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Abstract. For the first-order nonlinear ordinary differential equation

n
Fty,y') = pr()y™*(y)™* =0,
k=1
unresolved for the derivative, asymptotic behavior of solutions of monotone
type is established for t — +o0.
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This article describes a first-order real ordinary differential equation:

Ft,y.y) =Y pr(t)y™()* =0, (1)

(t,y,y') € D, D = A(a) x Ry x Ry, A(a) = [a;4o0[, a > 0, Ry = Ry,
Ry = R VRy; pr(t) € Ca) (K =1,n, n > 2); ag, B >0
n
> B #0.
k=1
Further, we assume that all the expressions, appearing in the equation,
make sense; and all functions we consider in the present paper are real.
We investigate the question on the existence and on the asymptotic be-
havior (as ¢ — +o00) of unboundedly continuable to the right solutions

(R-solutions) y(t) of equation (1) and derivatives y/(¢) of these solutions
which possess the following properties:

A) 0<yt) e CA(t y» A(t1) C A(a), where t; is defined in the course
of proving each theorem:;

B) among the summands py(t)(y(t))** (y/'(t))?* (k = 1,n), the terms
with numbers i = 1,s (2 < s < n) are asymptotically principal for

s
i.e., there exist:

the given R-solution y(t), i
) () -
S e @y 7 e (=1,
G0 L0 S —
N ORI AR

Lemma 1. Let the equation

F(t,&n) =0, (2)
(t,&m) € D1, D1 = A(a) x [=hi; ha] X [=ha; ho], by, € Ry (k= 1,2), satisfy
the conditions:

1) ﬁ(t 5 77)60?22?73(1)1)7 817527836{()’1;2,---}7 82217 53221

2) EIF(+oo 0,0) = 0;
3) 3F(+00,0,0) = Ay € R\ {0};
4) SUP|F/7;/n(ta§a77)| = A2 € R+'

Then in some domain Dy = A(ty) x [—ﬁl;ﬁl] X [_EQ;EQ], where ty > a,
0 < 711 < hy, 0 < 712 < min{h2; LA—Q}, the equation (2) defines a unique
function n =17)(t,€), such that 7(t,€) € C7*¢*(D3), D3 = A(to) x [—ha; hal,
37(400,0) =0, F(t,&,7(t, &) = 0. Moreover, for £ =0, the function 7(t, &)
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has the property

F(t,0,0)

(t,0) ~ — e
F1.(t,0,0)

3)

Proof. Let us expand the function F (t,&,m) with respect to the variable n
for t € A(a), & € [—hy;h1] by using the Maclaurin’s formula. Then the
equation (2) can be written as:
F(t,6,n) = F(£.€,0) + F/, (16,00 + R(t.&,1) = 0. (4)
Obviously,
R(t,£,0) = 0.

The equation (4) is equivalent to the implicit equation

—F(t,£,0) — R(t,&,1(t,€))

)= 1 (1.€,0)

; ()

where _ N N
R(ta fa 77) = F(t7 fa 77) - F(tv €7 O) - F;y(t7 fa 0)777
and, therefore,

R{r](tagy’r]) = F;y(tfﬂ?) - Ffr](tvgao)
Applying the Lagrange’s theorem with respect to the variable n to the
right-hand side of the above equation, we get:

ﬁ%(tva,rh) - ﬁ;(tafﬂh) = ﬁgn(tagvn*)(WQ - 771)7 77* 6]771;772[7
sup |F o (t,&m) — F o (t,&m)| <
1

< sup |F (6 m)| In2 — ml = Azlnz —ml.
1
Assuming 1 = 0, 2 = 1, we obtain:
sgp!Ri,(t,&n)! < Asn).
1

We consider and evaluate also the difference R(t,&,m2) — R(t,&,m),
(t,&,m;) € Dy (i = 1,2), applying the Lagrange’s theorem with respect
to the variable 7:

R(ta§7n2) - R(taganl) = R;(tagan**)(nQ - nl)a 77** 6]771;772[’
sup |R(t,& n2) = R(t,&,m)| <sup |y, (t,&,m)| In2—m | < Al —m|*.
1 1
Assuming n; = 0, 2 =1, we get
sup [R(t, &,n)| < As|n[*.
Dy
Consider the domain Dy C Dy in which

1) sup |F(t,&,0)| < h2lal
Dy
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. o A
2) inf | (t,€,0)] > 15
8) sup | R(t,€,n)| < Asln|? < Agh3.
2

The fulfilment of conditions 1), 2) can be achieved by increasing tg and

reducing hy (by virtue of the conditions of the Lemma). The fulfilment of
condition 3) is obvious.
To the equation (5) we put into the correspondence the operator

ﬁ(ta§7(,)v) _ R(t7£a ﬁ(tvg))
F(t,€,0)

where ﬁ(tag) €BC Ba B = {ﬁ(tag) : ﬁ(t7§) € C?g? (D3)7 77(+OO’0) =0,

7, Ol = Sgplﬁ(t, ¢)|} is the Banach space, B1 = {7(t,&) : 7(t,§) € B,

77(t7 g) = T(tv 3 ﬁ(t’ 5)) =—

)

l7(t, &) < 712} is a closed subset of the Banach space B.

