)`αk+βk ,

ψ̃01(t) =
n∑

k=1

βkεk1(t)`αk+βk .

We express ψ̃00(t), ψ̃10(t) + ψ̃01(t) through the previously introduced
functions:

ψ̃00(t) =
n∑

k=1

`αk+βkεk1(t) =

=
z̃ 2(t)

(1 + z̃(t))β1

[
S02 + ψ02(t) + O(z̃)

]
= O(ψ2

00(t));

ψ̃10(t) + ψ̃01(t) =
n∑

k=1

(αk + βk)εk1(t)`αk+βk =

=
(α1+β1)z̃ 2(t)
(1+z̃(t))β1

[
S02+ψ02(t)+O(z̃)

]
=O(ψ2

00(t)).

Thus, using Theorem 2, we formulate a theorem for the more precise
asymptotics

v41 = e
`0

t∫
a

I′t(a,t)(1+z̃(t)) dt
. (37)

Theorem 3. Let for the function v = v41(t) of the form (37) the condi-
tions of Theorem 1, except for (19), be fulfilled, and

S 6= 0, (21)

S02 6= 0, (38)

ψ00(t) ln v41(t) = o(1). (39)

Then there exists a one-parameter set of R-solutions y(t) ∈ C1
∆(t1)

of the
differential equation (1) with the asymptotic properties

y(t) = v41(t)(` + ξ(t)), y′(t) ∼ `v′41(t), (40)
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where ξ(t) ∼ λ1`
ln v41(t)

.

The Existence and Asymptotics of R-Solutions of the
Equation (1) with the Condition y(+∞) = γ ∈ R+

Since y(+∞) = γ ∈ R+, a supposed asymptotics will be sought for the
derivative of n-solutions y′(t) to within a constant factor of the ratio of
the first two summands. Taking into account p1(t), p2(t) 6= 0 (t ∈ ∆(a)),
we get:

y′(t) ∼̇w(t) =
∣∣∣p1(t)
p2(t)

∣∣∣
1

β2−β1 (β1 6= β2),

where 0 < w(t) ∈ C∆(a).
In the sequel, we will need the assumption that

+∞∫

a

w(t) dt < +∞. (41)

Let
y′(t) = w(t)(` + η(t)), (42)

where `, `βk ∈ R \ {0} (k = 1, n); η(t) ∈ C∆(a), η(+∞) = 0.
Integrating (42), we obtain:

y(t) = γ −
+∞∫

t

w(τ)(` + η(τ)) dτ,

where γ ∈ R+. Next, we show that the constants ` and γ are related to
each other by the equation (49).

Denoting

−
+∞∫

t

w(τ)(` + η(τ)) dτ = ξ(t), (43)

ξ(t) ∈ C1
∆(a), ξ(+∞) = 0, we obtain:

y(t) = γ + ξ(t). (44)

We substitute (42) and (44) into the equation (1) and obtain the equality:

F
(
t, γ + ξ, w(` + η)

)
=

n∑

k=1

pk(t)(γ + ξ)αkwβk(` + η)βk = 0, (45)

which is satisfied by the functions ξ(t) and η(t).
In accordance with the condition B), indicated in the statement of the

problem, we assume that:

pi(t)(w(t))βi

p1(t)(w(t))β1
= c̃i+εi(t), εi(+∞)=0, c̃i∈R \ {0} (i=1, s); (46)
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pj(t)(w(t))βj

p1(t)(w(t))β1
= εj(t), εj(+∞) = 0 (j = s + 1, n). (47)

Then, after the division by p1(t)(w(t))β1 , the equation (45) takes the form:

F̃ (t, ξ, η) =
s∑

i=1

(c̃i + εi(t))(γ + ξ)αi(` + η)βi+

+
n∑

j=s+1

εj(t)(γ + ξ)αj (` + η)βj = 0. (48)

Obviously, the condition

F̃ (+∞, 0, 0) =
s∑

i=1

c̃iγ
αi`βi = 0 (49)

is necessary for the existence of a solution of the form (44) and of its deriv-
ative of the form (42).