We apply here the principle of contractive mappings.

1) Let us prove that if 7(¢,&) € By, then n(t,§) = T(¢,£,7(t,£)) € By:
n(t,€) € C*¢* (D3) and 7)(+00,0) = 0, then by virtue of the structure of the
operator, we get

n(t,§) € C7*¢*(Ds), n(+00,0) = 0;

I, )|l sﬁz = |In(t, &)l = ||T(t, &, 7(t, )| =
_H— F(t,€,0) — R(t,&,7(t,€)) H
F’ (t,£,0) N
1

< iy (su It € 0)] + sup |R(t, €70 €))]) <

o To
< = — <
< |(sup|F(t§O)|+A2h2) <2+ Too.

2) Let us check the condition of contraction:

’ﬁl(t7§)7772(tv§) € Bl - H"b(t 5 —771 t f H =

; E
F;(t,g,m
Ay _ N ,
= iy ) RN <
7A oy -~ ~ ~
= \2A2| (It )1+ 1 (O IRt ) — (o) <

4A2 hQ

|| T2 t 5 ﬁl(t,g)H = 7”772(1575) 7ﬁ1(t>£)||a
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As a result, we have found that by the contractive mapping principle the
equation (5) admits a unique solution n = 7(¢,£) € By.

Since F(t,&,1) € C'g%2(D1), then by a local theorem on the differen-
tiability of an implicit function, it can be stated that 7(t,£) € C;*¢* (D).

Let us prove that 7j(t, £) has the property (3) for £ = 0.

The function 7j(¢,£) € D3 satisfies the equation (4), which can be writ-
ten as

F(t,0,0) 4+ F,(,0,0)7(t,0) + O(7%) = 0, (6)

assuming & = 0.

As O(7%) = O(1)772 = o(1)7, then the equation (6) is equivalent to the
equation

F(t,0,0) 4+ F (t,0,0)7(t,0) + o(1)7(t,0) = 0.

Hence, taking into account that 13;7(4—00,0,0) = A; € R\ {0}, we can
write

- 1 F(¢,0,0
7)(t,0)(1+ ~,O( ) - _~/( )| (7)
F1.(t,0,0) F.(t,0,0)
The property (3) follows from the equality (7). O

Lemma 2 ([2]). Let the differential equation

¢ =alt)f(t,9), (8)
(t,€) € D3, D3 = A(tg) x [—h1:h1] (hy € Ry), satisfy the conditions:
+oo

1) 0# a(t) € C(A(to)), [ «ft)dt = +oo;

to
2) f(t,€§) € CP(Ds), 3 f(+00,0) =0, 3 f{(+00,0) # 0;
3) fi(t,€) = f¢(t,0) under & — 0 uniformly with respect to t € A(to).

Then there exists t1 > to, such that the equation (8) has a non-empty set
of o-solutions

Q= {{(t) € Chpy) + &(+00) =0},
where
a) if sign(afé(—f—oq())) = —1, then Q is a one-parametric family of
o-solutions of the equation (8);

b) if sign(afi(+00,0)) = 1, then Q contains a unique element.

THE EXISTENCE AND ASYMPTOTICS OF R-SOLUTIONS OF THE
EQUATION (1) WITH THE CONDITION y(+00) = 0V +00

The supposed asymptotics (to within a constant factor) of R-solution
y(t) with the condition y(+o00) = 0V +00 can be found from the ratio of
the first two summands (we consider all possible cases with respect to the
values of parameters oy, ag, 81, f2). Taking into account that p;(t), p2(t) #0
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(t € A(a)), we find that y(t) ~v(t) > 0* (v € {v;}, ¢ = 1,4) under the
condition that v(+00) = 0V +o0:
D= DS (a1 # az, Bi = B2), moreover, pi(t),pa(t) €
Ca)-
In all the rest asymptotics is used the function

@y, fa (e teo) = +o0),
“‘“)A/ pol A{+oo (Ha, o) € E U {0}).

2) vy = |[I(A,t)] (1 = a2, B1 # [).

8) va=|I(A D] BT (a7 az, Bi# B, a1+Bi £ az+h).
4) vy = efoll@bl (75 € R\ {0} and satisfies the conditions (13), (14),
(16); 1 # g, B1 # Ba, a1 + B = aa + f2 # 0; I(a, +00) = +00).