Theorem 4. Let a function w(t) be a possible asymptotics of the deriv-
ative of R-solution of the equation (1), which satisfies the conditions (41),
(46), (47). Moreover, let there exist γ ∈ R+, ` ∈ R \ {0}, satisfying the
condition (49).

Then for the existence of R-solution y(t) ∈ C1
∆(t1)

of the differential
equation (1) with the asymptotic properties

y(t) ∼ γ, y′(t) ∼ `w(t), (50)

it is sufficient that the condition
s∑

i=1

βic̃iγ
αi`βi 6= 0 (51)

be satisfied.
In this connection, for each pair (γ, `) the differential equation (1) admits

a unique R-solution y(t) with the asymptotic properties (50).

Proof. Owing to its structure, the functions F̃ (t, ξ, η) ∈ C0∞∞
t ξ η (D1), ∂nF̃

∂ξn ,

∂mF̃
∂ηm , ∂n+mF̃

∂ξn∂ηm (n = 1,∞, m = 1,∞) are bounded in D1, where D1 =
∆(a)× [−h1; h1]× [−h2; h2], 0 < h1 < γ, 0 < h2 < |`|.

To prove the above theorem, we will need expressions of the derivatives
of the function F̃ (t, ξ, η) of first and order with respect to the variables ξ,
η and also some of their properties:

F̃ ′
ξ(t, ξ, η) =

s∑

i=1

αic̃i(γ + ξ)αi−1(` + η)βi+

+
n∑

k=1

αkεk(t)(γ + ξ)αk−1(` + η)βk ,
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F̃ ′
ξ(+∞, 0, 0) =

s∑

i=1

αic̃iγ
αi−1`βi =

1
γ

s∑

i=1

αic̃iγ
αi`βi ;

F̃ ′
η(t, ξ, η) =

s∑

i=1

βic̃i(γ + ξ)αi(` + η)βi−1+

+
n∑

k=1

βkεk(t)(γ + ξ)αk(` + η)βk−1,

F̃ ′
η(+∞, 0, 0) =

s∑

i=1

βic̃iγ
αi`βi−1 =

1
`

s∑

i=1

βic̃iγ
αi`βi 6= 0

by virtue of condition (51);

F̃ ′′
ηη(t, ξ, η) =

s∑

i=1

βi(βi − 1)c̃i(γ + ξ)αi(` + η)βi−2+

+
n∑

k=1

βk(βk − 1)εk(t)(γ + ξ)αk(` + η)βk−2.

Owing to the conditions (49), (51) and the properties of the function
F̃ (t, ξ, η), in some domain D2 ⊂ D1, D2 = ∆(t0) × [−h̃1; h̃1] × [−h̃2; h̃2],

t0 ≥ a, 0 < h̃1 ≤ h1, 0 < h̃2 < min
{

h2;

∣∣ s∑
i=1

βic̃iγ
αi`βi

∣∣
4` sup

D1

∣∣F̃ ′′
ηη(t,ξ,η)

∣∣
}

, the equation (48)

satisfies the conditions of Lemma 1. Consequently, there exists a unique
function η = η̃(t, ξ), η̃(t, ξ) ∈ C0∞

t ξ (D3), sup
D3

∣∣∂nη̃
∂ξn

∣∣ < +∞ (n = 1,∞), such

that F̃ (t, ξ, η̃(t, ξ))≡0, η̃(+∞, 0)=0, ‖η̃(t, ξ)‖ ≤ h̃2. Moreover, we can write
∂η̃(t,ξ)

∂ξ = − F̃ ′
ξ(t,ξ,η̃)

F̃ ′
η(t,ξ,η̃)

, sup
D3

∣∣∂η̃
∂ξ

∣∣ = M > 0.