A solution is sought in the form
y(t) = v(t) (£ +£(1)), (9)

where £ € Ry; £(t) € ClA(a), E(+o0) = 0; v(t) = vi(t) € ClA(a) (k is fixed,
k=1,4).
Differentiating the equation (9), we obtain:

V(0 = O+ €0) + o0 ) = 0 O£+ €0 + S ).
Having denoted
e+ 2D (1) = o), (10)
(1)
n(t) € Ca(a), we get
Y1) = ()¢ + n(t)). (11)

The condition y’(t) ~ £v'(t) requires the assumption that n(+oo) = 0.
Substituting (9) and (11) into the equation (1), we obtain the equality

Ft,v(l+€),v' (L +1n)) =

=D pr(O)(©)™ (€ + ™ (v) (L + )P =0, (12)
k=1

which is satisfied by the functions &(¢), n(t) and (v'(¢))% : A(a) — Ry
(k=1,n).

“fi~ f; (i # j) means that 3 lim L # 0, +oo.
t—Foo fj
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According to the condition B), indicated in the statement of the problem,
we assume that

pi(t)(0(8))* (v (1) _
p1()(v(£) (v'(2))

= +eilt), ¢ ER\{O}, mi(+00) =0 (i=T3);  (13)
. v o ,U/ Bj -
iigggvgg;oqgvlggigl = Ej(t), Ej(-i-OO) =0 (j =S5+ 1,71). (14)

Then, after the division by py (t)(v(t))** (v/(t))”*, the equation (12) takes
the form

S

F(t,&m) =Y (¢ + &)+ (+n)+

i=1

+ Z ;M +E¥ (L +n)fi =0. (15)
j=s+1

Obviously, the condition F (+00,0,0) = 0 is necessary for the existence
of a solution and of its derivative of the form (9), (11), respectively.
Thus, for v = vg(¢) (k = 1,4) it takes the form

S
> eethi=o. (16)
i=1
For v = vy(t) : sign(v') = sign(o), ¢ = ¢t (L), Lo, L5 € R\{0} (i = 1,s).
By virtue of its structure, the functions ﬁ(t,f,n) € Cg‘g";"(Dl), 855,
%, gg:a:]fz (n = 1,00, m = 1,00) are bounded in D;, where Dy =
A(a) X [—hl;hl] X [—hg;hg], 0< hp<? (k = 1,2).
Next, we will need expressions for the first and second order derivatives
of the function F(t,&,n) with respect to the variables £ and n:

et.6m) Z% (E+€ M e+ )P+
+Zak€k (€+ )™ 1(L + )

a(b&m) = Zﬁz (C+ ™ (C+n)* 'y
+Z/6k5k 00+ €)% (0 + )1,

et &m) Zal a; = 16 (E+ %2+ )+
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+ Z ag(ag — Deg(t) (£ + €)™ 2L + 1)
Fey(t6m = Fglt,&m) = EZ%m (+ M+

+Zakﬁk€k )+ &)X e+ )Pt
k=1

t§7 Zﬁz i g"‘&)ab(f—i—n)ﬁi 2+

+ Z Br(Bx — Der(t)(€ + &)™ (£ +n)Pe =2
as well as the following notation:

Yoo(t) Zﬁak+5k5k
l/}lo Zak o — ]. : (Otk -1+ 1)€k(t)£ak+ﬁk’
bl 31 a0

Yim(t) = aplag —1) - (ap =14+ 1)x
X BB — 1)+ (B — m + L)y (t) 020k,

Sio = Zai(ai — 1) (= L+ 1)t
Som = Z@'(ﬂi — 1) (B — m A+ 1) eith

Slm—zaz a;— 1) (a; =14+ 1)x

X Bi(B; —1) - (B — m A+ D)Lt
510, Som> Sim €R (I, m € N),  §=157)S02—2510501 511+ 55, S20,
253, 252,02
R, A=—77—
g &% e s
Theorem 1. Let a function v(t) = vg(t) (k =1,4) be a possible asymp-
totics of an R-solution of the equation (1), which satisfies the conditions

v(400) =0V 400, (13), and (14). Let, moreover, there exist £ € R, satis-
fying the condition (16).

AL = € R.
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Then in order for the R-solution y(t) € ClA(tl) of the differential equation
(1) with the asymptotic properties

y(t) ~ fo(t), Y (8) ~ (1), (17)
to exist, it is sufficient that the two following conditions
So1 # 0, (18)
S10 + So1 # 0. (19)
be fulfilled. Moreover, if sign (“/(31507::301)) = 1, then there exists a one-

parameter set of R-solutions with the asymptotic properties (17); if

sign (1}/(51507(:3‘”)) = —1, then R-solution with the asymptotic (17) is unique.

Proof. For the proof we will need the following properties of the function
F(t,&m):
~ S10
F! (+00,0 0):&7&0
n ) ) e

by virtue of the condition (18).
Owing to the conditions (16), (18) and to the properties of the function
F(t,&,n), in some domain Dy C Dy, Dy = A(tg) x [—hi;h1] X [—ha; ha],

to > a,0< hy < hy, 0 < hs < min {hg; 4€sup|lsm‘ }, for the equation
Dy

Fu (t,6m)]

(15) the conditions of Lemma 1 are satisfied. Consequently, there exists a

unique function n = 7(¢t,§) € C??(Dg), D3 = A(tg) x [—h1; h1], sup ’%| <
D3

+o0 (n = T,50), such that F(t,&,7i(t,€)) = 0, ii(++00,0) = 0, [[7(t,€)] < ha.
Moreover, we can write

oi(t.e) _ FLt.&m

o¢ F(t,6,7)
Thus, in view of the replacement (10), we obtain the differential equation
with respect to &:

v _
A L ) (20)
The question on the existence of solutions of the form (9) reduces to the
study of the differential equation (20).
Let us show that the conditions 1)-3) of Lemma 2 are satisfied for the

equation (20). In this case we have: a(t) = 1;/((5)) , f(6,8) ==+ n(t,6).
Obviously, the conditions 1) and 2) are satisfied.
1) Since 0 < v(t) € CY(A(a)), therefore

+oo +oo

0% a(t) € C(A(to), /a(t) dt — /

to to
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2) Since 7(t, &) € C?‘?(Dg), then
f(t.0) € CYE(Ds). 3/ (+00,0) =(+00,0) =0,

_ Fe(t,6m
fe@t,8) = —1+7¢(t,€) =
¢ ¢ CFytem
F'.(+00,0,7j(+00,0
fé(—i—oo,O):—l— g( n( )):_510+5017é0
F! n(400,0,7(+00,0)) So1
by virtue of the condition (19).
Let us check that the condition 3) is satisfied, that is,
FL(t.67(t,€)  FL(t,0,7(t,0)
0.9 - e = |5 - =% |=o

Fi(8,6,7(t,€)  F1(t,0,7(t,0))
as & — 0 uniformly with respect to t € A(tg).

Towards this end, it suffices to verify that the following properties are
satisfied:

31) (L, §) = 1(t,0) 1f§ — 0 uniformly with respect to t € A(tg),

32) FL(t,&,1(t,£) = Fg(t,0,7(t,0)) as € — 0 uniformly with respect to
te A(to)
33) F,(t,&,1n(t,6) = (t70,77(t,0)), as & — 0 uniformly with respect

tote A(to) with regard for the fact that Fy(+o00,0,71(+00,0)) = So1 # 0.
Let us estimate the differences n(t, &) — 1(t,0), ﬁé(t,& n(t,&)) —

ﬁé(t,O,ﬁ(LO)) w(,&,0(t,€)) — F1(t,0,7(t,0)), applying the Lagrange’s
theorem to the ﬁrst difference with respect to the variable &:

() —(t,0) = qe(t,£7)¢, € €]05¢].

As the functions e (t) (k = 1,n) are bounded in A(a) and ||7(¢,€)|| < h
in D3, then we get the estimates in the form:

|n(t, €) — t0|—| (t, &) €] =
-|- Fi(t, 5*~t§
F/(tf*N

as £ — 0 uniformly with respect to t € A(tp);
3,) taking into account that (£+£)%~1 — (%=L as¢& — 0, (¢4+7(t, €))P —
(€+7(t,0))? as € — 0 uniformly with respect to t € A(ty) (i = 1, 5), we get

|F4(t,6,77(t,€)) — FL(¢,0,7(t,0))| =
Z% [“f )T+ (€))7 éai’1(€+ﬁ(t,0))ﬁi]+

\m (1]l = 0(¢) — 0

— 0

+Zam )| (€ O (@ €)% — e (€47, 0))
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as £ — 0 uniformly with respect to t € A(tp);
33) analogously to 32), we get:

‘F/(ta€7ﬁ(t7§))7ﬁ,(t70’ﬁ(t70)) =

[0+ (4 ©)7 7 — e (041, 0) 7+

— 0

+§:ﬁwk )[(€+ e 0+t €)% — (¢ 4+ 7(t,0) ]

as & — 0 uniformly with respect to t € A(tg).

Since 7)(+00,0) = 0, therefore F} (400, 0,7(+00,0)) = So1 # 0 by virtue
of the condition (18).

Consequently, condition 3) is satisfied.
Then if sign (l’l(slsoiots‘”)) = 1, then there exists a one-parameter set of
o-solutions of the equation (20) in A(¢1) C A(to).

If sign (e t5))

in A(t1) contains the unique element.

Finally, having the dimension of a set of o-solutions of the equation (20),
we have obtained the dimension of a set of R-solutions of the equation (1)
with the asymptotic properties (17) in A(ty). O

= —1, then a set of o-solutions of the equation (20)

Theorem 2. Let the conditions of Theorem 1, except for (19), be satis-
fied, and

S 0, (21)
Yoo (t) In® v(t) = o(1), (22)
(¥10(t) + Yo1(t)) Inv(t) = o(1). (23)

Then there exists a one-parameter set of R-solutions y(t) € ClA(tl) of the
differential equation (1) with the asymptotic properties

y(t) =o)L+ E(1)), y'(t) ~ ' (1), (24)

where &(t) ~ ln’\;é)

Proof. To prove the theorem, we will need the following properties and
expressions of the function F(t,&,n) :