In view of the replacement (43), we obtain the integral equation:

−
+∞∫

t

w(τ)
[
` + η̃(τ, ξ(τ))

]
dτ = ξ(t). (52)

The solution of the equation (52) will be sought in the class ξ(t) ∈ C1
∆(t1)

(t1 ≥ t0).
Next, we consider and estimate the difference η̃(t, ξ2)− η̃(t, ξ1), (t, ξi) ∈

D3 (i = 1, 2), applying the Lagrange’s theorem with respect to the vari-
able ξ:

η̃(t, ξ2)− η̃(t, ξ1) = η̃ ′ξ(t, ξ
∗)(ξ2 − ξ1), ξ∗ ∈ ]ξ1; ξ2[ ;∣∣η̃(t, ξ2)− η̃(t, ξ1)

∣∣ ≤ sup
D3

|η̃ ′ξ(t, ξ)| |ξ2 − ξ1| = M |ξ2 − ξ1|.

Assuming ξ1 = 0, ξ2 = ξ, we get:

|η̃(t, ξ)| ≤ M |ξ|.
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To the equation (49) we out into the correspondence the operator

ξ(t) = T (t, ξ̃(t)) ≡ −
+∞∫

t

w(τ)
[
` + η̃(τ, ξ̃(τ))

]
dτ,

where ξ̃(t) ∈ B1 ⊂ B, B =
{
ξ̃(t) : ξ̃(t) ∈ C1

∆(t1)
, ξ̃(+∞) = 0, ‖ξ̃(t)‖ =

sup
∆(t1)

|ξ̃(t)|} is the Banach space, B1 =
{
ξ̃(t) : ξ̃(t) ∈ B, ‖ξ̃(t)‖ ≤ h̃1

}
is a

closed subset of the Banach space B.
Using the contraction mapping principle, we:
1) prove that if ξ̃(t) ∈ B1, then ξ(t) = T (t, ξ̃(t)) ∈ B1: ξ̃(t) ∈ C1

∆(t1)

and ξ̃(+∞) = 0, and by virtue of the structure of the operator, we get
ξ(t) ∈ C1

∆(t1)
, ξ(+∞) = 0;

‖ξ̃(t)‖ ≤ h̃1 =⇒ ‖ξ(t)‖ =
∥∥T (t, ξ̃(t))

∥∥ =

=
∥∥∥∥

+∞∫

t

w(τ)
[
` + η̃(τ, ξ̃(τ))

]
dτ

∥∥∥∥ ≤
+∞∫

t1

w(τ)
(|`

∣∣ + h̃2

)
dτ ≤ h̃1,

if t1 is sufficiently large.
2) check the condition of contraction:

ξ̃1(t), ξ̃2(t) ∈ B1 =⇒ ‖ξ2(t)− ξ1(t)‖ =

=
∥∥∥∥

+∞∫

t

w(τ)
[
η̃(τ, ξ̃2(τ))− η̃(τ, ξ̃1(τ))

]
dτ

∥∥∥∥ ≤

≤ M

+∞∫

t1

w(τ) dτ
∥∥ξ̃2(t)− ξ̃1(t)

∥∥ = γ
∥∥ξ̃2(τ)− ξ̃1(τ)

∥∥,

where γ = M
+∞∫
t1

w(τ) dτ < 1, if t1 is sufficiently large.

Thus, t1 should necessarily be such that

+∞∫

t1

w(τ) dτ < min
{

h̃1

|`|+ h̃2

,
1
M

}
.

As a result, we have found that by the contractive mapping principle the
equation (52) admits a unique solution ξ = ξ̃(t) ∈ B1.

Thus, we have obtained that for each pair of constants (γ, `), satisfying
the condition (49), the differential equation (1) admits a unique R-solution
y(t) with the asymptotic properties (50) in ∆(t1). Thus the Theorem is
complete. ¤
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