F(t,0,0) = ¢oo(t),
(t 0,0) Zal A i+hi 4 Z ()zkfak+’6k8k(t)

510

F/
5(-1-00 0,0) = >

(t 0, O Z Z ﬁzc*ga i+Bi + = Z /Bkgak+ﬁk€k( )
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F! 0,0) = 22 2 by virtue of condition (18);
n(+00,0, )——7& y virtue of condition (18);

" i+Bi
F(t,0,0) = EQZOQ (o — 1)ceitPig

32 Zazﬁz *gal-‘rﬁz + = 52 Z akﬁkgak-l-ﬁkgk(t)

=1
~ S
F{(+00,0,0) = F/(+00,0,0) = 7121;

o+ 65
F7.(t,0,0) 522@1 ety
+ Z Br(Br — D)L+ ey (1),
k=1
S,

F! (+00,0,0) = g‘f.

By virtue of the condition (18) and owing to the properties of the function
F(t,&,7n), in some domain Dy C Dy, Dy = A(ty) X [—hi;hi] X [—ha; ha),

- ! _ o
to>a,0<hi <h 0<h2<m1n{hg'+
) ’ ’4(5]:1)113|F",,](t,€,17)|

(15) the conditions of Lemma 1 are fulﬁlled. Consequently, there exists a
unique function n = 7(t,€), 7(t,€) € (Dg) Ds = A(tg) x [—h1; ],
suplﬁfnl < 400 (n = 1,00), such that F(t &1t €) =0, 7(4+00,0) = 0,

, for the equation

||n(t,§)|| < hsy. Moreover, we can write:

_ _ F(t,0,0)
(6,0) F1(t,0,0)
N FL(t,&,7)
! t,g :_,\,67/\1,
T =T e

2i(t.e) _(FQ*Fly,— 2P LFyF Y, + (FL)F

o (F1)
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Thus, taking into account the replacement (10), we obtain the differential

equation with respect to &:

U/

€ = 2 (=€ +ii(t,©)) (20)

The question of the existence of solutions of the type (9) reduces to the
study of the differential equation (20).
Let us show that the conditions 1)-3) of Lemma 2 are satisfied for the

equation (20). In this case we have: a(t) = 1;/((:))7 f(t,8) ==+ n(t,8).
1) Since 0 < v(t) € C*(A(a)), therefore

—+oo +oo

04 alt) € C(A(to)), /a(t) dt = / 1;'((3 dt = o0

to to
2) Since 7j(t,€) € C)F(D3), therefore
f(t,€) € CYFE(D3), 3 f(+00,0) = 7j(+00,0) = 0,
Fi(t.€,7)

CFL&T)

Taking into account the properties of the functions e (t) (k = 1,n) and
also the conditions of the theorem, we obtain:

fet € = —1+7¢(t,&) = —1

F . (4+00,0,7(4+00,0 S S
fi(+00,0) = —1— ng( 71( )):_ 1OS+ o _ .
F 1 (+00,0,7(+00,0)) 01
Thus, condition 2) is not satisfied, and we cannot apply Lemma 2 to the
equation (20).
Since fie(t, &) = 1¢e(t, &), therefore

_ S 2
Jée(+00,0) = 77¢e (+00,0) = TS T TN
Consider the auxiliary differential equation with respect to &;:
/
I v (t) 2
fl - Alﬁv(t) é-l'
and find one of its non-trivial solutions:
Al 1
&= o)’ 0#&(t)1 € Caqyy (1 =t0), &1(+00) =0.

We consider the question on the existence in the equation (20) of solutions

of the form § = & (1+¢), where {(t) € CR,,, £(+00) = 0. For the unknown

function E we obtain the following differential equation:

SovE (1 w1 v s ﬁ(t,£1(1+§))>
<= v( & v’§%+( & v’éf)£+ &

(£:€) € Da, Dy = Alta) x [~hai ha] (0 < ha < I), H5%0

o (25)

Al

1
1
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Let us show that the conditions 1)-3) of Lemma 2 are satisfied for the
equation (25). In this case we have:

CUWE | M)
o)== @ T s meD’

t
~ 11 L1z dit&(1+9)
_ (- Lo e He8028)
Using the properties of functions v(¢), (t 5) &1(t), we obtain:
+oo
1) 0#£ a(t) € C(A(tr)), [ alt)dt= M/ f ng(t)dt:m

ty1
2) f(t.8) € CU (D)

1 i ﬁ(t7 51)

om 1 L Tt &1+ 9))
f&(tf) - 51 + )\ 51 9
7 L i ﬁé(ta’gl)
f4t,0) = & et e

Let us expand the functions n(t,ﬁl) and 7¢(t,&§1) with respect to the
variable &; in Dy using the Maclaurin’s formula

_ _ _ 1_
At &) = (t,0) +7g, (1,06 + 5 71 (1 0)E7 + O(E1),
Te(t,€1) = Ne(t,0) + 77, (8, 0)& + O(&]).
Using Lemma 1, we obtain:

Lipoo(t)
501 + (1) ’
7%, (5,0) = 74(t,0) =
5 i L+, 0)5 + 3 aner(t)e 1 (€ +if(t, 0))%
_ =1 k=1
S B los (04 7i(t, 0051 + 3 Brer(t)lon (€ + 7f(t, 0))% 1

i=1 k=1
ﬁl (—‘rO0,0) = ﬁl (+0070) = _@ )
&1 13 So1

ﬁ(t’ O) ~ =

)

~ 2
77/5/2(+OO 0) =7 gg, (+00,0) = ¢2(+00,0) = WA

Then
_a(t0) e, (50) =1 1 5 1
ft,0) = Fa— 3716 (50) + 5 +0(&),

0
2.0 = "D 0+ 1 o),




66 Liliya Koltsova and Alexander Kostin

From the conditions (22), (23) and S1p + So1 = 0 it follows that

. 7(t,0) . oo(t) In® o(t)
lim 2~ — gy 2R Y
=400 €2 =t LSgI A2 0
£,0 7L(t,0) —
lim 777 e, (£0) = lim 7776( ) =
t—+oo fl t—+oo 51

—lm Inwv(t) (Z Stk + Sokt1 7R (2, 0)+

t—>+0<> )\1801 klok+1

n Z Y1k + Yora1 a0 0)> 0,

TR
. 1_, 1
S (2”52@ 0+5 £> 0
, 1, 1y 1
Jim (57 (10)+ M) W

As a result, we have found that f(+o0,0) =0, fé(—i—oo, 0) = —)\%Z # 0.

3) Since

fé; (tvg) = 7715/2 (t7€1(1 + g))v fgz (t,O) = ﬁg2 (tvgl) = 7722 (t’ 0) + O(fl)a

~ 2
f§2(+00,0) = 77/5/2(+00a0) = 7@ 7é 07

the condition 3) of Lemma 2 is automatically satisfied.

Then the differential equation (25) satisfies the conditions of Lemma 2,
‘¢
;\)161}

of o-solutions of the equation (25) in A(ty).
Finally, having the dimension of the set of o-solutions of the equation
(25), we have likewise obtained the dimension of a set of R-solutions of the

equation (1) with the asymptotic properties (24) in A(t1). O

where since sign ( ) = 1, there exists for the fixed ¢ a one-parameter set

Consider now separately the exponential asymptotics vy = efol/(a:t)] (the
values of the constants and functions we used, have been identified pre-
viously). We proceed from the assumption that of principal importance
remain the first s terms, and also the fact that

1) ap+ B =a1+ 51 #0 (k=2,5);
2) ap + B =01+ 01 #0 (k=5+1,51);
3) ap + B £+ B (k=s1+1,n).

The possibility that the summands with powers of type 2) or 3) are absent
is not excluded.
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The assumptions 1)-3) and the condition (18) imply that the condition
(19) is not satisfied, as

S s
S1o + So1 = Zaicfﬁa”‘ﬁi + Zﬂicff‘li‘i‘ﬁi _
i=1 i=1

S S
_ Z(al + ﬂi)c;_kgaﬂrﬁi — (041 + 51) ZC?KQHF& =0.
i=1 =1
Therefore, Theorem 1 cannot be applied to the given asymptotics. If Theo-
rem 2 is likewise not satisfied, then under certain conditions we can achieve
fulfilment of the conditions of Theorem 2 by defining the asymptotics v4(t)
more exactly.
Consider the more precise asymptotics

éoftlé(a7t)<1+z<t))dt
’U41(t) =€ ) (26)

where

)2

Ii(a,t) = P1(t), 5o
@) |p2 t)’
z(t) € Ca(a) 2(4+00) = 0 = v41(4+00) = v4(+00) =0V F00.

—~

A solution will be sought in the form

y(t) = var (£)(€ + £(1)), (27)
where £(¢) € Ci\(a), &(+00) =0.
Differentiating the equation (27), we obtain:

y'(t) = vin () +n(t), (28)
V41 t
10 =)+ 228 ¢0), (r) € Cay
vy (£)
The condition y’(t) ~ fv)j; (t) requires the assumption that n(+o00) = 0.
Substituting (27) and (28) into the equation (1), we obtain the equality:

D k() (var (£)** (v (£) 74 (€ + )™ (£ + ) = 0. (29)
k=1
In the equation (29) we put £ =0, n = 0 and get
D Brpy () (van (1)) (v ()™ = 0. (30)
k=1

In accordance with the condition B), indicated in the statement of the
problem, we consider the relations of the functions:

. Va1 a; ’Ull Bi . - .
2CUOR DT _ (4 )1+ 200 =i +eald), G

gin(+00) =0 (i=1,s);
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j V41 & 'U/1 Bi o

gj1(+00) =0 (j=s+1,s1);

ColontBi) | Ti(at)(142(1)) dt

= X
p1(t) (var (1)) (v (1)) to(ar+81) | Il (ast)(1+2(1)) dt
e a
x(L+2(1) P =g (t) (k=351 +1L,n), (33)
where
Zo(ak-i-ﬁk)ftl,;(a,t) dt
tlir+n c - =0= ¢ep1(+00) =0 (k=s1+1,n).

Lo(ar+B1) [ I;(a,t)dt
e a

Then, after the division by py(t)(va1(£))®* (vh; (£))P, the equation (30)
takes the form:

galwl(zc (1+ 2(0)%- 61+Z€J 1+ 2(t ﬁl>+

i=1

n eo(ak"rﬁk)f I} (a,t)(1+2(t)) dt

+ Z € t (1+ Z(t))ﬁk—ﬁlgak+ﬁk -0
k=s1+1 foloa+pr) [ I[(a,t)(1+2(t)) dt

or

F(t,z) —€a1+61(20 1+ZBZ+ZEJ )(1+ 2)? )—i—

n Lo(ak+Pr) f Ii(a,t)(1+2(t)) dt
n < (14 2)P o8 =0, (34)

t
k=s1+1 Lo(ar+p1) [ Ii(a;t)(1+2(t)) dt
e a

We introduce into consideration the domain D = A(a) x [—h; h]. The func-
tion F(t,2) € CY°(D).

We consider in D a part of the function F(¢, 2):

F(t,z £a1+ﬂl<zc 1+zf3t+zej (1+2) ) (35)

Taking into account the conditions (16), (18), we get:
F(+00,0) = 0;
F,(+00,0) = So1 # 0;
F",(400,0) = Sps.
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Then, by Lemma 1, the equation (35) determines a unique function z =
Z(t,€), such that z(t) € C(A(a1)) (a1 > a), zZ(+00) = 0.
As Z(t) we take an approximate solution of the equation (35):

(01 e 5(1)

() = — = . (36)

Sou + 60480 Y Biej(t)
j=1

Next, we will need the following functions:

n

Yoo(t) = Z ey (t),

k=1

bio(t) = Y aep (D)L,
k=1

Yor(t) =Y Brera (£,
k=1

We express Joo(t), Jlo(t) + 1:/;01(75) through the previously introduced

functions:
n

doo(t) = D £ Pey (t) =
k=1
- o) s+ voalt) + 0)] = OO

3

Uro(t) + Yor(t) = Y (g + Bi)er ()0 =

k=1
(a1 +51)Z3(t) 2
11207 [So2+102(t)+O0(Z)] (¥ao(t))
Thus, using Theorem 2, we formulate a theorem for the more precise
asymptotics

Lo f I/ (a,t)(14+Z(t)) dt

Vg1 — € @ (37)

Theorem 3. Let for the function v = v41(t) of the form (37) the condi-
tions of Theorem 1, except for (19), be fulfilled, and

S #0, (21)
So2 # 0, (38)
’L/Joo(t) ln ’U41(t) = 0(1) (39)

Then there exists a one-parameter set of R-solutions y(t) € ClA(tl) of the
differential equation (1) with the asymptotic properties

y(t) = va (L +E(1), y'(t) ~ Loy (1), (40)
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where £(t) AL

~ Inwvgq (t) :

THE EXISTENCE AND ASYMPTOTICS OF R-SOLUTIONS OF THE
EQUATION (1) WITH THE CONDITION y(400) = € R4

Since y(4+00) = v € R4, a supposed asymptotics will be sought for the
derivative of n-solutions y'(¢) to within a constant factor of the ratio of
the first two summands. Taking into account p;(t), p2(t) # 0 (t € A(a)),
we get:
p1(t)
pa(t)

BBy £ Ba),

Y () w(t) = |

where 0 < w(t) € Ca(q)-
In the sequel, we will need the assumption that

+oo
/ w(t) dt < +o0. (41)
Let
y'(t) = wt) (€ +n(t)), (42)

where £, 0% € R\ {0} (k =T,n); n(t) € Ca(a), n(+00) = 0.
Integrating (42), we obtain:
400
vt) =7~ [ w0
t
where v € Ry. Next, we show that the constants ¢ and 7 are related to

each other by the equation (49).

Denoting
—+o0

- / w(r)(£+ n(r)) dr = £(2), (43)
&) € Cl\(a), &(+00) = 0, we obtain:

y(t) = v +£@). (44)
We substitute (42) and (44) into the equation (1) and obtain the equality:

n

F(t,y+&w+m) =Y pe)(y+ O™ w (@ +n =0, (45)
k=1

which is satisfied by the functions £(¢) and n(t).
In accordance with the condition B), indicated in the statement of the
problem, we assume that:

pi(t) (w(t))”

@)~ T, eil+o0)=0, GERA{0} (i=L.5);  (46)
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p; () (w(t))%
pi(t)(w(t)?

Then, after the division by pi (t)(w(t))?, the equation (45) takes the form:

= (), £;(+00) =0 (j =5F L n). (47)

S

F(t,&n) =Y @ +ea®)) v+ (€+n)+

i=1
n
+ > M+ U+ =0, (48)
j=s+1
Obviously, the condition
F(+00,0,0) Z yilt =0 (49)
=1

is necessary for the existence of a solution of the form (44) and of its deriv-
ative of the form (42).

Theorem 4. Let a function w(t) be a possible asymptotics of the deriv-
ative of R-solution of the equation (1), which satisfies the conditions (41),
(46), (47). Moreover, let there exist v € Ry, £ € R\ {0}, satisfying the
condition (49).

Then for the existence of R-solution y(t) € ClA(tl) of the differential
equation (1) with the asymptotic properties

y(t) ~v, () ~ Lw(t), (50)

it is sufficient that the condition
> Biey i’ #£0 (51)
i=1

be satisfied.
In this connection, for each pair (v, £) the differential equation (1) admits
a unique R-solution y(t) with the asymptotic properties (50).

Proof. Owing to its structure, the functions ﬁ(t,{,n) € Cg?’n"o( 1), %,
‘?9%57 % (n = 1,00, m = 1,00) are bounded in D, where D; =

A(a) X [—hl,hﬂ X [—hg;hg], 0< h < v, 0 < hy < |€|

To prove the above theorem, we will need expressions of the derivatives
of the function F (t,&,m) of first and order with respect to the variables &,
1 and also some of their properties:

Fe(t,&n) =Y ai(y+ &% (0 +n) "+
=1

+Zak€k (v + & +n),



72 Liliya Koltsova and Alexander Kostin

1<
Fé +00, 0, O Zalc ,yocl 1@31 — ,Zaicivai@@i;

(&) Zm (Y +O* (L+n)"

=1

+ Zﬁm (v + O +m™Y

~ it U o,
F)(+00,0,0) = Zﬂm L= 2D By % £ 0
i=1 i=1
by virtue of condition (51);

(. Em) = Zﬁu )& (v + €)™ (£ + )% 2+

+ Zﬂk(ﬁk — Dep(t) (v + &)™ (€ +n) 2.

k=1

Owing to the conditions (49), (51) and the properties of the function
F(t,&,7n), in some domain Dy C Dy, Dy = A(ty) X [—hi;hi] X [—ha; ha),
| Z Biciy i P

4£sup ’Fm(t f,'r])’

to >a,0< El <hy,0< Eg < min {hg, }, the equation (48)

satisfies the conditions of Lemma 1. Consequently, there exists a unique
8’7l~ [
function n = 7(t,£), 7(t,€) € CY¥(Ds), S}Dlp |W’Z\ < 400 (n=1,00), such
3

that F(t,¢, n(t,£)) =0, n(+00,0)=0, (¢, & < hs. Moreover, we can write

on(tg) _ _ Felt&n
o6 = F”(t&n),sup| | M > 0.
In view of the replacement (43), we obtain the integral equation:
+oo
- [ wmle+ e ar =, (52)

i

The solution of the equation (52) will be sought in the class £(t) € ClA(tl)
(t1 > to).

Next, we consider and estimate the difference 7(t, &) — 7(¢, &1), (8,&) €
D3 (i = 1,2), applying the Lagrange’s theorem with respect to the vari-
able &:

(t,&2) —n(t, &) =Ne(t,€) (&2 — &), & €838

|7(t, &) —(t, &1)| < Slljlp| et ))& — &i| = M[& — &

Assuming &1 =0, & = &, we get:
(&) < MI¢].
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To the equation (49) we out into the correspondence the operator

+oo
€0 =TwE0) =~ [ v+ )] an
t
where £(t) € By € B, B={€(t) : £(t) e CX m» E(+00) = 0, [IE@)] =
bup £(t )|} is the Banach space, By = {f )€ B, |lE@)] < hi}is a
A(ty
closed subset of the Banach space B.
Using the contraction mapping principle, we: N
1) prove that if £(t) € Bj, then £(t) = T(t,£(t)) € By: &(t) € ClA(t )

and g(+oo) = 0, and by virtue of the structure of the operator, we get
§(t) € CLy ), E(+00) = 0;

DN < by = 10 = 1T @) =

H/ )[€+ii(r,6(7))] dr

+oo
< /w(T)(\eHﬁz) dr < hi,

t1

if ¢1 is sufficiently large.
2) check the condition of contraction:

E1(1),&2(t) € Br = ||éa(t) — &u(t)]| =
+oo

[ w@)litr &) ~ G e

+oo
gM/ﬁwmd@w—éwuzwém—évm

+oo
where v = M [ w(r)dr <1, if ¢, is sufficiently large.
t1
Thus, t; should necessarily be such that

+oo

o1
w(7)d7<min{ = ,}.
/ 0| + hy M

t1

As a result, we have found that by the contractive mapping principle the
equation (52) admits a unique solution £ = £(t) € By.

Thus, we have obtained that for each pair of constants (v, ¢), satisfying
the condition (49), the differential equation (1) admits a unique R-solution
y(t) with the asymptotic properties (50) in A(#;). Thus the Theorem is
complete. O
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